1
|
Jagst M, Gömer A, Augustyniak S, Klöhn M, Rehm A, Ulrich RG, Bader V, Winklhofer KF, Brüggemann Y, Gold R, Gisevius B, Todt D, Steinmann E. Modeling extrahepatic hepatitis E virus infection in induced human primary neurons. Proc Natl Acad Sci U S A 2024; 121:e2411434121. [PMID: 39546567 PMCID: PMC11588080 DOI: 10.1073/pnas.2411434121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatitis E virus (HEV) infections are one of the most common causes of acute viral hepatitis, annually causing over 3 million symptomatic cases and 70,000 deaths worldwide. Historically, HEV was described as a hepatotropic virus, but has recently been associated with various extrahepatic manifestations including neurological disorders such as Guillain-Barré syndrome and neuralgic amyotrophy. However, the underlying pathogenesis of these neurological diseases remains largely unknown. The aim of this study was to investigate extrahepatic HEV manifestations in a neuronal model system using human-induced primary neurons (iPNs). Renal epithelial cells from human urine were reprogrammed to induced pluripotent stem cells to generate neuronal progenitor cells, which were subsequently differentiated into iPNs over 21 d. These iPNs supported HEV infection preferentially in neurite-bearing cells. Transcriptional profiling of the neuronal development process as well as viral infection dynamics in iPNs uncovered a lack of antiviral innate immune responses to HEV infection with only an intrinsic expression of distinct interferon-regulated genes and signaling molecules. Viral open reading frame 2 encoded capsid protein could be visualized by volumetric three-dimensional reconstitution within the neurites, which were reduced in length in an HEV inoculation-dependent manner. In conclusion, this neuron-derived human model system provides a powerful tool for studying extrahepatic manifestations of HEV infection. It further indicates a potential mechanism of pathogenesis driven by the interaction between host and viral factors.
Collapse
Affiliation(s)
- Michelle Jagst
- Department for Molecular and Medical Virology, Institute for Hygiene and Microbiology, Ruhr University Bochum, Bochum44801, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover30559, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Institute for Hygiene and Microbiology, Ruhr University Bochum, Bochum44801, Germany
| | - Sanja Augustyniak
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum44801, Germany
| | - Mara Klöhn
- Department for Molecular and Medical Virology, Institute for Hygiene and Microbiology, Ruhr University Bochum, Bochum44801, Germany
| | - Adriana Rehm
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum44801, Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems17493, Germany
- German Centre for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems17493, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum44801, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Institute for Hygiene and Microbiology, Ruhr University Bochum, Bochum44801, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum44801, Germany
| | - Barbara Gisevius
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum44801, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Institute for Hygiene and Microbiology, Ruhr University Bochum, Bochum44801, Germany
- European Virus Bioinformatics Center, Jena07743, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Institute for Hygiene and Microbiology, Ruhr University Bochum, Bochum44801, Germany
- German Centre for Infection Research (DZIF), External Partner Site, Bochum44801, Germany
| |
Collapse
|
2
|
Guerrero-Vadillo M, Peñuelas M, Carmona R, León-Gómez I, Varela C. Increasing trends in hepatitis E hospitalisations in Spain, 1997 to 2019. Euro Surveill 2024; 29:2400118. [PMID: 39450516 PMCID: PMC11513759 DOI: 10.2807/1560-7917.es.2024.29.43.2400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 10/26/2024] Open
Abstract
BackgroundHepatitis E, a viral hepatitis caused mainly by the ingestion of raw or undercooked food, is not a notifiable disease in Spain.AimTo analyse the temporal trends, epidemiological characteristics and factors associated with severe disease from hepatitis E hospitalisations in Spain from 1997 to 2019.MethodsHospitalisation records were obtained from the Spanish National Hospital Discharge Database. Temporal trends and seasonality were analysed by Poisson regression in years 1997-2015 and 2016-19, given changes in hospital discharge databases. Multivariate logistic regression was used to identify factors associated with severe disease.ResultsHepatitis E hospitalisation incidence increased from 0.22 cases per 1,000,000 inhabitants in 1997 to a maximum of 2.95 in 2018. Seasonality was observed during 2016-19 period, with more cases in the second and third quarters of the year. The incidence was higher in men vs women, and in the population aged over 40 years. Factors independently associated with death were age ≥ 50 years (adjusted odds ratio (aOR): 2.43), chronic liver disease (aOR: 4.29), HIV infection (aOR: 3.00) and hepatitis B/C (aOR: 2.11).ConclusionsHepatitis E hospitalisations have increased in Spain in recent years, being more severe in cases with older age, chronic hepatic diseases and HIV infection. A greater incidence in men over 40 years and a possible seasonality were observed. Further studies are needed to assess the seasonality, geographical distribution and impact of the disease to guide public health actions for prevention and control.
Collapse
Affiliation(s)
- María Guerrero-Vadillo
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III (CIBERESP, ISCIII), Madrid, Spain
- Departamento de Enfermedades Transmisibles, Centro Nacional de Epidemiología (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Programa de Doctorado en Ciencias Biomédicas y Salud Pública, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Peñuelas
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III (CIBERESP, ISCIII), Madrid, Spain
- Departamento de Enfermedades Transmisibles, Centro Nacional de Epidemiología (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rocío Carmona
- Departamento de Enfermedades Transmisibles, Centro Nacional de Epidemiología (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Inmaculada León-Gómez
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III (CIBERESP, ISCIII), Madrid, Spain
- Departamento de Enfermedades Transmisibles, Centro Nacional de Epidemiología (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Varela
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III (CIBERESP, ISCIII), Madrid, Spain
- Departamento de Enfermedades Transmisibles, Centro Nacional de Epidemiología (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
4
|
Yadav KK, Kenney SP. Hepatitis E virus immunosuppressed animal models. BMC Infect Dis 2024; 24:965. [PMID: 39266958 PMCID: PMC11395946 DOI: 10.1186/s12879-024-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatitis E virus (HEV) is an important emerging pathogen producing significant morbidity in immunosuppressed patients. HEV has been detrimental to solid organ transplant (SOT) patients, cancer patients, and HIV-positive patients, where chronic HEV infections occur. Blood-borne transfusions and multiple cases of chronic HEV infection in transplant patients have been reported in the past few decades, necessitating research on HEV pathogenesis using immunosuppressed animal models. Numerous animal species with unique naturally occurring HEV strains have been found, several of which have the potential to spread to humans and to serve as pathogenesis models. Host immunosuppression leads to viral persistence and chronic HEV infection allows for genetic adaptation to the human host creating new strains with worse disease outcomes. Procedures necessary for SOT often entail blood transfusions placing immunosuppressive patients into a "high risk group" for HEV infection. This scenario requires an appropriate immunosuppressive animal model to understand disease patterns in these patients. Hence, this article reviews the recent advances in the immunosuppressed animal models for chronic HEV infection with emphasis on pathogenesis, immune correlates, and the liver pathology associated with the chronic HEV infections.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
5
|
Yun Z, Li P, Wang J, Lin F, Li W, Weng M, Zhang Y, Wu H, Li H, Cai X, Li X, Fu X, Wu T, Gao Y. Spatial-temporal analysis of hepatitis E in Hainan Province, China (2013-2022): insights from four major hospitals. Front Public Health 2024; 12:1381204. [PMID: 38993698 PMCID: PMC11236752 DOI: 10.3389/fpubh.2024.1381204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Exploring the Incidence, Epidemic Trends, and Spatial Distribution Characteristics of Sporadic Hepatitis E in Hainan Province from 2013 to 2022 through four major tertiary hospitals in the Province. Methods We collected data on confirmed cases of hepatitis E in Hainan residents admitted to the four major tertiary hospitals in Haikou City from January 2013 to December 2022. We used SPSS software to analyze the correlation between incidence rate and economy, population density and geographical location, and origin software to draw a scatter chart and SAS 9.4 software to conduct a descriptive analysis of the time trend. The distribution was analyzed using ArcMap 10.8 software (spatial autocorrelation analysis, hotspot identification, concentration, and dispersion trend analysis). SAS software was used to build an autoregressive integrated moving average model (ARIMA) to predict the monthly number of cases in 2023 and 2024. Results From 2013 to 2022, 1,922 patients with sporadic hepatitis E were treated in the four hospitals of Hainan Province. The highest proportion of patients (n = 555, 28.88%) were aged 50-59 years. The annual incidence of hepatitis E increased from 2013 to 2019, with a slight decrease in 2020 and 2021 and an increase in 2022. The highest number of cases was reported in Haikou, followed by Dongfang and Danzhou. We found that there was a correlation between the economy, population density, latitude, and the number of cases, with the correlation coefficient |r| value fluctuating between 0.403 and 0.421, indicating a linear correlation. At the same time, a scatter plot shows the correlation between population density and incidence from 2013 to 2022, with r2 values fluctuating between 0.5405 and 0.7116, indicating a linear correlation. Global Moran's I, calculated through spatial autocorrelation analysis, showed that each year from 2013 to 2022 all had a Moran's I value >0, indicating positive spatial autocorrelation (p < 0.01). Local Moran's I analysis revealed that from 2013 to 2022, local hotspots were mainly concentrated in the northern part of Hainan Province, with Haikou, Wenchang, Ding'an, and Chengmai being frequent hotspot regions, whereas Baoting, Qiongzhong, and Ledong were frequent cold-spot regions. Concentration and dispersion analysis indicated a clear directional pattern in the average density distribution, moving from northeast to southwest. Time-series forecast modeling showed that the forecast number of newly reported cases per month remained relatively stable in 2023 and 2024, fluctuating between 17 and 19. Conclusion The overall incidence of hepatitis E in Hainan Province remains relatively stable. The incidence of hepatitis E in Hainan Province increased from 2013 to 2019, with a higher clustering of cases in the northeast region and a gradual spread toward the southwest over time. The ARIMA model predicted a relatively stable number of new cases each month in 2023 and 2024.
