1
|
Dad N, Elsawy MA, Humphreys G, Pluen A, Lu JR, McBain AJ. A critical view of antimicrobial peptides: exploring their potential and the barriers to realization. J Appl Microbiol 2025; 136:lxaf087. [PMID: 40205522 DOI: 10.1093/jambio/lxaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/07/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
The global rise of multidrug-resistant infections highlights the urgent need for innovative therapeutic strategies beyond traditional antibiotics. Antimicrobial peptides (AMPs), naturally occurring in all forms of life and synthetically producible, have garnered significant attention for their broad-spectrum antimicrobial properties and diverse mechanisms of action, including membrane disruption, immune modulation, and biofilm formation inhibition and disruption. Despite great potential, the clinical deployment of AMPs faces significant challenges, including cytotoxicity, low chemical stability, high production costs, and stringent regulatory demands. Innovative strategies, such as AMP-antibiotic conjugation, offer potential solutions to some of these challenges by enhancing efficacy, reducing toxicity, and broadening antimicrobial activity. This review critically evaluates the promise and limitations of AMPs as therapeutic antibacterial agents. We also explore the potential of AMP-antibiotic conjugates, highlighting their potential synergistic effects and the obstacles to their clinical application. Antimicrobial self-assembling peptides are also discussed, with their ability to form nanostructures that may disrupt biofilms and inhibit bacterial communication, representing a promising but complex avenue. A critical evaluation of these emerging strategies, grounded in their practical applicability and translational challenges, is essential to drive meaningful progress in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Navid Dad
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Mohamed A Elsawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Gavin Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Schuster Building, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
2
|
Vennard CS, Oladeji SM, Sintim HO. Inhibitors of Cyclic Dinucleotide Phosphodiesterases and Cyclic Oligonucleotide Ring Nucleases as Potential Drugs for Various Diseases. Cells 2025; 14:663. [PMID: 40358186 PMCID: PMC12072042 DOI: 10.3390/cells14090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The phosphodiester linkage is found in DNA, RNA and many signaling molecules, such as cyclic mononucleotide, cyclic dinucleotides (CDNs) and cyclic oligonucleotides (cONs). Enzymes that cleave the phosphodiester linkage (nucleases and phosphodiesterases) play important roles in cell persistence and fitness and have therefore become targets for various diseased states. While various inhibitors have been developed for nucleases and cyclic mononucleotide phosphodiesterases, and some have become clinical successes, there is a paucity of inhibitors of the recently discovered phosphodiesterases or ring nucleases that cleave CDNs and cONs. Inhibitors of bacterial c-di-GMP or c-di-AMP phosphodiesterases have the potential to be used as anti-virulence compounds, while compounds that inhibit the degradation of 3',3'-cGAMP, cA3, cA4, cA6 could serve as antibiotic adjuvants as the accumulation of these second messengers leads to bacterial abortive infection. In humans, 2'3'-cGAMP plays critical roles in antiviral and antitumor responses. ENPP1 (the 2'3'-cGAMP phosphodiesterase) or virally encoded cyclic dinucleotide phosphodiesterases, such as poxin, however, blunt this response. Inhibitors of ENPP1 or poxin-like enzymes have the potential to be used as anticancer and antiviral agents, respectively. This review summarizes efforts made towards the discovery and development of compounds that inhibit CDN phosphodiesterases and cON ring nucleases.
Collapse
Affiliation(s)
- Christopher S. Vennard
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Samson Marvellous Oladeji
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Luo K, Wu Q, Li Z, Wu Y, Su Z, Zhou F, Li Q, Ren B, Li Y, Li J, Peng X. Cyclic di-AMP alleviates periodontitis by activating PI3K/Akt/Nrf2 pathways. Front Cell Infect Microbiol 2025; 15:1560155. [PMID: 40160469 PMCID: PMC11949975 DOI: 10.3389/fcimb.2025.1560155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Emerging research demonstrates the regulatory effects of c-di-AMP, a bacterial-derived small molecule secondary messenger, on host immune responses and promoting resistance against infection-related diseases. This study aims to elucidate the role of c-di-AMP in the occurrence and development of periodontitis. Using model of ligation-induced periodontitis, we observed that c-di-AMP effectively alleviated alveolar bone resorption. Transcriptomic sequencing in mice gingival tissues demonstrated that treatment with c-di-AMP led to a significant upregulation of the PI3K/Akt signaling pathway and its key components, including Akt3. Concurrently, we observed an upregulation of the cGMP/PKG signaling pathway. To validate our findings, we treated gingival epithelial cells with c-di-AMP and confirmed the activation of the PI3K/Akt pathway by c-di-AMP in gingival epithelial cells. Under LPS-induced inflammation, c-di-AMP significantly suppressed the release of inflammatory factors (such as IL-6 and TNF-α) from gingival epithelial cells. Moreover, key components of the PI3K/Akt pathway, including Akt, and downstream inflammation regulatory gene Nrf2, were upregulated, which were also confirmed at the protein level. Collectively, this study demonstrates that c-di-AMP definitely plays a role in alleviating periodontitis. Our findings highlight the mechanisms by which c-di-AMP modulates periodontitis, including activating the PI3K/Akt pathway and potentially involving the cGMP/PKG pathway, ultimately contributing to improved immune defense and maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Kaihua Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yajie Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qinyang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Jabbari P, Kim JH, Le BH, Zhang W, Zhang H, Martins-Green M. Chronic Wound Initiation: Single-Cell RNAseq of Cutaneous Wound Tissue and Contributions of Oxidative Stress to Initiation of Chronicity. Antioxidants (Basel) 2025; 14:214. [PMID: 40002400 PMCID: PMC11852160 DOI: 10.3390/antiox14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic wounds (CWs) in humans affect millions of people in the US alone, cost billions of dollars, cause much suffering, and still there are no effective treatments. Patients seek medical care when wound chronicity is already established, making it impossible to investigate factors that initiate chronicity. In this study, we used a diabetic mouse model of CWs that mimics many aspects of chronicity in humans. We performed scRNAseq to compare the cell composition and function during the first 72 h post-injury and profiled 102,737 cells into clusters of all major cell types involved in healing. We found two types of fibroblasts. Fib 1 (pro-healing) was enriched in non-CWs (NCWs) whereas Fib 2 (non-healing) was in CWs. Both showed disrupted proliferation and migration, and extracellular matrix (ECM) deposition in CWs. We identified several subtypes of keratinocytes, all of which were more abundant in NCWs, except for Channel-related keratinocytes, and showed altered migration, apoptosis, and response to oxidative stress (OS) in CWs. Vascular and lymphatic endothelial cells were both less abundant in CWs and both had impaired migration affecting the development of endothelial and lymphatic microvessels. Study of immune cells showed that neutrophils and mast cells are less abundant in CWs and that NCWs contained more proinflammatory macrophages (M1) whereas CWs were enriched in anti-inflammatory macrophages (M2). Also, several genes involved in mitochondrial function were abnormally expressed in CWs, suggesting impaired mitochondrial function and/or higher OS. Heat shock proteins needed for response to OS were downregulated in CWs, potentially leading to higher cellular damage. In conclusion, the initiation of chronicity is multifactorial and involves various cell types and cellular functions, indicating that one type of treatment will not fix all problems, unless the root cause is fundamental to the cell and molecular mechanisms of healing. We propose that such a fundamental process is high OS and its association with wound infection/biofilm.
