1
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025; 245:1846-1863. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
2
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
3
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Quan J, Song S, Xing L, Liu X, Yue M. DNA methylation variation and growth in the clonal Duchesnea indica is regulated by both past and present lead environments. Epigenetics 2024; 19:2305078. [PMID: 38245907 PMCID: PMC10802196 DOI: 10.1080/15592294.2024.2305078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Studies suggest that clonal plants' ability to select habitats and forage in a heterogeneous environment is influenced by their past environment, with stress legacy potentially playing a crucial role. In this study, we examined parental ramets of Duchesnea indica Focke that were subject to either a control or lead-contaminated environment (past environment), and their newborn offspring were then transplanted into control, homogeneous lead or heterogeneous lead environment (present environment). We analysed how past and present environments affect plant growth and DNA methylation in offspring. The result shown that the DNA methylation loci composition of offspring was affected by the interaction of parental environment and offspring environment, and DNA methylation levels were higher in heterogeneous environments. Moreover, our findings indicate that offspring would thrive in the heterogeneous lead environment if they did not experience lead pollution in the past, their progeny will avoid lead toxicity by reducing underground biomass allocation. However, when the parents experienced lead stress environment, their biomass allocation strategies disappeared, and they prefer to grow in favourable patches to avoid lead-contaminated patches. We concluded that the integration of historical parental exposure to lead-contaminated and current information about their offspring's environment are impacting plant phenotypes. It is possible that the stress legacy from the parents has been transmitted to their offspring ramets, and the stress legacy is at least partly based on heritable epigenetic variation. The phenotypic variation regulated by the stress legacy affects the growth performance, biomass allocation strategy, and even the behaviour of D. indica.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Shanshan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Linya Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| |
Collapse
|
5
|
Zhao T, Guan X, Hu Y, Zhang Z, Yang H, Shi X, Han J, Mei H, Wang L, Shao L, Wu H, Chen Q, Zhao Y, Pan J, Hao Y, Dong Z, Long X, Deng Q, Zhao S, Zhang M, Zhu Y, Ma X, Chen Z, Deng Y, Si Z, Li X, Zhang T, Gu F, Gu X, Fang L. Population-wide DNA methylation polymorphisms at single-nucleotide resolution in 207 cotton accessions reveal epigenomic contributions to complex traits. Cell Res 2024; 34:859-872. [PMID: 39420233 PMCID: PMC11615300 DOI: 10.1038/s41422-024-01027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
DNA methylation plays multiple regulatory roles in crop development. However, the relationships of methylation polymorphisms with genetic polymorphisms, gene expression, and phenotypic variation in natural crop populations remain largely unknown. Here, we surveyed high-quality methylomes, transcriptomes, and genomes obtained from the 20-days-post-anthesis (DPA) cotton fibers of 207 accessions and extended the classical framework of population genetics to epigenetics. Over 287 million single methylation polymorphisms (SMPs) were identified, 100 times more than the number of single nucleotide polymorphisms (SNPs). These SMPs were significantly enriched in intragenic regions while depleted in transposable elements. Association analysis further identified a total of 5,426,782 cis-methylation quantitative trait loci (cis-meQTLs), 5078 cis-expression quantitative trait methylation (cis-eQTMs), and 9157 expression quantitative trait loci (eQTLs). Notably, 36.39% of cis-eQTM genes were not associated with genetic variation, indicating that a large number of SMPs associated with gene expression variation are independent of SNPs. In addition, out of the 1715 epigenetic loci associated with yield and fiber quality traits, only 36 (2.10%) were shared with genome-wide association study (GWAS) loci. The construction of multi-omics regulatory networks revealed 43 cis-eQTM genes potentially involved in fiber development, which cannot be identified by GWAS alone. Among these genes, the role of one encoding CBL-interacting protein kinase 10 in fiber length regulation was successfully validated through gene editing. Taken together, our findings prove that DNA methylation data can serve as an additional resource for breeding purposes and can offer opportunities to enhance and expedite the crop improvement process.
Collapse
Affiliation(s)
- Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ziqian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yang
- Damo Academy, Alibaba Group, Hangzhou, Zhejiang, China
| | - Xiaowen Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyao Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Lei Shao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyu Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianqian Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaying Pan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yupeng Hao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuan Long
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengjun Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Mengke Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Yumeng Zhu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Xiaowei Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zequan Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Li
- Damo Academy, Alibaba Group, Hangzhou, Zhejiang, China
- Hupan Lab, Hangzhou, Zhejiang, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China.
| | - Fei Gu
- Damo Academy, Alibaba Group, Hangzhou, Zhejiang, China.
- Hupan Lab, Hangzhou, Zhejiang, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China.
| |
Collapse
|
6
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Wu W, Nie G, Lin J, Huang J, Guo X, Chen M, Fang X, Mao Y, Li Y, Wang L, Tao X, Gao Y, Yang Z, Huang J. Regulation of Glandular Size and Phytoalexin Biosynthesis by a Negative Feedback Loop in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403059. [PMID: 38840438 PMCID: PMC11321651 DOI: 10.1002/advs.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Indexed: 06/07/2024]
Abstract
Plants have evolved diverse defense mechanisms encompassing physical and chemical barriers. Cotton pigment glands are known for containing various defense metabolites, but the precise regulation of gland size to modulate defense compound levels remains enigmatic. Here, it is discovered that the VQ domain-containing protein JAVL negatively regulates pigment gland size and the biosynthesis of defense compounds, while the MYC2-like transcription factor GoPGF has the opposite effect. Notably, GoPGF directly activates the expression of JAVL, whereas JAVL suppresses GoPGF transcription, establishing a negative feedback loop that maintains the expression homeostasis between GoPGF and JAVL. Furthermore, it is observed that JAVL negatively regulates jasmonate levels by inhibiting the expression of jasmonate biosynthetic genes and interacting with GoPGF to attenuate its activation effects, thereby maintaining homeostatic regulation of jasmonate levels. The increased expression ratio of GoPGF to JAVL leads to enlarged pigment glands and elevated jasmonates and defense compounds, enhancing insect and pathogen resistance in cotton. These findings unveil a new mechanism for regulating gland size and secondary metabolites biosynthesis, providing innovative strategies for strengthening plant defense.
