1
|
Hassan FU, Safdar M, Younus M, Arain MA. Regulation of energy metabolism by non-coding RNAs in livestock species: a review. J Comp Physiol B 2025; 195:1-12. [PMID: 39638953 DOI: 10.1007/s00360-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways. miRNAs have been identified as significant regulators of glycolysis and glucose metabolism, whereas lncRNAs are known to affect adipogenesis and mitochondrial activity. Moreover, circRNAs have a substantial influence on the regulation of energy. In addition, this is not only enriching non-coding RNA-mediated energy control but also sheds light on possible applications. It is derived from its ability to condense complex molecular systems, thereby offering crucial insights to researchers. Through a comprehensive analysis of the intricate relationship between ncRNAs and energy metabolism, the information of this review provides a valuable framework for the implementation of focused interventions that hold the potential to significantly enhance the efficiency of livestock production.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan.
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan
| | - Muhammad Younus
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63000, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Water and Marine Sciences, Lasbela University of Agriculture, Uthal, 90150, Balochistan, Pakistan
| |
Collapse
|
2
|
Chembazhi UV, Bangru S, Dutta R, Das D, Peiffer B, Natua S, Toohill K, Leona A, Purwar I, Bhowmik A, Goyal Y, Sun Z, Diehl AM, Kalsotra A. Dysregulated RNA splicing induces regeneration failure in alcohol-associated liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626099. [PMID: 39651310 PMCID: PMC11623683 DOI: 10.1101/2024.11.29.626099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Individuals with progressive liver failure are at a high risk of mortality without liver transplantation. However, our understanding of derailed regenerative responses in failing livers is limited. Here, we performed comprehensive multi-omic profiling of healthy and diseased human livers using bulk and single-nucleus RNA-plus ATAC-seq. We report that hepatic immune milieu alterations in alcohol-associated liver disease (ALD) prevent hepatocytes from transitioning to a proliferative progenitor-like state, trapping them into an unproductive intermediate state. We discovered striking changes in RNA binding protein (RBP) expression, particularly ESRP, PTBP, and SR families, that cause misregulation of developmentally controlled RNA splicing in ALD. Our data pinpoint ESRP2 as a pivotal disease-sensitive RBP and support a causal role of its deficiency in ALD pathogenesis. Notably, splicing defects in ESRP2-targets Tcf4 and Slk , amongst others, directly alter their nuclear localization and activities, disrupting WNT and Hippo signaling pathways, which are critical for normal liver regeneration. We demonstrate that changes in stromal cell populations enrich failing ALD livers with TGF-β, which suppresses ESRP2-driven epithelial splicing program and replaces functional parenchyma with quasi-progenitor-like cells lacking liver-specific functions. This unprecedented account of transcriptional and post-transcriptional dysregulation in ALD suggests that targeting misspliced RNAs could improve recovery and serve as biomarkers for poor ALD outcomes.
Collapse
|
3
|
Ao Z, Wu Z, Hu G, Gong T, Zhang C, Yang Z, Zhang Y. Implications for miR-339-5p regulation of trophoblast proliferation and migration in placentas associated with porcine intrauterine growth retardation using integrated transcriptome sequencing analysis. Theriogenology 2024; 216:127-136. [PMID: 38181538 DOI: 10.1016/j.theriogenology.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Placental dysfunction is considered as one of the main etiologies of fetal intrauterine growth retardation (IUGR). MicroRNAs (miRNAs) have been demonstrated to be a vital epigenetic modification involved in regulating the placental function and pregnancy outcomes in mammals. However, the mechanisms underlying placenta-specific miRNAs involved in the occurrence and development of pig IUGR remain unclear. In this work, we compared the placental morphologies of piglets with IUGR and normal birth weight (NBW) by using histomorphological analysis and performed a miRNA-mRNA integrative analysis of the gene expression profiles of IUGR and NBW placentas through RNA sequencing. We also investigated the role of differentially expressed ssc-miR-339-5p/GRIK3 through an in vitro experiment on porcine trophoblast cells (PTr2). IUGR piglets had significantly lower birth weight, placental weight, placental efficiency, and placental villus and capillary densities compared with the NBW piglets (P < 0.05). A total of 81 differentially expressed miRNAs and 726 differentially expressed genes in the placentas were screened out between the IUGR and NBW groups. The miRNA-mRNA interaction networks revealed the key core miRNA (ssc-miR-339-5p) and its corresponding target genes. Subsequently, we found that upregulation of ssc-miR-339-5p significantly inhibited the migration and proliferation of PTr2 cells (P < 0.05). The dual-luciferase reporter system showed that GRIK3 was the target gene of ssc-miR-339-5p, and the transcription level of GRIK3 may be negatively regulated by ssc-miR-339-5p. Additionally, overexpression of ssc-miR-339-5p significantly increased (P < 0.05) the mRNA expression levels of genes involved in the cytokine-cytokine receptor interaction pathway. These results indicate that ssc-miR-339-5p may affect the migration and proliferation of trophoblast cells by regulating the expression of GRIK3 and altering the placental inflammatory response, resulting in a suboptimal morphology and function of the placenta and the development of pig IUGR.
Collapse
Affiliation(s)
- Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Caizai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhenqing Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Todero J, Douillet C, Shumway AJ, Koller BH, Kanke M, Phuong DJ, Stýblo M, Sethupathy P. Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127021. [PMID: 38150313 PMCID: PMC10752418 DOI: 10.1289/ehp12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic + 3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.
Collapse
Affiliation(s)
- Jenna Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandria J. Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Beverly H. Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Lin C, Wang W, Zhang D, Huang K, Zhang Y, Li X, Zhao Y, Zhao L, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhang X, Zheng W. Analysis of liver miRNA in Hu sheep with different residual feed intake. Front Genet 2023; 14:1113411. [PMID: 37928243 PMCID: PMC10620975 DOI: 10.3389/fgene.2023.1113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Feed efficiency (FE), an important economic trait in sheep production, is indirectly assessed by residual feed intake (RFI). However, RFI in sheep is varied, and the molecular processes that regulate RFI are unclear. It is thus vital to investigate the molecular mechanism of RFI to developing a feed-efficient sheep. The miRNA-sequencing (RNA-Seq) was utilized to investigate miRNAs in liver tissue of 6 out of 137 sheep with extreme RFI phenotypic values. In these animals, as a typical metric of FE, RFI was used to distinguish differentially expressed miRNAs (DE_miRNAs) between animals with high (n = 3) and low (n = 3) phenotypic values. A total of 247 miRNAs were discovered in sheep, with four differentially expressed miRNAs (DE_miRNAs) detected. Among these DE_miRNAs, three were found to be upregulated and one was downregulated in animals with low residual feed intake (Low_RFI) compared to those with high residual feed intake (High_RFI). The target genes of DE_miRNAs were primarily associated with metabolic processes and biosynthetic process regulation. Furthermore, they were also considerably enriched in the FE related to glycolysis, protein synthesis and degradation, and amino acid biosynthesis pathways. Six genes were identified by co-expression analysis of DE_miRNAs target with DE_mRNAs. These results provide a theoretical basis for us to understand the sheep liver miRNAs in RFI molecular regulation.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Blake MJ, Steer CJ. Liver Regeneration in Acute on Chronic Liver Failure. Clin Liver Dis 2023; 27:595-616. [PMID: 37380285 DOI: 10.1016/j.cld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Liver regeneration is a multifaceted process by which the organ regains its original size and histologic organization. In recent decades, substantial advances have been made in our understanding of the mechanisms underlying regeneration following loss of hepatic mass. Liver regeneration in acute liver failure possesses several classic pathways, while also exhibiting unique differences in key processes such as the roles of differentiated cells and stem cell analogs. Here we summarize these unique differences and new molecular mechanisms involving the gut-liver axis, immunomodulation, and microRNAs with an emphasis on applications to the patient population through stem cell therapies and prognostication.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Yan M, Guo L, Ma J, Yang Y, Tang T, Zhang B, Zhou W, Zou W, Hou Z, Gu H, Gong H. Liquiritin alleviates alpha-naphthylisothiocyanate-induced intrahepatic cholestasis through the Sirt1/FXR/Nrf2 pathway. J Appl Toxicol 2023; 43:350-359. [PMID: 36008890 DOI: 10.1002/jat.4385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/11/2022]
Abstract
Liquiritin (LQ) is an important monomer active component in flavonoids of licorice. The objective of this study was to evaluate the hepatoprotective effects of LQ in cholestatic mice. LQ (40 or 80 mg/kg) was intragastrically administered to mice once daily for 6 days, and mice were treated intragastrically with a single dosage of ANIT (75 mg/kg) on the 5th day. On the 7th day, mice were sacrificed to collect blood and livers. The mRNA and protein levels were determined by qRT-PCR and western blot assay. We also conducted systematical assessments of miRNAs expression profiles in the liver. LQ ameliorated ANIT-induced cholestatic liver injury, as evidenced by reduced serum biochemical markers and attenuated pathological changes in liver. Pretreatment of LQ reduced the increase of malondialdehyde, TNF-α, and IL-1β induced by ANIT. Moreover, ANIT suppressed the expression of Sirt1 and FXR in liver tissue, which was weakened in the LQ pre-treatment group. LQ enhanced the nuclear expression of Nrf2, which was increased in the ANIT group. LQ also increased the mRNA expressions of bile acid transporters Bsep, Ntcp, Mrp3, and Mrp4. Furthermore, a miRNA deep sequencing analysis revealed that LQ had a global regulatory effect on the hepatic miRNA expression. Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the differentially expressed miRNAs were mainly related to metabolic pathways, endocytosis, and MAPK signaling pathway. Collectively, LQ attenuated hepatotoxicity and cholestasis by regulating the expression of Sirt1/FXR/Nrf2 and the bile acid transporters, indicating that LQ might be an effective approach for cholestatic liver diseases.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Guo
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiating Ma
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Yang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingli Tang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhenyan Hou
- Department of Pharmacy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongmei Gu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Lianyungang, Jiangsu, China
| | - Hui Gong
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
miR-27b inhibition contributes to cytotoxicity in patulin-exposed HEK293 cells. Toxicon 2022; 210:58-65. [PMID: 35217024 DOI: 10.1016/j.toxicon.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Patulin (PAT) is a mycotoxin produced by Penicillium and other fungi that contaminate fruit. PAT targets the kidney and is associated with nephrotoxicity. Micro-RNAs (miRNA) may offer new insights into PAT-induced nephrotoxicity. Cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), involved in metabolism of dietary toxins is negatively regulated by miR-27b and linked with the nuclear factor kappa B (NF-κB) pathway and peroxisome proliferator activated receptor gamma (PPARɣ) in renal fibrosis. This study investigated the effects of PAT on miR-27b, CYP1B1, PPARɣ and cytotoxicity in human kidney (HEK293) cells. HEK293 cells were exposed to PAT (2.5 μM, 24h). Protein expression of CYP1B1, PPARɣ, NF-κB (p65), pNF-κB (p65) (phospho-Ser563) and cleaved PARP-1 was quantified using western blotting. QPCR evaluated mRNA levels of CYP1B1, IL-6, miR-27b, OGG1, mtDNA, TFAM and UCP2. Mitochondrial membrane potential and phosphatidylserine (PS) externalization was evaluated by flow cytometry while levels of ATP and caspase -9, -8, -3/7 activity was measured using luminometry. PAT significantly decreased miR-27b levels (p = 0.0014) and increased CYP1B1 mRNA (p = 0.0015) and protein (p = 0.0013) levels. PPARɣ protein expression was significantly increased (p = 0.0002) and associated with decreased NF-κB activation (p = 0.0273) and IL-6 mRNA levels (p = 0.0265). Finally, PAT significantly compromised mitochondrial repair mechanisms and increased apoptotic biomarkers. PAT altered miR-27b levels and PPARɣ, with associated changes to NF-κB activation, downstream IL-6 and CYP1B1 expression. These results show that PAT impairs detoxification mechanisms leading to mitochondrial damage and apoptosis. In conclusion, PAT altered the epigenetic environment and impaired detoxification processes, supporting a mechanism for nephrotoxic outcomes.