Collapse
Affiliation(s)
- Zhi Yun
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Panpan Li
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Jinzhong Wang
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Feng Lin
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Wenting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Minhua Weng
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanru Zhang
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Huazhi Wu
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Hui Li
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Xiaofang Cai
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Xiaobo Li
- Department of Neurosurgery, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Xianxian Fu
- Clinical Lab, Haikou Municipal People’s Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Tao Wu
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
- National Health Commission Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Yi Gao
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| |
Collapse
|
6
|
Guo H, Liu D, Liu K, Hou Y, Li C, Li Q, Ding X, Verstegen MMA, Zhang J, Wang L, Ding Y, Tang R, Pan X, Zheng K, van der Laan LJW, Pan Q, Wang W. Drug repurposing screen identifies vidofludimus calcium and pyrazofurin as novel chemical entities for the development of hepatitis E interventions. Virol Sin 2024; 39:123-133. [PMID: 37984761 PMCID: PMC10877426 DOI: 10.1016/j.virs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatitis E virus (HEV) infection can cause severe complications and high mortality, particularly in pregnant women, organ transplant recipients, individuals with pre-existing liver disease and immunosuppressed patients. However, there are still unmet needs for treating chronic HEV infections. Herein, we screened a best-in-class drug repurposing library consisting of 262 drugs/compounds. Upon screening, we identified vidofludimus calcium and pyrazofurin as novel anti-HEV entities. Vidofludimus calcium is the next-generation dihydroorotate dehydrogenase (DHODH) inhibitor in the phase 3 pipeline to treat autoimmune diseases or SARS-CoV-2 infection. Pyrazofurin selectively targets uridine monophosphate synthetase (UMPS). Their anti-HEV effects were further investigated in a range of cell culture models and human liver organoids models with wild type HEV strains and ribavirin treatment failure-associated HEV strains. Encouragingly, both drugs exhibited a sizeable therapeutic window against HEV. For instance, the IC50 value of vidofludimus calcium is 4.6-7.6-fold lower than the current therapeutic doses in patients. Mechanistically, their anti-HEV mode of action depends on the blockage of pyrimidine synthesis. Notably, two drugs robustly inhibited ribavirin treatment failure-associated HEV mutants (Y1320H, G1634R). Their combination with IFN-α resulted in synergistic antiviral activity. In conclusion, we identified vidofludimus calcium and pyrazofurin as potent candidates for the treatment of HEV infections. Based on their antiviral potency, and also the favorable safety profile identified in clinical studies, our study supports the initiation of clinical studies to repurpose these drugs for treating chronic hepatitis E.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kuan Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, NL-3015 CN, the Netherlands; Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, 3015CE, NL-3015 CN, the Netherlands
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaohui Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, 3015CE, NL-3015 CN, the Netherlands
| | - Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lingli Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, 3015CE, NL-3015 CN, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, NL-3015 CN, the Netherlands.
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
7
|
Meyer L, Duquénois I, Gellenoncourt S, Pellerin M, Marcadet-Hauss A, Pavio N, Doceul V. Identification of interferon-stimulated genes with modulated expression during hepatitis E virus infection in pig liver tissues and human HepaRG cells. Front Immunol 2023; 14:1291186. [PMID: 38058490 PMCID: PMC10696647 DOI: 10.3389/fimmu.2023.1291186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Hepatitis E virus (HEV) is a common cause of enterically transmitted acute hepatitis worldwide. The virus is transmitted by the fecal-oral route via the consumption of contaminated water supplies and is also a zoonotic foodborne pathogen. Swine are the main reservoir of zoonotic HEV. In humans, HEV infection is usually asymptomatic or causes acute hepatitis that is self-limited. However, fulminant hepatic failure and chronic cases of HEV infection can occur in some patients. In contrast, HEV infection in pigs remains asymptomatic, although the virus replicates efficiently, suggesting that swine are able to control the virus pathogenesis. Upon viral infection, IFN is secreted and activates cellular pathways leading to the expression of many IFN-stimulated genes (ISGs). ISGs can restrict the replication of specific viruses and establish an antiviral state within infected and neighboring cells. Methods In this study, we used PCR arrays to determine the expression level of up to 168 ISGs and other IFN-related genes in the liver tissues of pigs infected with zoonotic HEV-3c and HEV-3f and in human bipotent liver HepaRG cells persistently infected with HEV-3f. Results and discussion The expression of 12 and 25 ISGs was found to be up-regulated in infected swine livers and HepaRG cells, respectively. The expression of CXCL10, IFIT2, MX2, OASL and OAS2 was up-regulated in both species. Increased expression of IFI16 mRNA was also found in swine liver tissues. This study contributes to the identification of potential ISGs that could play a role in the control or persistence of HEV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Virginie Doceul
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), École Nationale Vétérinaire d'Alfort (ENVA), UMR Virology, Maisons-Alfort, France
| |
Collapse
|
8
|
Hooda P, Al-Dosari M, Sinha N, Parvez MK, Sehgal D. Inhibition of HEV Replication by FDA-Approved RdRp Inhibitors. ACS OMEGA 2023; 8:41570-41578. [PMID: 37969986 PMCID: PMC10633873 DOI: 10.1021/acsomega.3c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Hepatitis E virus (HEV) is primarily a hepatotropic virus that is responsible for acute hepatitis E in the general population and for chronic hepatitis in immunocompromised individuals. In the absence of a globally accessible vaccine, pegylated interferon-α and ribavirin are the only antiviral agents available for the treatment of chronic patients. As viral RNA-dependent RNA polymerases (RdRps) are indispensable for RNA replication, they are considered potential drug targets. In this study, we screened some well-known RdRp inhibitor molecules, notably, favipiravir, sofosbuvir, remdesivir, filibuvir, and tegobuvir. Of these, monotherapy with favipiravir and sofosbuvir inhibited the RdRp activity with an IC50 value of 10.2 ± 4.9 and 5.2 ± 2.9 μM, respectively, compared to the reference drug ribavirin (3.5 ± 1.6 μM). Further investigation of the combination therapy showed a reduction in viral RNA copy numbers by approximately 90%. Therefore, favipiravir has an additive effect when used with sofosbuvir. Therefore, we propose that favipiravir is a promising anti-HEV drug that can be used in combination with sofosbuvir.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology
Lab, Department of Life Sciences, Shiv Nadar
Institute of Eminence, Gautam Budh
Nagar 201314, India
| | - Mohammed Al-Dosari
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Neha Sinha
- Department
of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mohammad K. Parvez
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Deepak Sehgal
- Virology
Lab, Department of Life Sciences, Shiv Nadar
Institute of Eminence, Gautam Budh
Nagar 201314, India
| |
Collapse
|
9
|
Zheng C. Genotype 4 hepatitis E virus infection and acute pancreatitis. Microbes Infect 2023; 25:105208. [PMID: 37562515 DOI: 10.1016/j.micinf.2023.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Lai HW, Hung HC, Lin CC. Impact of hepatitis virus infection on inpatient outcomes of acute pancreatitis: A population-based study. Medicine (Baltimore) 2023; 102:e33952. [PMID: 37266621 PMCID: PMC10238054 DOI: 10.1097/md.0000000000033952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
This study aimed to investigate the associations between hepatitis virus infection and inpatient outcomes of acute pancreatitis (AP). In this population-based, retrospective study, hospitalized patients with AP were identified in the 2005 to 2018 United States Nationwide Inpatient Sample database. Univariate and multivariable regression analyses were conducted to evaluate the associations between hepatitis virus infection, death/discharge against medical advice (DAMA), prolonged length of stay (LOS), and occurrence of life-threatening complications including ischemia/infarction of the intestine, portal vein thrombosis, acute organ failure, systemic inflammatory response syndrome, and hypovolemic shock. A total of 775,416 patients hospitalized for AP comprised the analytic cohort. Amongst, 26,407 subjects (3.4%) had been diagnosed hepatitis virus infection, whereas 749,009 (96.6%) had not. Mean age of the subjects was 51.4 years. After adjusting for relevant confounders, hepatitis virus infection was significantly and independently associated with increased odds of death/DAMA (aOR = 1.33, 95% CI = 1.26-1.40), prolonged LOS (aOR = 1.12, 95%CI = 1.09-1.16), and acute organ failure (aOR = 1.06, 95% CI = 1.01-1.12). In patients with AP, hepatitis virus infection is an independent predictor of worse inpatient outcomes in terms of more death/DAMA, prolonged LOS, and life-threatening complications. The findings may help risk stratification and the development of proper strategies for managing patients suffered from AP.
Collapse
Affiliation(s)
- Hsin-Wu Lai
- Division of Gastroenterology, Department of Internal Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou, Taiwan
| | - Hung-Chang Hung
- Division of Gastroenterology, Department of Internal Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou, Taiwan
- Department of Healthcare Administration, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chun-Che Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Meester M, Tobias TJ, van den Broek J, Meulenbroek CB, Bouwknegt M, van der Poel WH, Stegeman A. Farm biosecurity measures to prevent hepatitis E virus infection in finishing pigs on endemically infected pig farms. One Health 2023; 16:100570. [PMID: 37363225 PMCID: PMC10288132 DOI: 10.1016/j.onehlt.2023.100570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Hepatitis E virus (HEV) can be transmitted from pigs to humans and cause liver inflammation. Pigs are a major reservoir of HEV and most slaughter pigs show evidence of infection by presence of antibodies (ELISA) or viral RNA (PCR). Reducing the number of HEV infected pigs at slaughter would likely reduce human exposure, yet how this can be achieved, is unknown. We aimed to identify and quantify the effect of biosecurity measures to deliver HEV negative batches of pigs to slaughter. A case-control study was performed with Dutch pig farms selected based on results of multiple slaughter batches. Case farms delivered at least one PCR and ELISA negative batch to slaughter (PCR-ELISA-), indicating absence of HEV infection, and control farms had the highest proportion of PCR and/or ELISA positive batches (PCR+ELISA+), indicating high within-farm transmission. Data about biosecurity and housing were collected via a questionnaire and an audit. Variables were selected by regularization (LASSO regression) and ranked, based the frequency of variable selection. The odds ratios (OR) for the relation between case-control status and the highest ranked variables were determined via grouped logistic regression. Thirty-five case farms, with 10 to 60% PCR-ELISA- batches, and 38 control farms with on average 40% PCR+ELISA+ batches, were included. Rubber and steel floor material in fattening pens had the highest ranking and increased the odds of a PCR-ELISA- batch by 5.87 (95%CI 3.03-11.6) and 7.13 (95%CI 3.05-16.9) respectively. Cleaning pig driving boards weekly (OR 1.99 (95%CI 1.07-3.80)), and fly control with predatory flies (OR 4.52 (95%CI 1.59-13.5)) were protective, whereas a long fattening period was a risk. This study shows that cleaning and cleanability of floors and fomites and adequate fly control are measures to consider for HEV control in infected farms. Yet, intervention studies are needed to confirm the robustness of these outcomes.
