1
|
Humolli D, Piel D, Maffei E, Heyer Y, Agustoni E, Shaidullina A, Willi L, Imwinkelried P, Estermann F, Cuénod A, Buser DP, Alampi C, Chami M, Egli A, Hiller S, Dunne M, Harms A. Completing the BASEL phage collection to unlock hidden diversity for systematic exploration of phage-host interactions. PLoS Biol 2025; 23:e3003063. [PMID: 40193529 PMCID: PMC11990801 DOI: 10.1371/journal.pbio.3003063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/11/2025] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
Research on bacteriophages, the viruses infecting bacteria, has fueled the development of modern molecular biology and inspired their therapeutic application to combat bacterial multidrug resistance. However, most work has so far focused on a few model phages which impedes direct applications of these findings in clinics and suggests that a vast potential of powerful molecular biology has remained untapped. We have therefore recently composed the BASEL collection of Escherichia coli phages (BActeriophage SElection for your Laboratory), which made a relevant diversity of phages infecting the E. coli K-12 laboratory strain accessible to the community. These phages are widely used, but their assorted diversity has remained limited by the E. coli K-12 host. We have therefore now genetically overcome the two major limitations of E. coli K-12, its lack of O-antigen glycans and the presence of resident bacterial immunity. Restoring O-antigen expression resulted in the isolation of diverse additional viral groups like Kagunavirus, Nonanavirus, Gordonclarkvirinae, and Gamaleyavirus, while eliminating all known antiviral defenses of E. coli K-12 additionally enabled us to isolate phages of Wifcevirus genus. Even though some of these viral groups appear to be common in nature, no phages from any of them had previously been isolated using E. coli laboratory strains, and they had thus remained largely understudied. Overall, 37 new phage isolates have been added to complete the BASEL collection. These phages were deeply characterized genomically and phenotypically with regard to host receptors, sensitivity to antiviral defense systems, and host range. Our results highlighted dominant roles of the O-antigen barrier for viral host recognition and of restriction-modification systems in bacterial immunity. We anticipate that the completed BASEL collection will propel research on phage-host interactions and their molecular mechanisms, deepening our understanding of viral ecology and fostering innovations in biotechnology and antimicrobial therapy.
Collapse
Affiliation(s)
- Dorentina Humolli
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Damien Piel
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Enea Maffei
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Aisylu Shaidullina
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Aline Cuénod
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | - Carola Alampi
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | | - Alexander Harms
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
3
|
Subramanian S, Bergland Drarvik SM, Tinney KR, Doore SM, Parent KN. Moo19 and B2: Structures of Schitoviridae podophages with T = 9 geometry and tailspikes with esterase activity. SCIENCE ADVANCES 2024; 10:eadt0022. [PMID: 39693418 DOI: 10.1126/sciadv.adt0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Podophages are, by far, the least well studied of all the bacteriophages. Despite being classified together due to their short, noncontractile tails, there is a huge amount of diversity among members of this group. Of the podophages, the N4-like Schitoviridae family is the least well studied structurally and is quite divergent from well-characterized podophages such as T7 and P22. In this work, we isolate and fully characterize two members of the Schitoviridae family by cryo-electron microscopy, genetics, and biochemistry. We describe the capsid features of Moo19 and B2, including a decoration protein. In addition, we have fully modeled the tail machinery for both phages and identify proteins with esterase activity. Genetic knockouts of the host reveal factors specific for host attachment including key modifications to the O-antigen on the lipopolysaccharide. Moo19 and B2 are both Schitoviridae members, yet some distinct differences in the genome and structure place them into distinct clades.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Silje M Bergland Drarvik
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah M Doore
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Golomidova A, Kupriyanov Y, Gabdrakhmanov R, Gurkova M, Kulikov E, Belalov I, Uskevich V, Bespiatykh D, Letarova M, Efimov A, Kuznetsov A, Shitikov E, Pushkar D, Letarov A, Zurabov F. Isolation, Characterization, and Unlocking the Potential of Mimir124 Phage for Personalized Treatment of Difficult, Multidrug-Resistant Uropathogenic E. coli Strain. Int J Mol Sci 2024; 25:12755. [PMID: 39684465 DOI: 10.3390/ijms252312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Escherichia coli and its bacteriophages are among the most studied model microorganisms. Bacteriophages for various E. coli strains can typically be easily isolated from environmental sources, and many of these viruses can be harnessed to combat E. coli infections in humans and animals. However, some relatively rare E. coli strains pose significant challenges in finding suitable phages. The uropathogenic strain E. coli UPEC124, isolated from a patient suffering from neurogenic bladder dysfunction, was found to be resistant to all coliphages in our collections, and initial attempts to isolate new phages failed. Using an improved procedure for phage enrichment, we isolated the N4-related phage Mimir124, belonging to the Gamaleyavirus genus, which was able to lyse this "difficult" E. coli strain. Although Mimir124 is a narrow-spectrum phage, it was effective in the individualized treatment of the patient, leading to pathogen eradication. The primary receptor of Mimir124 was the O antigen of the O101 type; consequently, Mimir124-resistant clones were rough (having lost the O antigen). These clones, however, gained sensitivity to some phages that recognize outer membrane proteins as receptors. Despite the presence of nine potential antiviral systems in the genome of the UPEC124 strain, the difficulty in finding effective phages was largely due to the efficient, non-specific cell surface protection provided by the O antigen. These results highlight the importance of an individualized approach to phage therapy, where narrow host-range phages-typically avoided in pre-fabricated phage cocktails-may be instrumental. Furthermore, this study illustrates how integrating genomic, structural, and functional insights can guide the development of innovative therapeutic strategies, paving the way for broader applications of phage therapy in combating multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Alla Golomidova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Yuriy Kupriyanov
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Ruslan Gabdrakhmanov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Marina Gurkova
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Eugene Kulikov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Ilya Belalov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Viktoria Uskevich
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Maria Letarova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Efimov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Kuznetsov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Dmitry Pushkar