Collapse
|
9
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
10
|
Zhang Y, Tan YY, Chen PP, Xu H, Xie SJ, Xu SJ, Li B, Li JH, Liu S, Yang JH, Zhou H, Qu LH. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis 2021; 12:1161. [PMID: 34907157 PMCID: PMC8671590 DOI: 10.1038/s41419-021-04436-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Liver development is a highly complex process that is regulated by the orchestrated interplay of epigenetic regulators, transcription factors, and microRNAs (miRNAs). Owing to the lack of global in vivo targets of all miRNAs during liver development, the mechanisms underlying the dynamic control of hepatocyte differentiation by miRNAs remain elusive. Here, using Argonaute (Ago) high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse liver at different developmental stages, we characterized massive Ago-binding RNAs and obtained a genome-wide map of liver miRNA-mRNA interactions. The dynamic changes of five clusters of miRNAs and their potential targets were identified to be differentially involved at specific stages, a dozen of high abundant miRNAs and their epigenetic regulation by super-enhancer were found during liver development. Remarkably, miR-122, a liver-specific and most abundant miRNA in newborn and adult livers, was found by its targetome and pathway reporter analyses to regulate the Hippo pathway, which is crucial for liver size control and homeostasis. Mechanistically, we further demonstrated that miR-122 negatively regulates the outcomes of the Hippo pathway transcription factor TEAD by directly targeting a number of hippo pathway regulators, including the coactivator TAZ and a key factor of the phosphatase complex PPP1CC, which contributes to the dephosphorylation of YAP, another coactivator downstream of the Hippo pathway. This study identifies for the first time the genome-wide miRNA targetomes during mouse liver development and demonstrates a novel mechanism of terminal differentiation of hepatocytes regulated by the miR-122/Hippo pathway in a coordinated manner. As the Hippo pathway plays important roles in cell proliferation and liver pathological processes like inflammation, fibrosis, and hepatocellular carcinoma (HCC), our study could also provide a new insight into the function of miR-122 in liver pathology.
Collapse
Affiliation(s)
- Yin Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Ye-Ya Tan
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Pei-Pei Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.413402.00000 0004 6068 0570Guangdong Province Hospital of Chinese Medicine, AMI Key Laboratory of Chinese Medicine in Guangzhou, , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006 China
| | - Hui Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shu-Juan Xie
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shi-Jun Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Bin Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jun-Hao Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shun Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jian-Hua Yang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Hui Zhou
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Mohr R, Özdirik B, Lambrecht J, Demir M, Eschrich J, Geisler L, Hellberg T, Loosen SH, Luedde T, Tacke F, Hammerich L, Roderburg C. From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:1492. [PMID: 33540837 PMCID: PMC7867354 DOI: 10.3390/ijms22031492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Collapse
Affiliation(s)
- Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Lukas Geisler
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| |
Collapse
|
12
|
Shi W, He JJ, Mei XF, Lu KJ, Zeng ZX, Zhang YY, Sheng ZA, Elsheikha HM, Huang WY, Zhu XQ. Dysregulation of hepatic microRNA expression in C57BL/6 mice affected by excretory-secretory products of Fasciola gigantica. PLoS Negl Trop Dis 2020; 14:e0008951. [PMID: 33332355 PMCID: PMC7775122 DOI: 10.1371/journal.pntd.0008951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The excretory-secretory products released by the liver fluke Fasciola gigantica (FgESPs) play important roles in regulating the host immune response during the infection. Identification of hepatic miRNAs altered by FgESPs may improve our understanding of the pathogenesis of F. gigantica infection. In this study, we investigated the alterations in the hepatic microRNAs (miRNAs) in mice treated with FgESPs using high-throughput small RNA (sRNA) sequencing and bioinformatics analysis. The expression of seven miRNAs was confirmed by quantitative stem-loop reverse transcription quantitative PCR (qRT-PCR). A total of 1,313 miRNAs were identified in the liver of mice, and the differentially expressed (DE) miRNAs varied across the time lapsed post exposure to FgESPs. We identified 67, 154 and 53 dysregulated miRNAs at 1, 4 and 12 weeks post-exposure, respectively. 5 miRNAs (miR-126a-3p, miR-150-5p, miR-155-5p, miR-181a-5p and miR-362-3p) were commonly dysregulated at the three time points. We also found that most of the DE miRNAs were induced by FgESPs in the mouse liver after 4 weeks of exposure. These were subjected to Gene Ontology (GO) enrichment analysis, which showed that the predicted targets of the hepatic DE miRNAs of mice 4 weeks of FgESPs injection were enriched in GO terms, including cell membrane, ion binding, cellular communication, organelle and DNA damage. KEGG analysis indicated that the predicted targets of the most downregulated miRNAs were involved in 15 neural activity-related pathways, 6 digestion-related pathways, 20 immune response-related pathways and 17 cancer-related pathways. These data provide new insights into how FgESPs can dysregulate hepatic miRNAs, which play important roles in modulating several aspects of F. gigantica pathogenesis.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- * E-mail:
| | - Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ke-Jing Lu
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zi-Xuan Zeng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhao-An Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People’s Republic of China
| |
Collapse
|
13
|
Mukiibi R, Johnston D, Vinsky M, Fitzsimmons C, Stothard P, Waters SM, Li C. Bovine hepatic miRNAome profiling and differential miRNA expression analyses between beef steers with divergent feed efficiency phenotypes. Sci Rep 2020; 10:19309. [PMID: 33168877 PMCID: PMC7653039 DOI: 10.1038/s41598-020-73885-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules involved in regulation of multiple biological processes through modulating expression of their target genes. Here we employed RNAseq to profile liver tissue miRNAome of 60 steers from Angus, Charolais, and Kinsella Composite (KC) populations. Of these animals, 36 animals (n = 12 for each breed) were utilized to identify differentially expressed (DE) miRNAs between animals with high (n = 6) or low (n = 6) phenotypic values of residual feed intake (RFI), a common measurement of feed efficiency. At a threshold of fold-change > 1.5 and P-value < 0.05, we detected 12 (7 up- and 5 downregulated in low-RFI animals), 18 (12 up- and 6 downregulated), and 13 (8 up- and 5 downregulated) DE miRNAs for Angus, Charolais, and KC steers, respectively. Most of the DE miRNAs were breed specific, with bta-miR-449a and bta-miR-AB-2 being differentially expressed in all three breeds. The predicted target genes of the identified DE miRNA are mainly involved in cell cycle, cell death and survival, cell signaling, cellular growth and proliferation, protein trafficking, cell morphology, cell-to-cell signaling and interaction, cellular development, molecular transport, post-translational modification, as well as nutrient metabolism (lipids, carbohydrates, protein and amino acid). Our results provide insights into the bovine hepatic miRNAome and their potential roles in molecular regulation of RFI in beef cattle.
Collapse
Affiliation(s)
- Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Dayle Johnston
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Michael Vinsky
- Lacombe Research and Development Centre, Lacombe, Agriculture and Agri-Food Canada, Alberta, T4L 1W1, Canada
| | - Carolyn Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Lacombe Research and Development Centre, Lacombe, Agriculture and Agri-Food Canada, Alberta, T4L 1W1, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, County Meath, Ireland.
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Lacombe Research and Development Centre, Lacombe, Agriculture and Agri-Food Canada, Alberta, T4L 1W1, Canada.
| |
Collapse
|
14
|
MicroRNA expression profiling reveals potential roles for microRNA in the liver during pigeon (Columba livia) development. Poult Sci 2020; 99:6378-6389. [PMID: 33248553 PMCID: PMC7705055 DOI: 10.1016/j.psj.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/23/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is the central organ for metabolism and influence the growth and development of the animals. To date, little is known about the microRNA (miRNA) in pigeon livers, particularly in different developmental stages. A comprehensive investigation into miRNA transcriptomes in livers across 3 pigeon developmental stages (1, 14, 28 d old) and an adult stage (2 y old) was performed by small RNA sequencing. We identified 312 known miRNA, 433 conserved miRNA, and 192 novel miRNA in pigeon livers. A set of differentially expressed (DE) miRNA in livers were screened out during pigeon development. This set of miRNA might be involved in hepatospecific phenotype and liver development. A Short Time-series Expression Miner analysis indicated significant expression variations in DE miRNA during liver development of pigeons. These DE miRNA with different expression patterns might play essential roles in response to growth factor, cell morphogenesis, and gland development, etc. Protein-protein interaction network and Molecular Complex Detection analysis identified several vital target genes (e.g., TNRC6B, FRS2, PTCH1, etc.) of DE miRNA, which is closely linked in liver development and enriched in PI3K cascade and regulation of growth. Our results expanded the repertoire of pigeon miRNA and may be of help in better understanding the mechanism of squab's rapid development from the perspective of liver development.