Collapse
Affiliation(s)
- Marina Meester
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tijs J. Tobias
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Royal GD, Deventer, the Netherlands
| | - Jan van den Broek
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Carmijn B. Meulenbroek
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | - Arjan Stegeman
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Cottu A, Kante A, Megherbi A, Lhomme S, Maisonneuve L, Santoli F. A frantic confusion: beyond rabies and anti-N-methyl-D-aspartate encephalitis. J Neurovirol 2023; 29:358-363. [PMID: 37171751 DOI: 10.1007/s13365-023-01146-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. In rare cases, HEV may generate neurologic lesions such as neuralgic amyotrophy, Guillain-Barré syndrome, and meningoencephalitis. Thirteen cases of HEV meningoencephalitis have been reported over 20 years. The clinical landscape varied from mild symptoms to coma and seizures. Most of patients were immunocompetent adults and spontaneously recovered. We report here the case of a 44-year-old immunocompetent adult with HEV meningoencephalitis presenting with aggressiveness and then coma. The evolution was spontaneously favorable without any specific treatment. This clinical case aims to draw attention on this emerging and probably under-recognized cause of meningoencephalitis.
Collapse
Affiliation(s)
- Adrien Cottu
- Service de Réanimation Médicale, Centre Hospitalo-Universitaire Robert Ballanger, Aulnay-Sous-Bois, France.
- Université Pierre et Marie Curie, Sorbonne Universités, Paris 6, Paris, France.
| | - Aïcha Kante
- Service de Réanimation Médicale, Centre Hospitalo-Universitaire Robert Ballanger, Aulnay-Sous-Bois, France
- Université Pierre et Marie Curie, Sorbonne Universités, Paris 6, Paris, France
| | - Alexandre Megherbi
- Service de Réanimation Médicale, Centre Hospitalo-Universitaire Robert Ballanger, Aulnay-Sous-Bois, France
- Université Pierre et Marie Curie, Sorbonne Universités, Paris 6, Paris, France
| | - Sébastien Lhomme
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, 31300, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), UMR1291-CNRS UMR5051, INSERM, 31300, Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062, Toulouse, France
| | - Lydia Maisonneuve
- Service de Biologie Médicale, Centre Hospitalo-Universitaire Robert Ballanger, Aulnay-Sous-Bois, France
| | - Francesco Santoli
- Service de Réanimation Médicale, Centre Hospitalo-Universitaire Robert Ballanger, Aulnay-Sous-Bois, France
| |
Collapse
|
13
|
Wang B, Mahsoub HM, Li W, Heffron CL, Tian D, Hassebroek AM, LeRoith T, Meng XJ. Ribavirin Treatment Failure-Associated Mutation, Y1320H, in the RNA-Dependent RNA Polymerase of Genotype 3 Hepatitis E Virus (HEV) Enhances Virus Replication in a Rabbit HEV Infection Model. mBio 2023; 14:e0337222. [PMID: 36809085 PMCID: PMC10128057 DOI: 10.1128/mbio.03372-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Chronic hepatitis E virus (HEV) infection has become a significant clinical problem that requires treatment in immunocompromised individuals. In the absence of an HEV-specific antiviral, ribavirin (RBV) has been used off-label, but treatment failure may occur due to mutations in the viral RNA-dependent RNA polymerase (RdRp), including Y1320H, K1383N, and G1634R. Chronic hepatitis E is mostly caused by zoonotic genotype 3 HEV (HEV-3), and HEV variants from rabbits (HEV-3ra) are closely related to human HEV-3. Here, we explored whether HEV-3ra, along with its cognate host, can serve as a model to study RBV treatment failure-associated mutations observed in human HEV-3-infected patients. By utilizing the HEV-3ra infectious clone and indicator replicon, we generated multiple single mutants (Y1320H, K1383N, K1634G, and K1634R) and a double mutant (Y1320H/K1383N) and assessed the role of mutations on replication and antiviral activity of HEV-3ra in cell culture. Furthermore, we also compared the replication of the Y1320H mutant with the wild-type HEV-3ra in experimentally infected rabbits. Our in vitro analyses revealed that the effects of these mutations on rabbit HEV-3ra are altogether highly consistent with those on human HEV-3. Importantly, we found that the Y1320H enhances virus replication during the acute stage of HEV-3ra infection in rabbits, which corroborated our in vitro results showing an enhanced viral replication of Y1320H. Taken together, our data suggest that HEV-3ra and its cognate host is a useful and relevant naturally occurring homologous animal model to study the clinical relevance of antiviral-resistant mutations observed in human HEV-3 chronically-infected patients. IMPORTANCE HEV-3 causes chronic hepatitis E that requires antiviral therapy in immunosuppressed individuals. RBV is the main therapeutic option for chronic hepatitis E as an off-label use. Several amino acid changes, including Y1320H, K1383N, and G1634R, in the RdRp of human HEV-3 have reportedly been associated with RBV treatment failure in chronic hepatitis E patients. In this study, we utilized an HEV-3ra from rabbit and its cognate host to investigate the effect of these RBV treatment failure-associated HEV-3 RdRp mutations on viral replication efficiency and antiviral susceptibility. The in vitro data using rabbit HEV-3ra was highly comparable to those from human HEV-3. We demonstrated that the Y1320H mutation significantly enhanced HEV-3ra replication in cell culture and enhanced virus replication during the acute stage of HEV-3ra infection in rabbits. The rabbit HEV-3ra infection model should be useful in delineating the role of human HEV-3 RBV treatment failure-associated mutations in antiviral resistance.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Wen Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
14
|
Piscitani L, Di Vito R, Tunno M, Bonomini M. Successful use of single-pass albumin dialysis in the correction of severe hyperbilirubinemia in a case of acute hepatitis E. Ther Apher Dial 2023; 27:278-283. [PMID: 35838337 DOI: 10.1111/1744-9987.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Acute liver failure (ALF) is a rare syndrome defined by the rapid loss of liver function in the absence of pre-existing liver disease, which may be secondary to hepatitis A virus, hepatitis E virus (HEV), or to drugs in about 50% of cases. Extracorporeal albumin dialysis enables the elimination of albumin-bound toxins that accumulate in liver failure. METHODS We report a case of ALF secondary to HEV associated with severe hyperbilirubinemia. Patient was treated with four consecutive sessions of single-pass albumin dialysis (SPAD) carried out setting the following parameters: time: 300 min, Qb: 60 mL/min, Qd: 800-1000 mL/min, dialysate containing 4% albumin, citrate: 3-4 mmol/L. RESULT SPAD documented good support of liver function. Bilirubin levels were reduced from 22 to 14 g/dL after four treatments. Pruritus was the first clinical sign of improvement. CONCLUSION SPAD system can represent a safe and effective therapeutic option.
Collapse
Affiliation(s)
- Luca Piscitani
- Nephrology and Dialysis Unit, Department of Medicine, San Salvatore Hospital, L'Aquila, Italy
| | - Roberto Di Vito
- Nephrology and Dialysis Unit, Department of Medicine, SS. Annunziata Hospital, Chieti, Italy.,Department of Medicine and Aging, G. d'Annunzio University, Chieti, Italy
| | - Marilena Tunno
- Nephrology and Dialysis Unit, Department of Medicine, San Salvatore Hospital, L'Aquila, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, SS. Annunziata Hospital, Chieti, Italy.,Department of Medicine and Aging, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
15
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Fieulaine S, Tubiana T, Bressanelli S. De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation. Virology 2023; 578:128-140. [PMID: 36527931 DOI: 10.1016/j.virol.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV), a major cause of acute viral hepatitis, is a single-stranded, positive-sense RNA virus. As such, it encodes a 1700-residue replication polyprotein pORF1 that directs synthesis of new viral RNA in infected cells. Here we report extensive modeling with AlphaFold2 of the full-length pORF1, and its production by in vitro translation. From this, we give a detailed update on the breakdown into domains of HEV pORF1. We also provide evidence that pORF1's N-terminal domain is likely to oligomerize to form a dodecameric pore, homologously to what has been described for Chikungunya virus. Beyond providing accurate folds for its five domains, our work highlights that there is no canonical protease encoded in pORF1 and that flexibility in several functionally important regions rather than proteolytic processing may serve to regulate HEV RNA synthesis.
Collapse
Affiliation(s)
- Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Gupta S, Singh P, Tasneem A, Almatroudi A, Rahmani AH, Dohare R, Parveen S. Integrative Multiomics and Regulatory Network Analyses Uncovers the Role of OAS3, TRAFD1, miR-222-3p, and miR-125b-5p in Hepatitis E Virus Infection. Genes (Basel) 2022; 14:42. [PMID: 36672782 PMCID: PMC9859139 DOI: 10.3390/genes14010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The hepatitis E virus (HEV) is a long-ignored virus that has spread globally with time. It ranked 6th among the top risk-ranking viruses with high zoonotic spillover potential; thus, considering its viral threats is a pressing priority. The molecular pathophysiology of HEV infection or the underlying cause is limited. Therefore, we incorporated an unbiased, systematic methodology to get insights into the biological heterogeneity associated with the HEV. Our study fetched 93 and 2016 differentially expressed genes (DEGs) from chronic HEV (CHEV) infection in kidney-transplant patients, followed by hub module selection from a weighted gene co-expression network (WGCN). Most of the hub genes identified in this study were associated with interferon (IFN) signaling pathways. Amongst the genes induced by IFNs, the 2'-5'-oligoadenylate synthase 3 (OAS3) protein was upregulated. Protein-protein interaction (PPI) modular, functional enrichment, and feed-forward loop (FFL) analyses led to the identification of two key miRNAs, i.e., miR-222-3p and miR-125b-5p, which showed a strong association with the OAS3 gene and TRAF-type zinc finger domain containing 1 (TRAFD1) transcription factor (TF) based on essential centrality measures. Further experimental studies are required to substantiate the significance of these FFL-associated genes and miRNAs with their respective functions in CHEV. To our knowledge, it is the first time that miR-222-3p has been described as a reference miRNA for use in CHEV sample analyses. In conclusion, our study has enlightened a few budding targets of HEV, which might help us understand the cellular and molecular pathways dysregulated in HEV through various factors. Thus, providing a novel insight into its pathophysiology and progression dynamics.