Collapse
Affiliation(s)
- Parnian Jabbari
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Jane H. Kim
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Brandon H. Le
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; (B.H.L.); (W.Z.)
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wei Zhang
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; (B.H.L.); (W.Z.)
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Huimin Zhang
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Manuela Martins-Green
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| |
Collapse
|
5
|
Katnic SP, Gupta RK. From biofilms to biocatalysts: Innovations in plastic biodegradation for environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124192. [PMID: 39842313 DOI: 10.1016/j.jenvman.2025.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The increase in plastic waste has evolved into a severe environmental crisis, which requires innovative recycling technologies to repurpose used plastic with adequate environmental protection. This review highlights the urgent need for innovative approaches to the treatment and degradation of post-use plastics. It investigates the promising role of biofilms in the biodegradation of polymers, especially for polymers such as polyethylene terephthalate (PET), polyurethane (PU), and polyethylene (PE). By examining biofilms, researchers can determine key enzymes involved in polymer degradation and improve their efficiency through genetic engineering. In addition, the review explores in detail the structure and development of biofilms on polymeric surfaces, elucidating the role of specific microbial strains necessary for biofilm formation and maintenance. Techniques for identifying enzymes within biofilms and improving their degradation ability are also discussed. The review concludes with recent discoveries in enzyme isolation and the key role of biofilms in the degradation and recycling of major plastic pollutants such as PET, PU, and PE. These findings highlight the potential of biofilm-derived enzymes to promote sustainable polymer recycling.
Collapse
Affiliation(s)
- Slavica Porobic Katnic
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; University of Belgrade, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, 11000, Serbia
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
6
|
Liu Y, Blanco-Toral C, Larrouy-Maumus G. The role of cyclic nucleotides in bacterial antimicrobial resistance and tolerance. Trends Microbiol 2025; 33:164-183. [PMID: 39242230 DOI: 10.1016/j.tim.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Nucleotide signalling molecules - mainly cyclic 3',5'-adenosine phosphate (cAMP), bis-(3',5')-cyclic diguanosine monophosphate (c-di-GMP), and bis-(3',5')-cyclic diadenosine monophosphate (c-di-AMP) - contribute to the regulation of cellular pathways. Numerous recent works have focused on the involvement of these cyclic nucleotide phosphates (cNPs) in bacterial resistance and tolerance to antimicrobial treatment. Indeed, the rise of antimicrobial resistance (AMR) is a rising global threat to human health, while the rise of antimicrobial tolerance underlies the development of AMR and long-term infections, placing an additional burden on this problem. Here, we summarise the current understanding of cNP signalling in bacterial physiology with a focus on our understanding of how cNP signalling affects AMR and antimicrobial tolerance in different bacterial species. We also discuss additional cNP-related drug targets in bacterial pathogens that may have therapeutic potential.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claudia Blanco-Toral
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Liu X, Zou L, Li B, Di Martino P, Rittschof D, Yang JL, Maki J, Liu W, Gu JD. Chemical signaling in biofilm-mediated biofouling. Nat Chem Biol 2024; 20:1406-1419. [PMID: 39349970 DOI: 10.1038/s41589-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/14/2024] [Indexed: 10/27/2024]
Abstract
Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores. As such, harnessing the biochemical mechanisms involved is a promising avenue for controlling biofouling. Here, we discuss how chemical signaling affects biofilm formation and dispersion in model species. We also examine how this translates to marine biofouling. Both inductive and inhibitory effects of chemical cues from biofilms on macrofouling are also discussed. Finally, we outline promising mitigation strategies by targeting chemical signaling to foster biofilm dispersion or inhibit biofouling.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ling Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Boqiao Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe, Cergy Paris Université, Cergy-Pontoise, France
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - James Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China.
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, China.
| |
Collapse
|
8
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Ghods S, Muszyński A, Yang H, Seelan RS, Mohammadi A, Hilson JS, Keiser G, Nichols FC, Azadi P, Ernst RK, Moradali F. The multifaceted role of c-di-AMP signaling in the regulation of Porphyromonas gingivalis lipopolysaccharide structure and function. Front Cell Infect Microbiol 2024; 14:1418651. [PMID: 38933693 PMCID: PMC11199400 DOI: 10.3389/fcimb.2024.1418651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Background This study unveils the intricate functional association between cyclic di-3',5'-adenylic acid (c-di-AMP) signaling, cellular bioenergetics, and the regulation of lipopolysaccharide (LPS) profile in Porphyromonas gingivalis, a Gram-negative obligate anaerobe considered as a keystone pathogen involved in the pathogenesis of chronic periodontitis. Previous research has identified variations in P. gingivalis LPS profile as a major virulence factor, yet the underlying mechanism of its modulation has remained elusive. Methods We employed a comprehensive methodological approach, combining two mutants exhibiting varying levels of c-di-AMP compared to the wild type, alongside an optimized analytical methodology that combines conventional mass spectrometry techniques with a novel approach known as FLATn. Results We demonstrate that c-di-AMP acts as a metabolic nexus, connecting bioenergetic status to nuanced shifts in fatty acid and glycosyl profiles within P. gingivalis LPS. Notably, the predicted regulator gene cdaR, serving as a potent regulator of c-di-AMP synthesis, was found essential for producing N-acetylgalactosamine and an unidentified glycolipid class associated with the LPS profile. Conclusion The multifaceted roles of c-di-AMP in bacterial physiology are underscored, emphasizing its significance in orchestrating adaptive responses to stimuli. Furthermore, our findings illuminate the significance of LPS variations and c-di-AMP signaling in determining the biological activities and immunostimulatory potential of P. gingivalis LPS, promoting a pathoadaptive strategy. The study expands the understanding of c-di-AMP pathways in Gram-negative species, laying a foundation for future investigations into the mechanisms governing variations in LPS structure at the molecular level and their implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Shirin Ghods
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Asal Mohammadi
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jacob S. Hilson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, CT, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Fata Moradali
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
11
|
Rojas EM, Zhang H, Velu SE, Wu H. Tetracyclic homoisoflavanoid (+)-brazilin: a natural product inhibits c-di-AMP-producing enzyme and Streptococcus mutans biofilms. Microbiol Spectr 2024; 12:e0241823. [PMID: 38591917 PMCID: PMC11064632 DOI: 10.1128/spectrum.02418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.
Collapse
Affiliation(s)
- Edwin M. Rojas
- School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hua Zhang
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Wu
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Rocha R, Jorge JMP, Teixeira-Duarte CM, Figueiredo-Costa IR, Cereija TB, Ferreira-Teixeira PF, Herzberg C, Stülke J, Morais-Cabral JH. c-di-AMP determines the hierarchical organization of bacterial RCK proteins. Proc Natl Acad Sci U S A 2024; 121:e2318666121. [PMID: 38652747 PMCID: PMC11067040 DOI: 10.1073/pnas.2318666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.
Collapse
Affiliation(s)
- Rita Rocha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | - João M. P. Jorge
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | - Celso M. Teixeira-Duarte
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | | | - Tatiana B. Cereija
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
| | | | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen37073, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen37073, Germany
| | - João H. Morais-Cabral
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| |
Collapse
|
13
|
Wu R, Nahm M, Yang J, Bush CA, Wu H. Identification and genetic engineering of pneumococcal capsule-like polysaccharides in commensal oral streptococci. Microbiol Spectr 2024; 12:e0188523. [PMID: 38488366 PMCID: PMC10986556 DOI: 10.1128/spectrum.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 04/06/2024] Open
Abstract
Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.
