1
|
Akimbekov N, Digel I, Kamenov B, Altynbay N, Tastambek K, Zha J, Tepecik A, Sakhanova SK. Screening halotolerant bacteria for their potential as plant growth-promoting and coal-solubilizing agents. Sci Rep 2025; 15:13138. [PMID: 40240509 PMCID: PMC12003788 DOI: 10.1038/s41598-025-98005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The bioconversion of salinized land into healthy agricultural systems by utilizing low-rank coal (LRC) is a strategic approach for sustainable agricultural development. The aims of this study were: (1) to isolate bacterial strains associated with the rhizosphere of native plants in coal-containing soils, (2) to characterize their plant growth-promoting (PGP) and coal-solubilizing capabilities under laboratory conditions and (3) to evaluate their influence on the germination and growth of chia seeds under saline stress. Fourteen bacterial cultures were isolated from the rhizosphere of Artemisia annua L. using culture media containing salt and coal. Based on their PGP activities (nitrogen fixation, phosphate solubilization, siderophore and indole-3-acetic acid production), five strains were selected, belonging to the genera Bacillus, Phyllobacterium, Arthrobacter, and Pseudomonas. Solubilization assays were conducted to confirm the ability of these strains to utilize coal efficiently. Finally, the selected strains were inoculated with chia seeds (Salvia hispanica L.) to evaluate their ameliorating effect under saline stress conditions in coal-containing media. Inoculation with A. subterraneus Y1 resulted in the highest germination and growth metrics of chia seeds. A positive but comparatively weaker response was observed with P. frederiksbergensis AMA1 and B. paramycoides Lb-1 as inoculants. Coal inoculated with halotolerant bacteria can serve as the foundation for humified organic matter in salt-affected environments. The selected halotolerant bacteria enhance coal biotransformation while exhibiting PGP traits.
Collapse
Affiliation(s)
- Nuraly Akimbekov
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- Scientific-Practical Center, West Kazakhstan Marat Ospanov Medical University, Maresyev Str. 68, 030019, Aktobe, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov Str. 29, 161200, Turkistan, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, 52428, Jülich, Germany.
| | - Bekzat Kamenov
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
| | - Nazym Altynbay
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan.
| | - Kuanysh Tastambek
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov Str. 29, 161200, Turkistan, Kazakhstan
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Shaanxi, 710021, Xi'an, China
| | - Atakan Tepecik
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, 52428, Jülich, Germany
| | - Svetlana K Sakhanova
- Scientific-Practical Center, West Kazakhstan Marat Ospanov Medical University, Maresyev Str. 68, 030019, Aktobe, Kazakhstan
| |
Collapse
|
2
|
Hwang HH, Huang YT, Chien PR, Huang FC, Wu CL, Chen LY, Hung SHW, Pan IC, Huang CC. A plant endophytic bacterium Burkholderia seminalis strain 869T2 increases plant growth under salt stress by affecting several phytohormone response pathways. BOTANICAL STUDIES 2025; 66:7. [PMID: 39904843 PMCID: PMC11794907 DOI: 10.1186/s40529-025-00453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Due to global warming and gradual climate change, plants are subjected to a wide range of environmental stresses, adversely affecting plant growth and production worldwide. Plants have developed various mechanisms to overpower these abiotic stresses, including salt stress, drought, and high light intensity. Apart from their own defense strategies, plants can get help from the beneficial endophytic bacteria inside host plants and assist them in enduring severe growth conditions. A previously isolated plant endophytic bacteria, Burkholderia seminalis 869T2, from vetiver grass can produce auxin, synthesize siderophore, and solubilize phosphate. The B. seminalis 869T2 can colonize inside host plants and increase the growth of bananas, Arabidopsis, and several leafy vegetables. RESULTS We further demonstrated that different growth parameters of Arabidopsis and pak choi plants were significantly increased after inoculating the B. seminalis 869T2 under normal, salt, and drought stress conditions compared to the mock-inoculated plants. Both transcriptome analysis and quantitative real-time PCR results showed that expression levels of genes related to phytohormone signal transduction pathways, including auxin, gibberellin, cytokinin, and abscisic acid were altered in Arabidopsis plants after inoculated with the strain 869T2 under salt stress, in comparison to the mock-inoculated control with salt treatments. Furthermore, the accumulation levels of hydrogen peroxide (H2O2), electrolyte leakage (EL), and malondialdehyde (MDA) were lower in the 869T2-inoculated Arabidopsis and pak choi plants than in control plants under salt and drought stresses. CONCLUSIONS The plant endophytic bacterium strain B. seminalis 869T2 may affect various phytohormone responses and reduce oxidative stress damage to increase salt and drought stress tolerances of host plants.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Yu-Ting Huang
- Department of Horticulture, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Chih-Lin Wu
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Liang-Yu Chen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Chun Pan
- Department of Horticulture, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Ramandi A, Jaghargh MB, Nourashrafeddin SM, Seifi A. Cupriavidus metallidurans: a species-non-specific and multifaceted plant growth-promoting bacteria. BMC PLANT BIOLOGY 2024; 24:1197. [PMID: 39702048 DOI: 10.1186/s12870-024-05927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Here we report growth promoting effects of Cupriavidus metallidurans on plants, and provide evidence for the underlying mechanisms of the growth promoting effects. In a series of greenhouse experiments on tomato, maize, and wheat, complemented with genetic analysis of Arabidopsis mutants, we tested the effects of the bacteria on seed germination, root and shoot growth, metal uptake, gas exchange parameters, and stomatal and xylem traits in maize, wheat, and tomato plants. Results showed that the bacteria substantially accelerate seed germination, increase shoot and root biomass, enhance photosynthetic performance, acidify the rhizosphere, increase metal uptake, and modulate stomatal and xylem traits. Analysis of Arabidopsis mutants impaired in auxin or ethylene perception and signaling revealed that the growth promoting effects of the bacteria and accelerating seed germination is independent of auxin and ethylene. We conclude that the bacteria acidify the rhizosphere and thereby increase metal uptake. It increases stomatal density and xylem area leading to increased stomatal conductance and hydraulic conductivity, leading to increased photosynthesis. Altogether, our data suggest C. metallidurans as a plant growth-promoting bacteria with striking abilities to manipulate different plant traits including stomatal density and xylem structure.