Collapse
Affiliation(s)
- Sonam Gupta
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prithvi Singh
- Mathematical and Computational Biology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Alvea Tasneem
- Mathematical and Computational Biology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ravins Dohare
- Mathematical and Computational Biology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
18
|
Detection of Hepatitis E Virus (HEV) in Pigs and in the Wild Boar (Sus scrofa) Population of Chieti Province, Abruzzo Region, Italy. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen, causing infectious hepatitis in man. Pigs and wild boars are the natural asymptomatic reservoirs, while the disease in humans could be either asymptomatic or evolve in hepatitis. In Europe, an increasing number of human infections from HEV have been reported over the last few years. The main route of transmission is through contaminated food, by direct or indirect consumption of raw or undercooked pork and wild boar meat and meat products. Up to now, HEV prevalence in Italian northern regions has been extensively determined in wild boars and pigs, while less data have been collected from the southern ones. There is a need to report more data about HEV prevalence from wild boars and pigs in southern Italy in consideration of the potential risk posed by some specific traditional food products manufactured in these areas and produced from pig and wild boar livers (e.g., sausages and salami). The aim of this study was to demonstrate the circulation of the Hepatitis E virus (HEV) in pigs and in the wild boar population of the province of Chieti, Abruzzo Region, Central Italy. Moreover, potential HEV seroprevalence in hunters from that area was also assessed. The overall prevalence of HEV RNA in wild boars was 9.5% (CI 5.4–16.2%), but no HEV RNA was detected in samples from pigs.
Collapse
|
19
|
Virus-Associated Nephropathies: A Narrative Review. Int J Mol Sci 2022; 23:ijms231912014. [PMID: 36233315 PMCID: PMC9569621 DOI: 10.3390/ijms231912014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
While most viral infections cause mild symptoms and a spontaneous favorable resolution, some can lead to severe or protracted manifestations, specifically in immunocompromised hosts. Kidney injuries related to viral infections may have multiple causes related to the infection severity, drug toxicity or direct or indirect viral-associated nephropathy. We review here the described virus-associated nephropathies in order to guide diagnosis strategies and treatments in cases of acute kidney injury (AKI) occurring concomitantly with a viral infection. The occurrence of virus-associated nephropathy depends on multiple factors: the local epidemiology of the virus, its ability to infect renal cells and the patient's underlying immune response, which varies with the state of immunosuppression. Clear comprehension of pathophysiological mechanisms associated with a summary of described direct and indirect injuries should help physicians to diagnose and treat viral associated nephropathies.
Collapse
|
20
|
Unmet Needs for the Treatment of Chronic Hepatitis E Virus Infection in Immunocompromised Patients. Viruses 2022; 14:v14102116. [PMID: 36298671 PMCID: PMC9611326 DOI: 10.3390/v14102116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the most prevalent hepatitis virus worldwide. Genotypes 3 (HEV3) and 4 (HEV4) as well as rat HEV can lead to chronic hepatitis E and cirrhosis in immunosuppressed patients. Within the last decade, several options for treating chronic hepatitis have been developed and have achieved a sustained virological response. However, there are still unmet needs such as optimizing immunosuppression to allow HEV clearance with or without ribavirin, as well as alternative therapies to ribavirin that are discussed in this paper.
Collapse
|
21
|
Ying D, He Q, Tian W, Chen Y, Zhang X, Wang S, Liu C, Chen Z, Liu Y, Fu L, Yan L, Wang L, Tang Z, Wang L, Zheng Z, Xia N. Urine is a viral antigen reservoir in hepatitis E virus infection. Hepatology 2022; 77:1722-1734. [PMID: 36106666 DOI: 10.1002/hep.32745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS HEV ORF2 antigen (Ag) in serum has become a tool for diagnosing current HEV infection. Particularly, urinary shedding of HEV Ag has been gaining increasing interest. We aim to uncover the origin, antigenicity, diagnostic performance, and diagnostic significance of Ag in urine in HEV infection. APPROACH AND RESULTS Clinical serum and urine samples from patients with acute and chronic HEV infection were analyzed for their Ag levels. Ag in urine was analyzed by biochemical and proteomic approaches. The origin of urinary Ag and Ag kinetics during HEV infection was investigated in mouse and rabbit models, respectively. We found that both the Ag level and diagnostic sensitivity in urine were higher than in serum. Antigenic protein in urine was an E2s-like dimer spanning amino acids 453-606. pORF2 entered urine from serum in mice i.v. injected with pORF2. Ag in urine originated from the secreted form of pORF2 (ORF2S ) that abundantly existed in hepatitis E patients' serum. HEV Ag was specifically taken up by renal cells and was disposed into urine, during which the level of Ag was concentrated >10-fold, resulting in the higher diagnosing sensitivity of urine Ag than serum Ag. Moreover, Ag in urine appeared 6 days earlier, lasted longer than viremia and antigenemia, and showed good concordance with fecal RNA in a rabbit model. CONCLUSIONS Our findings demonstrated the origin and diagnostic value of urine Ag and provided insights into the disposal of exogenous protein of pathogens by the host kidney.
Collapse
Affiliation(s)
- Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Weikun Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yanling Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaoping Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Siling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zihao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yu Liu
- Department of Severe Hepatopathy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Lijuan Fu
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, Xiamen, PR China
| | - Li Yan
- Department of Severe Hepatopathy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China.,NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, PR China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| |
Collapse
|
22
|
Hepatitis E virus infects brain microvascular endothelial cells, crosses the blood-brain barrier, and invades the central nervous system. Proc Natl Acad Sci U S A 2022; 119:e2201862119. [PMID: 35671427 PMCID: PMC9214495 DOI: 10.1073/pnas.2201862119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis E virus (HEV) causes not only acute and chronic hepatitis but also neurological disorders. To delineate the mechanism of HEV-associated neurological diseases, we showed that both quasi-enveloped and nonenveloped HEVs can cross the blood–brain barrier model in a tumor necrosis factor alpha (TNF-α)-independent manner and productively infect brain microvascular endothelial cells in vitro. Furthermore, we showed that HEV was detected in brain and spinal cord from HEV-infected pigs and that pigs with detectable HEV in central nervous system (CNS) tissues had histological lesions in brain and spinal cord and significantly higher levels of proinflammatory cytokines TNF-α and interleukin 18 than pigs without detectable HEV in CNS tissues. The results shed light on a potential mechanism of HEV-associated neuroinvasion. Hepatitis E virus (HEV) is an important but understudied zoonotic virus causing both acute and chronic viral hepatitis. A proportion of HEV-infected individuals also developed neurological diseases such as Guillain–Barré syndrome, neuralgic amyotrophy, encephalitis, and myelitis, although the mechanism remains unknown. In this study, by using an in vitro blood–brain barrier (BBB) model, we first investigated whether HEV can cross the BBB and whether the quasi-enveloped HEV virions are more permissible to the BBB than the nonenveloped virions. We found that both quasi-enveloped and nonenveloped HEVs can similarly cross the BBB and that addition of proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has no significant effect on the ability of HEV to cross the BBB in vitro. To explore the possible mechanism of HEV entry across the BBB, we tested the susceptibility of human brain microvascular endothelial cells lining the BBB to HEV infection and showed that brain microvascular endothelial cells support productive HEV infection. To further confirm the in vitro observation, we conducted an experimental HEV infection study in pigs and showed that both quasi-enveloped and nonenveloped HEVs invade the central nervous system (CNS) in pigs, as HEV RNA was detected in the brain and spinal cord of infected pigs. The HEV-infected pigs with detectable viral RNA in CNS tissues had histological lesions in brain and spinal cord and significantly higher levels of proinflammatory cytokines TNF-α and interleukin 18 than the HEV-infected pigs without detectable viral RNA in CNS tissues. The findings suggest a potential mechanism of HEV-associated neuroinvasion.
Collapse
|
23
|
Gremmel N, Keuling O, Becher P, Baechlein C. Isolation of 15 hepatitis E virus strains lacking ORF1 rearrangements from wild boar and pig organ samples and efficient replication in cell culture. Transbound Emerg Dis 2022; 69:e2617-e2628. [PMID: 35678772 DOI: 10.1111/tbed.14608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
As a zoonotic pathogen, the hepatitis E virus (HEV) leads to numerous infections in humans with different clinical manifestations. Especially genotype 3, as causative agent of a foodborne zoonosis, is transmitted to humans by ingestion of undercooked or raw meat containing liver from HEV-infected animals. Although the virus' prevalence and dissemination in hosts like wild boar and pig have been well characterized, HEV is greatly understudied on a molecular level and reliable cell culture models are lacking. For this reason, the present study concentrated on the isolation and subsequent characterization of porcine HEV from tissue samples derived from wild boar and domestic pigs: 222 wild boars hunted in Northern Germany were investigated for the presence of HEV RNA with a detection rate of 5.9%. Three additional HEV-positive wild boar liver samples as well as an HEV-positive spleen and a positive kidney from domestic pigs were included. After inoculation of positive samples onto the human hepatoma cell line PLC/PRF/5, cells were grown for several weeks. Successful isolation was confirmed by RT-qPCR, virus passage, immunofluorescence staining and titration. Overall, 15 strains from a total of 18 RNA-positive organ samples could be obtained and viral loads >109 RNA copies/ml were measured in cell culture supernatants. Accordingly, 83.3% of the HEV RNA-positive samples contained infectious hepatitis E viral particles and therefore must be considered as a potential source for human infections. Phylogenetic analyses revealed that all isolated strains belong to genotype 3. Further genetic characterization showed a high degree of sequence variability, but no sequence insertions, in the hypervariable region within the open reading frame 1.