Collapse
|
15
|
Wang R, Liu X, Wu J, Liu H, Wang W, Chen X, Yuan L, Wang Y, Du X, Ma Y, Losiewicz MD, Zhang X, Zhang H. Role of microRNA-122 in microcystin-leucine arginine-induced dysregulation of hepatic iron homeostasis in mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:822-830. [PMID: 32170997 DOI: 10.1002/tox.22918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide hepatotoxin produced by cyanobacteria. MicroRNA-122 (miR-122) is specifically expressed in the liver. This study focuses on the role of miR-122 in MC-LR-induced dysregulation of hepatic iron homeostasis in C57BL/6 mice. The thirty mice were randomly divided into five groups (Control, 12.5 μg/kg·BW MC-LR, 25 μg/kg·BW MC-LR, Negative control agomir and 25 μg/kg·BW MC-LR + miR-122 agomir). The results show that MC-LR decreases the expressions of miR-122, Hamp, and its related regulators, while increasing the content of hepatic iron and the expressions of FPN1 and Tmprss6. Furthermore, miR-122 agomir pretreatment improves MC-LR induced dysregulation of hepatic iron homeostasis by arousing the related regulators and reducing the expression of Tmprss6. These results suggest that miR-122 agomir can prevent the accumulation of hepatic iron induced by MC-LR, which may be related to the regulation of hepcidin by BMP/SMAD and IL-6/STAT signaling pathways.
Collapse
Affiliation(s)
- Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenjun Wang
- School of Public Health, Jining Medical University, Jining, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas, USA
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas, USA
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
16
|
Zheng H, Li X, Yang X, Yan F, Wang C, Liu J. miR-217/Mafb Axis Involve in High Glucose-Induced β-TC-tet Cell Damage Via Regulating NF-κB Signaling Pathway. Biochem Genet 2020; 58:901-913. [PMID: 32627107 DOI: 10.1007/s10528-020-09984-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
We attempt to explore the role of miR-217 during the process of type 2 diabetes mellitus (T2DM). Mouse β-TC-tet was dealt with 16.7 mM glucose (HG) to imitate the cells in T2DM. Cell proliferation and apoptosis were determined by cell counting kit-8 and flow cytometry. The correlation between miR-217 and Mafb was predicted with biological software and confirmed by dual lucifierase assay. Western blot was applied to detect protein expression. The data from GEO database exhibited that miR-217 was upregulated in T2DM patients. HG treatment upregulated the expression of miR-217, inhibited the proliferation, and promoted the apoptosis and inflammation of β-TC-tet cell. Depletion of miR-217 alleviated the damage of β-TC-tet cell caused by HG. Mafb was affirmed as a target of miR-217 and was negatively modulated by miR-217. Knockdown of Mafb attenuated the alleviation of miR-217 inhibitor on β-TC-tet cell damage. The expression of key proteins in NF-κB signaling pathway was upregulated by HG, and this upregulation tendency was inhibited by miR-217 inhibitor. Moreover, silencing Mafb could alleviate the inhibition of miR-217 inhibitor on these proteins. Our findings insinuated that inhibition of miR-217 could relieve β-TC-tet damage induced by HG through regulating Mafb and NF-κB signaling.
Collapse
Affiliation(s)
- Huizhen Zheng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China
| | - Xinying Li
- Department of Emergency, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong, P.R. China
| | - Xinyu Yang
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P.R. China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, P.R. China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, P.R. China. .,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong, P.R. China.
| |
Collapse
|
17
|
Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs. Proc Natl Acad Sci U S A 2020; 117:1524-1532. [PMID: 31919282 DOI: 10.1073/pnas.1918931117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of the tumor suppressor tuberous sclerosis complex 1 (Tsc1) in the liver promotes gluconeogenesis and glucose intolerance. We asked whether this could be attributed to aberrant expression of small RNAs. We performed small-RNA sequencing on liver of Tsc1-knockout mice, and found that miRNAs of the delta-like homolog 1 (Dlk1)-deiodinase iodothyronine type III (Dio3) locus are up-regulated in an mTORC1-dependent manner. Sustained mTORC1 signaling during development prevented CpG methylation and silencing of the Dlk1-Dio3 locus, thereby increasing miRNA transcription. Deletion of miRNAs encoded by the Dlk1-Dio3 locus reduced gluconeogenesis, glucose intolerance, and fasting blood glucose levels. Thus, miRNAs contribute to the metabolic effects observed upon loss of TSC1 and hyperactivation of mTORC1 in the liver. Furthermore, we show that miRNA is a downstream effector of hyperactive mTORC1 signaling.
Collapse
|
18
|
Leventhal TM, KC M, Steer CJ. Liver Regeneration in Acute and Acute-on-Chronic Liver Failure. LIVER FAILURE 2020:65-90. [DOI: 10.1007/978-3-030-50983-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Liew LC, Gailhouste L, Tan GC, Yamamoto Y, Takeshita F, Nakagama H, Ochiya T. MicroRNA-124a inhibits endoderm lineage commitment by targeting Sox17 and Gata6 in mouse embryonic stem cells. Stem Cells 2019; 38:504-515. [PMID: 31828873 PMCID: PMC7187259 DOI: 10.1002/stem.3136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
The role of microRNAs (miRNAs) during mouse early development, especially in endoderm germ layer formation, is largely unknown. Here, via miRNA profiling during endoderm differentiation, we discovered that miR‐124a negatively regulates endoderm lineage commitment in mouse embryonic stem cells (mESCs). To further investigate the functional role of miR‐124a in early stages of differentiation, transfection of embryoid bodies with miR‐124a mimic was performed. We showed that overexpression of miR‐124a inhibits endoderm differentiation in vitro through targeting the 3′‐untranslated region (UTR) of Sox17 and Gata6, revealing the existence of interplay between miR‐124a and the Sox17/Gata6 transcription factors in hepato‐specific gene regulation. In addition, we presented a feasible in vivo system that utilizes teratoma and gene expression profiling from microarray to quantitatively evaluate the functional role of miRNA in lineage specification. We demonstrated that ectopic expression of miR‐124a in teratomas by intratumor delivery of miR‐124a mimic and Atelocollagen, significantly suppressed endoderm and mesoderm lineage differentiation while augmenting the differentiation into ectoderm lineage. Collectively, our findings suggest that miR‐124a plays a significant role in mESCs lineage commitment.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumitaka Takeshita
- Department of Functional Analysis, FIOC, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
20
|
Vyas HS, Upadhyay KK, Devkar RV. miRNAs Signatures In Patients With Acute Liver Injury: Clinical Concerns and Correlations. Curr Mol Med 2019; 20:325-335. [PMID: 31823701 DOI: 10.2174/1566524020666191211153546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022]
Abstract
Non-coding RNAs can be highly exploited for their biological significance in living systems. miRNAs are in the upstream position of cellular regulation cascade and hold merit in its state. A plethora of information is available on a wide variety of miRNAs that undergo alterations in experimentally induced models of liver injuries. The underlying mechanisms governed by these miRNAs have been inferred through cellbased experiments but the scientific knowledge on miRNA signatures in patients with liver injury are primordial and lack scientific clarity. Hence, it is crucial to get insight into the status and synergy of miRNAs in patients, with varying degrees of acute toxic manifestations in the liver. Though some miRNAs are being investigated in clinical trials, a major research lacuna exists with regard to the functional role of other miRNAs in liver diseases. This review article is a meticulous compilation of disease based or drug/alcohol based acute liver injuries in patients and resultant alteration in their miRNA profile. Investigative reports on underlying miRNA-liver crosstalk in cell-based or murine models are also discussed herein to draw a correlation with clinical findings.
Collapse
Affiliation(s)
- Hitarthi S Vyas
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Kapil K Upadhyay
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ranjitsinh V Devkar
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| |
Collapse
|
21
|
Apellaniz-Ruiz M, Segni M, Kettwig M, Glüer S, Pelletier D, Nguyen VH, Wagener R, López C, Muchantef K, Bouron-Dal Soglio D, Sabbaghian N, Wu MK, Zannella S, Fabian MR, Siebert R, Menke J, Priest JR, Foulkes WD. Mesenchymal Hamartoma of the Liver and DICER1 Syndrome. N Engl J Med 2019; 380:1834-1842. [PMID: 31067372 DOI: 10.1056/nejmoa1812169] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mesenchymal hamartoma of the liver (MHL) is a benign tumor affecting children that is characterized by a primitive myxoid stroma with cystically dilated bile ducts. Alterations involving chromosome 19q13 are a recurrent underlying cause of MHL; these alterations activate the chromosome 19 microRNA cluster (C19MC). Other cases remain unexplained. We describe two children with MHLs that harbored germline DICER1 pathogenic variants. Analysis of tumor tissue from one of the children revealed two DICER1 "hits." Mutations in DICER1 dysregulate microRNAs, mimicking the effect of the activation of C19MC. Our data suggest that MHL is a new phenotype of DICER1 syndrome. (Funded by the Canadian Institutes of Health Research and others.).