Collapse
Affiliation(s)
- Ren Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
| | - Moon Nahm
- Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Jinghua Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - C. Allen Bush
- Department of Chemistry and Biochemistry, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| |
Collapse
|
14
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Wright MJ, Bai G. Bacterial second messenger cyclic di-AMP in streptococci. Mol Microbiol 2023; 120:791-804. [PMID: 37898560 DOI: 10.1111/mmi.15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Cyclic dimeric adenosine monophosphate (c-di-AMP) has been well studied in bacteria, including those of the genus Streptococcus, since the first recognition of this dinucleotide in 2008. Streptococci possess a sole diadenylate cyclase, CdaA, and distinct c-di-AMP phosphodiesterases. Interestingly, cdaA is required for viability of some streptococcal species but not all when streptococci are grown in standard laboratory media. Bacteria of this genus also have distinct c-di-AMP effector proteins, diverse c-di-AMP-signaling pathways, and subsequent biological outcomes. In streptococci, c-di-AMP may influence bacterial growth, morphology, biofilm formation, competence program, drug resistance, and bacterial pathogenesis. c-di-AMP secreted by streptococci has also been shown to interact with the mammalian host and induces immune responses including type I interferon production. In this review, we summarize the reported c-di-AMP networks in seven species of the genus Streptococcus, which cause diverse clinical manifestations, and propose future perspectives to investigate the signaling molecule in these streptococcal pathogens.
Collapse
Affiliation(s)
- Michael J Wright
- Department of Internal Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
16
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
17
|
Monteith W, Pascoe B, Mourkas E, Clark J, Hakim M, Hitchings MD, McCarthy N, Yahara K, Asakura H, Sheppard SK. Contrasting genes conferring short- and long-term biofilm adaptation in Listeria. Microb Genom 2023; 9:001114. [PMID: 37850975 PMCID: PMC10634452 DOI: 10.1099/mgen.0.001114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.
Collapse
Affiliation(s)
- William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | | | - Jack Clark
- Department of Genetics, University of Leicester, University Road, Leicester, UK
| | - Maliha Hakim
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Matthew D. Hitchings
- Swasnsea University Medical School, Swansea University, Singleton Campus, Swansea, UK
| | - Noel McCarthy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | | |
Collapse
|
18
|
Cui Y, Dong S, Qu X. New progress in the identifying regulatory factors of exopolysaccharide synthesis in lactic acid bacteria. World J Microbiol Biotechnol 2023; 39:301. [PMID: 37688654 DOI: 10.1007/s11274-023-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The exopolysaccharides (EPSs) of lactic acid bacteria (LAB) have presented various bioactivities and beneficial characteristics, rendering their vast commercial value and attracting a broad interest of researchers. The diversity of EPS structures contributes to the changes of EPS functions. However, the low yield of EPS of LAB has severely limited these biopolymers' comprehensive studies and applications in different areas, such as functional food, health and medicine fields. The clarification of biosynthesis mechanism of EPS will accelerate the synthesis and reconstruction of EPS. In recent years, with the development of new genetic manipulation techniques, there has been significant progress in the EPS biosynthesis mechanisms in LAB. In this review, the structure of LAB-derived EPSs, the EPS biosynthesis basic pathways in LAB, the EPS biosynthetic gene cluster, and the regulation mechanism of EPS biosynthesis will be summarized. It will focus on the latest progress in EPS biosynthesis regulation of LAB and provide prospects for future related developments.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shiyuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
19
|
Xu LC, Ochetto A, Chen C, Sun D, Allcock HR, Siedlecki CA. Surfaces modified with small molecules that interfere with nucleotide signaling reduce Staphylococcus epidermidis biofilm and increase the efficacy of ciprofloxacin. Colloids Surf B Biointerfaces 2023; 227:113345. [PMID: 37196462 PMCID: PMC10355139 DOI: 10.1016/j.colsurfb.2023.113345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Staphylococcus epidermidis are common bacteria associated with biofilm related infections on implanted medical devices. Antibiotics are often used in combating such infections, but they may lose their efficacy in the presence of biofilms. Bacterial intracellular nucleotide second messenger signaling plays an important role in biofilm formation, and interference with the nucleotide signaling pathways provides a possible way to control biofilm formation and to increase biofilm susceptibility to antibiotic therapy. This study synthesized small molecule derivates of 4-arylazo-3,5-diamino-1 H-pyrazole (named as SP02 and SP03) and found these molecules inhibited S. epidermidis biofilm formation and induced biofilm dispersal. Analysis of bacterial nucleotide signaling molecules showed that both SP02 and SP03 significantly reduced cyclic dimeric adenosine monophosphate (c-di-AMP) levels in S. epidermidis at doses as low as 25 µM while having significant effects on multiple nucleotides signaling including cyclic dimeric guanosine monophosphate (c-di-GMP), c-di-AMP, and cyclic adenosine monophosphate (cAMP) at high doses (100 µM or greater). We then tethered these small molecules to polyurethane (PU) biomaterial surfaces and investigated biofilm formation on the modified surfaces. Results showed that the modified surfaces significantly inhibited biofilm formation during 24 h and 7-day incubations. The antibiotic ciprofloxacin was used to treat these biofilms and the efficacy of the antibiotic (2 µg/mL) was found to increase from 94.8% on unmodified PU surfaces to > 99.9% on both SP02 and SP03 modified surfaces (>3 log units). Results demonstrated the feasibility of tethering small molecules that interfere with nucleotide signaling onto polymeric biomaterial surfaces and in a way that interrupts biofilm formation and increases antibiotic efficacy for S. epidermidis infections.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Alyssa Ochetto
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facilities (RRID: SCR_017831), The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Biomedical Engineering, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
20
|
Liu C, Zhang H, Peng X, Blackledge MS, Furlani RE, Li H, Su Z, Melander RJ, Melander C, Michalek S, Wu H. Small Molecule Attenuates Bacterial Virulence by Targeting Conserved Response Regulator. mBio 2023; 14:e0013723. [PMID: 37074183 PMCID: PMC10294662 DOI: 10.1128/mbio.00137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 04/20/2023] Open
Abstract
Antibiotic tolerance within a biofilm community presents a serious public health challenge. Here, we report the identification of a 2-aminoimidazole derivative that inhibits biofilm formation by two pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. In S. mutans, the compound binds to VicR, a key response regulator, at the N-terminal receiver domain, and concurrently inhibits expression of vicR and VicR-regulated genes, including the genes that encode the key biofilm matrix producing enzymes, Gtfs. The compound inhibits S. aureus biofilm formation via binding to a Staphylococcal VicR homolog. In addition, the inhibitor effectively attenuates S. mutans virulence in a rat model of dental caries. As the compound targets bacterial biofilms and virulence through a conserved transcriptional factor, it represents a promising new class of anti-infective agents that can be explored to prevent or treat a host of bacterial infections. IMPORTANCE Antibiotic resistance is a major public health issue due to the growing lack of effective anti-infective therapeutics. New alternatives to treat and prevent biofilm-driven microbial infections, which exhibit high tolerance to clinically available antibiotics, are urgently needed. We report the identification of a small molecule that inhibits biofilm formation by two important pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. The small molecule selectively targets a transcriptional regulator leading to attenuation of a biofilm regulatory cascade and concurrent reduction of bacterial virulence in vivo. As the regulator is highly conserved, the finding has broad implication for the development of antivirulence therapeutics that selectively target biofilms.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Hua Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Xian Peng
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Meghan S. Blackledge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert E. Furlani
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhaoming Su
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Suzanne Michalek
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Ahirwar P, Kozlovskaya V, Nijampatnam B, Rojas EM, Pukkanasut P, Inman D, Dolmat M, Law AC, Schormann N, Deivanayagam C, Harber GJ, Michalek SM, Wu H, Kharlampieva E, Velu SE. Hydrogel-Encapsulated Biofilm Inhibitors Abrogate the Cariogenic Activity of Streptococcus mutans. J Med Chem 2023; 66:7909-7925. [PMID: 37285134 PMCID: PMC11188996 DOI: 10.1021/acs.jmedchem.3c00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 μg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 μM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Edwin M. Rojas
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Inman
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna C. Law
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory J. Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Zheng T, Jing M, Gong T, Yan J, Wang X, Xu M, Zhou X, Zeng J, Li Y. Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans. J Oral Microbiol 2023; 15:2225257. [PMID: 37346997 PMCID: PMC10281425 DOI: 10.1080/20002297.2023.2225257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development. Objective The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries. Design At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites. Results This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mai Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
van der Does C, Braun F, Ren H, Albers SV. Putative nucleotide-based second messengers in archaea. MICROLIFE 2023; 4:uqad027. [PMID: 37305433 PMCID: PMC10249747 DOI: 10.1093/femsml/uqad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3',5'- and 2',3'-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3'-3'-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3'-3'-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea.