Collapse
Affiliation(s)
- Nele Gremmel
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Oliver Keuling
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine, Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Christine Baechlein
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany.,Present address: Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| |
Collapse
|
24
|
Jilani MG, Ali S. Assessment of simple sequence repeats signature in hepatitis E virus (HEV) genomes. J Genet Eng Biotechnol 2022; 20:73. [PMID: 35579724 PMCID: PMC9114184 DOI: 10.1186/s43141-022-00365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Background Hepatitis E virus (HEV) is small (27–34 nm diameter) non-enveloped with positive sense ssRNA genome. Microsatellites or simple sequence repeats (SSR) are short tandem repeat sequences present across coding and non-coding regions of both prokaryotes and eukaryotes. They are involved with genome function and evolution at multiple levels. Results The complete genome sequences of 22 HEV genomes of the family Hepeviridae and genus Orthohepevirus (21 species) and Piscihepevirus (1 species) were extracted from NCBI database (http://www.ncbi.nlm.nih.gov/). The extraction of microsatellites was done using Imperfect Microsatellite Extractor (IMEx) in ‘Advance-Mode’. The average genome size of the studied HEV genomes was 7003nt and it ranged from 6649nt (HEV11) to 7310nt (HEV22). The average GC content of the genomes was ~ 55%. A total of 519 SSRs and 21 cSSRS were extracted from the HEV genomes with an average incidence of 24 per genome ranging from 14 (HEV13) to 34 (HEV19). The cSSR incidence ranged from 0 (eight species) to 4 (HEV19). The genomes with no cSSR incidence had an SSR incidence range from 14 to 28. There were just four hexa-nucleotide repeat motifs and 5 penta-nucleotide repeat motifs observed. The most prevalent mono-, di-, and tri-nucleotide repeat motifs were “C”, “GT/TG”, and “GAC/CTG” respectively. The studied genomes had a minimum of ~ 90% incident SSRs present in the coding regions. Viruses with same or similar hosts are placed together on the phylogenetic tree implicating viral host being one of the driving forces for evolution. Conclusions Host range in viruses is being decided by multiple factors aided by the unique genome SSR signature and genomes of varied compositions need to be analyzed to forge a widely acceptable rule for predicting the same. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00365-w.
Collapse
Affiliation(s)
- Md Gulam Jilani
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, IIA/27, Newtown, Kolkata, 700160, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, IIA/27, Newtown, Kolkata, 700160, India.
| |
Collapse
|
25
|
Chirohepevirus from Bats: Insights into Hepatitis E Virus Diversity and Evolution. Viruses 2022; 14:v14050905. [PMID: 35632647 PMCID: PMC9146828 DOI: 10.3390/v14050905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Homologs of the human hepatitis E virus (HEV) have been identified in more than a dozen animal species. Some of them have been evidenced to cross species barriers and infect humans. Zoonotic HEV infections cause chronic liver diseases as well as a broad range of extrahepatic manifestations, which increasingly become significant clinical problems. Bats comprise approximately one-fifth of all named mammal species and are unique in their distinct immune response to viral infection. Most importantly, they are natural reservoirs of several highly pathogenic viruses, which have induced severe human diseases. Since the first discovery of HEV-related viruses in bats in 2012, multiple genetically divergent HEV variants have been reported in a total of 12 bat species over the last decade, which markedly expanded the host range of the HEV family and shed light on the evolutionary origin of human HEV. Meanwhile, bat-borne HEV also raised critical public health concerns about its zoonotic potential. Bat HEV strains resemble genomic features but exhibit considerable heterogeneity. Due to the close evolutionary relationships, bat HEV altogether has been recently assigned to an independent genus, Chirohepevirus. This review focuses on the current state of bat HEV and provides novel insights into HEV genetic diversity and molecular evolution.
Collapse
|
26
|
Gupta J, Kumar A, Surjit M. Production of a Hepatitis E Vaccine Candidate Using the Pichia pastoris Expression System. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:117-141. [PMID: 34918244 DOI: 10.1007/978-1-0716-1892-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). No vaccine is available to combat the HEV except Hecolin, which is available only in China. Virus-like particle (VLP) generated from the capsid protein (ORF2) of HEV is known to be a potent vaccine antigen against HEV. Hecolin consists of 368-606 amino acid (aa) region of the capsid protein of HEV, which forms a VLP. It is expressed and purified from the inclusion bodies of E. coli. Here, we describe a method to express the 112-608aa region of the capsid protein (ORF2) of genotype-1 HEV in Pichia pastoris (P. pastoris) and purify VLPs from the culture medium. 112-608aa ORF2 VLPs are secreted into the culture medium in a methanol inducible manner. The purified VLPs are glycosylated and induce robust immune response in Balb/c mice. Further, 112-608aa ORF2 VLPs are bigger than the 368-606 VLP present in Hecolin, which may help them in inducing a superior immune response. P. pastoris offers a robust and economical heterologous expression system to produce large quantities of glycosylated 112-608aa ORF2 VLP, which appears to be a promising vaccine candidate against the HEV.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
27
|
Cheung CKM, Wong SH, Law AWH, Law MF. Transfusion-transmitted hepatitis E: What we know so far? World J Gastroenterol 2022; 28:47-75. [PMID: 35125819 PMCID: PMC8793017 DOI: 10.3748/wjg.v28.i1.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis globally. There is growing concern about transfusion-transmitted HEV (TT-HEV) as an emerging global health problem. HEV can potentially result in chronic infection in immunocompromised patients, leading to a higher risk of liver cirrhosis and even death. Between 0.0013% and 0.281% of asymptomatic blood donors around the world have HEV viremia, and 0.27% to 60.5% have anti-HEV immunoglobulin G. HEV is infectious even at very low blood concentrations of the virus. Immunosuppressed patients who develop persistent hepatitis E infection should have their immunosuppressant regimen reduced; ribavirin may be considered as treatment. Pegylated interferon can be considered in those who are refractory or intolerant to ribavirin. Sofosbuvir, a nucleotide analog, showed modest antiviral activity in some clinical studies but sustained viral response was not achieved. Therefore, rescue treatment remains an unmet need. The need for HEV screening of all blood donations remains controversial. Universal screening has been adopted in some countries after consideration of risk and resource availability. Various pathogen reduction methods have also been proposed to reduce the risk of TT-HEV. Future studies are needed to define the incidence of transmission through transfusion, their clinical features, outcomes and prognosis.
Collapse
Affiliation(s)
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong 852, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Man Fai Law
- Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
28
|
Uterine Injury Caused by Genotype 4 Hepatitis E Virus Infection Based on a BALB/c Mice Model. Viruses 2021; 13:v13101950. [PMID: 34696377 PMCID: PMC8538062 DOI: 10.3390/v13101950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
To evaluate whether uterine injury caused by hepatitis E virus (HEV) infection is responsible for adverse pregnancy outcomes. HEV-infected female BALB/c mice were coupled with healthy male BALB/c mice at 0, 7, 14, 21, and 91 dpi to explore the uterine injury caused by HEV infection. Mice were euthanized after 10 days of copulation, and uteruses were collected for HEV RNA and antigen detection and histopathological analysis. Inflammatory responses; apoptosis; and estrogen receptor ɑ (ER-ɑ), endomethal antibody (ERAb), cytokeratin-7 (CK7), vimentin (VIM), and vascular endothelial growth factor (VEGF) expression levels were evaluated. After 10 days of copulation, miscarriage and nonpregnancy, as well as enlarged uteruses filled with inflammatory cytokines, were found in HEV-infected mice. HEV RNA and antigens were detected in the sera and uteruses of HEV-infected mice. Significant endometrial thickness (EMT) thinning, severe inflammatory responses, and aggravated apoptosis in the uteruses of HEV-infected mice that experienced miscarriage might contribute to adverse pregnancy outcomes. Furthermore, significantly suppressed ER-ɑ expression and increased ERAb, CK7, VIM, and VEGF expression levels were found in the uteruses of HEV-infected mice that had miscarried. However, uterine damage recovered after complete HEV clearance, and impaired fertility was improved. EMT injury, severe inflammatory responses, and aggravated apoptosis in the uterus caused by HEV infection are responsible for poor pregnancy outcomes.
Collapse
|
29
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
30
|
Firmino GF, Schulze ML, Schlindwein MAM, Rampeloti B, Gonçalves MVM, Maçaneiro CH, Dos Santos RA. Neuralgic Amyotrophy: Its Importance in Orthopedics Practice. Spine Surg Relat Res 2021; 5:232-237. [PMID: 34435146 PMCID: PMC8356235 DOI: 10.22603/ssrr.2021-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
The present academic work aims to contribute to an early diagnosis of neuralgic amyotrophy (NA) because of its high prevalence in the population. This disease is a neuromuscular syndrome with unclear etiology; it affects mostly the brachial plexus, causing acute pain in the affected shoulder, paralysis, and disabilities. Considering the importance of an early treatment that can modify the prognosis of the patient, knowing the last updates about the syndrome as its clinical presentation is important. Data analysis was conducted through an online non-systematic review that indicated the epidemiology, pathophysiology, and differential diagnosis and prognosis of NA. Knowledge of the clinical features of NA is not common; however, it is important in orthopedic practice because it requires differentiation from spine pathologies.