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Fedor Zurabov
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| |
Collapse
|
5
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
6
|
Iglesias SM, Li F, Briani F, Cingolani G. Viral Genome Delivery Across Bacterial Cell Surfaces. Annu Rev Microbiol 2024; 78:125-145. [PMID: 38986128 DOI: 10.1146/annurev-micro-041222-124727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In 1952, Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Over 70 years later, our understanding of bacteriophage structure has grown dramatically, mainly thanks to the cryogenic electron microscopy revolution. In stark contrast, phage genome delivery in prokaryotes remains poorly understood, mainly due to the inherent challenge of studying such a transient and complex process. Here, we review the current literature on viral genome delivery across bacterial cell surfaces. We focus on icosahedral bacterial viruses that we arbitrarily sort into three groups based on the presence and size of a tail apparatus. We inventory the building blocks implicated in genome delivery and critically analyze putative mechanisms of genome ejection. Bacteriophage genome delivery into bacteria is a topic of growing interest, given the renaissance of phage therapy in Western medicine as a therapeutic alternative to face the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
7
|
Lapras B, Marchand C, Merienne C, Medina M, Kolenda C, Laurent F, Pirot F. Rationalisation of the purification process for a phage active pharmaceutical ingredient. Eur J Pharm Biopharm 2024; 203:114438. [PMID: 39111580 DOI: 10.1016/j.ejpb.2024.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
The resurgence of phage therapy, once abandoned in the early 20th century in part due to issues related to the purification process and stability, is spurred by the global threat of antibiotic resistance. Engineering advances have enabled more precise separation unit operations, improving overall purification efficiency. The present review discusses the physicochemical properties of impurities commonly found in a phage lysate, e.g., contaminants, phage-related impurities, and propagation-related impurities. Differences in phages and bacterial impurities properties are leveraged to elaborate a four-step phage purification process: clarification, capture and concentration, subsequent purification and polishing. Ultimately, a framework for rationalising the development of a purification process is proposed, considering three operational characteristics, i.e., scalability, transferability to various phages and duration. This guide facilitates the preselection of a sequence of unit operations, which can then be confronted with the expected impurities to validate the theoretical capacity of the process to purify the phage lysate.
Collapse
Affiliation(s)
- B Lapras
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France.
| | - C Marchand
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - C Merienne
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - M Medina
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - C Kolenda
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Laurent
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Pirot
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France
| |
Collapse
|
8
|
Sørensen AN, Woudstra C, Kalmar D, Poppeliers J, Lavigne R, Sørensen MCH, Brøndsted L. The branched receptor-binding complex of Ackermannviridae phages promotes adaptive host recognition. iScience 2024; 27:110813. [PMID: 39310758 PMCID: PMC11414711 DOI: 10.1016/j.isci.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Bacteriophages can encode multiple receptor-binding proteins, allowing them to recognize diverse receptors for infecting different strains. Ackermannviridae phages recognize various polysaccharides as receptors by encoding multiple tail spike proteins (TSPs), forming a branched complex. We aimed to mimic the evolution of the TSP complex by studying the acquisition of TSPs without disrupting the complex's functionality. Using kuttervirus S117 as a backbone, we demonstrated that acquiring tsp genes from Kuttervirus and Agtrevirus phages within the Ackermannviridae family led to altered host recognition. A fifth TSP was designed to interact with the branched complex and expand host recognition even further. Interestingly, the acquisition of tsp5 resulted in a recombination event between tsp4 and tsp5 or deletion of tsp3 and truncation of tsp4 genes. Our study provides insight into the development of the branched TSP complex, enabling Ackermannviridae phages to adapt to different hosts.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dorottya Kalmar
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Jorien Poppeliers
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Heverlee, Belgium
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Yamaki S, Yamazaki K. Biological characterization and genomic analysis of a novel bacteriophage, MopsHU1, infecting Morganella psychrotolerans. Arch Virol 2024; 169:182. [PMID: 39153099 DOI: 10.1007/s00705-024-06112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Morganella psychrotolerans is a histamine-producing bacterium that causes histamine poisoning. In this study, we isolated and characterized a novel phage, MopsHU1, that infects M. psychrotolerans. MopsHU1 is a podovirus with a limited host spectrum. Genomic analysis showed that MopsHU1 belongs to the family Autographiviridae, subfamily Studiervirinae, and genus Kayfunavirus. Comparative analysis revealed that the MopsHU1 genome is similar to those of Citrobacter phage SH3 and Cronobacter phage Dev2. Moreover, the Escherichia coli phage K1F genome is also similar, except for its tailspike gene sequence. These results expand our understanding of the Kayfunavirus phages that infect Morganella spp. Note: The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank database under the accession number LC799501.
Collapse
Affiliation(s)
- Shogo Yamaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, 041-8611, Japan.
| | - Koji Yamazaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, 041-8611, Japan
| |
Collapse
|
10
|
Ouyang R, Ongenae V, Muok A, Claessen D, Briegel A. Phage fibers and spikes: a nanoscale Swiss army knife for host infection. Curr Opin Microbiol 2024; 77:102429. [PMID: 38277900 DOI: 10.1016/j.mib.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Bacteriophages are being rediscovered as potent agents for medical and industrial applications. However, finding a suitable phage relies on numerous factors, including host specificity, burst size, and infection cycle. The host range of a phage is, besides phage defense systems, initially determined by the recognition and attachment of receptor-binding proteins (RBPs) to the target receptors of susceptible bacteria. RBPs include tail (or occasionally head) fibers and tailspikes. Owing to the potential flexibility and heterogeneity of these structures, they are often overlooked during structural studies. Recent advances in cryo-electron microscopy studies and computational approaches have begun to unravel their structural and fundamental mechanisms during phage infection. In this review, we discuss the current state of research on different phage tail and head fibers, spike models, and molecular mechanisms. These details may facilitate the manipulation of phage-host specificity, which in turn will have important implications for science and society.