Collapse
Affiliation(s)
- Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hongcheng Ren
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Ochetto A, Sun D, Siedlecki CA, Xu LC. Nucleotide Messenger Signaling of Staphylococci in Responding to Nitric Oxide - Releasing Biomaterials. ACS Biomater Sci Eng 2023. [PMID: 37155716 DOI: 10.1021/acsbiomaterials.2c01536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitric oxide (NO) releasing biomaterials are a promising approach against medical device associated microbial infection. In contrast to the bacteria-killing effects of NO at high concentrations, NO at low concentrations serves as an important signaling molecule to inhibit biofilm formation or disperse mature biofilms by regulating the intracellular nucleotide second messenger signaling network such as cyclic dimeric guanosine monophosphate (c-di-GMP) for many Gram-negative bacterial strains. However, Gram-positive staphylococcal bacteria are the most commonly diagnosed microbial infections on indwelling devices, but much less is known about the nucleotide messengers and their response to NO as well as the mechanism by which NO inhibits biofilm formation. This study investigated the cyclic nucleotide second messengers c-di-GMP, cyclic dimeric adenosine monophosphate (c-di-AMP), and cyclic adenosine monophosphate (cAMP) in both Staphylococcus aureus (S. aureus) Newman D2C and Staphylococcus epidermidis (S. epidermidis) RP62A after incubating with S-nitroso-N-acetylpenicillamine (SNAP, NO donor) impregnated polyurethane (PU) films. Results demonstrated that NO release from the polymer films significantly reduced the c-di-GMP levels in S. aureus planktonic and sessile cells, and these bacteria showed inhibited biofilm formation. However, the effect of NO release on c-di-GMP in S. epidermidis was weak, but rather, S. epidermidis showed significant reduction in c-di-AMP levels in response to NO release and also showed reduced biofilm formation. Results strongly suggest that NO regulates the nucleotide second messenger signaling network in different ways for these two bacteria, but for both bacteria, these changes in signaling affect the formations of biofilms. These findings provide cues to understand the mechanism of Staphylococcus biofilm inhibition by NO and suggest novel targets for antibiofilm interventions.
Collapse
Affiliation(s)
- Alyssa Ochetto
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, United States
| | | | | | | |
Collapse
|
25
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Gautam S, Mahapa A, Yeramala L, Gandhi A, Krishnan S, Kutti R. V, Chatterji D. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: Function analysis. Protein Sci 2023; 32:e4568. [PMID: 36660887 PMCID: PMC9926474 DOI: 10.1002/pro.4568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Cyclic-di-nucleotide-based secondary messengers regulate various physiological functions, including stress responses in bacteria. Cyclic diadenosine monophosphate (c-di-AMP) has recently emerged as a crucial second messenger with implications in processes including osmoregulation, antibiotic resistance, biofilm formation, virulence, DNA repair, ion homeostasis, and sporulation, and has potential therapeutic applications. The contrasting activities of the enzymes diadenylate cyclase (DAC) and phosphodiesterase (PDE) determine the equilibrium levels of c-di-AMP. Although c-di-AMP is suspected of playing an essential role in the pathophysiology of bacterial infections and in regulating host-pathogen interactions, the mechanisms of its regulation remain relatively unexplored in mycobacteria. In this report, we biochemically and structurally characterize the c-di-AMP synthase (MsDisA) from Mycobacterium smegmatis. The enzyme activity is regulated by pH and substrate concentration; conditions of significance in the homoeostasis of c-di-AMP levels. Substrate binding stimulates conformational changes in the protein, and pApA and ppApA are synthetic intermediates detectable when enzyme efficiency is low. Unlike the orthologous Bacillus subtilis enzyme, MsDisA does not bind to, and its activity is not influenced in the presence of DNA. Furthermore, we have determined the cryo-EM structure of MsDisA, revealing asymmetry in its structure in contrast to the symmetric crystal structure of Thermotoga maritima DisA. We also demonstrate that the N-terminal minimal region alone is sufficient and essential for oligomerization and catalytic activity. Our data shed light on the regulation of mycobacterial DisA and possible future directions to pursue.
Collapse
Affiliation(s)
- Sudhanshu Gautam
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Avisek Mahapa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Lahari Yeramala
- National Center for Biological SciencesTata Institute of Fundamental Research, GKVK PostBengaluruIndia
| | - Apoorv Gandhi
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Sushma Krishnan
- Electron Microscopy Facility, Division of Biological SciencesIndian Institute of ScienceBangaloreIndia
| | - Vinothkumar Kutti R.
- National Center for Biological SciencesTata Institute of Fundamental Research, GKVK PostBengaluruIndia
| | | |
Collapse
|
27
|
Proline-rich protein from S. mutans can perform a competitive mineralization function to enhance bacterial adhesion to teeth. Sci Rep 2022; 12:22250. [PMID: 36564474 PMCID: PMC9789152 DOI: 10.1038/s41598-022-26303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
A proline-rich region was found in Streptococcus mutans (S. mutans) surface antigen I/II (Ag I/II). The functions of this region were explored to determine its role in the cariogenic abilities of S. mutans; specifically, the proline-rich region was compared with human amelogenin. The full-length amelogenin genes were cloned from human (AmH) and surface antigen I/II genes from S. mutans. Then, the genes expressed and purified. We analyzed the structure and self-assembly ability of AmH and Ag I/II, compared their capacities to induce mineralization, and assessed the adhesion ability of S. mutans to AmH- and Ag I/II-coated tooth slices. AmH formed ordered chains and net frames in the early stage of protein self-assembly, while Ag I/II formed irregular and overlapping structures. AmH induced mineralization possessed a parallel rosary structure, while Ag I/II-induced mineralization is rougher and more irregular. The S. mutans adhesion assay indicated that the adhesion ability S. mutans on the Ag I/II-induced crystal layer was significantly higher than that on the AmH-induced crystal layer. S. mutans' Ag I/II may have evolved to resemble human amelogenin and form a rougher crystal layer on teeth, which play a competitive mineralization role and promotes better bacterial adhesion and colonization. Thus, the cariogenic ability of S. mutans Ag I/II is increased.