Collapse
Affiliation(s)
- Wen‐Kai Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gui‐Bin Nie
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jia‐Ling Lin
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai200031China
| | - Jia‐Fa Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiao‐Xiang Guo
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Mei Chen
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyChinese Academy of SciencesKunming650204P. R. China
| | - Ying‐Bo Mao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yan Li
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandong264117China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ling‐Jian Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | | | - Yiqun Gao
- Department of Plant and Crop Science, School of Biosciences, Sutton Bonington campusUniversity of NottinghamNottinghamLE12 5RDUnited Kingdom
| | - Zuo‐Ren Yang
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000China
- Western Agricultural Research CenterChinese Academy of Agricultural SciencesChangjiXinjiang831100China
| | - Jin‐Quan Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
10
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
11
|
Ziv A, Kashkush K. Transcriptome variations in hybrids of wild emmer wheat (Triticum turgidum ssp. dicoccoides). BMC PLANT BIOLOGY 2024; 24:571. [PMID: 38886665 PMCID: PMC11184805 DOI: 10.1186/s12870-024-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wild emmer wheat is a great candidate to revitalize domesticated wheat genetic diversity. Recent years have seen intensive investigation into the evolution and domestication of wild emmer wheat, including whole-genome DNA and transcriptome sequencing. However, the impact of intraspecific hybridization on the transcriptome of wild emmer wheat has been poorly studied. In this study, we assessed changes in methylation patterns and transcriptomic variations in two accessions of wild emmer wheat collected from two marginal populations, Mt. Hermon and Mt. Amasa, and in their stable F4 hybrid. RESULTS Methylation-Sensitive Amplified Polymorphism (MSAP) detected significant cytosine demethylation in F4 hybrids vs. parental lines, suggesting potential transcriptome variation. After a detailed analysis, we examined nine RNA-Seq samples, which included three biological replicates from the F4 hybrid and its parental lines. RNA-Seq databases contained approximately 200 million reads, with each library consisting of 15 to 25 million reads. There are a total of 62,490 well-annotated genes in these databases, with 6,602 genes showing differential expression between F4 hybrid and parental lines Mt. Hermon and Mt. Amasa. The differentially expressed genes were classified into four main categories based on their expression patterns. Gene ontology (GO) analysis revealed that differentially expressed genes are associated with DNA/RNA metabolism, photosynthesis, stress response, phosphorylation and developmental processes. CONCLUSION This study highlights the significant transcriptomic changes resulting from intraspecific hybridization within natural plant populations, which might aid the nascent hybrid in adapting to various environmental conditions.
Collapse
Affiliation(s)
- Alon Ziv
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
12
|
de la Mata R, Mollá-Morales A, Méndez-Vigo B, Torres-Pérez R, Oliveros JC, Gómez R, Marcer A, Castilla AR, Nordborg M, Alonso-Blanco C, Picó FX. Variation and plasticity in life-history traits and fitness of wild Arabidopsis thaliana populations are not related to their genotypic and ecological diversity. BMC Ecol Evol 2024; 24:56. [PMID: 38702598 PMCID: PMC11067129 DOI: 10.1186/s12862-024-02246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Despite its implications for population dynamics and evolution, the relationship between genetic and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in life-history traits and fitness of the annual plant Arabidopsis thaliana in two common garden experiments that differed in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity. RESULTS Low and high genotypic and ecological diversity was found in edge and core Iberian environments, respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diversity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments. CONCLUSIONS Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.
Collapse
Affiliation(s)
- Raul de la Mata
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain
- Faculty of Forestry, Institute of Dehesa Research (INDEHESA), Universidad de Extremadura, 10600, Plasencia, Spain
| | | | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Rocío Gómez
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain
| | - Arnald Marcer
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| | - Antonio R Castilla
- Department of Plant Biology, Ecology, and Evolution, College of Arts and Sciences, Oklahoma State University, Stillwater, OK, 74078-3031, USA
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - F Xavier Picó
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain.
| |
Collapse
|
13
|
Siller Wilks SJ, Heidinger BJ, Westneat DF, Solomon J, Rubenstein DR. The impact of parental and developmental stress on DNA methylation in the avian hypothalamic-pituitary-adrenal axis. Mol Ecol 2024; 33:e17291. [PMID: 38343177 DOI: 10.1111/mec.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, North Dakota, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
Liu J, Zhong X. Epiallelic variation of non-coding RNA genes and their phenotypic consequences. Nat Commun 2024; 15:1375. [PMID: 38355746 PMCID: PMC10867003 DOI: 10.1038/s41467-024-45771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epigenetic variations contribute greatly to the phenotypic plasticity and diversity. Current functional studies on epialleles have predominantly focused on protein-coding genes, leaving the epialleles of non-coding RNA (ncRNA) genes largely understudied. Here, we uncover abundant DNA methylation variations of ncRNA genes and their significant correlations with plant adaptation among 1001 natural Arabidopsis accessions. Through genome-wide association study (GWAS), we identify large numbers of methylation QTL (methylQTL) that are independent of known DNA methyltransferases and enriched in specific chromatin states. Proximal methylQTL closely located to ncRNA genes have a larger effect on DNA methylation than distal methylQTL. We ectopically tether a DNA methyltransferase MQ1v to miR157a by CRISPR-dCas9 and show de novo establishment of DNA methylation accompanied with decreased miR157a abundance and early flowering. These findings provide important insights into the genetic basis of epigenetic variations and highlight the contribution of epigenetic variations of ncRNA genes to plant phenotypes and diversity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
15
|
Valverde J, Medrano M, Herrera CM, Alonso C. Comparative epigenetic and genetic spatial structure in Mediterranean mountain plants: a multispecies study. Heredity (Edinb) 2024; 132:106-116. [PMID: 38233486 PMCID: PMC10844209 DOI: 10.1038/s41437-024-00668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Changes in epigenetic states can allow individuals to cope with environmental changes. If such changes are heritable, this may lead to epigenetic adaptation. Thus, it is likely that in sessile organisms such as plants, part of the spatial epigenetic variation found across individuals will reflect the environmental heterogeneity within populations. The departure of the spatial epigenetic structure from the baseline genetic variation can help in understanding the value of epigenetic regulation in species with different breadth of optimal environmental requirements. Here, we hypothesise that in plants with narrow environmental requirements, epigenetic variability should be less structured in space given the lower variability in suitable environmental conditions. We performed a multispecies study that considered seven pairs of congeneric plant species, each encompassing a narrow endemic with habitat specialisation and a widespread species. In three populations per species we used AFLP and methylation-sensitive AFLP markers to characterise the spatial genetic and epigenetic structures. Narrow endemics showed a significantly lower epigenetic than genetic differentiation between populations. Within populations, epigenetic variation was less spatially structured than genetic variation, mainly in narrow endemics. In these species, structural equation models revealed that such pattern was associated to a lack of correlation between epigenetic and genetic information. Altogether, these results show a greater decoupling of the spatial epigenetic variation from the baseline spatial genetic pattern in endemic species. These findings highlight the value of studying genetic and epigenetic spatial variation to better understand habitat specialisation in plants.