Collapse
Affiliation(s)
- Ruochen Ouyang
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xianning West Road 28, Xi'an 710049, China
| | - Véronique Ongenae
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Alise Muok
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Dennis Claessen
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
11
|
Sonani RR, Palmer LK, Esteves NC, Horton AA, Sebastian AL, Kelly RJ, Wang F, Kreutzberger MAB, Russell WK, Leiman PG, Scharf BE, Egelman EH. An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano. Nat Commun 2024; 15:756. [PMID: 38272938 PMCID: PMC10811340 DOI: 10.1038/s41467-024-44959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail of Agrobacterium tumefaciens bacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Lee K Palmer
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nathaniel C Esteves
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abigail A Horton
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rebecca J Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - William K Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
12
|
Sørensen AN, Kalmár D, Lutz VT, Klein-Sousa V, Taylor NMI, Sørensen MC, Brøndsted L. Agtrevirus phage AV101 recognizes four different O-antigens infecting diverse E. coli. MICROLIFE 2023; 5:uqad047. [PMID: 38234449 PMCID: PMC10791037 DOI: 10.1093/femsml/uqad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here, we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor-binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum β-lactamase (ESBL) Escherichia coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor-binding domain of TSP1, TSP2, TSP3, and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor-binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor-binding domains of Ackermannviridae phages.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dorottya Kalmár
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Veronika Theresa Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martine C Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
13
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
14
|
Sun X, Pu B, Qin J, Xiang J. Effect of a Depolymerase Encoded by Phage168 on a Carbapenem-Resistant Klebsiella pneumoniae and Its Biofilm. Pathogens 2023; 12:1396. [PMID: 38133282 PMCID: PMC10745733 DOI: 10.3390/pathogens12121396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are becoming increasingly common within clinical settings, requiring the development of alternative therapies. In this study, we isolated, characterized, and sequenced the genome of a CRKP phage, Phage168. The total genomic DNA of Phage168 was 40,222 bp in length, encoding 49 predicted proteins. Among these proteins, Dep40, the gene product of ORF40, is a putative tail fiber protein that exhibits depolymerase activity based on the result of bioinformatics analyses. In vitro, we confirmed that the molecular weight of the Phage168 depolymerase protein was about 110 kDa, the concentration of the produced phage 168 depolymerase protein was quantified as being 1.2 mg/mL, and the depolymerase activity was still detectable after the dilution of 1.2 µg/mL. This recombinant depolymerase exhibited enzyme activity during the depolymerization of the formed CRKP biofilms. We also found that depolymerase, when combined with polymyxin B, was able to enhance the bactericidal effect of polymyxin B on CRKP strains by disrupting their biofilm. When recombinant depolymerase was used in combination with human serum, it enhanced the sensitivity of the CRKP strain UA168 to human serum, and the synergistic bactericidal effect reached the strongest level when the ratio of depolymerase to human serum was 3:1. Our results indicated that depolymerase encoded by Phage168 may be a promising strategy for combating infections caused by drug-resistant CRKP formed within the biofilm.
Collapse
Affiliation(s)
- Xu Sun
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Bingchun Pu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.P.); (J.Q.)
| | - Jinhong Qin
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.P.); (J.Q.)
| | - Jun Xiang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
15
|
Maciejewska B, Squeglia F, Latka A, Privitera M, Olejniczak S, Switala P, Ruggiero A, Marasco D, Kramarska E, Drulis-Kawa Z, Berisio R. Klebsiella phage KP34gp57 capsular depolymerase structure and function: from a serendipitous finding to the design of active mini-enzymes against K. pneumoniae. mBio 2023; 14:e0132923. [PMID: 37707438 PMCID: PMC10653864 DOI: 10.1128/mbio.01329-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Agnieszka Latka
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Mario Privitera
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sebastian Olejniczak
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Paulina Switala
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
16
|
Xu J, Li J, Yan Y, Han P, Tong Y, Li X. SW16-7, a Novel Ackermannviridae Bacteriophage with Highly Effective Lytic Activity Targets Salmonella enterica Serovar Weltevreden. Microorganisms 2023; 11:2090. [PMID: 37630650 PMCID: PMC10458263 DOI: 10.3390/microorganisms11082090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Salmonella enterica serovar Weltevreden is a foodborne pathogen commonly transmitted through fresh vegetables and seafood. In this study, a lytic phage, SW16-7, was isolated from medical sewage, demonstrating high infectivity against S. Weltevreden, S. London, S. Meleagridis, and S. Give of Group O:3. In vitro inhibition assays revealed its effective antibacterial effect for up to 12 h. Moreover, analysis using the Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) showed that SW16-7's genome does not contain any virulence factors or antibiotic resistance genes, indicating its potential as a promising biocontrol agent against S. Weltevreden. Additionally, a TSP gene cluster was identified in SW16-7's genome, with TSP1 and TSP2 showing a high similarity to lysogenic phages ε15 and ε34, respectively, in the C-terminal region. The whole-genome phylogenetic analysis classified SW16-7 within the Ackermannviridae family and indicated a close relationship with Agtrevirus, which is consistent with the ANI results.
Collapse
Affiliation(s)
- Jialiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| | - Jia Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| | - Yi Yan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| | - Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (P.H.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (P.H.); (Y.T.)
| | - Xu Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| |
Collapse
|
17
|
Pas C, Latka A, Fieseler L, Briers Y. Phage tailspike modularity and horizontal gene transfer reveals specificity towards E. coli O-antigen serogroups. Virol J 2023; 20:174. [PMID: 37550759 PMCID: PMC10408124 DOI: 10.1186/s12985-023-02138-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.
Collapse
Affiliation(s)
- Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Lars Fieseler
- Centre for Food Safety and Quality Management, ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
18
|
Noreika A, Rutkiene R, Dumalakienė I, Vilienė R, Laurynėnas A, Povilonienė S, Skapas M, Meškys R, Kaliniene L. Insights into the Alcyoneusvirus Adsorption Complex. Int J Mol Sci 2023; 24:ijms24119320. [PMID: 37298271 DOI: 10.3390/ijms24119320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526-gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly.