Collapse
Affiliation(s)
- Maria Apellaniz-Ruiz
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Maria Segni
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Matthias Kettwig
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Sylvia Glüer
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Dylan Pelletier
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Van-Hung Nguyen
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Rabea Wagener
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Cristina López
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Karl Muchantef
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Dorothée Bouron-Dal Soglio
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Nelly Sabbaghian
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Mona K Wu
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Stefano Zannella
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Marc R Fabian
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Reiner Siebert
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - Jan Menke
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - John R Priest
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| | - William D Foulkes
- From the Departments of Human Genetics (M.A.-R., M.K.W., W.D.F.), Pharmacology (D.P.), Oncology (M.R.F., W.D.F.), and Biochemistry (M.R.F.), and the Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital (M.A.-R., D.P., N.S., M.K.W., M.R.F., W.D.F.), McGill University, the Department of Pathology, Montreal Children's Hospital (V.-H.N.), the Department of Radiology (K.M.), and the Cancer Research Program, Research Institute (W.D.F.), McGill University Health Centre, and the Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine (D.B.-D.S.) - all in Montreal; the Department of Pediatrics, Endocrinology Unit, Sapienza University, Rome (M.S.), and Centro Diagnostico Italiano, Milan (S.Z.) - both in Italy; the Department of Pediatrics and Adolescent Medicine, Faculty of Medicine (M.K.), and the Institute for Diagnostic and Interventional Radiology, Faculty of Medicine (J.M.), Georg-August University, Göttingen, the Department of Pediatric Surgery, St. Bernward Krankenhaus Hildesheim, Hildesheim (S.G.), and the Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm (R.W., C.L., R.S.) - all in Germany; and Minneapolis (J.R.P.)
| |
Collapse
|
22
|
Verma A, Antony AN, Ogunnaike BA, Hoek JB, Vadigepalli R. Causality Analysis and Cell Network Modeling of Spatial Calcium Signaling Patterns in Liver Lobules. Front Physiol 2018; 9:1377. [PMID: 30337879 PMCID: PMC6180170 DOI: 10.3389/fphys.2018.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/11/2018] [Indexed: 01/21/2023] Open
Abstract
Dynamics as well as localization of Ca2+ transients plays a vital role in liver function under homeostatic conditions, repair, and disease. In response to circulating hormonal stimuli, hepatocytes exhibit intracellular Ca2+ responses that propagate through liver lobules in a wave-like fashion. Although intracellular processes that control cell autonomous Ca2+ spiking behavior have been studied extensively, the intra- and inter-cellular signaling factors that regulate lobular scale spatial patterns and wave-like propagation of Ca2+ remain to be determined. To address this need, we acquired images of cytosolic Ca2+ transients in 1300 hepatocytes situated across several mouse liver lobules over a period of 1600 s. We analyzed this time series data using correlation network analysis, causal network analysis, and computational modeling, to characterize the spatial distribution of heterogeneity in intracellular Ca2+ signaling components as well as intercellular interactions that control lobular scale Ca2+ waves. Our causal network analysis revealed that hepatocytes are causally linked to multiple other co-localized hepatocytes, but these influences are not necessarily aligned uni-directionally along the sinusoids. Our computational model-based analysis showed that spatial gradients of intracellular Ca2+ signaling components as well as intercellular molecular exchange are required for lobular scale propagation of Ca2+ waves. Additionally, our analysis suggested that causal influences of hepatocytes on Ca2+ responses of multiple neighbors lead to robustness of Ca2+ wave propagation through liver lobules.
Collapse
Affiliation(s)
- Aalap Verma
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States.,Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anil Noronha Antony
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Sun W, Zhang J, Chen J. MicroRNA-520a suppresses HBV replication in HepG2.2.15 cells by inactivating AKT. J Int Med Res 2018; 46:4693-4704. [PMID: 30191752 PMCID: PMC6259377 DOI: 10.1177/0300060518792780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective To investigate whether the mechanism by which a microRNA, miR-520a, suppresses the replication of hepatitis B virus (HBV) involves the regulation of the serine/threonine kinase (AKT) gene. Methods The effects of miR-520a on the proliferation, mitotic index and apoptosis of the HBV-replicating human hepatocellular carcinoma cell line HepG2.2.15 were measured using standard laboratory methods including flow cytometry. The effects of miR-520a on HBV transcription and replication were assessed using methods including immunoassays and reverse transcription–polymerase chain reaction. The effect of small interfering RNA (siRNA) to AKT on the levels of AKT mRNA and protein were also evaluated. Results In HepG2.2.15 cells, miRNA-520a reduced HBV transcription and replication by reducing AKT levels. MiRNA-520a decreased cell proliferation and mitosis entry of cells and increased apoptosis in HepG2.2.15 cells. AKT levels were reduced significantly by its siRNA, which resulted in suppression of HBV replication in HepG2.2.15 cells. Conclusions MiRNA-520a inhibited AKT gene expression and suppressed HBV transcription and replication. These findings suggest that miRNA-520a may be a novel target for the treatment of HBV infection because miRNA-520a reduced HepG2.2.15 cell survival and inhibited HBV replication associated with the AKT signalling pathway.
Collapse
Affiliation(s)
- Wei Sun
- 1 Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinqian Zhang
- 2 Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Jinglong Chen
- 1 Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Roy S, Trautwein C, Luedde T, Roderburg C. A General Overview on Non-coding RNA-Based Diagnostic and Therapeutic Approaches for Liver Diseases. Front Pharmacol 2018; 9:805. [PMID: 30158867 PMCID: PMC6104154 DOI: 10.3389/fphar.2018.00805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Liver diseases contribute to the global mortality and morbidity and still represent a major health problem leading to the death of people worldwide. Although there are several treatment options available for Hepatitis C infections, for most liver disease the pharmacological options are still limited. Therefore, the development of new targets against liver diseases is of high interest. Non-coding RNA (ncRNA) such as microRNA (miRNA) or long ncRNA (lncRNA) have been shown to be deeply involved in the pathophysiology of almost all acute and chronic liver diseases. The emerging evidence showed the potential therapeutic use of miRNA associated with different steps of hepatic pathophysiology. In the present review, we summarize emerging insights of ncRNA in liver diseases. We also highlight example of ncRNAs participating in the pathogenesis of different forms of liver disease and how they can be used as potential therapeutic targets for novel treatment paradigms. Furthermore, we describe an overview of up-to-date clinical trials and discuss about its future in clinical applications. Finally, we highlight the role of circulating ncRNAs in diagnosis of liver diseases and discuss the challenges and drawbacks of the usage of ncRNAs in clinical setting.
Collapse
Affiliation(s)
- Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
25
|
Liang X, Zheng S, Cui J, Yu D, Yang G, Zhou L, Wang B, Cai L, Li W. Alterations of MicroRNA Expression in the Liver, Heart, and Testis of Mice Upon Exposure to Repeated Low-Dose Radiation. Dose Response 2018; 16:1559325818799561. [PMID: 30263020 PMCID: PMC6153535 DOI: 10.1177/1559325818799561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRs), which regulate target gene expression at the post-transcriptional level, play a crucial role in inducing biological effects upon high-dose ionizing radiation. Yet, the miR expression profiles in response to repeated low-dose radiation (LDR) in vivo have not been elucidated. This study investigated the response profiles of 11 miRs with functions involved in metabolism, DNA damage and repair, inflammation, and fibrosis in mouse liver, heart, and testis upon repeated LDR exposure for 4 months. The expression profiles were evaluated using stem-loop quantitative reverse transcription polymerase chain reaction immediately and at 2 months after LDR exposure. The expression profiles varied significantly at both time points. At the organ level, the heart was the most affected, followed by the liver and testis, in which significant miR upregulation related to DNA damage response was found. Metabolism-related miRs decreased in the liver and increased in the testis. The current results showed immediate and long-lasting alterations in the miR expression profiles in response to repeated LDR in different organs.
Collapse
Affiliation(s)
- Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun,
China
- Pediatric Research Institute, Department of Pediatrics of the
University of Louisville, Louisville, KY, USA
| | - Shirong Zheng
- Pediatric Research Institute, Department of Pediatrics of the
University of Louisville, Louisville, KY, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun,
China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun,
China
| | - Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun,
China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun,
China
| | - Brain Wang
- Department of Radiation Oncology, The University of Louisville,
Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics of the
University of Louisville, Louisville, KY, USA
- Department of Radiation Oncology, The University of Louisville,
Louisville, KY, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun,
China
| |
Collapse
|
26
|
Eman SR, Kubesy AA, Baraka TA, Torad FA, Shaymaa IS, Mohammed FF. Evaluation of hepatocyte-derived microRNA-122 for diagnosis of acute and chronic hepatitis of dogs. Vet World 2018; 11:667-673. [PMID: 29915506 PMCID: PMC5993765 DOI: 10.14202/vetworld.2018.667-673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 12/02/2022] Open
Abstract
Aim: This study was performed to evaluate the diagnostic value of hepatocyte-derived microRNA (miRNA)-122 in acute and chronic hepatitis of dogs. Materials and Methods: A total of 26 dogs presented at Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Cairo University, 16 dogs out of 26 showing clinical signs of hepatic insufficiency were subjected to clinical, ultrasonographic, hematobiochemical and ultrasound-guided fine-needle biopsy for cytological and histopathological investigations. On the basis of these results, 7 dogs out of 16 dogs were found to be suffering from acute hepatitis and 9 dogs suffering from chronic hepatitis. 10 clinically healthy dogs were kept as control. Serum hepatocyte-derived miRNA-122 was analyzed by real-time quantitative polymerase chain reaction in all dogs. Results: The dogs suffering from acute hepatitis manifested jaundice, vomiting, and depression while dogs with chronic hepatitis manifested anorexia, abdominal distension, weight loss, and melena. Hematological parameters showed normocytic normochromic anemia and thrombocytopenia in both acute and chronic hepatitis groups. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin were significantly higher than control values in acute hepatitis. In chronic hepatitis, total protein and albumin were significantly lower than control values with normal ALT, AST, ALP, and gamma-glutamyltransferase values. Ultrasonography revealed a diffuse decrease in hepatic echogenicity in acute hepatitis while the increase in hepatic echogenicity and anechoic ascetic fluid in chronic hepatitis. Cytology revealed hepatic vacuolar degeneration and histopathology revealed necrosis and apoptosis of hepatocyte in acute hepatitis while revealed massive fibrous tissue proliferation in hepatic parenchyma in chronic hepatitis. Serum miRNA-122 analysis, normalized for glyceraldehyde-3-phosphate dehydrogenase expression revealed a significant increase in acute hepatitis accompanied with elevation in ALT and AST, while in chronic hepatitis, elevation of serum miRNA-122 was accompanied with ALT and AST of the normal range. Conclusion: Serum hepatocyte-derived miRNA-122 is of diagnostic value and highly stable blood indicator for the detection of hepatocellular injury in dogs than aminotransferases, especially in cases where aminotransferases do not exceed normal serum level.