Collapse
Affiliation(s)
- Javier Valverde
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
| |
Collapse
|
16
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
17
|
Sammarco I, Díez Rodríguez B, Galanti D, Nunn A, Becker C, Bossdorf O, Münzbergová Z, Latzel V. DNA methylation in the wild: epigenetic transgenerational inheritance can mediate adaptation in clones of wild strawberry (Fragaria vesca). THE NEW PHYTOLOGIST 2024; 241:1621-1635. [PMID: 38058250 DOI: 10.1111/nph.19464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Bárbara Díez Rodríguez
- Natural Resources and Climate Area, CARTIF Technology Centre, Parque Tecnológico de Boecillo, parc. 205, 47151, Boecillo, Valladolid, Spain
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043, Marburg, Germany
- Department of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098, Freiburg i. Br., Germany
| | - Dario Galanti
- Royal Botanic Gardens, Kew, Richmond, UK
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Adam Nunn
- ecSeq Bioinformatics GmbH, Sternwartenstraße 29, 04103, Saxony, Germany
- Department of Computer Science, University of Leipzig, Härtelstraße 16-18, Leipzig, 04107, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr Bohr-Gasse 3, 1030, Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
18
|
Chomicki G, Burin G, Busta L, Gozdzik J, Jetter R, Mortimer B, Bauer U. Convergence in carnivorous pitcher plants reveals a mechanism for composite trait evolution. Science 2024; 383:108-113. [PMID: 38175904 DOI: 10.1126/science.ade0529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Composite traits involve multiple components that, only when combined, gain a new synergistic function. Thus, how they evolve remains a puzzle. We combined field experiments, microscopy, chemical analyses, and laser Doppler vibrometry with comparative phylogenetic analyses to show that two carnivorous Nepenthes pitcher plant species independently evolved similar adaptations in three distinct traits to acquire a new, composite trapping mechanism. Comparative analyses suggest that this new trait arose convergently through "spontaneous coincidence" of the required trait combination, rather than directional selection in the component traits. Our results indicate a plausible mechanism for composite trait evolution and highlight the importance of stochastic phenotypic variation as a facilitator of evolutionary novelty.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Bioscience, Durham University, South Road, Durham DH1 3LE, UK
| | - Gustavo Burin
- Natural History Museum London, Cromwell Road, London SW7 5BD, UK
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 308 HCAMS, 1038 University Drive, Duluth, MN 55812, USA
| | - Jedrzej Gozdzik
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Department of Botany, University of British Columbia, 3200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Beth Mortimer
- Department of Biology, University of Oxford, Mansfield Road, Oxford OX1 3SZ, UK
| | - Ulrike Bauer
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
19
|
Zhang X, Li B, Peñuelas J, Sardans J, Cheng D, Yu H, Zhong Q. Resource-acquisitive species have greater plasticity in leaf functional traits than resource-conservative species in response to nitrogen addition in subtropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166177. [PMID: 37572896 DOI: 10.1016/j.scitotenv.2023.166177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The evergreen broad-leaf forest is subtropical zonal vegetation in China, and its species diversity and stability are crucial for maintaining forest ecosystem functions. The region is generally affected by global changes such as high levels of nitrogen deposition. Therefore, it is critical to determine the adaptation strategies of subtropical dominant species under nitrogen addition. Here, we conducted two-year field experiments with nitrogen addition levels as 0 kg N ha-1 yr-1 (CK), 50 kg N ha-1 yr-1 (LN) and 100 kg N ha-1 yr-1 (HN). We investigated the effects of nitrogen addition on leaf functional traits (including nutrition, structural and physiological characteristics) of five dominant species in subtropical evergreen broad-leaf forest. Results suggested that the effect of nitrogen addition on leaf functional traits was species-specific. Contrary to Rhododendron delavayi and Eurya muricata, Quercus glauca, Schima superba and Castanopsis eyrei all responded more to the HN treatment than LN treatment. Compared to other leaf functional traits, leaf anatomical structure traits had the highest average plasticity (0.246), and the relative effect of leaf photosynthetic property was highest (7.785) under N addition. Among the five species, S. superba was highest in terms of the index of plasticity for leaf functional traits under nitrogen addition, followed by Q. glauca, E. muricata, C. eyrei and R. delavayi. The major leaf functional traits representing the economic spectrum of leaves (LES) showed resource acquisitive strategy (high SLA, LNC, LPC, Pn) and conservative strategy (high LTD, LDMC, C/N) clustering on the opposite ends of the PCA axis. The PCA analysis indicated that species with high leaf plasticity adopt resource acquisitive strategy (S. superba and Q. glauca), whereas species with low leaf plasticity adopt resource conservative strategy (E. muricata, C. eyrei and R. delavayi). In aggregate, resource-acquisitive species benefit from nitrogen addition more than resource-conservative species, suggesting that S. superba and Q. glauca will occupy the dominant position in community succession under persistently elevated nitrogen deposition.
Collapse
Affiliation(s)
- Xue Zhang
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| | - Baoyin Li
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province funded), Fuzhou, Fujian Province 350007, China
| | - Josep Peñuelas
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Dongliang Cheng
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province funded), Fuzhou, Fujian Province 350007, China
| | - Hua Yu
- Ocean College, Minjiang University, Fuzhou, Fujian Province 350007, China
| | - Quanlin Zhong
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province funded), Fuzhou, Fujian Province 350007, China.
| |
Collapse
|
20
|
Wang P, Li Y, Liu Z, Zhang W, Li D, Wang X, Wen X, Feng Y, Zhang X. Analysis of DNA Methylation Differences during the JIII Formation of Bursaphelenchus xylophilus. Curr Issues Mol Biol 2023; 45:9656-9673. [PMID: 38132449 PMCID: PMC10742416 DOI: 10.3390/cimb45120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pinewood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives at low temperatures through third-stage dispersal juvenile, making it a major pathogen for pines in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal juvenile, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal juvenile and three other propagative juvenile stages of PWN. Our findings revealed that the average methylation rate of cytosine in the samples ranged from 0.89% to 0.99%. Moreover, we observed significant DNA methylation changes in the third-stage dispersal juvenile and the second-stage propagative juvenile of PWN, including differentially methylated cytosine (DMCs, n = 435) and regions (DMRs, n = 72). In the joint analysis of methylation-associated transcription, we observed that 23 genes exhibited overlap between differentially methylated regions and differential gene expression during the formation of the third-stage dispersal juvenile of PWN. Further functional analysis of these genes revealed enrichment in processes related to lipid metabolism and fatty acid synthesis. These findings emphasize the significance of DNA methylation in the development of third-stage dispersal juvenile of PWN, as it regulates transcription to enhance the probability of rapid expansion in PWN.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Shi M, Wang C, Wang P, Yun F, Liu Z, Ye F, Wei L, Liao W. Role of methylation in vernalization and photoperiod pathway: a potential flowering regulator? HORTICULTURE RESEARCH 2023; 10:uhad174. [PMID: 37841501 PMCID: PMC10569243 DOI: 10.1093/hr/uhad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
Recognized as a pivotal developmental transition, flowering marks the continuation of a plant's life cycle. Vernalization and photoperiod are two major flowering pathways orchestrating numerous florigenic signals. Methylation, including histone, DNA and RNA methylation, is one of the recent foci in plant development. Considerable studies reveal that methylation seems to show an increasing potential regulatory role in plant flowering via altering relevant gene expression without altering the genetic basis. However, little has been reviewed about whether and how methylation acts on vernalization- and photoperiod-induced flowering before and after FLOWERING LOCUS C (FLC) reactivation, what role RNA methylation plays in vernalization- and photoperiod-induced flowering, how methylation participates simultaneously in both vernalization- and photoperiod-induced flowering, the heritability of methylation memory under the vernalization/photoperiod pathway, and whether and how methylation replaces vernalization/photoinduction to regulate flowering. Our review provides insight about the crosstalk among the genetic control of the flowering gene network, methylation (methyltransferases/demethylases) and external signals (cold, light, sRNA and phytohormones) in vernalization and photoperiod pathways. The existing evidence that RNA methylation may play a potential regulatory role in vernalization- and photoperiod-induced flowering has been gathered and represented for the first time. This review speculates about and discusses the possibility of substituting methylation for vernalization and photoinduction to promote flowering. Current evidence is utilized to discuss the possibility of future methylation reagents becoming flowering regulators at the molecular level.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- Vegetable and Flower Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fahong Yun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Fujin Ye