Collapse
|
28
|
Shibamura-Fujiogi M, Wang X, Maisat W, Koutsogiannaki S, Li Y, Chen Y, Lee JC, Yuki K. GltS regulates biofilm formation in methicillin-resistant Staphylococcus aureus. Commun Biol 2022; 5:1284. [PMID: 36418899 PMCID: PMC9684512 DOI: 10.1038/s42003-022-04239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Biofilm-based infection is a major healthcare burden. Methicillin-resistant Staphylococcus aureus (MRSA) is one of major organisms responsible for biofilm infection. Although biofilm is induced by a number of environmental signals, the molecule responsible for environmental sensing is not well delineated. Here we examined the role of ion transporters in biofilm formation and found that the sodium-glutamate transporter gltS played an important role in biofilm formation in MRSA. This was shown by gltS transposon mutant as well as its complementation. The lack of exogenous glutamate also enhanced biofilm formation in JE2 strain. The deficiency of exogenous glutamate intake accelerated endogenous glutamate/glutamine production, which led to the activation of the urea cycle. We also showed that urea cycle activation was critical for biofilm formation. In conclusion, we showed that gltS was a critical regulator of biofilm formation by controlling the intake of exogenous glutamate. An intervention to target glutamate intake may be a potential useful approach against biofilm.
Collapse
Affiliation(s)
- Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Xiaogang Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jean C Lee
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Zhang M, Han W, Gu J, Qiu C, Jiang Q, Dong J, Lei L, Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front Microbiol 2022; 13:1039297. [PMID: 36425031 PMCID: PMC9679158 DOI: 10.3389/fmicb.2022.1039297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Cao Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun, China
| | - Jianbao Dong
- Department of Veterinary Medical, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Chen R, Du M, Liu C. Strategies for dispersion of cariogenic biofilms: applications and mechanisms. Front Microbiol 2022; 13:981203. [PMID: 36134140 PMCID: PMC9484479 DOI: 10.3389/fmicb.2022.981203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
Bacteria residing within biofilms are more resistant to drugs than planktonic bacteria. They can thus play a significant role in the onset of chronic infections. Dispersion of biofilms is a promising avenue for the treatment of biofilm-associated diseases, such as dental caries. In this review, we summarize strategies for dispersion of cariogenic biofilms, including biofilm environment, signaling pathways, biological therapies, and nanovehicle-based adjuvant strategies. The mechanisms behind these strategies have been discussed from the components of oral biofilm. In the future, these strategies may provide great opportunities for the clinical treatment of dental diseases. Graphical Abstract.
Collapse
|
32
|
Cheng X, Ning J, Xu X, Zhou X. The role of bacterial cyclic di-adenosine monophosphate in the host immune response. Front Microbiol 2022; 13:958133. [PMID: 36106081 PMCID: PMC9465037 DOI: 10.3389/fmicb.2022.958133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger which is widely used in signal transduction in bacteria and archaea. c-di-AMP plays an important role in the regulation of bacterial physiological activities, such as the cell cycle, cell wall stability, environmental stress response, and biofilm formation. Moreover, c-di-AMP produced by pathogens can be recognized by host cells for the activation of innate immune responses. It can induce type I interferon (IFN) response in a stimulator of interferon genes (STING)-dependent manner, activate the nuclear factor kappa B (NF-κB) pathway, inflammasome, and host autophagy, and promote the production and secretion of cytokines. In addition, c-di-AMP is capable of triggering a host mucosal immune response as a mucosal adjuvant. Therefore, c-di-AMP is now considered to be a new pathogen-associated molecular pattern in host immunity and has become a promising target in bacterial/viral vaccine and drug research. In this review, we discussed the crosstalk between bacteria and host immunity mediated by c-di-AMP and addressed the role of c-di-AMP as a mucosal adjuvant in boosting evoked immune responses of subunit vaccines. The potential application of c-di-AMP in immunomodulation and immunotherapy was also discussed in this review.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Ning
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xuedong Zhou,
| |
Collapse
|
33
|
Moradali MF, Ghods S, Bähre H, Lamont RJ, Scott DA, Seifert R. Atypical cyclic di-AMP signaling is essential for Porphyromonas gingivalis growth and regulation of cell envelope homeostasis and virulence. NPJ Biofilms Microbiomes 2022; 8:53. [PMID: 35794154 PMCID: PMC9259658 DOI: 10.1038/s41522-022-00316-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial pathogens employ signaling systems through cyclic (di-) nucleotide monophosphates serving as second messengers to increase fitness during pathogenesis. However, signaling schemes via second messengers in Porphyromonas gingivalis, a key Gram-negative anaerobic oral pathogen, remain unknown. Here, we report that among various ubiquitous second messengers, P. gingivalis strains predominantly synthesize bis-(3',5')-cyclic di-adenosine monophosphate (c-di-AMP), which is essential for their growth and survival. Our findings demonstrate an unusual regulation of c-di-AMP synthesis in P. gingivalis. P. gingivalis c-di-AMP phosphodiesterase (PDE) gene (pdepg) positively regulates c-di-AMP synthesis and impedes a decrease in c-di-AMP concentration despite encoding conserved amino acid motifs for phosphodiesterase activity. Instead, the predicted regulator gene cdaR, unrelated to the c-di-AMP PDE genes, serves as a potent negative regulator of c-di-AMP synthesis in this anaerobe. Further, our findings reveal that pdepg and cdaR are required to regulate the incorporation of ATP into c-di-AMP upon pyruvate utilization, leading to enhanced biofilm formation. We show that shifts in c-di-AMP signaling change the integrity and homeostasis of cell envelope, importantly, the structure and immunoreactivity of the lipopolysaccharide layer. Additionally, microbe-microbe interactions and the virulence potential of P. gingivalis were modulated by c-di-AMP. These studies provide the first glimpse into the scheme of second messenger signaling in P. gingivalis and perhaps other Bacteroidetes. Further, our findings indicate that c-di-AMP signaling promotes the fitness of the residents of the oral cavity and the development of a pathogenic community.
Collapse
Affiliation(s)
- M Fata Moradali
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA.
| | - Shirin Ghods
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| | - Roland Seifert
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| |
Collapse
|
34
|
Wang M, Wamp S, Gibhardt J, Holland G, Schwedt I, Schmidtke KU, Scheibner K, Halbedel S, Commichau FM. Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. Environ Microbiol 2022; 24:4466-4488. [PMID: 35688634 DOI: 10.1111/1462-2920.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes.