Collapse
Affiliation(s)
- S R Eman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - A A Kubesy
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - T A Baraka
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - F A Torad
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - I S Shaymaa
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
27
|
Safdar A, Tarnopolsky MA. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harb Perspect Med 2018; 8:a029827. [PMID: 28490541 PMCID: PMC5830902 DOI: 10.1101/cshperspect.a029827] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Habitual endurance exercise training is associated with multisystemic metabolic adaptations that lower the risk of inactivity-associated disorders such as obesity and type 2 diabetes mellitus (T2DM). Identification of complex systemic signaling networks responsible for these benefits are of great interest because of their therapeutic potential in metabolic diseases; however, specific signals that modulate the multisystemic benefits of exercise in multiple tissues and organs are only recently being discovered. Accumulated evidence suggests that muscle and other tissues have an endocrine function and release peptides and nucleic acids into the circulation in response to acute endurance exercise to mediate the multisystemic adaptations. Factors released from skeletal muscle have been termed myokines and we propose that the total of all factors released in response to endurance exercise (including peptides, nucleic acids, and metabolites) be termed, "exerkines." We propose that many of the exerkines are released within extracellular vesicles called exosomes, which regulate peripheral organ cross talk. Exosomes (30-140 nm) and larger microvesicles [MVs] (100-1000 nm) are subcategories of extracellular vesicles that are released into the circulation. Exosomes contain peptides and several nucleic acids (microRNA [miRNA], messenger RNA [mRNA], mitochondrial DNA [mtDNA]) and are involved in intercellular/tissue exchange of their contents. An acute bout of endurance exercise increases circulating exosomes that are hypothesized to mediate organ cross talk to promote systemic adaptation to endurance exercise. Further support for the role of exosomes (and possibly MVs) in mediating the systemic benefits of exercise comes from the fact that the majority of the previously reported myokines/exerkines are found in extracellular vesicles databases (Vesiclepedia and ExoCarta). We propose that exosomes isolated from athletes following exercise or exosomes bioengineered to incorporate one or many of known exerkines will be therapeutically useful in the treatment of obesity, T2DM, and other aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Department of Pediatrics & Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
28
|
Bisgin H, Gong B, Wang Y, Tong W. Evaluation of Bioinformatics Approaches for Next-Generation Sequencing Analysis of microRNAs with a Toxicogenomics Study Design. Front Genet 2018; 9:22. [PMID: 29467792 PMCID: PMC5808213 DOI: 10.3389/fgene.2018.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators that affect protein translation by targeting mRNAs. Their role in disease etiology and toxicity are well recognized. Given the rapid advancement of next-generation sequencing techniques, miRNA profiling has been increasingly conducted with RNA-seq, namely miRNA-seq. Analysis of miRNA-seq data requires several steps: (1) mapping the reads to miRBase, (2) considering mismatches during the hairpin alignment (windowing), and (3) counting the reads (quantification). The choice made in each step with respect to the parameter settings could affect miRNA quantification, differentially expressed miRNAs (DEMs) detection and novel miRNA identification. Furthermore, these parameters do not act in isolation and their joint effects impact miRNA-seq results and interpretation. In toxicogenomics, the variation associated with parameter setting should not overpower the treatment effect (such as the dose/time-dependent effect). In this study, four commonly used miRNA-seq analysis tools (i.e., miRDeep2, miRExpress, miRNAkey, sRNAbench) were comparatively evaluated with a standard toxicogenomics study design. We tested 30 different parameter settings on miRNA-seq data generated from thioacetamide-treated rat liver samples for three dose levels across four time points, followed by four normalization options. Because both miRExpress and miRNAkey yielded larger variation than that of the treatment effects across multiple parameter settings, our analyses mainly focused on the side-by-side comparison between miRDeep2 and sRNAbench. While the number of miRNAs detected by miRDeep2 was almost the subset of those detected by sRNAbench, the number of DEMs identified by both tools was comparable under the same parameter settings and normalization method. Change in the number of nucleotides out of the mature sequence in the hairpin alignment (window option) yielded the largest variation for miRNA quantification and DEMs detection. However, such a variation is relatively small compared to the treatment effect when the study focused on DEMs that are more critical to interpret the toxicological effect. While the normalization methods introduced a large variation in DEMs, toxic behavior of thioacetamide showed consistency in the trend of time-dose responses. Overall, miRDeep2 was found to be preferable over other choices when the window option allowed up to three nucleotides from both ends.
Collapse
Affiliation(s)
- Halil Bisgin
- Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, Flint, MI, United States
| | - Binsheng Gong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (FDA), Jefferson, AR, United States
| | - Yuping Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (FDA), Jefferson, AR, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (FDA), Jefferson, AR, United States
| |
Collapse
|
29
|
Schueller F, Roy S, Vucur M, Trautwein C, Luedde T, Roderburg C. The Role of miRNAs in the Pathophysiology of Liver Diseases and Toxicity. Int J Mol Sci 2018; 19:ijms19010261. [PMID: 29337905 PMCID: PMC5796207 DOI: 10.3390/ijms19010261] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Both acute and chronic liver toxicity represents a major global health burden and an important cause of morbidity and lethality worldwide. Despite epochal progress in the treatment of hepatitis C virus infections, pharmacological treatment strategies for most liver diseases are still limited and new targets for prevention or treatment of liver disease are urgently needed. MicroRNAs (miRNAs) represent a new class of highly conserved small non-coding RNAs that are involved in the regulation of gene expression by targeting whole networks of so called “targets”. Previous studies have shown that the expression of miRNAs is specifically altered in almost all acute and chronic liver diseases. In this context, it was shown that miRNA can exert causal roles, being pro- or anti-inflammatory, as well as pro- or antifibrotic mediators or being oncogenes as well as tumor suppressor genes. Recent data suggested a potential therapeutic use of miRNAs by targeting different steps in the hepatic pathophysiology. Here, we review the function of miRNAs in the context of acute and chronic liver diseases. Furthermore, we highlight the potential role of circulating microRNAs in diagnosis of liver diseases and discuss the major challenges and drawbacks that currently prevent the use of miRNAs in clinical routine.
Collapse
Affiliation(s)
- Florian Schueller
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
30
|
Pistoni M, Helsen N, Vanhove J, Boon R, Xu Z, Ordovas L, Verfaillie CM. Dynamic regulation of EZH2 from HPSc to hepatocyte-like cell fate. PLoS One 2017; 12:e0186884. [PMID: 29091973 PMCID: PMC5665677 DOI: 10.1371/journal.pone.0186884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
Currently, drug metabolization and toxicity studies rely on the use of primary human hepatocytes and hepatoma cell lines, which both have conceivable limitations. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are an alternative and valuable source of hepatocytes that can overcome these limitations. EZH2 (enhancer of zeste homolog 2), a transcriptional repressor of the polycomb repressive complex 2 (PRC2), may play an important role in hepatocyte development, but its role during in vitro hPSC-HLC differentiation has not yet been assessed. We here demonstrate dynamic regulation of EZH2 during hepatic differentiation of hPSC. To enhance EZH2 expression, we inducibly overexpressed EZH2 between d0 and d8, demonstrating a significant improvement in definitive endoderm formation, and improved generation of HLCs. Despite induction of EZH2 overexpression until d8, EZH2 transcript and protein levels decreased from d4 onwards, which might be caused by expression of microRNAs predicted to inhibit EZH2 expression. In conclusion, our studies demonstrate that EZH2 plays a role in endoderm formation and hepatocyte differentiation, but its expression is tightly post-transcriptionally regulated during this process.
Collapse
Affiliation(s)
- Mariaelena Pistoni
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
- * E-mail:
| | - Nicky Helsen
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Jolien Vanhove
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Ruben Boon
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Zhuofei Xu
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Laura Ordovas
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Catherine M. Verfaillie
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| |
Collapse
|
31
|
Hicks JA, Porter TE, Liu HC. Identification of microRNAs controlling hepatic mRNA levels for metabolic genes during the metabolic transition from embryonic to posthatch development in the chicken. BMC Genomics 2017; 18:687. [PMID: 28870167 PMCID: PMC5583987 DOI: 10.1186/s12864-017-4096-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Background The transition from embryonic to posthatch development in the chicken represents a massive metabolic switch from primarily lipolytic to primarily lipogenic metabolism. This metabolic switch is essential for the chick to successfully transition from the metabolism of stored egg yolk to the utilization of carbohydrate-based feed. However, regulation of this metabolic switch is not well understood. We hypothesized that microRNAs (miRNAs) play an important role in the metabolic switch that is essential to efficient growth of chickens. We used high-throughput RNA sequencing to characterize expression profiles of mRNA and miRNA in liver during late embryonic and early posthatch development of the chicken. This extensive data set was used to define the contributions of microRNAs to the metabolic switch during development that is critical to growth and nutrient utilization in chickens. Results We found that expression of over 800 mRNAs and 30 miRNAs was altered in the embryonic liver between embryonic day 18 and posthatch day 3, and many of these differentially expressed mRNAs and miRNAs are associated with metabolic processes. We confirmed the regulation of some of these mRNAs by miRNAs expressed in a reciprocal pattern using luciferase reporter assays. Finally, through the use of yeast one-hybrid screens, we identified several proteins that likely regulate expression of one of these important miRNAs. Conclusions Integration of the upstream regulatory mechanisms governing miRNA expression along with monitoring the downstream effects of this expression will ultimately allow for the construction of complete miRNA regulatory networks associated with the hepatic metabolic switch in chickens. Our findings support a key role for miRNAs in controlling the metabolic switch that occurs between embryonic and posthatch development in the chicken. Electronic supplementary material The online version of this article (10.1186/s12864-017-4096-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Polk Hall 232D, Box 7621, Raleigh, NC, 27695, USA
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Polk Hall 232D, Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
32
|
Overexpression of miR-24 Is Involved in the Formation of Hypocoagulation State after Severe Trauma by Inhibiting the Synthesis of Coagulation Factor X. DISEASE MARKERS 2017; 2017:3649693. [PMID: 28694557 PMCID: PMC5488151 DOI: 10.1155/2017/3649693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/16/2017] [Accepted: 05/14/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Dysregulation of microRNAs may contribute to the progression of trauma-induced coagulopathy (TIC). We aimed to explore the biological function that miRNA-24-3p (miR-24) might have in coagulation factor deficiency after major trauma and TIC. METHODS 15 healthy volunteers and 36 severe trauma patients (Injury Severity Score ≥ 16 were enrolled. TIC was determined as the initial international normalized ratio >1.5. The miR-24 expression and concentrations of factor X (FX) and factor XII in plasma were measured. In vitro study was conducted on L02 cell line. RESULTS The plasma miR-24 expression was significantly elevated by 3.17-fold (P = 0.043) in major trauma patients and reduced after 3 days (P < 0.01). The expression level was significantly higher in TIC than in non-TIC patients (P = 0.040). Multivariate analysis showed that the higher miR-24 expression was associated with TIC. The plasma concentration of FX in TIC patients was significantly lower than in the non-TIC ones (P = 0.030) and controls (P < 0.01). A negative correlation was observed between miR-24 and FX. miR-24 transduction significantly reduced the FX level in the supernatant of L02 cells (P = 0.030). CONCLUSIONS miR-24 was overexpressed in major trauma and TIC patients. The negative correlation of miR-24 with FX suggested the possibility that miR-24 might inhibit the synthesis of FX during TIC.