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
22
|
Troyee AN, Peña-Ponton C, Medrano M, Verhoeven KJF, Alonso C. Herbivory induced methylation changes in the Lombardy poplar: A comparison of results obtained by epiGBS and WGBS. PLoS One 2023; 18:e0291202. [PMID: 37682835 PMCID: PMC10490839 DOI: 10.1371/journal.pone.0291202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
DNA cytosine methylation is an epigenetic mechanism involved in regulation of plant responses to biotic and abiotic stress and its ability to change can vary with the sequence context in which a cytosine appears (CpG, CHG, CHH, where H = Adenine, Thymine, Cytosine). Quantification of DNA methylation in model plant species is frequently addressed by Whole Genome Bisulfite Sequencing (WGBS), which requires a good-quality reference genome. Reduced Representation Bisulfite Sequencing (RRBS) is a cost-effective potential alternative for ecological research with limited genomic resources and large experimental designs. In this study, we provide for the first time a comprehensive comparison between the outputs of RRBS and WGBS to characterize DNA methylation changes in response to a given environmental factor. In particular, we used epiGBS (recently optimized RRBS) and WGBS to assess global and sequence-specific differential methylation after insect and artificial herbivory in clones of Populus nigra cv. 'italica'. We found that, after any of the two herbivory treatments, global methylation percentage increased in CHH, and the shift was detected as statistically significant only by epiGBS. As regards to loci-specific differential methylation induced by herbivory (cytosines in epiGBS and regions in WGBS), both techniques indicated the specificity of the response elicited by insect and artificial herbivory, together with higher frequency of hypo-methylation in CpG and hyper-methylation in CHH. Methylation changes were mainly found in gene bodies and intergenic regions when present at CpG and CHG and in transposable elements and intergenic regions at CHH context. Thus, epiGBS succeeded to characterize global, genome-wide methylation changes in response to herbivory in the Lombardy poplar. Our results support that epiGBS could be particularly useful in large experimental designs aimed to explore epigenetic changes of non-model plant species in response to multiple environmental factors.
Collapse
Affiliation(s)
- A. Niloya Troyee
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
23
|
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T, Zeng D, Zhao Y. Integrated Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Cold Tolerance in Litopenaeus vannamei. Int J Mol Sci 2023; 24:11573. [PMID: 37511332 PMCID: PMC10380378 DOI: 10.3390/ijms241411573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.
Collapse
Affiliation(s)
- Weilin Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Tiancong Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| |
Collapse
|
24
|
Zhang Y, Viejo M, Yakovlev I, Tengs T, Krokene P, Hytönen T, Grini PE, Fossdal CG. Major transcriptomic differences are induced by warmer temperature conditions experienced during asexual and sexual reproduction in Fragaria vesca ecotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1213311. [PMID: 37521931 PMCID: PMC10379642 DOI: 10.3389/fpls.2023.1213311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
A major challenge for plants in a rapidly changing climate is to adapt to rising temperatures. Some plants adapt to temperature conditions by generating an epigenetic memory that can be transmitted both meiotically and mitotically. Such epigenetic memories may increase phenotypic variation to global warming and provide time for adaptation to occur through classical genetic selection. The goal of this study was to understand how warmer temperature conditions experienced during sexual and asexual reproduction affect the transcriptomes of different strawberry (Fragaria vesca) ecotypes. We let four European F. vesca ecotypes reproduce at two contrasting temperatures (18 and 28°C), either asexually through stolon formation for several generations, or sexually by seeds (achenes). We then analyzed the transcriptome of unfolding leaves, with emphasis on differential expression of genes belonging to the epigenetic machinery. For asexually reproduced plants we found a general transcriptomic response to temperature conditions but for sexually reproduced plants we found less significant responses. We predicted several splicing isoforms for important genes (e.g. a SOC1, LHY, and SVP homolog), and found significantly more differentially presented splicing event variants following asexual vs. sexual reproduction. This difference could be due to the stochastic character of recombination during meiosis or to differential creation or erasure of epigenetic marks during embryogenesis and seed development. Strikingly, very few differentially expressed genes were shared between ecotypes, perhaps because ecotypes differ greatly both genetically and epigenetically. Genes related to the epigenetic machinery were predominantly upregulated at 28°C during asexual reproduction but downregulated after sexual reproduction, indicating that temperature-induced change affects the epigenetic machinery differently during the two types of reproduction.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marcos Viejo
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Paul E. Grini
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
25
|
Yoosefzadeh Najafabadi M, Hesami M, Rajcan I. Unveiling the Mysteries of Non-Mendelian Heredity in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1956. [PMID: 37653871 PMCID: PMC10221147 DOI: 10.3390/plants12101956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/30/2023]
Abstract
Mendelian heredity is the cornerstone of plant breeding and has been used to develop new varieties of plants since the 19th century. However, there are several breeding cases, such as cytoplasmic inheritance, methylation, epigenetics, hybrid vigor, and loss of heterozygosity (LOH), where Mendelian heredity is not applicable, known as non-Mendelian heredity. This type of inheritance can be influenced by several factors besides the genetic architecture of the plant and its breeding potential. Therefore, exploring various non-Mendelian heredity mechanisms, their prevalence in plants, and the implications for plant breeding is of paramount importance to accelerate the pace of crop improvement. In this review, we examine the current understanding of non-Mendelian heredity in plants, including the mechanisms, inheritance patterns, and applications in plant breeding, provide an overview of the various forms of non-Mendelian inheritance (including epigenetic inheritance, cytoplasmic inheritance, hybrid vigor, and LOH), explore insight into the implications of non-Mendelian heredity in plant breeding, and the potential it holds for future research.
Collapse
Affiliation(s)
| | | | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.N.); (M.H.)
| |
Collapse
|
26
|
Fang W, Fasano C, Perrella G. Unlocking the Secret to Higher Crop Yield: The Potential for Histone Modifications. PLANTS (BASEL, SWITZERLAND) 2023; 12:1712. [PMID: 37111933 PMCID: PMC10144255 DOI: 10.3390/plants12081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Histone modifications are epigenetic mechanisms, termed relative to genetics, and they refer to the induction of heritable changes without altering the DNA sequence. It is widely known that DNA sequences precisely modulate plant phenotypes to adapt them to the changing environment; however, epigenetic mechanisms also greatly contribute to plant growth and development by altering chromatin status. An increasing number of recent studies have elucidated epigenetic regulations on improving plant growth and adaptation, thus making contributions to the final yield. In this review, we summarize the recent advances of epigenetic regulatory mechanisms underlying crop flowering efficiency, fruit quality, and adaptation to environmental stimuli, especially to abiotic stress, to ensure crop improvement. In particular, we highlight the major discoveries in rice and tomato, which are two of the most globally consumed crops. We also describe and discuss the applications of epigenetic approaches in crop breeding programs.