Collapse
Affiliation(s)
- Mengyi Wang
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,Research Complex NanoBio, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya ulitsa 29A, Saint Petersburg, 195251, Russia
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert-Koch-Institute, Seestraße 10, 13353, Berlin, Germany
| | - Inge Schwedt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kai-Uwe Schmidtke
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Sven Halbedel
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
35
|
Chen Z, Zhang J, Lyu Q, Wang H, Ji X, Yan Z, Chen F, Dahlgren RA, Zhang M. Modular configurations of living biomaterials incorporating nano-based artificial mediators and synthetic biology to improve bioelectrocatalytic performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153857. [PMID: 35176368 DOI: 10.1016/j.scitotenv.2022.153857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Currently, the industrial application of bioelectrochemical systems (BESs) that are incubated with natural electrochemically active microbes (EABs) is limited due to inefficient extracellular electron transfer (EET) by natural EABs. Notably, recent studies have identified several novel living biomaterials comprising highly efficient electron transfer systems allowing unparalleled proficiency of energy conversion. Introduction of these biomaterials into BESs could fundamentally increase their utilization for a wide range of applications. This review provides a comprehensive assessment of recent advancements in the design of living biomaterials that can be exploited to enhance bioelectrocatalytic performance. Further, modular configurations of abiotic and biotic components promise a powerful enhancement through integration of nano-based artificial mediators and synthetic biology. Herein, recent advancements in BESs are synthesized and assessed, including heterojunctions between conductive nanomaterials and EABs, in-situ hybrid self-assembly of EABs and nano-sized semiconductors, cytoprotection in biohybrids, synthetic biological modifications of EABs and electroactive biofilms. Since living biomaterials comprise a broad range of disciplines, such as molecular biology, electrochemistry and material sciences, full integration of technological advances applied in an interdisciplinary framework will greatly enhance/advance the utility and novelty of BESs. Overall, emerging fundamental knowledge concerning living biomaterials provides a powerful opportunity to markedly boost EET efficiency and facilitate the industrial application of BESs to meet global sustainability challenges/goals.
Collapse
Affiliation(s)
- Zheng Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China.
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Fang Chen
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| |
Collapse
|
36
|
Ning H, Liang X, Xie Y, Bai L, Zhang W, Wang L, Kang J, Lu Y, Ma Y, Bai G, Bai Y. c-di-AMP Accumulation Regulates Growth, Metabolism, and Immunogenicity of Mycobacterium smegmatis. Front Microbiol 2022; 13:865045. [PMID: 35685938 PMCID: PMC9171234 DOI: 10.3389/fmicb.2022.865045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic dimeric adenosine monophosphate (c-di-AMP) is a ubiquitous second messenger of bacteria involved in diverse physiological processes as well as host immune responses. MSMEG_2630 is a c-di-AMP phosphodiesterase (cnpB) of Mycobacterium smegmatis, which is homologous to Mycobacterium tuberculosis Rv2837c. In this study, cnpB-deleted (ΔcnpB), -complemented (ΔcnpB::C), and -overexpressed (ΔcnpB::O) strains of M. smegmatis were constructed to investigate the role of c-di-AMP in regulating mycobacterial physiology and immunogenicity. This study provides more precise evidence that elevated c-di-AMP level resulted in smaller colonies, shorter bacteria length, impaired growth, and inhibition of potassium transporter in M. smegmatis. This is the first study to report that elevated c-di-AMP level could inhibit biofilm formation and induce porphyrin accumulation in M. smegmatis by regulating associated gene expressions, which may have effects on drug resistance and virulence of mycobacterium. Moreover, the cnpB-deleted strain with an elevated c-di-AMP level could induce enhanced Th1 immune responses after M. tuberculosis infection. Further, the pathological changes and the bacteria burden in ΔcnpB group were comparable with the wild-type M. smegmatis group against M. tuberculosis venous infection in the mouse model. Our findings enhanced the understanding of the physiological role of c-di-AMP in mycobacterium, and M. smegmatis cnpB-deleted strain with elevated c-di-AMP level showed the potential for a vaccine against tuberculosis.
Collapse
Affiliation(s)
- Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Xuan Liang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yanling Xie
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Lu Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Wei Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lifei Wang
- Graduate School, Chang’an University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Yanling Ma
- College of Life Sciences, Northwest University, Xi’an, China
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
- *Correspondence: Guangchun Bai,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- Yinlan Bai,
| |
Collapse
|
37
|
Cabezas A, Costas MJ, Canales J, Pinto RM, Rodrigues JR, Ribeiro JM, Cameselle JC. Enzyme Characterization of Pro-virulent SntA, a Cell Wall-Anchored Protein of Streptococcus suis, With Phosphodiesterase Activity on cyclic-di-AMP at a Level Suited to Limit the Innate Immune System. Front Microbiol 2022; 13:843068. [PMID: 35391727 PMCID: PMC8981391 DOI: 10.3389/fmicb.2022.843068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus suis and Streptococcus agalactiae evade the innate immune system of the infected host by mechanisms mediated by cell wall-anchored proteins: SntA and CdnP, respectively. The former has been reported to interfere with complement responses, and the latter dampens STING-dependent type-I interferon (IFN) response by hydrolysis of bacterial cyclic-di-AMP (c-di-AMP). Both proteins are homologous but, while CdnP has been studied as a phosphohydrolase, the enzyme activities of SntA have not been investigated. The core structure of SntA was expressed in Escherichia coli as a GST-tagged protein that, after affinity purification, was characterized as phosphohydrolase with a large series of substrates. This included 3′-nucleotides, 2′,3′-cyclic nucleotides, cyclic and linear dinucleotides, and a variety of phosphoanhydride or phosphodiester compounds, most of them previously considered as substrates of E. coli CpdB, a periplasmic protein homologous to SntA and CdnP. Catalytic efficiency was determined for each SntA substrate, either by dividing parameters kcat/KM obtained from saturation curves or directly from initial rates at low substrate concentrations when saturation curves could not be obtained. SntA is concluded to act as phosphohydrolase on two groups of substrates with efficiencies higher or lower than ≈ 105 M–1 s–1 (average value of the enzyme universe). The group with kcat/KM ≥ 105 M–1 s–1 (good substrates) includes 3′-nucleotides, 2′,3′-cyclic nucleotides, and linear and cyclic dinucleotides (notably c-di-AMP). Compounds showing efficiencies <104 M–1 s–1 are considered poor substrates. Compared with CpdB, SntA is more efficient with its good substrates and less efficient with its poor substrates; therefore, the specificity of SntA is more restrictive. The efficiency of the SntA activity on c-di-AMP is comparable with the activity of CdnP that dampens type-I IFN response, suggesting that this virulence mechanism is also functional in S. suis. SntA modeling revealed that Y530 and Y633 form a sandwich with the nitrogen base of nucleotidic ligands in the substrate-binding site. Mutants Y530A-SntA, Y633A-SntA, and Y530A+Y633A-SntA were obtained and kinetically characterized. For orientation toward the catalytic site, one tyrosine is enough, although this may depend on the substrate being attacked. On the other hand, both tyrosines are required for the efficient binding of good SntA substrates.