Collapse
|
33
|
Morimoto A, Kannari M, Tsuchida Y, Sasaki S, Saito C, Matsuta T, Maeda T, Akiyama M, Nakamura T, Sakaguchi M, Nameki N, Gonzalez FJ, Inoue Y. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem 2017; 292:10574-10585. [PMID: 28465351 DOI: 10.1074/jbc.m117.785592] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) controls the expression of liver-specific protein-coding genes. However, some microRNAs are also modulated by HNF4α, and it is not known whether they are direct targets of HNF4α and whether they influence hepatic function. In this study, we found that HNF4α regulates microRNAs, indicated by marked down-regulation of miR-194 and miR-192 (miR-194/192) in liver-specific Hnf4a-null (Hnf4aΔH) mice. Transactivation of the shared miR-194/192 promoter was dependent on HNF4α expression, indicating that miR-194/192 is a target gene of HNF4α. Screening of potential mRNAs targeted by miR-194/192 revealed that expression of genes involved in glucose metabolism (glycogenin 1 (Gyg1)), cell adhesion and migration (activated leukocyte cell adhesion molecule (Alcam)), tumorigenesis and tumor progression (Rap2b and epiregulin (Ereg)), protein SUMOylation (Sumo2), epigenetic regulation (Setd5 and Cullin 4B (Cln4b)), and the epithelial-mesenchymal transition (moesin (Msn)) was up-regulated in Hnf4aΔH mice. Moreover, we also found that miR-194/192 binds the 3'-UTR of these mRNAs. siRNA knockdown of HNF4α suppressed miR-194/192 expression in human hepatocellular carcinoma (HCC) cells and resulted in up-regulation of their mRNA targets. Inhibition and overexpression experiments with miR-194/192 revealed that Gyg1, Setd5, Sumo2, Cln4b, and Rap2b are miR-194 targets, whereas Ereg, Alcam, and Msn are miR-192 targets. These findings reveal a novel HNF4α network controlled by miR-194/192 that may play a critical role in maintaining the hepatocyte-differentiated state by inhibiting expression of genes involved in dedifferentiation and tumorigenesis. These insights may contribute to the development of diagnostic markers for early HCC detection, and targeting of the miR-194/192 pathway could be useful for managing HCC.
Collapse
Affiliation(s)
- Aoi Morimoto
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Mana Kannari
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuichi Tsuchida
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shota Sasaki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Chinatsu Saito
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsuyoshi Matsuta
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsukasa Maeda
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Megumi Akiyama
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takahiro Nakamura
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan, and
| | - Nobukazu Nameki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20852
| | - Yusuke Inoue
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
| |
Collapse
|
34
|
Dkhil MA, Al-Quraishy SA, Abdel-Baki AAS, Delic D, Wunderlich F. Differential miRNA Expression in the Liver of Balb/c Mice Protected by Vaccination during Crisis of Plasmodium chabaudi Blood-Stage Malaria. Front Microbiol 2017; 7:2155. [PMID: 28123381 PMCID: PMC5225092 DOI: 10.3389/fmicb.2016.02155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are increasingly recognized as epigenetic regulators for outcome of diverse infectious diseases and vaccination efficacy, but little information referring to this exists for malaria. This study investigates possible effects of both protective vaccination and P. chabaudi malaria on the miRNome of the liver as an effector against blood-stage malaria using miRNA microarrays and quantitative PCR. Plasmodium chabaudi blood-stage malaria takes a lethal outcome in female Balb/c mice, but a self-healing course after immunization with a non-infectious blood-stage vaccine. The liver robustly expresses 71 miRNA species at varying levels, among which 65 miRNA species respond to malaria evidenced as steadily increasing or decreasing expressions reaching highest or lowest levels toward the end of the crisis phase on day 11 p.i. in lethal malaria. Protective vaccination does not affect constitutive miRNA expression, but leads to significant (p < 0.05) changes in the expression of 41 miRNA species, however evidenced only during crisis. In vaccination-induced self-healing infections, 18 miRNA-species are up- and 14 miRNA-species are down-regulated by more than 50% during crisis in relation to non-vaccinated mice. Vaccination-induced self-healing and survival of otherwise lethal infections of P. chabaudi activate epigenetic miRNA-regulated remodeling processes in the liver manifesting themselves during crisis. Especially, liver regeneration is accelerated as suggested by upregulation of let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-26a, miR-122-5p, miR30a, miR27a, and mir-29a, whereas the up-regulated expression of miR-142-3p by more than 100% is compatible with the view of enhanced hepatic erythropoiesis, possibly at expense of megakaryopoiesis, during crisis of P. chabaudi blood-stage malaria.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan UniversityCairo, Egypt
| | - Saleh A Al-Quraishy
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef, Egypt
| | - Denis Delic
- Boehringer-Ingelheim Pharma Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|
35
|
Rogler CE, Bebawee R, Matarlo J, Locker J, Pattamanuch N, Gupta S, Rogler LE. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver. J Histochem Cytochem 2016; 65:33-46. [PMID: 27879410 DOI: 10.1369/0022155416675153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.
Collapse
Affiliation(s)
- Charles E Rogler
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Disease, Departments of Medicine (CER, RB, JM, NP, SG, LER), Albert Einstein College of Medicine, Bronx, New York.,Departments of Genetics (CER), Albert Einstein College of Medicine, Bronx, New York.,Departments of Microbiology and Immunology (CER), Albert Einstein College of Medicine, Bronx, New York
| | - Remon Bebawee
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Disease, Departments of Medicine (CER, RB, JM, NP, SG, LER), Albert Einstein College of Medicine, Bronx, New York
| | - Joe Matarlo
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Disease, Departments of Medicine (CER, RB, JM, NP, SG, LER), Albert Einstein College of Medicine, Bronx, New York
| | - Joseph Locker
- Division of Molecular Anatomic Pathology, Department of Pathology, University of Pittsburg, Pittsburg, Pennsylvania (JL)
| | - Nicole Pattamanuch
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Disease, Departments of Medicine (CER, RB, JM, NP, SG, LER), Albert Einstein College of Medicine, Bronx, New York.,Montefiore Medical Center, Bronx, New York (NP)
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Disease, Departments of Medicine (CER, RB, JM, NP, SG, LER), Albert Einstein College of Medicine, Bronx, New York.,Departments of Pathology (SG), Albert Einstein College of Medicine, Bronx, New York
| | - Leslie E Rogler
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Disease, Departments of Medicine (CER, RB, JM, NP, SG, LER), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
36
|
Dirksen K, Verzijl T, Grinwis GC, Favier RP, Penning LC, Burgener IA, van der Laan LJ, Fieten H, Spee B. Use of Serum MicroRNAs as Biomarker for Hepatobiliary Diseases in Dogs. J Vet Intern Med 2016; 30:1816-1823. [PMID: 27859748 PMCID: PMC5115189 DOI: 10.1111/jvim.14602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Background Current biochemical indicators cannot discriminate between parenchymal, biliary, vascular, and neoplastic hepatobiliary diseases. MicroRNAs are promising new biomarkers for hepatobiliary disease in humans and dogs. Objective To measure serum concentrations of an established group of microRNAs in dogs and to investigate their concentrations in various types of hepatobiliary diseases. Animals Forty‐six client‐owned dogs with an established diagnosis of hepatobiliary disease and stored serum samples and eleven client‐owned healthy control Labrador Retrievers. Methods Retrospective study. Medical records of dogs with parenchymal, biliary, vascular, or neoplastic hepatobiliary diseases and control dogs were reviewed. Concentrations of miR‐21, miR‐122, miR‐126, miR‐148a, miR‐200c, and miR‐222 were quantified in serum by real‐time polymerase chain reaction. Results No different microRNA concentrations were found in the adenoma and congenital portosystemic shunt groups. In all other diseases, miR‐122 concentrations were elevated with the highest concentration in the mucocele group (267‐fold, CI: 40–1,768, P < .001). In dogs with biliary diseases, miR‐21 and miR‐222 were only increased in dogs with mucoceles (26‐fold, CI: 5–141, P = .005 and 13‐fold, CI: 2–70, P = .025, respectively). Uniquely increased microRNAs were found in the hepatocellular carcinoma group (miR‐200c, 35‐fold increase, CI: 3–382, P = .035) and the chronic hepatitis group (miR‐126, 22‐fold increase, CI: 5–91, P = .002). Conclusions and Clinical Importance A microRNA panel consisting of miR‐21, miR‐122, miR‐126, miR‐200c, and miR‐222 can distinguish between parenchymal, biliary, and neoplastic hepatobiliary diseases. Serum microRNA profiling is a promising new tool that might be a valuable addition to conventional diagnostics to help diagnose various hepatobiliary diseases in dogs.