Collapse
Affiliation(s)
- Weiwei Fang
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, MI, Italy;
| | - Carlo Fasano
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Develoment, (ENEA), 75026 Rotondella, MT, Italy;
| | - Giorgio Perrella
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, MI, Italy;
| |
Collapse
|
27
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|
28
|
Hörandl E. Geographical Parthenogenesis in Alpine and Arctic Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:844. [PMID: 36840192 PMCID: PMC9959270 DOI: 10.3390/plants12040844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The term "Geographical parthenogenesis" describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives, and tend to colonize previously glaciated areas. Several case studies on alpine and arctic plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Research of the last decade in several plant families has shed light on the question and evaluated some of the classical evolutionary theories. Results confirmed, in general, that the advantages of uniparental reproduction enable apomictic plants to re-colonize faster in larger and more northern distribution areas. Associated factors like polyploidy seem to contribute mainly to the spatial separation of sexual and asexual cytotypes. Ecological studies suggest a better tolerance of apomicts to colder climates and temperate extremes, whereby epigenetic flexibility and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Genotypic diversity appears to be of lesser importance for the distributional success of asexual plants. Classical evolutionary theories like a reduced pressure of biotic interactions in colder climates and hence an advantage to asexuals (Red Queen hypothesis) did not gain support from studies on plants. However, it is also still enigmatic why sexual outcrossing remains the predominant mode of reproduction also in alpine floras. Constraints for the origin of apomixis might play a role. Interestingly, some studies suggest an association of sexuality with abiotic stresses. Light stress in high elevations might explain why most alpine plants retain sexual reproduction despite other environmental factors that would favor apomixis. Directions for future research will be given.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
29
|
Venney CJ, Cayuela H, Rougeux C, Laporte M, Mérot C, Normandeau E, Leitwein M, Dorant Y, Præbel K, Kenchington E, Clément M, Sirois P, Bernatchez L. Genome-wide DNA methylation predicts environmentally driven life history variation in a marine fish. Evolution 2023; 77:186-198. [PMID: 36622671 DOI: 10.1093/evolut/qpac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023]
Abstract
Epigenetic modifications are thought to be one of the molecular mechanisms involved in plastic adaptive responses to environmental variation. However, studies reporting associations between genome-wide epigenetic changes and habitat-specific variations in life history traits (e.g., lifespan, reproduction) are still scarce, likely due to the recent application of methylome resequencing methods to non-model species. In this study, we examined associations between whole genome DNA methylation and environmentally driven life history variation in 2 lineages of a marine fish, the capelin (Mallotus villosus), from North America and Europe. In both lineages, capelin harbor 2 contrasting life history tactics (demersal vs. beach-spawning). Performing whole genome and methylome sequencing, we showed that life history tactics are associated with epigenetic changes in both lineages, though the effect was stronger in European capelin. Genetic differentiation between the capelin harboring different life history tactics was negligible, but we found genome-wide methylation changes in both lineages. We identified 9,125 European and 199 North American differentially methylated regions (DMRs) due to life history. Gene ontology (GO) enrichment analysis for both lineages revealed an excess of terms related to neural function. Our results suggest that environmental variation causes important epigenetic changes that are associated with contrasting life history tactics in lineages with divergent genetic backgrounds, with variable importance of genetic variation in driving epigenetic variation. Our study emphasizes the potential role of genome-wide epigenetic variation in adaptation to environmental variation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,University of Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Clément Rougeux
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Maëva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Kim Præbel
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ellen Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Pascal Sirois
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
30
|
Ma J, Zhang L, Shen F, Geng Y, Huang Y, Wu H, Fan Z, Hou R, Song Z, Yue B, Zhang X. Gene expressions between obligate bamboo-eating pandas and non-herbivorous mammals reveal converged specialized bamboo diet adaptation. BMC Genomics 2023; 24:23. [PMID: 36647013 PMCID: PMC9843897 DOI: 10.1186/s12864-023-09111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.
Collapse
Affiliation(s)
- Jinnan Ma
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.410739.80000 0001 0723 6903College of Continuing Education, Yunnan Normal University, Kunming, 650092 China
| | - Liang Zhang
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Fujun Shen
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Yang Geng
- grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Zhenxin Fan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Rong Hou
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Zhaobin Song
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Bisong Yue
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Xiuyue Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| |
Collapse
|
31
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Tonosaki K, Fujimoto R, Dennis ES, Raboy V, Osabe K. Will epigenetics be a key player in crop breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:958350. [PMID: 36247549 PMCID: PMC9562705 DOI: 10.3389/fpls.2022.958350] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Victor Raboy
- Independent Researcher Portland, Portland, OR, United States
| | - Kenji Osabe
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| |
Collapse
|
33
|
Evolution of plasticity prevents postinvasion extinction of a native forb. Proc Natl Acad Sci U S A 2022; 119:e2118866119. [PMID: 35914140 PMCID: PMC9371648 DOI: 10.1073/pnas.2118866119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Exotic plant invaders pose a serious threat to native plants. However, despite showing inferior competitive ability and decreased performance, native species often subsist in invaded communities. The decline of native populations is hypothesized to be halted and eventually reversed if adaptive evolutionary changes can keep up with the environmental stress induced by invaders, that is, when population extinction is prevented by evolutionary rescue (ER). Nevertheless, evidence for the role of ER in postinvasion persistence of native flora remains scarce. Here, I explored the population density of a native forb, Veronica chamaedrys, and evaluated the changes in the shade-responsive traits of its populations distributed along the invasion chronosequence of an exotic transformer, Heracleum mantegazzianum, which was replicated in five areas. I found a U-shaped population trajectory that paralleled the evolution of plasticity to shade. Whereas V. chamaedrys genotypes from intact, more open sites exhibited a shade-tolerance strategy (pronounced leaf area/mass ratio), reduced light availability at the invaded sites selected for a shade-avoidance strategy (greater internode elongation). Field experiments subsequently confirmed that the shifts in shade-response strategies were adaptive and secured postinvasion population persistence, as indicated by further modeling. Alternative ecological mechanisms (habitat improvement or arrival of immigrants) were less likely explanations than ER for the observed population rebound, although the contribution of maternal effects cannot be dismissed. These results suggest that V. chamaedrys survived because of adaptive evolutionary changes operating on the same timescale as the invasion-induced stress, but the generality of ER for postinvasion persistence of native plants remains unknown.