Collapse
Affiliation(s)
- Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Joaquim Rui Rodrigues
- Laboratório Associado Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
38
|
Zhang Y, Xu Z, Luo H, Hao X, Li M. 细菌c-di-AMP特异性磷酸二酯酶的研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Nirwati H, Damayanti E, Sholikhah EN, Mutofa M, Widada J. Soil-derived Streptomyces sp. GMR22 producing antibiofilm activity against Candida albicans: bioassay, untargeted LC-HRMS, and gene cluster analysis. Heliyon 2022; 8:e09333. [PMID: 35520628 PMCID: PMC9065622 DOI: 10.1016/j.heliyon.2022.e09333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/01/2022] Open
Abstract
Biofilm-forming fungi, Candida albicans, are currently a serious problem in infectious disease cases. Soil bacteria Streptomyces sp. GMR22 have a large genome size and antifungal metabolites against C. albicans, but its potential antibiofilm activity is not clearly defined. The aims of this study were to determine the antibiofilm activity of GMR22 against C. albicans, identify the main constituents of active extracts, and investigate the biosynthesis gene clusters encoding the enzymes related to metabolism pathways. Antifungal and antibiofilm measurements were performed using in vitro assays on C. albicans ATCC 10231. Main constituents of active extracts were analyzed using untargeted Liquid Chromatography tandem High-Resolution Mass Spectrometry (LC-HRMS). RAST software was applied to investigate the gene clusters of the biosynthesis pathways based on whole genome sequences. Chloroform extract of GMR22 has antifungal and antibiofilm properties at 13-420 μg/mL with palmitic acid (C16H32O2, 273.27028 Da), a saturated fatty acid as a major constituent (42.74). Streptomyces sp. GMR22 has 53 subsystems related to fatty acids biosynthesis (Fab) FAS II. The Kyoto Encyclopedia of Gene and Genome map of Fab revealed 10 of 21 (47.6%) gene clusters encode enzymes related to Fab. There were six gene clusters encoding the enzymes related to the hexadecenoic acid (palmitic acid) biosynthesis pathways: 6.4.12; FabD, FabH, FabF, FabG, FabI and 1.14.192. Each enzyme was encoded by 3-14 genes. These results confirmed that soil Streptomyces sp. GMR22 bacterium has remarkable biotechnological potential by producing fatty acids which are mostly palmitic acid as an active antibiofilm agent against C. albicans.
Collapse
Affiliation(s)
- Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Gunungkidul, 55861, Indonesia
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Mustofa Mutofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Jaka Widada
- Department of Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
40
|
Rosenberg G, Riquelme S, Prince A, Avraham R. Immunometabolic crosstalk during bacterial infection. Nat Microbiol 2022; 7:497-507. [PMID: 35365784 DOI: 10.1038/s41564-022-01080-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/03/2022] [Indexed: 01/22/2023]
Abstract
Following detection of bacteria, macrophages switch their metabolism from oxidative respiration through the tricarboxylic acid cycle to high-rate aerobic glycolysis. This immunometabolic shift enables pro-inflammatory and antimicrobial responses and is facilitated by the accumulation of fatty acids, tricarboxylic acid-derived metabolites and catabolism of amino acids. Recent studies have shown that these immunometabolites are co-opted by pathogens as environmental cues for expression of virulence genes. We review mechanisms by which host immunometabolites regulate bacterial pathogenicity and discuss opportunities for the development of therapeutics targeting metabolic host-pathogen crosstalk.
Collapse
Affiliation(s)
- Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alice Prince
- Columbia University Medical Center, New York, NY, USA.
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
41
|
陈 冬, 林 焕. [Research Updates: Cariogenic Mechanism of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:208-213. [PMID: 35332719 PMCID: PMC10409355 DOI: 10.12182/20220360508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The prevalence of dental caries remains high, posing a major burden on the public health of the global society. Microorganisms are the main cause of dental caries, among which Streptococcus mutans ( S. mutans) is one of the most widely recognized cariogenic bacteria. In recent years, the progress in research technology enabled the academic circle to conduct more in-depth research into caries-inducing S. mutans at the DNA, RNA and protein levels, and to gain thereby a new understanding of the surface structure and extracellular matrix composition of S. mutans. In this paper, we summarized recent findings on the cariogenic mechanism of S. mutans in order to help reveal more targets and potential approaches for the future development of caries prevention agents that target S. mutans, and to promote the development of dental caries prevention campaign.
Collapse
Affiliation(s)
- 冬茹 陈
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - 焕彩 林
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
42
|
Wang TY, Guo R, Hu LL, Liu JJ, Lu HT. Mass Spectrometry-Based Targeted Metabolomics Revealed the Regulatory Roles of Magnesium on Biofilm Formation in Escherichia coli by Targeting Functional Metabolites. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-021-00208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
44
|
New Mechanistic Insights into Purine Biosynthesis with Second Messenger c-di-AMP in Relation to Biofilm-Related Persistent Methicillin-Resistant Staphylococcus aureus Infections. mBio 2021; 12:e0208121. [PMID: 34724823 PMCID: PMC8561390 DOI: 10.1128/mbio.02081-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinically challenging subset of invasive, life-threatening S. aureus infections. We have recently demonstrated that purine biosynthesis plays an important role in such persistent infections. Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger that regulates many cellular pathways in bacteria. However, whether there is a regulatory connection between the purine biosynthesis pathway and c-di-AMP impacting persistent outcomes was not known. Here, we demonstrated that the purine biosynthesis mutant MRSA strain, the ΔpurF strain (compared to its isogenic parental strain), exhibited the following significant differences in vitro: (i) lower ADP, ATP, and c-di-AMP levels; (ii) less biofilm formation with decreased extracellular DNA (eDNA) levels and Triton X-100-induced autolysis paralleling enhanced expressions of the biofilm formation-related two-component regulatory system lytSR and its downstream gene lrgB; (iii) increased vancomycin (VAN)-binding and VAN-induced lysis; and (iv) decreased wall teichoic acid (WTA) levels and expression of the WTA biosynthesis-related gene, tarH. Substantiating these data, the dacA (encoding diadenylate cyclase enzyme required for c-di-AMP synthesis) mutant strain (dacAG206S strain versus its isogenic wild-type MRSA and dacA-complemented strains) showed significantly decreased c-di-AMP levels, similar in vitro effects as seen above for the purF mutant and hypersusceptible to VAN treatment in an experimental biofilm-related MRSA endovascular infection model. These results reveal an important intersection between purine biosynthesis and c-di-AMP that contributes to biofilm-associated persistence in MRSA endovascular infections. This signaling pathway represents a logical therapeutic target against persistent MRSA infections.