Collapse
Affiliation(s)
- Algirdas Noreika
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Rutkiene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Irena Dumalakienė
- Department of Immunology, State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08410 Vilnius, Lithuania
| | - Rita Vilienė
- Department of Immunology, State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08410 Vilnius, Lithuania
| | - Audrius Laurynėnas
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Simona Povilonienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
19
|
Beamud B, García-González N, Gómez-Ortega M, González-Candelas F, Domingo-Calap P, Sanjuan R. Genetic determinants of host tropism in Klebsiella phages. Cell Rep 2023; 42:112048. [PMID: 36753420 PMCID: PMC9989827 DOI: 10.1016/j.celrep.2023.112048] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Bacteriophages play key roles in bacterial ecology and evolution and are potential antimicrobials. However, the determinants of phage-host specificity remain elusive. Here, we isolate 46 phages to challenge 138 representative clinical isolates of Klebsiella pneumoniae, a widespread opportunistic pathogen. Spot tests show a narrow host range for most phages, with <2% of 6,319 phage-host combinations tested yielding detectable interactions. Bacterial capsule diversity is the main factor restricting phage host range. Consequently, phage-encoded depolymerases are key determinants of host tropism, and depolymerase sequence types are associated with the ability to infect specific capsular types across phage families. However, all phages with a broader host range found do not encode canonical depolymerases, suggesting alternative modes of entry. These findings expand our knowledge of the complex interactions between bacteria and their viruses and point out the feasibility of predicting the first steps of phage infection using bacterial and phage genome sequences.
Collapse
Affiliation(s)
- Beatriz Beamud
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Neris García-González
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Mar Gómez-Ortega
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain.
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain.
| | - Rafael Sanjuan
- Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain.
| |
Collapse
|
20
|
Miller JM, Knyazhanskaya ES, Buth SA, Prokhorov NS, Leiman PG. Function of the bacteriophage P2 baseplate central spike Apex domain in the infection process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529910. [PMID: 36865152 PMCID: PMC9980179 DOI: 10.1101/2023.02.25.529910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The contractile tail of bacteriophage P2 functions to drive the tail tube across the outer membrane of its host bacterium, a prerequisite event for subsequent translocation of phage genomic DNA into the host cell. The tube is equipped with a spike-shaped protein (product of P2 gene V , gpV or Spike) that contains a membrane-attacking Apex domain carrying a centrally positioned Fe ion. The ion is enclosed in a histidine cage that is formed by three symmetry-related copies of a conserved HxH (histidine, any residue, histidine) sequence motif. Here, we used solution biophysics and X-ray crystallography to characterize the structure and properties of Spike mutants in which the Apex domain was either deleted or its histidine cage was either destroyed or replaced with a hydrophobic core. We found that the Apex domain is not required for the folding of full-length gpV or its middle intertwined β-helical domain. Furthermore, despite its high conservation, the Apex domain is dispensable for infection in laboratory conditions. Collectively, our results show that the diameter of the Spike but not the nature of its Apex domain determines the efficiency of infection, which further strengthens the earlier hypothesis of a drill bit-like function of the Spike in host envelope disruption.
Collapse
|
21
|
Klumpp J, Dunne M, Loessner MJ. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr Opin Microbiol 2023; 71:102240. [PMID: 36446275 DOI: 10.1016/j.mib.2022.102240] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Bacteriophages are the most abundant biological entity on earth, acting as the predators and evolutionary drivers of bacteria. Owing to their inherent ability to specifically infect and kill bacteria, phages and their encoded endolysins and receptor-binding proteins (RBPs) have enormous potential for development into precision antimicrobials for treatment of bacterial infections and microbial disbalances; or as biocontrol agents to tackle bacterial contaminations during various biotechnological processes. The extraordinary binding specificity of phages and RBPs can be exploited in various areas of bacterial diagnostics and monitoring, from food production to health care. We review and describe the distinctive features of phage RBPs, explain why they are attractive candidates for use as therapeutics and in diagnostics, discuss recent applications using RBPs, and finally provide our perspective on how synthetic technology and artificial intelligence-driven approaches will revolutionize how we use these tools in the future.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
22
|
Ouyang R, Costa AR, Cassidy CK, Otwinowska A, Williams VCJ, Latka A, Stansfeld PJ, Drulis-Kawa Z, Briers Y, Pelt DM, Brouns SJJ, Briegel A. High-resolution reconstruction of a Jumbo-bacteriophage infecting capsulated bacteria using hyperbranched tail fibers. Nat Commun 2022; 13:7241. [PMID: 36433970 PMCID: PMC9700779 DOI: 10.1038/s41467-022-34972-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
The Klebsiella jumbo myophage ϕKp24 displays an unusually complex arrangement of tail fibers interacting with a host cell. In this study, we combine cryo-electron microscopy methods, protein structure prediction methods, molecular simulations, microbiological and machine learning approaches to explore the capsid, tail, and tail fibers of ϕKp24. We determine the structure of the capsid and tail at 4.1 Å and 3.0 Å resolution. We observe the tail fibers are branched and rearranged dramatically upon cell surface attachment. This complex configuration involves fourteen putative tail fibers with depolymerase activity that provide ϕKp24 with the ability to infect a broad panel of capsular polysaccharide (CPS) types of Klebsiella pneumoniae. Our study provides structural and functional insight into how ϕKp24 adapts to the variable surfaces of capsulated bacterial pathogens, which is useful for the development of phage therapy approaches against pan-drug resistant K. pneumoniae strains.
Collapse
Affiliation(s)
- Ruochen Ouyang
- grid.43169.390000 0001 0599 1243MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xianning West Road 28, Xi’an, 710049 China ,grid.5132.50000 0001 2312 1970Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ana Rita Costa
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands ,grid.5292.c0000 0001 2097 4740Kavli Institute of Nanoscience, Delft, The Netherlands
| | - C. Keith Cassidy
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, Oxford, UK
| | - Aleksandra Otwinowska
- grid.8505.80000 0001 1010 5103Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Vera C. J. Williams
- grid.5132.50000 0001 2312 1970Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Agnieszka Latka
- grid.8505.80000 0001 1010 5103Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland ,grid.5342.00000 0001 2069 7798Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Phill J. Stansfeld
- grid.7372.10000 0000 8809 1613School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Zuzanna Drulis-Kawa
- grid.8505.80000 0001 1010 5103Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Yves Briers
- grid.5342.00000 0001 2069 7798Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Daniël M. Pelt
- grid.5132.50000 0001 2312 1970Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands
| | - Stan J. J. Brouns
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands ,grid.5292.c0000 0001 2097 4740Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Ariane Briegel
- grid.5132.50000 0001 2312 1970Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
23
|
Efimov AD, Golomidova AK, Kulikov EE, Belalov IS, Ivanov PA, Letarov AV. RB49-like Bacteriophages Recognize O Antigens as One of the Alternative Primary Receptors. Int J Mol Sci 2022; 23:ijms231911329. [PMID: 36232640 PMCID: PMC9569957 DOI: 10.3390/ijms231911329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer.