Collapse
|
34
|
Morgan BL, Donohue K. Parental
DNA
methylation influences plasticity of early offspring traits, but offspring
DNA
methylation influences trait plasticity throughout life. Ecol Evol 2022. [DOI: 10.1002/ece3.9224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Britany L. Morgan
- University Program in Ecology Duke University Durham North Carolina USA
- Center for Agricultural Synthetic Biology University of Tennessee Knoxville Tennessee USA
| | - Kathleen Donohue
- University Program in Ecology Duke University Durham North Carolina USA
- Biology Department Duke University Durham North Carolina USA
| |
Collapse
|
35
|
Xue W, Huang L, Yu F, Bezemer TM. Light condition experienced by parent plants influences the response of offspring to light via both parental effects and soil legacy effects. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wei Xue
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Lin Huang
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Fei‐Hai Yu
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - T. Martijn Bezemer
- Institute of Biology Leiden (IBL) Aboveground Belowground Interactions Group, Leiden University Leiden The Netherlands
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| |
Collapse
|
36
|
Ramos YJ, Felisberto JS, Gouvêa-Silva JG, de Souza UC, da Costa-Oliveira C, de Queiroz GA, Guimarães EF, Sadgrove NJ, de Lima Moreira D. Phenoplasticity of Essential Oils from Two Species of Piper (Piperaceae): Comparing Wild Specimens and Bi-Generational Monoclonal Cultivars. PLANTS 2022; 11:plants11131771. [PMID: 35807723 PMCID: PMC9269527 DOI: 10.3390/plants11131771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
This study tested the hypothesis that “clonal chemical heritability is a crucial factor for the conservation of chemical uniformity of Piper essential oils in controlled monoclonal cultivation”. We asexually propagated first and second-generation clones of two medicinal and aromatic species, Piper gaudichaudianum Kunth and Piper mollicomum Kunth (Piperaceae), for use as experimental models since they show high chemical plasticity in the wild. Leaves from wild specimens of both species, and their respective cultivated specimens, were hydrodistilled in a Clevenger-type apparatus to produce essential oils (EOs). EOs were chemically characterised by GC-MS and GC-FID. The analysis identified 63 compounds in EO of P. mollicomum, which were predominantly monoterpenes, and 59 in EO of P. gaudichaudianum, which were predominantly sesquiterpenes. Evaluation of chemical diversity and oxi-reduction indices showed a loss of chemical homology across the intergenerational cline. Chemometric analysis indicated higher chemical plasticity between wild and intergenerational specimens of P. mollicomum, than for P. gaudichaudianum. EO compounds were significantly less oxidized throughout the generations in both species. Therefore, while clonal heritability is crucial to chemical homology, significant chemical plasticity is likely to occur when cultivated from wild specimens.
Collapse
Affiliation(s)
- Ygor Jessé Ramos
- Natural Products and Biochemistry Laboratory, Botanical Garden of Rio de Janeiro Research Institute, Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil; (Y.J.R.); (J.S.F.); (J.G.G.-S.); (U.C.d.S.)
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - Jéssica Sales Felisberto
- Natural Products and Biochemistry Laboratory, Botanical Garden of Rio de Janeiro Research Institute, Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil; (Y.J.R.); (J.S.F.); (J.G.G.-S.); (U.C.d.S.)
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - João Gabriel Gouvêa-Silva
- Natural Products and Biochemistry Laboratory, Botanical Garden of Rio de Janeiro Research Institute, Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil; (Y.J.R.); (J.S.F.); (J.G.G.-S.); (U.C.d.S.)
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - Ulisses Carvalho de Souza
- Natural Products and Biochemistry Laboratory, Botanical Garden of Rio de Janeiro Research Institute, Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil; (Y.J.R.); (J.S.F.); (J.G.G.-S.); (U.C.d.S.)
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - Claudete da Costa-Oliveira
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - George Azevedo de Queiroz
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - Elsie Franklin Guimarães
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
| | - Nicholas John Sadgrove
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK
- Correspondence: (N.J.S.); (D.d.L.M.)
| | - Davyson de Lima Moreira
- Natural Products and Biochemistry Laboratory, Botanical Garden of Rio de Janeiro Research Institute, Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil; (Y.J.R.); (J.S.F.); (J.G.G.-S.); (U.C.d.S.)
- Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (C.d.C.-O.); (G.A.d.Q.); (E.F.G.)
- Correspondence: (N.J.S.); (D.d.L.M.)
| |
Collapse
|
37
|
Redman RS, Anderson JA, Biaggi TM, Malmberg KEL, Rienstra MN, Weaver JL, Rodriguez RJ. Symbiotic Modulation as a Driver of Niche Expansion of Coastal Plants in the San Juan Archipelago of Washington State. Front Microbiol 2022; 13:868081. [PMID: 35814642 PMCID: PMC9260653 DOI: 10.3389/fmicb.2022.868081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Modern evolutionary theory and population genetics posit that adaptation and habitat expansion of plants result from processes exclusive to their genomes. Here, we present studies showing that plants can grow across complex habitat gradients by modulating symbiotic associations with Class 2 fungal endophytes. Endophyte analysis of three native (Leymus mollis, Distichlis spicata, and Salicornia pacifica) and one invasive (Spartina anglica) plant growing across adjacent microhabitats in the San Juan Archipelago altered associations with Class 2 fungal endophytes in response to soil salinity levels. At the microhabitat interfaces where the gradation of salinity varied, the plants were colonized by endophytes from both microhabitats. A reciprocal transplant study along a salt gradient demonstrated that Leymus mollis (dunegrass) required endophytes indigenous to each microhabitat for optimal fitness and/or survival. In contrast, when dunegrass and Grindelia integrifolia (gumweed) were found growing in low salinity, but high drought habitats, these plant species had their own unique dominant endophyte association regardless of geographic proximity and conferred drought but not high salt stress tolerance. Modulation of endophyte abundance occurred in planta based on the ability of the symbiont to confer tolerance to the stress imposed on plants. The ability of an endophyte to confer appropriate stress tolerance resulted in a significant increase of in planta fungal abundance. Conversely, the inability of an endophyte to confer stress tolerance resulted in a decrease of in planta fungal abundance. Our studies indicate that Class 2 fungal endophytes can provide a symbiotic mechanism for niche expansion and phenotypic plasticity across environmental gradients.
Collapse
|
38
|
Campoy JG, Sobral M, Carro B, Lema M, Barreiro R, Retuerto R. Epigenetic and Phenotypic Responses to Experimental Climate Change of Native and Invasive Carpobrotus edulis. FRONTIERS IN PLANT SCIENCE 2022; 13:888391. [PMID: 35783928 PMCID: PMC9247612 DOI: 10.3389/fpls.2022.888391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Despite the recent discoveries on how DNA methylation could help plants to adapt to changing environments, the relationship between epigenetics and climate change or invasion in new areas is still poorly known. Here, we investigated, through a field experiment, how the new expected climate scenarios for Southern Europe, i.e., increased temperature and decreased rainfall, might affect global DNA methylation in relation to phenotypic variation in individuals of clonal plant, Carpobrotus edulis, from its native (Southern African) and invaded (northwestern Iberian Peninsula) area. Our results showed that changes in temperature and rainfall induced phenotypic but not global DNA methylation differences among plants, and the climatic effects were similar for plants coming from the native or invaded areas. The individuals from the Iberian Peninsula showed higher levels of global methylation than their native counterparts from South Africa. We also observed differences between natives and invasive phenotypes in traits related to the pattern of biomass partitioning and to the strategies for water uptake and use and found an epigenetic contribution to phenotypic changes in some leaf traits, especially on the nitrogen isotopic composition. We conclude that the increased temperature and decreased rainfall projected for Southern Europe during the course of the twenty-first century may foster phenotypic changes in C. edulis, possibly endowing this species with a higher ability to successful cope the rapid environmental shifts. The epigenetic and phenotypic divergence that we observed between native and invasive plants suggests an intraspecific functional variation during the process of invasion. This result could indicate that phenotypic plasticity and global DNA methylation are related to the colonization of new habitats. Our findings reinforce the importance of epigenetic plasticity on rapid adaptation of invasive clonal plants.