Collapse
|
45
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
46
|
Zheng T, Jing M, Gong T, Yan J, Zeng J, Li Y. Deletion of the yqeK gene leads to the accumulation of Ap4A and reduced biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2021; 37:9-21. [PMID: 34761536 DOI: 10.1111/omi.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Diadenosine-5',5'''-P1, P4-tetraphosphate (Ap4A) is a second messenger playing a crucial role in various life activities of bacteria. The increase of Ap4A expression is pleiotropic, resulting in an impairment in the formation of biofilm and other physiological functions in some bacteria. However, Ap4A function in Streptococcus mutans, an important pathogen related to dental caries, remains unknown. In this work, the Ap4A hydrolase, YqeK, was identified and characterized in S. mutans. Then, the effects of yqeK deletion on the growth, biofilm formation, and exopolysaccharide (EPS) quantification in S. mutans were determined by the assessment of the growth curve, crystal violet, and anthrone-sulfuric acid, respectively, and visualized by microscopy. The results showed that the in-frame deletion of the yqeK gene in S. mutans UA159 led to an increase in Ap4A levels, lag phase in the early growth, as well as decrease in biofilm formation and water-insoluble exopolysaccharide production. Global gene expression profile showed that the expression of 88 genes was changed in the yqeK mutant, and among these, 42 were upregulated and 46 were downregulated when compared with the wild-type S. mutans UA159. Upregulated genes were mainly involved in post-translational modification, protein turnover, and chaperones, while downregulated genes were mainly involved in carbohydrate transport and metabolism. Important virulence genes related to biofilms, such as gtfB, gtfC, and gbpC, were also significantly downregulated. In conclusion, these results indicated that YqeK affected the formation of biofilms and the expression of biofilm-related genes in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Lin Y, Zhou X, Li Y. Strategies for Streptococcus mutans biofilm dispersal through extracellular polymeric substances disruption. Mol Oral Microbiol 2021; 37:1-8. [PMID: 34727414 DOI: 10.1111/omi.12355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Dental caries is one of the most prevalent and costly biofilm-dependent oral infectious diseases affecting most of the world's population. Streptococcus mutans, a major extracellular polymeric substance (EPS) producing bacteria in dental plaque, plays a vital role in human dental caries. EPS acts as the framework of dental plaque and promotes bacterial adhesion, cohesion, and environmental stress resistance and hinders the diffusion of nutrients and metabolic products. Since EPS is critical for biofilm lifestyle and virulence of cariogenic bacteria, EPS disruption could be a potential strategy to prevent caries. This review sought to summarize potential strategies to inhibit S. mutans biofilms through EPS disruption. The signal network intervention has a positive effect on S. mutans biofilm disruption, which could be achieved by using cyclic dimeric G/AMP inhibitors, quorum sensing inhibitors, and diffusible signal factors. Besides the enzyme degradation of exopolysaccharides, extracellular DNA, and proteins, other novel strategies, such as nanoparticles and phage therapy, could also promote EPS matrix disruption.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Kundra S, Lam LN, Kajfasz JK, Casella LG, Andersen MJ, Abranches J, Flores-Mireles AL, Lemos JA. c-di-AMP Is Essential for the Virulence of Enterococcus faecalis. Infect Immun 2021; 89:e0036521. [PMID: 34424750 PMCID: PMC8519298 DOI: 10.1128/iai.00365-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Second messenger nucleotides are produced by bacteria in response to environmental stimuli and play a major role in the regulation of processes associated with bacterial fitness, including but not limited to osmoregulation, envelope homeostasis, central metabolism, and biofilm formation. In this study, we uncovered the biological significance of c-di-AMP in the opportunistic pathogen Enterococcus faecalis by isolating and characterizing strains lacking genes responsible for c-di-AMP synthesis (cdaA) and degradation (dhhP and gdpP). Using complementary approaches, we demonstrated that either complete loss of c-di-AMP (ΔcdaA strain) or c-di-AMP accumulation (ΔdhhP, ΔgdpP, and ΔdhhP ΔgdpP strains) drastically impaired general cell fitness and virulence of E. faecalis. In particular, the ΔcdaA strain was highly sensitive to envelope-targeting antibiotics, was unable to multiply and quickly lost viability in human serum or urine ex vivo, and was virtually avirulent in an invertebrate (Galleria mellonella) and in two catheter-associated mouse infection models that recapitulate key aspects of enterococcal infections in humans. In addition to evidence linking these phenotypes to altered activity of metabolite and peptide transporters and inability to maintain osmobalance, we found that the attenuated virulence of the ΔcdaA strain also could be attributed to a defect in Ebp pilus production and activity that severely impaired biofilm formation under both in vitro and in vivo conditions. Collectively, these results demonstrate that c-di-AMP signaling is essential for E. faecalis pathogenesis and a desirable target for drug development.
Collapse
Affiliation(s)
- Shivani Kundra
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ling Ning Lam
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Leila G. Casella
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Marissa J. Andersen
- Department of Biological Sciences, University of Norte Dame, Notre Dame, Indiana, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Norte Dame, Notre Dame, Indiana, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
49
|
Sommer A, Fuchs S, Layer F, Schaudinn C, Weber RE, Richard H, Erdmann MB, Laue M, Schuster CF, Werner G, Strommenger B. Mutations in the gdpP gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microb Genom 2021; 7. [PMID: 34486969 PMCID: PMC8715439 DOI: 10.1099/mgen.0.000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Staphylococcus aureus, resistance to β-lactamase stable β-lactam antibiotics is mediated by the penicillinbinding protein 2a, encoded by mecA or by its homologues mecB or mecC. However, a substantial number of meticillin-resistant isolates lack known mec genes and, thus, are called meticillin resistant lacking mec (MRLM). This study aims to identify the genetic mechanisms underlying the MRLM phenotype. A total of 141 MRLM isolates and 142 meticillin-susceptible controls were included in this study. Oxacillin and cefoxitin minimum inhibitory concentrations were determined by broth microdilution and the presence of mec genes was excluded by PCR. Comparative genomics and a genome-wide association study (GWAS) approach were applied to identify genetic polymorphisms associated with the MRLM phenotype. The potential impact of such mutations on the expression of PBP4, as well as on cell morphology and biofilm formation, was investigated. GWAS revealed that mutations in gdpP were significantly associated with the MRLM phenotype. GdpP is a phosphodiesterase enzyme involved in the degradation of the second messenger cyclic-di-AMP in S. aureus. A total of 131 MRLM isolates carried truncations, insertions or deletions as well as amino acid substitutions, mainly located in the functional DHH-domain of GdpP. We experimentally verified the contribution of these gdpP mutations to the MRLM phenotype by heterologous complementation experiments. The mutations in gdpP had no effect on transcription levels of pbp4; however, cell sizes of MRLM strains were reduced. The impact on biofilm formation was highly strain dependent. We report mutations in gdpP as a clinically relevant mechanism for β-lactam resistance in MRLM isolates. This observation is of particular clinical relevance, since MRLM are easily misclassified as MSSA (meticillin-susceptible S. aureus), which may lead to unnoticed spread of β-lactam-resistant isolates and subsequent treatment failure.
Collapse
Affiliation(s)
- Anna Sommer
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Stephan Fuchs
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Franziska Layer
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Christoph Schaudinn
- Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Robert E Weber
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Hugues Richard
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Mareike B Erdmann
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Michael Laue
- Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Christopher F Schuster
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
50
|
Wang Y, Hoffmann JP, Baker SM, Bentrup KHZ, Wimley WC, Fuselier JA, Bitoun JP, Morici LA. Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles. BMC Microbiol 2021; 21:234. [PMID: 34429066 PMCID: PMC8386047 DOI: 10.1186/s12866-021-02296-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi. RESULTS Here, we examine the antibiofilm activity of Burkholderia thailandensis OMVs against the oral biofilm-forming pathogen Streptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are co-administered with gentamicin, the efficacy of the antibiotic against S. mutans biofilms is enhanced. CONCLUSION These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that can inhibit and potentially eradicate biofilms.
Collapse
Affiliation(s)
- Yihui Wang
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Joseph P. Hoffmann
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Sarah M. Baker
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Kerstin Höner zu Bentrup
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - William C. Wimley
- grid.265219.b0000 0001 2217 8588Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA USA
| | - Joseph A. Fuselier
- grid.265219.b0000 0001 2217 8588Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Jacob P. Bitoun
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Lisa A. Morici
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| |
Collapse
|