Collapse
Affiliation(s)
- K Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Verzijl
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - G C Grinwis
- Department of Pathobiology, Utrecht University, Utrecht, The Netherlands
| | - R P Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - I A Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L J van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - H Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - B Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Lu X, Ji C, Tong W, Lian X, Wu Y, Fan X, Gao Y. Integrated analysis of microRNA and mRNA expression profiles highlights the complex and dynamic behavior of toosendanin-induced liver injury in mice. Sci Rep 2016; 6:34225. [PMID: 27703232 PMCID: PMC5050432 DOI: 10.1038/srep34225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023] Open
Abstract
Triterpenoid Toosendanin (TSN) exhibits a plenty of pharmacological effects in human and great values in agriculture. However, the hepatotoxicity caused by TSN or Melia-family plants containing TSN used in traditional Chinese medicine has been reported, and the mechanisms of TSN-induced liver injury (TILI) still remain largely unknown. In this study, the dose- and time-dependent effects of TSN on mice liver were investigated by an integrated microRNA-mRNA approach as well as the general toxicological assessments. As the results, the dose- and time-dependent liver injury and alterations in global microRNA and mRNA expressions were detected. Particularly, 9-days 80 mg/kg TSN exposure caused most serious liver injury in mice, and the hepatic adaptation to TILI was unexpectedly observed after 21-days 80 mg/kg TSN administration. Based on the pathway analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs at three time points, it revealed that TILI may be caused by glutathione depletion, mitochondrial dysfunction and lipid dysmetabolism, ultimately leading to hepatocytes necrosis in liver, while liver regeneration may play an important role in the hepatic adaptation to TILI. Our results demonstrated that the integrated microRNA-mRNA approach could provide new insight into the complex and dynamic behavior of TILI.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Ji
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Tong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueping Lian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
38
|
Elchaninov A, Fatkhudinov T, Usman N, Kananykhina E, Arutyunyan I, Makarov A, Bolshakova G, Goldshtein D, Sukhikh G. Molecular Survey of Cell Source Usage during Subtotal Hepatectomy-Induced Liver Regeneration in Rats. PLoS One 2016; 11:e0162613. [PMID: 27631110 PMCID: PMC5025203 DOI: 10.1371/journal.pone.0162613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Proliferation of hepatocytes is known to be the main process in the hepatectomy-induced liver regrowth; however, in cases of extensive loss it may be insufficient for complete recovery unless supported by some additional sources e.g. mobilization of undifferentiated progenitors. The study was conducted on rat model of 80% subtotal hepatectomy; the objective was to evaluate contributions of hepatocytes and resident progenitor cells to the hepatic tissue recovery via monitoring specific mRNA and/or protein expression levels for a panel of genes implicated in growth, cell differentiation, angiogenesis, and inflammation. Some of the genes showed distinctive temporal expression patterns, which were loosely associated with two waves of hepatocyte proliferation observed at 2 and 7 days after the surgery. Focusing on genes implicated in regulation of the progenitor cell activity, we came across slight increases in expression levels for Sox9 and two genes encoding tumor necrosis factor-like cytokine TWEAK (Tnfsf12) and its receptor Fn14 (Tnfrsf12a). At the same time, no increase in numbers of cytokeratin 19-positive (CK19+) cells was observed in periportal areas, and no CK19+ cells were found in hepatic plates. Since CK19 is thought to be a specific marker of both cholangiocytes and the hepatic progenitor cells, the data indicate a lack of activation of the resident progenitor cells during recovery of hepatic tissue after 80% subtotal hepatectomy. Thus, proliferation of hepatocytes invariably makes the major contribution to the hepatic tissue recovery, although in the cases of subtotal loss this contribution is distinctively modulated. In particular, induction of Sox9 and TWEAK/Fn14 regulatory pathways, conventionally attributed to progenitor cell activation, may incidentally stimulate mitotic activity of hepatocytes.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Natalia Usman
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Evgeniya Kananykhina
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Galina Bolshakova
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Dmitry Goldshtein
- Research Centre of Medical Genetics, 1 Moskvorechie Street, Moscow 115478, Russia
| | - Gennady Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
39
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
40
|
Shi J, Sun G. Effect of pre-miRNA-1658 gene polymorphism on chicken growth and carcass traits. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:455-461. [PMID: 27503275 PMCID: PMC5394830 DOI: 10.5713/ajas.16.0305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022]
Abstract
Objective Polymorphisms occurring in the precursor region of microRNAs (miRNAs) affect the target gene and alter the biogenesis of miRNAs, resulting in phenotypic variation. The purpose of the study was to investigate the genetic effects of rs16681031 (C>G) mutation in the precursor region of gga-miR-1658 on the economic traits of the Gushi-Anka chicken F2 resource population. Methods To explore the effect of miR-1658 polymorphisms on chicken economic traits, the SNP was genotyped by MassArray matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The association between the SNP and chicken body size, growth and carcass traits was determined by linear mixed models. Results The SNP was not only significantly associated with body weight at the age of 6, 8, 10, 12 weeks, respectively, but also with the breadth of the chicken chest, body slanting length and pelvic breadth at 4 weeks, chest depth at 8 weeks of age, and body slanting length at 12 weeks (p<0.05), respectively. Conclusion Our data serve as a useful resource for further analysis of miRNA function, and represent a molecular genetic basis for poultry breeding.
Collapse
Affiliation(s)
- Jianzhou Shi
- Institute of Agricultural and Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Guirong Sun
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
41
|
MicroRNAs as key mediators of hepatic detoxification. Toxicology 2016; 368-369:80-90. [PMID: 27501766 DOI: 10.1016/j.tox.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that modulate gene expression at both transcriptional and post-transcriptional levels. Many studies have extensively revealed the significance of miRNAs in mediating liver development and diseases. However, their role in hepatic detoxification processes has been explored only recently. In this review, we summarized the up-to-date knowledge about miRNA dependent regulation of enzymes involved in all three phases of the drugs and xenobiotics detoxification process. We also discussed the role of miRNA in regulating some upstream nuclear receptors involving gene expression of enzymes for detoxification process in liver. The toxicological significance of miRNAs in liver diseases and future research perspectives are finally presented.
Collapse
|
42
|
Elchaninov AV, Fatkhudinov TK, Usman NY, Arutyunyan IV, Makarov AV, Kananykhina EY, Glinkina VV, Bolshakova GB, Sukhikh GT. Expression of Cytokine Genes and Growth Factors in Rat Lungs and Kidneys after Subtotal Hepatectomy. Bull Exp Biol Med 2016; 161:395-399. [PMID: 27496032 DOI: 10.1007/s10517-016-3423-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 02/07/2023]
Abstract
Expression of il1b, il6, il10, tnfa, hgf, tgfb, vegf, and fgf2 genes in the lungs and kidneys was examined on rat model of liver regeneration after subtotal hepatectomy. Enhanced expression of il6, il10, tnfa, hgf, and fgf2 genes was detected at the early terms after 80% liver resection.
Collapse
Affiliation(s)
- A V Elchaninov
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T Kh Fatkhudinov
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N Yu Usman
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Arutyunyan
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Makarov
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E Yu Kananykhina
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- State Research Institute of Human Morphology, Moscow, Russia
| | - V V Glinkina
- N. I. Pirogov National Research Medical University, Moscow, Russia
| | - G B Bolshakova
- State Research Institute of Human Morphology, Moscow, Russia
| | - G T Sukhikh
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
43
|
Biliary atresia: Clinical advances and perspectives. Clin Res Hepatol Gastroenterol 2016; 40:281-287. [PMID: 26775892 DOI: 10.1016/j.clinre.2015.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023]
Abstract
Biliary atresia (BA) is a rare and severe inflammatory and obliterative cholangiopathy that affects both extra- and intrahepatic bile ducts. BA symptoms occur shortly after birth with jaundice, pale stools and dark urines. The prognosis of BA has dramatically changed in the last decades: before the Kasai operation most BA patients died, while nowadays with the sequential treatment with Kasai operation±liver transplantation BA patient survival is close to 90%. Early diagnosis is very important since the chances of success of the Kasai procedure decrease with time. The causes of BA remain actually unknown but several mechanisms including genetic and immune dysregulation may probably lead to the obliterative cholangiopathy. Current research focuses on the identification of blood or liver factors linked to the pathogenesis of BA that could become therapeutic targets and avoid the need for liver transplantation. No similar disease leading to total obstruction of the biliary tree exists in older children or adults. But understanding the physiopathology of BA may highlight the mechanisms of other destructive cholangiopathies, such as sclerosing cholangitis.
Collapse
|
44
|
Dirksen K, Verzijl T, van den Ingh TSGAM, Vernooij JCM, van der Laan LJW, Burgener IA, Spee B, Fieten H. Hepatocyte-derived microRNAs as sensitive serum biomarkers of hepatocellular injury in Labrador retrievers. Vet J 2016; 211:75-81. [PMID: 27021912 DOI: 10.1016/j.tvjl.2016.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/30/2023]
Abstract
Common parenchymal liver diseases in dogs include reactive hepatopathies and primary hepatitis (acute or chronic). In chronic hepatitis, there is usually a long subclinical phase. Specific clinical signs become overt only when liver damage is severe and in this phase, treatment is usually less effective. Limited data are available regarding the sensitivity of liver enzyme activity or biomarkers for early detection of subclinical hepatitis. Hepatocyte-derived microRNAs (HDmiRs) were recently identified as promising biomarkers for hepatocellular injury in multiple species. Here, the potential of the HDmiRs miR-122 and miR-148a as sensitive diagnostic biomarkers for hepatocellular injury in Labrador retrievers was investigated. Samples from 66 Labrador retrievers with histologically normal livers, high hepatic copper, and with various forms of liver injury were evaluated for serum alanine aminotransferase (ALT) activity and microRNA values. Median values of HDmiR-122 were 34.6 times higher in dogs with liver injury and high ALT than in normal dogs (95% confidence intervals [CI], 13-95; P <0.001). HDmiR-122 values were significantly increased in dogs with liver injury and normal ALT (4.2 times; 95% CI, 2-12; P <0.01) and in dogs with high hepatic copper concentrations and unremarkable histopathology (2.9 times; 95% CI, 1.1-8.0; P <0.05). Logistic regression analyses demonstrated that miR-122 and miR-148a were both predictors of hepatocellular injury. The sensitivity of miR-122 was 84% (95% CI, 73-93%), making it superior to ALT (55%; 95% CI, 41-68%) for the detection of hepatocellular injury in Labrador retrievers (P <0.001). This study demonstrated that serum HDmiR, particularly miR-122, is a highly sensitive marker for the detection of hepatocellular injury in Labrador retrievers and is a promising new biomarker that may be used for early detection of subclinical hepatitis in dogs.