Collapse
Affiliation(s)
- Alexandr D Efimov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Alla K Golomidova
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Eugene E Kulikov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya S Belalov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Pavel A Ivanov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Andrey V Letarov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
24
|
Pectobacterium versatile Bacteriophage Possum: A Complex Polysaccharide-Deacetylating Tail Fiber as a Tool for Host Recognition in Pectobacterial Schitoviridae. Int J Mol Sci 2022; 23:ijms231911043. [PMID: 36232343 PMCID: PMC9569702 DOI: 10.3390/ijms231911043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot.
Collapse
|
25
|
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Pharmaceutics 2022; 14:pharmaceutics14091916. [PMID: 36145665 PMCID: PMC9505181 DOI: 10.3390/pharmaceutics14091916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.
Collapse
|
26
|
Knecht LE, Heinrich N, Born Y, Felder K, Pelludat C, Loessner MJ, Fieseler L. Bacteriophage S6 requires bacterial cellulose for Erwinia amylovora infection. Environ Microbiol 2022; 24:3436-3450. [PMID: 35289468 DOI: 10.1111/1462-2920.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.
Collapse
Affiliation(s)
- Leandra E Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Nadine Heinrich
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Katja Felder
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
27
|
Structure of Escherichia coli O157:H7 bacteriophage CBA120 tailspike protein 4 baseplate anchor and tailspike assembly domains (TSP4-N). Sci Rep 2022; 12:2061. [PMID: 35136138 PMCID: PMC8825819 DOI: 10.1038/s41598-022-06073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Four tailspike proteins (TSP1-4) of Escherichia coli O157:H7 bacteriophage CBA120 enable infection of multiple hosts. They form a branched complex that attaches to the tail baseplate. Each TSP recognizes a different lipopolysaccharide on the membrane of a different bacterial host. The 335 N-terminal residues of TSP4 promote the assembly of the TSP complex and anchor it to the tail baseplate. The crystal structure of TSP4-N335 reveals a trimeric protein comprising four domains. The baseplate anchor domain (AD) contains an intertwined triple-stranded β-helix. The ensuing XD1, XD2 and XD3 β-sheet containing domains mediate the binding of TSP1-3 to TSP4. Each of the XD domains adopts the same fold as the respective XD domains of bacteriophage T4 gp10 baseplate protein, known to engage in protein–protein interactions via its XD2 and XD3 domains. The structural similarity suggests that XD2 and XD3 of TSP4 also function in protein–protein interactions. Analytical ultracentrifugation analyses of TSP4-N335 and of domain deletion proteins showed how TSP4-N335 promotes the formation of the TSP quaternary complex. TSP1 and TSP2 bind directly to TSP4 whereas TSP3 binding requires a pre-formed TSP4-N335:TSP2 complex. A 3-dimensional model of the bacteriophage CBA120 TSP complex has been developed based on the structural and ultracentrifuge information.
Collapse
|
28
|
Oliveira H, Domingues R, Evans B, Sutton JM, Adriaenssens EM, Turner D. Genomic Diversity of Bacteriophages Infecting the Genus Acinetobacter. Viruses 2022; 14:181. [PMID: 35215775 PMCID: PMC8878043 DOI: 10.3390/v14020181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity.
Collapse
Affiliation(s)
- Hugo Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Rita Domingues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Benjamin Evans
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - J. Mark Sutton
- United Kingdom Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 OJG, UK;
| | | | - Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
29
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
30
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
31
|
Equine Intestinal O-Seroconverting Temperate Coliphage Hf4s: Genomic and Biological Characterization. Appl Environ Microbiol 2021; 87:e0112421. [PMID: 34406832 DOI: 10.1128/aem.01124-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. To our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces, from the indigenous equine Escherichia coli 4s strain. It is a podovirus related to the Lederbergvirus genus (including the well-characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. IMPORTANCE The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions within the ecology of microbial viruses in mammal intestinal ecosystems.
Collapse
|
32
|
Sørensen AN, Woudstra C, Sørensen MCH, Brøndsted L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput Struct Biotechnol J 2021; 19:4854-4867. [PMID: 34527194 PMCID: PMC8432352 DOI: 10.1016/j.csbj.2021.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.
Collapse
Key Words
- ANI, Average nucleotide identity
- Ackermannviridae family
- Bacteriophage
- CPS, Capsular polysaccharide
- EOP, Efficiency of plating
- Escherichia coli O:157
- Host range
- LB, Luria-Bertani
- LPS, Lipopolysaccharide
- NCBI, National Center for Biotechnology Information
- O-antigen
- ORF, Open reading frame
- PFU, Plaque formation unit
- RBP, Receptor binding protein
- Receptor-binding proteins
- Salmonella
- TSP, Tail spike protein
- Tail spike proteins
- VriC, Virulence-associated protein
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
33
|
Novel Acinetobacter baumannii Bacteriophage Aristophanes Encoding Structural Polysaccharide Deacetylase. Viruses 2021; 13:v13091688. [PMID: 34578271 PMCID: PMC8471582 DOI: 10.3390/v13091688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Acinetobacter baumannii appears to be one of the most crucial nosocomial pathogens. A possible component of antimicrobial therapy for infections caused by extremely drug-resistant A. baumannii strains may be specific lytic bacteriophages or phage-derived enzymes. In the present study, we observe the biological features, genomic organization, and phage–host interaction strategy of novel virulent bacteriophage Aristophanes isolated on A. baumannii strain having K26 capsular polysaccharide structure. According to phylogenetic analysis phage Aristophanes can be classified as a representative of a new distinct genus of the subfamily Beijerinckvirinae of the family Autographiviridae. This is the first reported A. baumannii phage carrying tailspike deacetylase, which caused O-acetylation of one of the K26 sugar residues.