Collapse
Affiliation(s)
- Josefina G. Campoy
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mar Sobral
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Belén Carro
- Biocost, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, A Coruña, Spain
| | - Margarita Lema
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rodolfo Barreiro
- Biocost, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, A Coruña, Spain
| | - Rubén Retuerto
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
39
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
40
|
Eckert S, Herden J, Stift M, Durka W, van Kleunen M, Joshi J. Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.856453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological invasions may result from multiple introductions, which might compensate for reduced gene pools caused by bottleneck events, but could also dilute adaptive processes. A previous common-garden experiment showed heritable latitudinal clines in fitness-related traits in the invasive goldenrod Solidago canadensis in Central Europe. These latitudinal clines remained stable even in plants chemically treated with zebularine to reduce epigenetic variation. However, despite the heritability of traits investigated, genetic isolation-by-distance was non-significant. Utilizing the same specimens, we applied a molecular analysis of (epi)genetic differentiation with standard and methylation-sensitive (MSAP) AFLPs. We tested whether this variation was spatially structured among populations and whether zebularine had altered epigenetic variation. Additionally, we used genome scans to mine for putative outlier loci susceptible to selection processes in the invaded range. Despite the absence of isolation-by-distance, we found spatial genetic neighborhoods among populations and two AFLP clusters differentiating northern and southern Solidago populations. Genetic and epigenetic diversity were significantly correlated, but not linked to phenotypic variation. Hence, no spatial epigenetic patterns were detected along the latitudinal gradient sampled. Applying genome-scan approaches (BAYESCAN, BAYESCENV, RDA, and LFMM), we found 51 genetic and epigenetic loci putatively responding to selection. One of these genetic loci was significantly more frequent in populations at the northern range. Also, one epigenetic locus was more frequent in populations in the southern range, but this pattern was lost under zebularine treatment. Our results point to some genetic, but not epigenetic adaptation processes along a large-scale latitudinal gradient of S. canadensis in its invasive range.
Collapse
|
41
|
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022; 13:874648. [PMID: 35518351 PMCID: PMC9061961 DOI: 10.3389/fgene.2022.874648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
42
|
Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR. Epigenetics in Ecology, Evolution, and Conservation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.871791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigenetic variation is often characterized by modifications to DNA that do not alter the underlying nucleotide sequence, but can influence behavior, morphology, and physiological phenotypes by affecting gene expression and protein synthesis. In this review, we consider how the emerging field of ecological epigenetics (eco-epi) aims to use epigenetic variation to explain ecologically relevant phenotypic variation and predict evolutionary trajectories that are important in conservation. Here, we focus on how epigenetic data have contributed to our understanding of wild populations, including plants, animals, and fungi. First, we identified published eco-epi literature and found that there was limited taxonomic and ecosystem coverage and that, by necessity of available technology, these studies have most often focused on the summarized epigenome rather than locus- or nucleotide-level epigenome characteristics. We also found that while many studies focused on adaptation and heritability of the epigenome, the field has thematically expanded into topics such as disease ecology and epigenome-based ageing of individuals. In the second part of our synthesis, we discuss key insights that have emerged from the epigenetic field broadly and use these to preview the path toward integration of epigenetics into ecology. Specifically, we suggest moving focus to nucleotide-level differences in the epigenome rather than whole-epigenome data and that we incorporate several facets of epigenome characterization (e.g., methylation, chromatin structure). Finally, we also suggest that incorporation of behavior and stress data will be critical to the process of fully integrating eco-epi data into ecology, conservation, and evolutionary biology.
Collapse
|
43
|
Budd AM, Robins JB, Whybird O, Jerry DR. Epigenetics underpins phenotypic plasticity of protandrous sex change in fish. Ecol Evol 2022; 12:e8730. [PMID: 35342607 PMCID: PMC8931711 DOI: 10.1002/ece3.8730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022] Open
Abstract
Phenotypic plasticity is an important driver of species resilience. Often mediated by epigenetic changes, phenotypic plasticity enables individual genotypes to express variable phenotypes in response to environmental change. Barramundi (Lates calcarifer) are a protandrous (male-first) sequential hermaphrodite that exhibits plasticity in length-at-sex change between geographic regions. This plasticity is likely to be mediated by changes in DNA methylation (DNAm), a well-studied epigenetic modification. To investigate the relationships between length, sex, and DNAm in a sequential hermaphrodite, here, we compare DNAm in four conserved vertebrate sex-determining genes in male and female barramundi of differing lengths from three geographic regions of northern Australia. Barramundi first mature as male and later sex change to female upon the attainment of a larger body size; however, a general pattern of increasing female-specific DNAm markers with increasing length was not observed. Significant differences in DNAm between males and females of similar lengths suggest that female-specific DNAm arises rapidly during sex change, rather than gradually with fish growth. The findings also reveal that region-specific differences in length-at-sex change are accompanied by differences in DNAm and are consistent with variability in remotely sensed sea temperature and salinity. Together, these findings provide the first in situ evidence for epigenetically and environmentally mediated sex change in a protandrous hermaphrodite and offer significant insight into the molecular and ecological processes governing the marked and unique plasticity of sex in fish.