Collapse
Affiliation(s)
- K Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, Netherlands
| | - T Verzijl
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, Netherlands
| | | | - J C M Vernooij
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, Netherlands
| | - L J W van der Laan
- Department of Gastroenterology and Hepatology, Erasmus MC: University Medical Center Rotterdam, 's Gravendijkwal 230, 3015 CE, Rotterdam, Netherlands
| | - I A Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, Netherlands
| | - B Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, Netherlands
| | - H Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, Netherlands.
| |
Collapse
|
45
|
Migita K, Komori A, Kozuru H, Jiuchi Y, Nakamura M, Yasunami M, Furukawa H, Abiru S, Yamasaki K, Nagaoka S, Hashimoto S, Bekki S, Kamitsukasa H, Nakamura Y, Ohta H, Shimada M, Takahashi H, Mita E, Hijioka T, Yamashita H, Kouno H, Nakamuta M, Ario K, Muro T, Sakai H, Sugi K, Nishimura H, Yoshizawa K, Sato T, Naganuma A, Komatsu T, Oohara Y, Makita F, Tomizawa M, Yatsuhashi H. Circulating microRNA Profiles in Patients with Type-1 Autoimmune Hepatitis. PLoS One 2015; 10:e0136908. [PMID: 26575387 PMCID: PMC4648542 DOI: 10.1371/journal.pone.0136908] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/09/2015] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that micro (mi)RNA molecules can be detected in the circulation and can serve as potential biomarkers of various diseases. This study used microarray analysis to identify aberrantly expressed circulating miRNAs in patients with type 1 autoimmune hepatitis (AIH) compared with healthy controls. Patients with well-documented and untreated AIH were selected from the National Hospital Organization (NHO)-AIH-liver-network database. They underwent blood sampling and liver biopsy with inflammation grading and fibrosis staging before receiving treatment. To further confirm the microarray data, circulating expression levels of miR-21 and miR-122 were quantified by real-time quantitative polymerase chain reaction in 46 AIH patients, 40 patients with chronic hepatitis C (CHC), and 13 healthy controls. Consistent with the microarray data, serum levels of miR-21 were significantly elevated in AIH patients compared with CHC patients and healthy controls. miR-21 and miR-122 serum levels correlated with alanine aminotransferase levels. Circulating levels of miR-21 and miR-122 were significantly reduced in AIH patients with liver cirrhosis, and were inversely correlated with increased stages of fibrosis. By contrast, levels of circulating miR-21 showed a significant correlation with the histological grades of inflammation in AIH. We postulate that aberrantly expressed serum miRNAs are potential biomarkers of AIH and could be implicated in AIH pathogenesis. Alternations of miR-21 and miR-122 serum levels could reflect their putative roles in the mediation of inflammatory processes in AIH.
Collapse
Affiliation(s)
- Kiyoshi Migita
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Atsumasa Komori
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hideko Kozuru
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Yuka Jiuchi
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Minoru Nakamura
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Michio Yasunami
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852–8501, Japan
| | - Hiroshi Furukawa
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305–8575, Japan
| | - Seigo Abiru
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Kazumi Yamasaki
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Shinya Nagaoka
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Satoru Hashimoto
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Shigemune Bekki
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hiroshi Kamitsukasa
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Yoko Nakamura
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hajime Ohta
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Masaaki Shimada
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hironao Takahashi
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Eiji Mita
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Taizo Hijioka
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Haruhiro Yamashita
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hiroshi Kouno
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Makoto Nakamuta
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Keisuke Ario
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Toyokichi Muro
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hironori Sakai
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Kazuhiro Sugi
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hideo Nishimura
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Kaname Yoshizawa
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Takeaki Sato
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Atsushi Naganuma
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Tatsuji Komatsu
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Yukio Oohara
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Fujio Makita
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Minoru Tomizawa
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| | - Hiroshi Yatsuhashi
- NHO-AIH study group, Nagasaki Medical Center, kubara 2-1001-1 Omura, Nagasaki, 856–8562, Japan
| |
Collapse
|
46
|
Wang Y, Liu Z, Zou W, Hong H, Fang H, Tong W. Molecular regulation of miRNAs and potential biomarkers in the progression of hepatic steatosis to NASH. Biomark Med 2015; 9:1189-200. [PMID: 26506944 DOI: 10.2217/bmm.15.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that microRNAs regulate diverse biological functions in the liver and play a very important function in metabolic-related disorders such as nonalcoholic fatty liver disease via regulating their target genes expression. In this review, we summarized the most recent progress in identification of miRNAs involving in the progression of liver steatosis and discussed the possible mechanisms by which miRNAs contribute to the diverse pathogenic liver injuries. We provide insights into the functional network of miRNAs by connecting miRNAs, their targets and biological pathways associated to hepatic steatosis and fibrosis, with important implications for our understanding of phenotypic-based disease pathogenesis. We also discuss the possible roles and challenges of miRNAs as biomarkers for drug-induced liver injury.
Collapse
Affiliation(s)
- Yuping Wang
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Zhichao Liu
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Wen Zou
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Hong Fang
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Weida Tong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
47
|
Wang L, Yue Y, Wang X, Jin H. Function and clinical potential of microRNAs in hepatocellular carcinoma. Oncol Lett 2015; 10:3345-3353. [PMID: 26788134 DOI: 10.3892/ol.2015.3759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in the initiation and progression of several types of human cancer, including hepatocellular carcinoma (HCC), which is one of the most common types of cancer and the third leading cause of cancer-related mortality worldwide. Mounting evidence has demonstrated that miRNAs play a vital role in HCC, hepatitis, alcoholic liver disease, liver cell development and the metabolic functions of the liver. The aim of the present review was to summarize the most recent findings on the functions of miRNAs in the liver and discuss their potential roles in the diagnosis, prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Hematology, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, P.R. China
| | - Yongfang Yue
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xian Wang
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Hongchuan Jin
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
48
|
Zhu H, Han C, Wu T. MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis 2015; 36:1213-22. [PMID: 26233958 DOI: 10.1093/carcin/bgv112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023] Open
Abstract
MiR-17-92 cluster is an oncogenic miRNA cluster that is implicated in several cancers, although its role in hepatocarcinogenesis has not been clearly defined. In this study, we show that the miR-17-92 cluster is highly expressed in human hepatocellular carcinoma (HCC) tissues compared to the non-tumorous liver tissues by RT-PCR and in situ hybridization analyses. Increased miR-17-92 cluster expression in HCC tissues was further confirmed by analysis of the RNA-sequencing data of 319 patients available from the Cancer Genome Atlas (TCGA) Data Portal (https://tcga-data.nci.nih.gov/tcga/). To create an animal model that resembles enhanced miR-17-92 in the liver, we developed liver-specific miR-17-92 transgenic mice and the animals were treated with the hepatic carcinogen, diethylnitrosamine (DEN). We observed that the liver-specific miR-17-92 transgenic mice showed significantly increased hepatocellular cancer development compared to the matched wild-type control mice. Forced overexpression of the miR-17-92 cluster in cultured human hepatocellular cancer cells enhanced tumor cell proliferation, colony formation and invasiveness in vitro, whereas inhibition of the miR-17-92 cluster reduced tumor cell growth. By analyzing the miRNA and mRNA sequencing data from the 312 hepatocellular cancer patients available from the TCGA database, we observed that the expression levels of the miR-17-92 cluster members and host gene in the tumor tissues are negatively correlated with several target genes, including CREBL2, PRRG1, NTN4. Our findings demonstrate an important role of the miR-17-92 cluster in hepatocarcinogenesis and suggest the possibility of targeting this pivotal miRNA cluster for potential therapy.
Collapse
Affiliation(s)
- Hanqing Zhu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| |
Collapse
|
49
|
Raschzok N, Sallmon H, Pratschke J, Sauer IM. MicroRNAs in liver tissue engineering - New promises for failing organs. Adv Drug Deliv Rev 2015; 88:67-77. [PMID: 26116880 DOI: 10.1016/j.addr.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Hannes Sallmon
- Neonatology, Charité - Universitätsmedizin Berlin, Germany
| | - Johann Pratschke
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Igor M Sauer
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
50
|
Mizuguchi Y, Takizawa T, Uchida E. Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication. World J Hepatol 2015; 7:696-702. [PMID: 25866606 PMCID: PMC4388997 DOI: 10.4254/wjh.v7.i4.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
A large number of studies have demonstrated that the synergistic collaboration of a number of microRNAs (miRNAs), their growth factors and their downstream agents is required for the initiation and completion of pathogenesis in the liver. miRNAs are thought to exert a profound effect on almost every aspect of liver biology and pathology. Accumulating evidence indicates that several miRNAs are involved in the hepatitis B virus (HBV) life cycle and infectivity, in addition to HBV-associated liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma (HCC). In turn, HBV can modulate the expression of several cellular miRNAs, thus promoting a favorable environment for its replication and survival. In this review, we focused on the involvement of host cellular miRNAs that are directly and indirectly associated with HBV RNA or HBV associated transcription factors. Exploring different facets of the interactions among miRNA, HBV and HCV infections, and the carcinogenesis and progress of HCC, could facilitate the development of novel and effective treatment approaches for liver disease.
Collapse
|