Collapse
|
34
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Identification of Receptor Binding Proteins in Flagellotropic Agrobacterium Phage 7-7-1. Viruses 2021; 13:v13071267. [PMID: 34209785 PMCID: PMC8310070 DOI: 10.3390/v13071267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid discovery of new and diverse bacteriophages has driven the innovation of approaches aimed at detailing interactions with their bacterial hosts. Previous studies on receptor binding proteins (RBPs) mainly relied on their identification in silico and are based on similarities to well-characterized systems. Thus, novel phage RBPs unlike those currently annotated in genomic and proteomic databases remain largely undiscovered. In this study, we employed a screen to identify RBPs in flagellotropic Agrobacterium phage 7-7-1. Flagellotropic phages utilize bacterial flagella as receptors. The screen identified three candidate RBPs, Gp4, Gp102, and Gp44. Homology modelling predicted that Gp4 is a trimeric, tail associated protein with a central β-barrel, while the structure and function of Gp102 and Gp44 are less obvious. Studies with purified Gp41-247 confirmed its ability to bind and interact with host cells, highlighting the robustness of the RBP screen. We also discovered that Gp41-247 inhibits the growth of host cells in a motility and lipopolysaccharide (LPS) dependent fashion. Hence, our results suggest interactions between Gp41-247, rotating flagellar filaments and host glycans to inhibit host cell growth, which presents an impactful and intriguing focus for future studies.
Collapse
|
36
|
Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Comput Struct Biotechnol J 2021; 19:3416-3426. [PMID: 34194667 PMCID: PMC8217332 DOI: 10.1016/j.csbj.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophages (phages) are widely used as biocontrol agents in food and as antibacterial agents for treatment of food production plant surfaces. An important feature of such phages is broad infectivity towards a given pathogenic species. Phages attach to the surfaces of bacterial cells using receptor binding proteins (RBPs), namely tail fibers or tailspikes (TSPs). The binding range of RBPs is the primary determinant of phage host range and infectivity, and therefore dictates a phage's suitability as an antibacterial agent. Phages EP75 and EP335 broadly infect strains of E. coli serotype O157. To better understand host recognition by both phages, here we focused on characterizing the structures and functions of their RBPs. We identified two distinct tail fibers in the genome of the podovirus EP335: gp12 and gp13. Using fluorescence microscopy, we reveal how gp13 recognizes strains of E. coli serotypes O157 and O26. Phage EP75 belongs to the Kuttervirus genus within the Ackermannviridae family and features a four TSP complex (TSPs 1-4) that is universal among such phages. We demonstrate enzymatic activity of TSP1 (gp167) and TSP2 (gp168) toward the O18A and O157 O-antigens of E. coli, respectively, as well as TSP3 activity (gp169.1) against O4, O7, and O9 Salmonella O-antigens. TSPs of EP75 present high similarity to TSPs from E. coli phages CBA120 (TSP2) and HK620 (TSP1) and Salmonella myovirus Det7 (TSP3), which helps explain the cross-genus infectivity observed for EP75.
Collapse
Affiliation(s)
- Sander Witte
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Léa V. Zinsli
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | | | - Cassandra I. Matter
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J. Loessner
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Joël T. van Mierlo
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| |
Collapse
|
37
|
Fraser A, Prokhorov NS, Jiao F, Pettitt BM, Scheuring S, Leiman PG. Quantitative description of a contractile macromolecular machine. SCIENCE ADVANCES 2021; 7:7/24/eabf9601. [PMID: 34117062 PMCID: PMC8195476 DOI: 10.1126/sciadv.abf9601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/23/2021] [Indexed: 05/14/2023]
Abstract
Contractile injection systems (CISs) [type VI secretion system (T6SS), phage tails, and tailocins] use a contractile sheath-rigid tube machinery to breach cell walls and lipid membranes. The structures of the pre- and postcontraction states of several CISs are known, but the mechanism of contraction remains poorly understood. Combining structural information of the end states of the 12-megadalton R-type pyocin sheath-tube complex with thermodynamic and force spectroscopy analyses and an original modeling procedure, we describe the mechanism of pyocin contraction. We show that this nanomachine has an activation energy of 160 kilocalories/mole (kcal/mol), and it releases 2160 kcal/mol of heat and develops a force greater than 500 piconewtons. Our combined approach provides a quantitative and experimental description of the membrane penetration process by a CIS.
Collapse
Affiliation(s)
- Alec Fraser
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (SCSB), The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (SCSB), The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (SCSB), The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (SCSB), The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
38
|
Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol 2021; 68:272-281. [PMID: 33744824 PMCID: PMC10163921 DOI: 10.1016/j.copbio.2021.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
Bacteriophages (phages) use specialized tail machinery to deliver proteins and genetic material into a bacterial cell during infection. Attached at the distal ends of their tails are receptor binding proteins (RBPs) that recognize specific molecules exposed on host bacteria surfaces. Since the therapeutic capacity of naturally occurring phages is often limited by narrow host ranges, there is significant interest in expanding their host range via directed evolution or structure-guided engineering of their RBPs. Here, we describe the design principles of different RBP engineering platforms and draw attention to the mechanisms linking RBP binding and the correct spatial and temporal attachment of the phage to the bacterial surface. A deeper understanding of these mechanisms will directly benefit future engineering of more effective phage-based therapeutics.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| |
Collapse
|
39
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
40
|
Golomidova AK, Efimov AD, Kulikov EE, Kuznetsov AS, Belalov IS, Letarov AV. O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B. Sci Rep 2021; 11:3035. [PMID: 33542282 PMCID: PMC7862636 DOI: 10.1038/s41598-021-82422-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
Acquisition of new prophages that are able to increase the bacterial fitness by the lysogenic conversion is believed to be an important strategy of bacterial adaptation to the changing environment. However, in contrast to the factors determining the range of bacteriophage lytic activity, little is known about the factors that define the lysogenization host range. Bacteriophage phi24B is the paradigmal model of Stx-converting phages, encoding the toxins of the Shiga-toxigenic E. coli (STEC). This virus has been shown to lysogenize a wide range of E. coli strains that is much broader than the range of the strains supporting its lytic growth. Therefore, phages produced by the STEC population colonizing the small or large intestine are potentially able to lysogenize symbiotic E. coli in the hindgut, and these secondary lysogens may contribute to the overall patient toxic load and to lead to the emergence of new pathogenic STEC strains. We demonstrate, however, that O antigen effectively limit the lysogenization of the wild E. coli strains by phi24B phage. The lysogens are formed from the spontaneous rough mutants and therefore have increased sensitivity to other bacteriophages and to the bactericidal activity of the serum if compared to their respective parental strains.