Collapse
Affiliation(s)
- Alyssa M Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville Qld Australia
| | - Julie B Robins
- Ecosciences Precinct Department of Agriculture and Fisheries Brisbane Qld Australia
| | - Olivia Whybird
- Northern Fisheries Centre Department of Agriculture and Fisheries Cairns Qld Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
- Tropical Futures Institute James Cook University Singapore City Singapore
| |
Collapse
|
44
|
Sammarco I, Münzbergová Z, Latzel V. DNA Methylation Can Mediate Local Adaptation and Response to Climate Change in the Clonal Plant Fragaria vesca: Evidence From a European-Scale Reciprocal Transplant Experiment. FRONTIERS IN PLANT SCIENCE 2022; 13:827166. [PMID: 35295625 PMCID: PMC8919072 DOI: 10.3389/fpls.2022.827166] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
The ongoing climate crisis represents a growing threat for plants and other organisms. However, how and if plants will be able to adapt to future environmental conditions is still debated. One of the most powerful mechanisms allowing plants to tackle the changing climate is phenotypic plasticity, which can be regulated by epigenetic mechanisms. Environmentally induced epigenetic variation mediating phenotypic plasticity might be heritable across (a)sexual generations, thus potentially enabling rapid adaptation to climate change. Here, we assessed whether epigenetic mechanisms, DNA methylation in particular, enable for local adaptation and response to increased and/or decreased temperature of natural populations of a clonal plant, Fragaria vesca (wild strawberry). We collected ramets from three populations along a temperature gradient in each of three countries covering the southern (Italy), central (Czechia), and northern (Norway) edges of the native European range of F. vesca. After clonal propagation and alteration of DNA methylation status of half of the plants via 5-azacytidine, we reciprocally transplanted clones to their home locality and to the other two climatically distinct localities within the country of their origin. At the end of the growing season, we recorded survival and aboveground biomass as fitness estimates. We found evidence for local adaptation in intermediate and cold populations in Italy and maladaptation of plants of the warmest populations in all countries. Plants treated with 5-azacytidine showed either better or worse performance in their local conditions than untreated plants. Application of 5-azacytidine also affected plant response to changed climatic conditions when transplanted to the colder or warmer locality than was their origin, and the response was, however, country-specific. We conclude that the increasing temperature will probably be the limiting factor determining F. vesca survival and distribution. DNA methylation may contribute to local adaptation and response to climatic change in natural ecosystems; however, its role may depend on the specific environmental conditions. Since adaptation mediated by epigenetic variation may occur faster than via natural selection on genetic variants, epigenetic adaptation might to some degree help plants in keeping up with the ongoing environmental crisis.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| |
Collapse
|
45
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
46
|
Yang A, Qi X, Wang QM, Wang H, Wang Y, Li L, Liu W, Qiao Y. The branch-thorn occurrence of Lycium ruthenicum is associated with leaf DNA hypermethylation in response to soil water content. Mol Biol Rep 2021; 49:1925-1934. [PMID: 34860320 DOI: 10.1007/s11033-021-07004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lycium ruthenicum is an eco-economic shrub which can exist in two forms, thorny and thornless under varying soil moisture conditions. The aim of this study was to determine if the two forms of L. ruthenicum were influenced by soil water content (SWC) and to test the three-way link among SWC, occurrence of branch-thorn and DNA methylation modification. METHODS AND RESULTS Here, pot experiment was carried out to reveal the influence of SWC on the occurrence of branch-thorn and then paraffin sections, scanning electron microscope and methylation-sensitive amplification polymorphism(MSAP) analysis were used to determine the three-way link among SWC, branch-thorn occurrence and DNA methylation. The results showed that (a) soil drought promoted the development of thorn primordium into branch-thorn and (b) branch-thorn covered axillary bud to protect it against drought and other stresses; (c) the branch-thorn occurrence response to drought was correlated with hypermethylation of CCGG sites and (d) thorny and thornless plants of a clone were distinguished successfully based on the MSAP profiles of their leaves. CONCLUSIONS Branch-thorns of the L. ruthenicum clone, which occurred in response to drought, covered axillary buds to protect them against drought and other stresses; thorn primordium of the clone did not develop into branch-thorn under the adequate soil moisture condition. The occurrence and absence of the branch-thorns were correlated with the hyper- and hypo-methylation, respectively. We proposed that the branch-thorn plasticity might be an adjustment strategy for the environment, which seems to support the theory of "Use in, waste out".
Collapse
Affiliation(s)
- Ailin Yang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinyu Qi
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qin-Mei Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Hao Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yucheng Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Lujia Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wen Liu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yang Qiao
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| |
Collapse
|
47
|
Azpeleta Tarancón A, Sánchez Meador AJ, Padilla T, Fulé PZ, Kim YS. Trends of forest and ecosystem services changes in the Mescalero Apache Tribal Lands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02459. [PMID: 34582603 DOI: 10.1002/eap.2459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Forests are critically important for the provision of ecosystem services. The Sacramento Mountains of New Mexico, USA, are a hotspot for conservation management and the Mescalero Apache Tribe's homeland. The multiple ecosystem services and functions and its high vulnerability to changes in climate conditions make their forests of ecological, cultural, and social importance. We used data from the Mescalero Apache Tribal Lands (MATL) Continuous Forest Inventory over 30 yr to analyze changes in the structure and composition of ecosystems as well as trends in ecosystem services. Many provisioning, regulating, cultural, and supporting services were shared among the MATL ecosystems and were tied to foundational species dominance, which could serve as a reliable indicator of ecosystem functioning. Our analysis indicates that the MATL are in an ongoing transition from conifer forests to woodlands with declines in two foundation species, quaking aspen and ponderosa pine, linked to past forest management and changing climate. In addition, we detected a decrease in species richness and tree size variability, amplifying the risk of forest loss in a rapid climatic change. Continuous permanent plots located on a dense grid (1 × 1 km) such as the ones monitored by the Bureau of Indian Affairs are the most detailed data available to estimate forests multiresource transitions over time. Native lands across the USA could serve as the leading edge of detecting decadal-scale forest changes and tracking climate impacts.
Collapse
Affiliation(s)
- Alicia Azpeleta Tarancón
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| | - Andrew J Sánchez Meador
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Thora Padilla
- Mescalero Apache Tribe, Division of Resource Management and Protection, Mescalero, New Mexico, 88340, USA
| | - Peter Z Fulé
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| | - Yeon-Su Kim
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
48
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
49
|
Harnessing epigenetic variability for crop improvement: current status and future prospects. Genes Genomics 2021; 44:259-266. [PMID: 34807374 DOI: 10.1007/s13258-021-01189-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The epigenetic mechanisms play critical roles in a vast diversity of biological processes of plants, including development and response to environmental challenges. Particularly, DNA methylation is a stable epigenetic signature that supplements the genetics-based view of complex life phenomena. In crop breeding, the decrease in genetic diversity due to artificial selection of conventional breeding methods has been a long-standing concern. Therefore, the epigenetic diversity has been proposed as a new resource for future crop breeding, which will be hereinafter referred to as epibreeding. DISCUSSION The induction of methylome changes has been performed in plants by several methods including chemical drugs treatment and tissue culture. Target-specific epigenetic engineering has been also attempted by exogenous RNAi mediated by virus-induced gene silencing and grafting. Importantly, the new and innovative techniques including the CRISPR-Cas9 system have recently been adopted in epigenetic engineering of plant genomes, facilitating the efforts for epibreeding. CONCLUSION In this review, we introduce several examples of natural and induced epigenetic changes impacting on agronomic traits and discuss the methods for generating epigenomic diversity and site-specific epigenetic engineering.
Collapse
|
50
|
Berdugo M, Vidiella B, Solé RV, Maestre FT. Ecological mechanisms underlying aridity thresholds in global drylands. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miguel Berdugo
- ICREA‐Complex Systems Lab UPF‐PRBB Barcelona Spain
- Institut de Biologia Evolutiva CSIC‐UPF Barcelona Spain
- Institute of Integrative Biology Department of Environment Systems Science ETH Zürich Zürich Switzerland
| | - Blai Vidiella
- ICREA‐Complex Systems Lab UPF‐PRBB Barcelona Spain
- Institut de Biologia Evolutiva CSIC‐UPF Barcelona Spain
| | - Ricard V. Solé
- ICREA‐Complex Systems Lab UPF‐PRBB Barcelona Spain
- Institut de Biologia Evolutiva CSIC‐UPF Barcelona Spain
- Santa Fe Institute Santa Fe NM USA
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef” Universidad de Alicante Alicante Spain
- Departamento de Ecología Universidad de Alicante Alicante Spain
| |
Collapse
|