Collapse
Affiliation(s)
- George Fagundes Firmino
- Medical Student at Department of Medicine, University of the Region of Joinville, Joinville, Brazil
| | - Milena Luisa Schulze
- Medical Student at Department of Medicine, University of the Region of Joinville, Joinville, Brazil
| | | | - Breno Rampeloti
- Medical Student at Department of Medicine, University of the Region of Joinville, Joinville, Brazil
| | | | - Carlos Henrique Maçaneiro
- Professor of Orthopedics and Traumatology, Department of Medicine, University of the Region of Joinville, Joinville, Brazil
| | | |
Collapse
|
31
|
Li Y, Peppelenbosch MP. Hepatitis E virus and neurological manifestations. J Neurol Sci 2021; 423:117388. [PMID: 33714454 DOI: 10.1016/j.jns.2021.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, Wytemaweg 40, NL-3000 CA Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, Wytemaweg 40, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
32
|
Diagnosis and Management of Autoimmune Hemolytic Anemia in Patients with Liver and Bowel Disorders. J Clin Med 2021; 10:jcm10030423. [PMID: 33499290 PMCID: PMC7865399 DOI: 10.3390/jcm10030423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Anemia is a common feature of liver and bowel diseases. Although the main causes of anemia in these conditions are represented by gastrointestinal bleeding and iron deficiency, autoimmune hemolytic anemia should be considered in the differential diagnosis. Due to the epidemiological association, autoimmune hemolytic anemia should particularly be suspected in patients affected by inflammatory and autoimmune diseases, such as autoimmune or acute viral hepatitis, primary biliary cholangitis, and inflammatory bowel disease. In the presence of biochemical indices of hemolysis, the direct antiglobulin test can detect the presence of warm or cold reacting antibodies, allowing for a prompt treatment. Drug-induced, immune-mediated hemolytic anemia should be ruled out. On the other hand, the choice of treatment should consider possible adverse events related to the underlying conditions. Given the adverse impact of anemia on clinical outcomes, maintaining a high clinical suspicion to reach a prompt diagnosis is the key to establishing an adequate treatment.
Collapse
|
33
|
Lower Levels of Transaminases but Higher Levels of Serum Creatinine in Patients with Acute Hepatitis E in Comparison to Patients with Hepatitis A. Pathogens 2021; 10:pathogens10010060. [PMID: 33445435 PMCID: PMC7826713 DOI: 10.3390/pathogens10010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with hepatitis E virus (HEV) infections, extrahepatic, particularly renal and hematological manifestations, are increasingly reported in the medical literature but have never been studied compared to a control cohort. We retrospectively analyzed medical records of consecutive patients that were diagnosed with acute hepatitis E (AHE) (n = 69) or acute hepatitis A (AHA) (n = 46) at the University Medical Center Hamburg Eppendorf from January 2009 to August 2019 for demographical, clinical, and laboratory information. Patients with AHE had significantly lower median levels of ALAT (798 U/L) and total bilirubin (1.8 mg/dL) compared to patients with AHA (2326 U/L; p < 0.001 and 5.2 mg/dL; p < 0.001), suggesting a generally less severe hepatitis. In contrast, patients with AHE had significantly higher median serum creatinine levels (0.9 mg/dL vs. 0.8 mg/dL; p = 0.002) and lower median estimated glomerular filtration rate (eGFR) (91 mL/min/1.73 m2 vs. 109 mL/min/1.73 m2; p < 0.001) than patients with AHA. Leucocyte, neutrophil and lymphocyte count, hemoglobin, platelets, red cell distribution width (RDW), neutrophil to lymphocyte ratio (NLR), and RDW to lymphocyte ratio (RLR) did not differ between patients with AHE and those with AHA. Our observations indicate that renal but not hematological interference presents an underrecognized extrahepatic feature of AHE, while inflammation of the liver seems to be more severe in AHA.
Collapse
|
34
|
Watari T, Tachibana T, Okada A, Nishikawa K, Otsuki K, Nagai N, Abe H, Nakano Y, Takagi S, Amano Y. A review of food poisoning caused by local food in Japan. J Gen Fam Med 2021; 22:15-23. [PMID: 33457151 PMCID: PMC7796784 DOI: 10.1002/jgf2.384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Increasingly popular worldwide, Japanese cuisine includes several raw preparations such as sashimi and sushi; however, limited information on food poisoning from Japanese local food is available in English literature. Without appropriate knowledge, physicians may underdiagnose traveler's diarrhea among people returning from Japan. To provide accurate information to primary care physicians worldwide, we conducted a narrative review on food poisoning research published in Japanese and English over the past four years, considering the frequency and clinical importance of various presentations.
Collapse
Affiliation(s)
- Takashi Watari
- Postgraduate Clinical Training CenterShimane University HospitalShimaneJapan
| | | | - Azusa Okada
- Faculty of MedicineShimane UniversityShimaneJapan
| | | | | | | | - Haruki Abe
- Faculty of MedicineShimane UniversityShimaneJapan
| | | | - Soshi Takagi
- Faculty of MedicineShimane UniversityShimaneJapan
| | - Yu Amano
- Faculty of MedicineShimane UniversityShimaneJapan
| |
Collapse
|
35
|
Di Bartolomeo S, Carubbi F, Cipriani P. Hepatitis E Virus and rheumatic diseases: what do rheumatologists need to know? BMC Rheumatol 2020; 4:51. [PMID: 32974609 PMCID: PMC7504648 DOI: 10.1186/s41927-020-00149-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) represents the most common cause of acute hepatitis and jaundice in the world. About 2 million of infection cases occur each year in Europe, mainly as autochthonous anthropozoonosis, and HEV can be transmitted through undercooked pork meat. This infection has been linked to various extra-hepatic manifestations, while chronic infections with a rapid development of liver failure have been described in heavily immunosuppressed patients undergoing solid organ transplantations (SOTs), in patients with hematological diseases or with immunodeficiency virus infection. MAIN BODY OF ABSTRACT The purpose of this review article is to describe rheumatic manifestations related to HEV infection and their implications for rheumatologists in the daily clinical practice. Despite recent accumulating literature in this field, little is known about the course of the infection in patients with rheumatic diseases (RDs) and about the impact of immunosuppressive drugs. Moreover, HEV infection can mimic RDs' manifestations or drugs toxicity. Specific guidelines on management are lacking and the majority of data are referred to SOTs receivers. CONCLUSIONS More studies are needed to better understand the real impact of HEV infection in patients with RDs, regarding both clinical outcomes and their management.
Collapse
Affiliation(s)
- Salvatore Di Bartolomeo
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, School of Medicine, University of L’Aquila, L’Aquila, Italy
- Department of Medicine, ASL1 Avezzano-Sulmona-L’Aquila, L’Aquila and Sulmona, Italy
| | - Francesco Carubbi
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, School of Medicine, University of L’Aquila, L’Aquila, Italy
- Department of Medicine, ASL1 Avezzano-Sulmona-L’Aquila, L’Aquila and Sulmona, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, School of Medicine, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
36
|
Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2020; 29:309-319. [PMID: 32828646 PMCID: PMC7437515 DOI: 10.1016/j.tim.2020.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The molecular interplay between cellular host factors and viral proteins is a continuous process throughout the viral life cycle determining virus host range and pathogenesis. The hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans worldwide. However, the mechanisms of liver pathology and clinical disease remain poorly understood for HEV infection. This review summarizes our current understanding of HEV-host cell interactions and highlights experimental strategies and techniques to identify novel host components required for the viral life cycle as well as restriction factors. Understanding these interactions will provide insight into the viral life cycle of HEV and might further help to devise novel therapeutic strategies and antiviral targets.
Collapse
|
37
|
Abstract
Viral hepatitis can cause a wide spectrum of clinical presentations from a benign form with minimal or no symptoms to acute liver failure or death. Hepatitis D coinfection and superinfection have distinct clinical courses, with the latter more likely leading to chronic infection. Management of chronic hepatitis D virus is individualized because of the paucity of treatment options and significant side effect profile of currently available treatments. Sporadic cases of hepatitis E caused by contaminated meats are becoming increasingly prevalent in immunocompromised hosts. Human herpesviruses are an important cause of disease also in immunocompromised individuals.
Collapse
|
38
|
Progress in the Production of Virus-Like Particles for Vaccination against Hepatitis E Virus. Viruses 2020; 12:v12080826. [PMID: 32751441 PMCID: PMC7472025 DOI: 10.3390/v12080826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV), a pathogen that causes acute viral hepatitis, is a small icosahedral, quasi-enveloped, positive ssRNA virus. Its genome has three open reading frames (ORFs), with ORF1 and ORF3 encoding for nonstructural and regulatory proteins, respectively, while ORF2 is translated into the structural, capsid protein. ORF2 is most widely used for vaccine development in viral hepatitis. Hepatitis E virus-like particles (VLPs) are potential vaccine candidates against HEV infection. VLPs are composed of capsid subunits mimicking the natural configuration of the native virus but lack the genetic material needed for replication. As a result, VLPs are unable to replicate and cause disease, constituting safe vaccine platforms. Currently, the recombinant VLP-based vaccine Hecolin® against HEV is only licensed in China. Herein, systematic information about the expression of various HEV ORF2 sequences and their ability to form VLPs in different systems is provided.
Collapse
|
39
|
Lhomme S, Migueres M, Abravanel F, Marion O, Kamar N, Izopet J. Hepatitis E Virus: How It Escapes Host Innate Immunity. Vaccines (Basel) 2020; 8:E422. [PMID: 32731452 PMCID: PMC7564545 DOI: 10.3390/vaccines8030422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is a leading cause of viral hepatitis in the world. It is usually responsible for acute hepatitis, but can lead to a chronic infection in immunocompromised patients. The host's innate immune response is the first line of defense against a virus infection; there is growing evidence that HEV RNA is recognized by toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), leading to interferon (IFN) production. The IFNs activate interferon-stimulated genes (ISGs) to limit HEV replication and spread. HEV has developed strategies to counteract this antiviral response, by limiting IFN induction and signaling. This review summarizes the advances in our knowledge of intracellular pathogen recognition, interferon and inflammatory response, and the role of virus protein in immune evasion.