Collapse
Affiliation(s)
- A K Golomidova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312
| | - A D Efimov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312
| | - E E Kulikov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - A S Kuznetsov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I Sh Belalov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312
| | - A V Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
41
|
Evseev PV, Lukianova AA, Shneider MM, Korzhenkov AA, Bugaeva EN, Kabanova AP, Miroshnikov KK, Kulikov EE, Toshchakov SV, Ignatov AN, Miroshnikov KA. Origin and Evolution of Studiervirinae Bacteriophages Infecting Pectobacterium: Horizontal Transfer Assists Adaptation to New Niches. Microorganisms 2020; 8:E1707. [PMID: 33142811 PMCID: PMC7693777 DOI: 10.3390/microorganisms8111707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Black leg and soft rot are devastating diseases causing up to 50% loss of potential potato yield. The search for, and characterization of, bacterial viruses (bacteriophages) suitable for the control of these diseases is currently a sought-after task for agricultural microbiology. Isolated lytic Pectobacterium bacteriophages Q19, PP47 and PP81 possess a similar broad host range but differ in their genomic properties. The genomic features of characterized phages have been described and compared to other Studiervirinae bacteriophages. Thorough phylogenetic analysis has clarified the taxonomy of the phages and their positioning relative to other genera of the Autographiviridae family. Pectobacterium phage Q19 seems to represent a new genus not described previously. The genomes of the phages are generally similar to the genome of phage T7 of the Teseptimavirus genus but possess a number of specific features. Examination of the structure of the genes and proteins of the phages, including the tail spike protein, underlines the important role of horizontal gene exchange in the evolution of these phages, assisting their adaptation to Pectobacterium hosts. The results provide the basis for the development of bacteriophage-based biocontrol of potato soft rot as an alternative to the use of antibiotics.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
| | - Anna A. Lukianova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail M. Shneider
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
| | | | - Eugenia N. Bugaeva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
- Research Center “PhytoEngineering” Ltd., Rogachevo, 141880 Moscow Region, Russia;
| | - Anastasia P. Kabanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
- Research Center “PhytoEngineering” Ltd., Rogachevo, 141880 Moscow Region, Russia;
| | - Kirill K. Miroshnikov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia; (K.K.M.); (E.E.K.); (S.V.T.)
| | - Eugene E. Kulikov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia; (K.K.M.); (E.E.K.); (S.V.T.)
| | - Stepan V. Toshchakov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia; (K.K.M.); (E.E.K.); (S.V.T.)
| | - Alexander N. Ignatov
- Research Center “PhytoEngineering” Ltd., Rogachevo, 141880 Moscow Region, Russia;
| | - Konstantin A. Miroshnikov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.V.E.); (A.A.L.); (M.M.S.); (E.N.B.); (A.P.K.)
| |
Collapse
|
42
|
V. Volozhantsev N, M. Shpirt A, I. Borzilov A, V. Komisarova E, M. Krasilnikova V, S. Shashkov A, V. Verevkin V, A. Knirel Y. Characterization and Therapeutic Potential of Bacteriophage-Encoded Polysaccharide Depolymerases with β Galactosidase Activity against Klebsiella pneumoniae K57 Capsular Type. Antibiotics (Basel) 2020; 9:antibiotics9110732. [PMID: 33113762 PMCID: PMC7693772 DOI: 10.3390/antibiotics9110732] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages and phage enzymes are considered as possible alternatives to antibiotics in the treatment of infections caused by antibiotic-resistant bacteria. Due to the ability to cleave the capsular polysaccharides (CPS), one of the main virulence factors of Klebsiella pneumoniae, phage depolymerases, has potential in the treatment of K. pneumoniae infections. Here, we characterized in vivo two novel phage-encoded polysaccharide depolymerases as therapeutics against clinical isolates of K. pneumoniae. The depolymerases Dep_kpv79 and Dep_kpv767 encoded by Klebsiella phages KpV79 (Myoviridae; Jedunavirus) and KpV767 (Autographiviridae, Studiervirinae, Przondovirus), respectively, were identified as specific β-galactosidases that cleave the K. pneumoniae K57 type CPS by the hydrolytic mechanism. They were found to be highly effective at combating sepsis and hip infection caused by K. pneumoniae in lethal mouse models. Here, 80–100% of animals were protected against death by a single dose (e.g., 50 μg/mouse) of the enzyme injected 0.5 h after infection by K. pneumoniae strains of the K57 capsular type. The therapeutic effect of the depolymerases is because they strip the capsule and expose the underlying bacterium to the immune attack such as complement-mediated killing. These data provide one more confirmation that phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.
Collapse
Affiliation(s)
- Nikolay V. Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia; (A.I.B.); (E.V.K.); (V.M.K.); (V.V.V.)
- Correspondence:
| | - Anna M. Shpirt
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia; (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Alexander I. Borzilov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia; (A.I.B.); (E.V.K.); (V.M.K.); (V.V.V.)
| | - Ekaterina V. Komisarova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia; (A.I.B.); (E.V.K.); (V.M.K.); (V.V.V.)
| | - Valentina M. Krasilnikova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia; (A.I.B.); (E.V.K.); (V.M.K.); (V.V.V.)
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia; (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Vladimir V. Verevkin
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia; (A.I.B.); (E.V.K.); (V.M.K.); (V.V.V.)
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia; (A.M.S.); (A.S.S.); (Y.A.K.)
| |
Collapse
|
43
|
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S. In vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front Microbiol 2020; 11:510638. [PMID: 33072001 PMCID: PMC7541932 DOI: 10.3389/fmicb.2020.510638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.