Collapse
Affiliation(s)
- Sébastien Lhomme
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Marion Migueres
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Florence Abravanel
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Olivier Marion
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Nassim Kamar
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Jacques Izopet
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| |
Collapse
|
40
|
Jung S, Seo DJ, Yeo D, Wang Z, Min A, Zhao Z, Song M, Choi IS, Myoung J, Choi C. Experimental infection of hepatitis E virus induces pancreatic necroptosis in miniature pigs. Sci Rep 2020; 10:12022. [PMID: 32694702 PMCID: PMC7374588 DOI: 10.1038/s41598-020-68959-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Infection by hepatitis E virus (HEV) via the oral route causes acute hepatitis. Extra-hepatic manifestations of HEV infection may stem from various causes; however, its distribution in organs such as the liver, as well as the mechanisms underlying HEV-induced cell injury, remain unclear. The objective of this study was to determine the chronological distribution of HEV in various tissues of HEV-challenged miniature pigs and to investigate the mechanisms underlying HEV-induced cell death in the pancreas and liver. Virological and serological analyses were performed on blood and faecal samples. Histopathology of the liver and extra-hepatic tissues was analysed. Cell death pathways and immune cell characterisation in inflammatory lesions were analysed using immunohistochemistry. The liver and pancreas displayed inflammation and cellular injury, and a large amount of HEV was observed in the lesions. The liver was infiltrated by T and natural killer cells. HEV was identified in all organs except the heart, and was associated with immune cells. Although the liver and the pancreas strongly expressed TNF-α and TRAIL, TUNEL assay results were negative. RIP3 and pMLKL were expressed in the pancreas. RIP3, but not pMLKL, was expressed in the liver. Pancreatitis induced in HEV-infected miniature pigs is associated with necroptosis.
Collapse
Affiliation(s)
- Soontag Jung
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju, 61743, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Ae Min
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Ziwei Zhao
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Mengxiao Song
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
- Bio and Environmental Technology Research Institute, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
41
|
Olmos-Martínez JM, Hernández JL, Fábrega E, Olmos JM, Crespo J, González-Macías J. Bone mineral density and trabecular bone score in treatment-naïve patients with non-cirrhotic hepatitis C virus infection. Arch Osteoporos 2020; 15:72. [PMID: 32399944 DOI: 10.1007/s11657-020-00752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We studied 112 treatment-naïve chronic HCV patients without cirrhosis, and we found that, especially HCV+ postmenopausal women, they had lower TBS and BMD values than healthy controls. This suggests that HCV infection is an independent risk factor for osteoporosis, and therefore, screening for osteoporosis in postmenopausal HCV+ women should be considered. PURPOSE To know whether patients in earlier stages of chronic HCV infection are at increased risk of developing low bone mass and bone microarchitectural changes and whether there is an association between bone metabolism and the severity of the liver disease. METHODS We studied 112 treatment-naïve chronic HCV outpatients and 233 healthy age- and sex-matched controls. Bone mineral density (BMD) and trabecular bone score (TBS) were assessed by DXA. Serum 25(OH)D, PTH, P1NP, and CTX were determined by electrochemiluminescence. RESULTS TBS values were significantly lower in HCV patients than in controls, both considering the population as a whole (1.337 ± 0.119 vs. 1.377 ± 0.122; p < 0.005) and after stratifying by sex (1.347 ± 0.12 vs. 1.381 ± 0.13 in men and 1.314 ± 0.10 vs. 1.369 ± 0.11 in women). The difference remained significant (p < 0.0001 in all cases) after adjusting for confounders. BMD was also lower in HCV patients (lumbar spine, 0.935 ± 0.151 vs. 0.991 ± 0.143 g/cm2, p 0.001; femoral neck, 0.764 ± 0.123 vs. 0.818 ± 0.123 g/cm2, p 0.0001; total hip, 0.926 ± 0.148 vs. 0.963 ± 0.132 g/cm2, p 0.02), although, after adjustment, differences kept a clear trend towards statistical significance in women at the lumbar spine and femoral neck. However, in men and at the total hip in women, differences were no longer significant. We find no relationship between these parameters and the severity of the disease. No significant difference was observed in PTH and 25OHD status after adjustment. Finally, serum P1NP, but not CTX, was higher in HCV patients. CONCLUSIONS Our findings suggest that HCV infection is an independent risk factor for osteoporosis, especially among postmenopausal women. Therefore, the appropriateness of screening for osteoporosis in postmenopausal HCV-positive women should be considered.
Collapse
Affiliation(s)
- José M Olmos-Martínez
- Department of Gastroenterology and Hepatology, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - José L Hernández
- Bone Metabolic Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Avda. Valdecilla s/n, 39008, Santander, Spain.
| | - Emilio Fábrega
- Department of Gastroenterology and Hepatology, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - José M Olmos
- Bone Metabolic Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Avda. Valdecilla s/n, 39008, Santander, Spain
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Jesús González-Macías
- Bone Metabolic Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Avda. Valdecilla s/n, 39008, Santander, Spain
| |
Collapse
|
42
|
Whitsett M, Feldman DM, Jacobson I. Hepatitis E Virus Infection in the United States: Current Understanding of the Prevalence and Significance in the Liver Transplant Patient Population and Proposed Diagnostic and Treatment Strategies. Liver Transpl 2020; 26:709-717. [PMID: 32061053 DOI: 10.1002/lt.25732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), of the family Herpesviridae, is a virus that infects nearly 20 million people per year throughout the world. HEV is most commonly transmitted via the fecal-oral route and has long been described as a virus that afflicts only those in resource-poor countries. However, HEV has been detected in numerous animal carriers, various food sources, and even in human blood products in resource-rich regions of the world. HEV is of importance in the transplant patient population because of its ability to cause chronic viral infection in these patients can lead to graft loss and cirrhosis. In this review, we discuss the current knowledge of HEV as it pertains to the liver transplant patient population and discuss diagnosis and treatment of this infection.
Collapse
Affiliation(s)
- Maureen Whitsett
- Department of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York University, New York, NY
| | - David M Feldman
- Department of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York University, New York, NY
| | - Ira Jacobson
- Department of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York University, New York, NY
| |
Collapse
|
43
|
Nitta S, Takahashi K, Kawai-Kitahata F, Tsuchiya J, Sato A, Miyoshi M, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Kakinuma S, Watanabe M, Asahina Y. Time course alterations of virus sequences and immunoglobulin titers in a chronic hepatitis E patient. Hepatol Res 2020; 50:524-531. [PMID: 31883166 DOI: 10.1111/hepr.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis E virus (HEV) can cause chronic infection in immunocompromised hosts. However, the dynamics of HEV during persistent infection is not well understood. To elucidate time course alterations in virus sequences and anti-HEV antibodies during persistent infection, we analyzed the HEV sequences and titers of anti-HEV antibodies from a chronic hepatitis E patient. METHODS Serum samples were obtained from a chronic hepatitis E patient under corticosteroid therapy for neurological disease. The titers of anti-HEV antibodies (immunoglobulin A, immunoglobulin M, and immunoglobulin G) in serum samples were detected by enzyme immunoassay. The full or near-full nucleotide sequences of HEV isolated from consecutive serum samples were identified and compared. Phylogenetic analysis was also performed. RESULTS Alterations of anti-HEV antibodies from a chronic hepatitis E patient were different from those previously reported in acute hepatitis E patients. The virus sequence was unchanged in the period without treatment, but nucleotide mutations were observed after ribavirin treatment was started. In addition, the sequence of this strain had extremely high identity to that isolated from swine liver in Japan. CONCLUSIONS Virus mutations in HEV emerged after ribavirin treatment was started. Sequence analysis may useful for deciding the treatment strategy for chronic hepatitis E patients who did not eliminate the virus with 3 months of RBV treatment and inferring the origin of the infection. This report provides insights into the chronicity of hepatitis E, and the impact of persistent infection and ribavirin treatment on the emergence of virus mutations.
Collapse
Affiliation(s)
- Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Takahashi
- Department of Medical Sciences, Tokyo-Shinagawa Hospital, Tokyo, Japan.,Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Seth A, Sherman KE. Hepatitis E: What We Think We Know. Clin Liver Dis (Hoboken) 2020; 15:S37-S44. [PMID: 32140212 PMCID: PMC7050948 DOI: 10.1002/cld.858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Aradhna Seth
- Division of Digestive DiseaseUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Kenneth E. Sherman
- Division of Digestive DiseaseUniversity of Cincinnati College of MedicineCincinnatiOH
| |
Collapse
|
45
|
Capelli N, Dubois M, Pucelle M, Da Silva I, Lhomme S, Abravanel F, Chapuy-Regaud S, Izopet J. Optimized Hepatitis E Virus (HEV) Culture and its Application to Measurements of HEV Infectivity. Viruses 2020; 12:v12020139. [PMID: 31991673 PMCID: PMC7077187 DOI: 10.3390/v12020139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is a major concern in public health worldwide. Infections with HEV genotypes 3, 4, or 7 can lead to chronic hepatitis while genotype 1 infections can trigger severe hepatitis in pregnant women. Infections with all genotypes can worsen chronic liver diseases. As virions are lipid-associated in blood and naked in feces, efficient methods of propagating HEV clinical strains in vitro and evaluating the infectivity of both HEV forms are needed. We evaluated the spread of clinical strains of HEV genotypes 1 (HEV1) and 3 (HEV3) by quantifying viral RNA in culture supernatants and cell lysates. Infectivity was determined by endpoint dilution and calculation of the tissue culture infectious dose 50 (TCID50). An enhanced HEV production could be obtained varying the composition of the medium, including fetal bovine serum (FBS) and dimethylsulfoxide (DMSO) content. This increased TCID50 from 10 to 100-fold and allowed us to quantify HEV1 infectivity. These optimized methods for propagating and measuring HEV infectivity could be applied to health safety processes and will be useful for testing new antiviral drugs.
Collapse
Affiliation(s)
- Nicolas Capelli
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Martine Dubois
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Mélanie Pucelle
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
| | - Isabelle Da Silva
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
| | - Sébastien Lhomme
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Florence Abravanel
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Sabine Chapuy-Regaud
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
- Correspondence: ; Tel.: +33-567-690-431
| | - Jacques Izopet
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| |
Collapse
|
46
|
Ripellino P, Pasi E, Melli G, Staedler C, Fraga M, Moradpour D, Sahli R, Aubert V, Martinetti G, Bihl F, Bernasconi E, Terziroli Beretta-Piccoli B, Cerny A, Dalton HR, Zehnder C, Mathis B, Zecca C, Disanto G, Kaelin-Lang A, Gobbi C. Neurologic complications of acute hepatitis E virus infection. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/1/e643. [PMID: 31806684 PMCID: PMC6935854 DOI: 10.1212/nxi.0000000000000643] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
Objective To assess the prevalence and clinical features of neurologic involvement in patients with acute hepatitis E virus (HEV) infection in Southern Switzerland. Methods Among 1,940 consecutive patients investigated for acute hepatitis E, we identified 141 cases of acute of HEV infection (anti-HEV immunoglobulin M and immunoglobulin G both reactive and/or HEV RNA positive) between June 2014 and September 2017. Neurologic cases were followed up for 6 months. We compared patients with and without neurologic symptoms. Results Neurologic symptoms occurred in 43 acute HEV cases (30.4%) and consisted of neuralgic amyotrophy (NA, n = 15, 10.6%) and myalgia (n = 28, 19.8%). All NA cases were immunocompetent. Men had higher odds (OR = 5.2, CI 1.12–24.0, p = 0.03) of developing NA after infection with HEV, and in 3 couples simultaneously infected with HEV, only men developed NA. Bilateral involvement of NA was predominant (2:1) and occurred only in men. Seven NA cases were viremic (all genotype 3), but HEV was undetectable in their CSF. In the acute phase of NA, 9 patients were treated with intravenous immunoglobulin and 4 with prednisone, reporting no side effects and improvement in pain and strength. Myalgia occurred both without (n = 16) or with (n = 12) concomitant elevated serum creatinine kinase. Seven cases with myalgia in the shoulder girdle did not have muscle weakness (“forme fruste” of NA). Conclusions Neurologic symptoms occurred in one-third of acute HEV infections and consisted of NA and myalgia. NA seems to occur more frequently in men infected by HEV and has a predominant (but not exclusive) bilateral involvement.
Collapse
Affiliation(s)
- Paolo Ripellino
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH.
| | - Emanuela Pasi
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Giorgia Melli
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Claudio Staedler
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Monserrat Fraga
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Darius Moradpour
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Roland Sahli
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Vincent Aubert
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Gladys Martinetti
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Florian Bihl
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Enos Bernasconi
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Benedetta Terziroli Beretta-Piccoli
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Andreas Cerny
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Harry Roland Dalton
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Cinzia Zehnder
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Barbara Mathis
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Chiara Zecca
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Giulio Disanto
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Alain Kaelin-Lang
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| | - Claudio Gobbi
- From the Department of Neurology (P.R., G.M., C.S., C.Z., G.D., A.K.-L., C.G.), Neurocenter of Southern Switzerland, Lugano, CH; Laboratory of Microbiology EOLAB (E.P., G.M.), Bellinzona, CH; Faculty of Biomedical Sciences, USI (G.M., C.Z., A.K.-L., C.G.), Lugano, CH; Division of Gastroenterology and Hepatology, Lausanne University Hospital (M.F., D.M.), Lausanne, CH; Institute of Microbiology, Lausanne University Hospital (R.S.), Lausanne, CH; Laboratory of Immunology, Lausanne University Hospital (V.A.), CH; Department of Hepatology, Hospital of Bellinzona (F.B.), CH; Division of Infectious Diseases (E.B.), Hospital of Lugano, CH; Epatocentro Ticino (B.T.B.-P., A.C.), Lugano, CH; Queens Park (H.R.D.), London, UK; Synlab Ticino (C.Z.), Bioggio, CH; and Unilabs Ticino (B.M.), Lugano, CH
| |
Collapse
|
47
|
Chauhan A, Webb G, Ferguson J. Clinical presentations of Hepatitis E: A clinical review with representative case histories. Clin Res Hepatol Gastroenterol 2019; 43:649-657. [PMID: 30808575 PMCID: PMC6864596 DOI: 10.1016/j.clinre.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
Hepatitis E virus (HEV) typically causes an acute, self-limiting hepatitis and is among the commonest cause of such presentations. Hepatitis E viral infection is also increasingly recognized as a cause of chronic hepatitis amongst the immunocompromised, particularly amongst solid organ transplant recipients. Chronic HEV infection remains an underdiagnosed disease and chronic infection can lead to rapidly progressive liver fibrosis and cirrhosis. This review examines current understanding of the HEV. We illustrate typical clinical presentations, management strategies [(based upon guidelines from both the British Transplant Society (BTS) and European Association for the study of liver (EASL)] and outcomes of HEV infection in different cohorts of patients by highlighting select transplant and non-transplant patient cases, from one of the largest tertiary Hepatology centres in Europe.
Collapse
Affiliation(s)
- Abhishek Chauhan
- NIHR Birmingham Biomedical Research Centre, United Kingdom; Liver unit, University Hospitals Birmingham, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom.
| | - Gwilym Webb
- Liver unit, University Hospitals Birmingham, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - James Ferguson
- Liver unit, University Hospitals Birmingham, United Kingdom
| |
Collapse
|
48
|
Fousekis FS, Mitselos IV, Christodoulou DK. Extrahepatic manifestations of hepatitis E virus: An overview. Clin Mol Hepatol 2019; 26:16-23. [PMID: 31601068 PMCID: PMC6940480 DOI: 10.3350/cmh.2019.0082] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is a significant health problem with approximately 20 million individuals infected annually. HEV infection has been associated with a wide spectrum of extrahepatic manifestations, including neurological, hematological and renal disorders. Guillain-Barré syndrome and neuralgic amyotrophy are the most frequent neurological manifestations. In addition, HEV infection has been observed with other neurological diseases, such as encephalitis, myelitis and Bell’s palsy. Hematologic manifestations include anemia due to glucose-6-phospate dehydrogonase deficiency, autoimmune hemolytic anemia and severe thrombocytopenia. Membranoproliferative glomerulonephritis and relapse IgA nephropathy with or without coexisting cryoglobulinemia appear to be the most common renal injuries related with HEV infection. Also, HEV infection has been associated with acute pancreatitis and other immune-mediated manifestations, such as arthritis and myocarditis. However, the pathophysiologic mechanisms of HEV-related extrahepatic manifestations are still largely unclear.
Collapse
Affiliation(s)
- Fotios S Fousekis
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis V Mitselos
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
49
|
Karlsson M, Norder H, Bergström M, Park PO, Karlsson M, Wejstål R, Alsiö Å, Rosemar A, Lagging M, Mellgren Å. Hepatitis E virus genotype 3 is associated with gallstone-related disease. Scand J Gastroenterol 2019; 54:1269-1273. [PMID: 31553628 DOI: 10.1080/00365521.2019.1666163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Hepatitis E virus (HEV) genotype 3 is endemic in Northern Europe and despite a high seroprevalence of anti-HEV IgG antibodies among blood donors (≈17%), few clinical cases are notified in Sweden. Low awareness of hepatitis E and its possible symptoms may contribute to this discrepancy. The aim of this study was to investigate the prevalence of acute HEV infection among hospital admitted patients with abdominal pain and elevated liver enzymes.Materials and methods: During 2016-2017, 148 adult patients with serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) > twice normal levels were prospectively enrolled at surgical wards at three Swedish hospitals. Serum samples were analyzed for HEV RNA as well as anti-HEV IgM and IgG, and medical records were reviewed.Results: Six (6/148, 4.1%) patients were HEV infected confirmed by detectable HEV RNA, but only one of these patients had detectable anti-HEV antibodies. Four of the HEV infected patients were diagnosed with gallstone-related disease: three with biliary pancreatitis and one with biliary colic. The remaining two were diagnosed with bowel obstruction and pancreatic malignancy. Four HEV strains were typed by sequencing to genotype 3.Conclusions: This study identified acute HEV3 infection in 4% of the patients with elevated liver enzymes admitted to a surgical ward. HEV infection was not the solitary disease leading to hospitalization, instead it was found to be associated with other surgical conditions such as gallstone-related disease including biliary pancreatitis. Additionally, HEV RNA might be the preferential diagnostic tool for detecting ongoing HEV infection.
Collapse
Affiliation(s)
- Miriam Karlsson
- Department of Infectious Diseases, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heléne Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Bergström
- Department of Surgery, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Ola Park
- Department of Surgery, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Karlsson
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rune Wejstål
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Alsiö
- Department of Infectious Diseases, Region Västra Götaland, Skaraborg Hospital, Skövde, Sweden
| | - Anders Rosemar
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
50
|
Hartard C, Gantzer C, Bronowicki JP, Schvoerer E. Emerging hepatitis E virus compared with hepatitis A virus: A new sanitary challenge. Rev Med Virol 2019; 29:e2078. [PMID: 31456241 DOI: 10.1002/rmv.2078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Hepatitis A (HAV) and E (HEV) viruses are able to cause liver disease in humans. Among the five classical hepatotropic viruses, they are mainly transmitted via the fecal-oral route. Historically, many similarities have thus been described between them according to their incidence and their pathogenicity, especially in countries with poor sanitary conditions. However, recent advances have provided new insights, and the gap is widening between them. Indeed, while HAV infection incidence tends to decrease in developed countries along with public health improvement, HEV is currently considered as an underdiagnosed emerging pathogen. HEV autochthonous infections are increasingly observed and are mainly associated with zoonotic transmissions. Extra hepatic signs resulting in neurological or renal impairments have also been reported for HEV, as well as a chronic carrier state in immunocompromised patients, arguing in favor of differential pathogenesis between those two viruses. Recent molecular tools have allowed studies of viral genome variability and investigation of links between viral plasticity and clinical evolution. The identification of key functional mutations in viral genomes may improve the knowledge of their clinical impact and is analyzed in depth in the present review.
Collapse
Affiliation(s)
- Cédric Hartard
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|