Collapse
Affiliation(s)
- Mareike S Stephan
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nina K Broeker
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
44
|
Structure and function of bacteriophage CBA120 ORF211 (TSP2), the determinant of phage specificity towards E. coli O157:H7. Sci Rep 2020; 10:15402. [PMID: 32958885 PMCID: PMC7506556 DOI: 10.1038/s41598-020-72373-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.
Collapse
|
45
|
Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun 2020; 88:e00926-19. [PMID: 32094257 PMCID: PMC7309606 DOI: 10.1128/iai.00926-19] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
46
|
Genome-wide screens reveal Escherichia coli genes required for growth of T1-like phage LL5 and V5-like phage LL12. Sci Rep 2020; 10:8058. [PMID: 32415154 PMCID: PMC7229145 DOI: 10.1038/s41598-020-64981-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
The host factor requirements of phages and mechanisms of mutational phage insensitivity must be characterized for rational design of phage cocktails. To characterize host dependencies of two novel Escherichia coli phages, the T1-like siphophage LL5 and the V5-like myophage LL12, forward genetic screens were conducted against the Keio collection, a library of single non-essential gene deletions in E. coli str. BW25113. These screens and subsequent experiments identified genes required by phages LL5 and LL12. E. coli mutants deficient in heptose II and the phosphoryl substituent of heptose I of the inner core lipopolysaccharide (LPS) were unable to propagate phage LL5, as were mutants deficient in the outer membrane protein TolC. Mutants lacking glucose I of the LPS outer core failed to propagate LL12. Two additional genes encoding cytoplasmic chaperones, PpiB and SecB, were found to be required for efficient propagation of phage LL5, but not LL12. This screening approach may be useful for identifying host factors dependencies of phages, which would provide valuable information for their potential use as therapeutics and for phage engineering.
Collapse
|
47
|
Abstract
R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics1–4. Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold1,2. Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of (DNA-containing) T4 bacteriophage5. Here we report the atomic model of the complete R2 pyocin in its pre- and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the sequence of events during pyocin contraction: tail fibers trigger lateral dissociation of baseplate triplexes; the dissociation then initiates a cascade of events leading to sheath contraction; this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.
Collapse
|
48
|
Lukianova AA, Shneider MM, Evseev PV, Shpirt AM, Bugaeva EN, Kabanova AP, Obraztsova EA, Miroshnikov KK, Senchenkova SN, Shashkov AS, Toschakov SV, Knirel YA, Ignatov AN, Miroshnikov KA. Morphologically Different Pectobacterium brasiliense Bacteriophages PP99 and PP101: Deacetylation of O-Polysaccharide by the Tail Spike Protein of Phage PP99 Accompanies the Infection. Front Microbiol 2020; 10:3147. [PMID: 32038580 PMCID: PMC6989608 DOI: 10.3389/fmicb.2019.03147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/29/2019] [Indexed: 01/31/2023] Open
Abstract
Soft rot caused by numerous species of Pectobacterium and Dickeya is a serious threat to the world production of potatoes. The application of bacteriophages to combat bacterial infections in medicine, agriculture, and the food industry requires the selection of comprehensively studied lytic phages and the knowledge of their infection mechanism for more rational composition of therapeutic cocktails. We present the study of two bacteriophages, infective for the Pectobacterium brasiliense strain F152. Podoviridae PP99 is a representative of the genus Zindervirus, and Myoviridae PP101 belongs to the still unclassified genomic group. The structure of O-polysaccharide of F152 was established by sugar analysis and 1D and 2D NMR spectroscopy: → 4)-α-D-Manp6Ac-(1→ 2)-α-D-Manp-(1→ 3)-β-D-Galp-(1→
3↑1α-l-6dTalpAc0−2 The recombinant tail spike protein of phage PP99, gp55, was shown to deacetylate the side chain talose residue of bacterial O-polysaccharide, thus providing the selective attachment of the phage to the cell surface. Both phages demonstrate lytic behavior, thus being prospective for therapeutic purposes.
Collapse
Affiliation(s)
- Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna M Shpirt
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Anastasia P Kabanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Research Center "PhytoEngineering" Ltd., Rogachevo, Moscow, Russia
| | - Ekaterina A Obraztsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill K Miroshnikov
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Sofiya N Senchenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Toschakov
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Latka A, Leiman PG, Drulis-Kawa Z, Briers Y. Modeling the Architecture of Depolymerase-Containing Receptor Binding Proteins in Klebsiella Phages. Front Microbiol 2019; 10:2649. [PMID: 31803168 PMCID: PMC6872550 DOI: 10.3389/fmicb.2019.02649] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae carries a thick polysaccharide capsule. This highly variable chemical structure plays an important role in its virulence. Many Klebsiella bacteriophages recognize this capsule with a receptor binding protein (RBP) that contains a depolymerase domain. This domain degrades the capsule to initiate phage infection. RBPs are highly specific and thus largely determine the host spectrum of the phage. A majority of known Klebsiella phages have only one or two RBPs, but phages with up to 11 RBPs with depolymerase activity and a broad host spectrum have been identified. A detailed bioinformatic analysis shows that similar RBP domains repeatedly occur in K. pneumoniae phages with structural RBP domains for attachment of an RBP to the phage tail (anchor domain) or for branching of RBPs (T4gp10-like domain). Structural domains determining the RBP architecture are located at the N-terminus, while the depolymerase is located in the center of protein. Occasionally, the RBP is complemented with an autocleavable chaperone domain at the distal end serving for folding and multimerization. The enzymatic domain is subjected to an intense horizontal transfer to rapidly shift the phage host spectrum without affecting the RBP architecture. These analyses allowed to model a set of conserved RBP architectures, indicating evolutionary linkages.
Collapse
Affiliation(s)
- Agnieszka Latka
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.,Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Petr G Leiman
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Voronina MV, Bugaeva EN, Vasiliev DM, Kabanova AP, Barannik AP, Shneider MM, Kulikov EE, Korzhenkov AA, Toschakov SV, Ignatov AN, Miroshnikov KA. Characterization of Pectobacterium carotovorum subsp. carotovorum Bacteriophage PP16 Prospective for Biocontrol of Potato Soft Rot. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|