Collapse
Affiliation(s)
- Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehnoosh Baghdar Jaghargh
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
6
|
Kumar A, Naroju SP, Kumari N, Arsey S, Kumar D, Gubre DF, Roychowdhury A, Tyagi S, Saini P. The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Microbiol Res 2024; 286:127827. [PMID: 39002396 DOI: 10.1016/j.micres.2024.127827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024]
Abstract
Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.
Collapse
Affiliation(s)
- Ashok Kumar
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India.
| | - Sai Prakash Naroju
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, USA
| | - Neha Kumari
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Shivani Arsey
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Dilasha Fulchand Gubre
- Department of Crop Improvement, Indian Council of Agricultural Research Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Abhrajyoti Roychowdhury
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Sachin Tyagi
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| | - Pankaj Saini
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| |
Collapse
|
7
|
Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14484. [PMID: 39157905 DOI: 10.1111/ppl.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Climate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth-promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short- to medium-term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.
Collapse
Affiliation(s)
- Fátima Terán
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
8
|
Buragohain K, Tamuly D, Sonowal S, Nath R. Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria. Indian J Microbiol 2024; 64:287-303. [PMID: 39011023 PMCID: PMC11246373 DOI: 10.1007/s12088-024-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Drought stress is a significant environmental challenge affecting global agriculture, leading to substantial reductions in crop yields and overall plant productivity. It induces a cascade of physiological and biochemical changes in plants, including reduced water uptake, stomatal closure, and alterations in hormonal balance, all of which contribute to impaired growth and development. Drought stress diminishes crop production by impacting crucial plant metabolic pathways. Plants possess the ability to activate or deactivate specific sets of genes, leading to changes in their physiological and morphological characteristics. This adaptive response enables plants to evade, endure, or prevent the effects of drought stress. Drought stress triggers the activation of various genes, transcription factors, and signal transduction pathways in plants. In this context, imposing plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy. PGPR, employing diverse mechanisms such as osmotic adjustments, antioxidant activity, and phytohormone production, not only ensures the plant's survival during drought conditions but also enhances its overall growth. This comprehensive review delves into the various mechanisms through which PGPR enhances drought stress resistance, offering a thorough exploration of recent molecular and omics-based approaches to unravel the role of drought-responsive genes. The manuscript encompasses a detailed mechanistic analysis, along with the development of PGPR-based drought stress management in plants.
Collapse
Affiliation(s)
- Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
9
|
Legeay J, Errafii K, Ziami A, Hijri M. The rhizosphere of a drought-tolerant plant species in Morocco: A refuge of high microbial diversity with no taxon preference. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13254. [PMID: 38725134 PMCID: PMC11082428 DOI: 10.1111/1758-2229.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 05/13/2024]
Abstract
Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.
Collapse
Affiliation(s)
- Jean Legeay
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Khaoula Errafii
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Abdelhadi Ziami
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Mohamed Hijri
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
- Institut de Recherche en Biologie VégétaleDépartement de Sciences Biologiques, Université de MontréalMontrealQuebecCanada
| |
Collapse
|
10
|
Jabborova D, Mamarasulov B, Davranov K, Enakiev Y, Bisht N, Singh S, Stoyanov S, Garg AP. Diversity and Plant Growth Properties of Rhizospheric Bacteria Associated with Medicinal Plants. Indian J Microbiol 2024; 64:409-417. [PMID: 39010983 PMCID: PMC11246357 DOI: 10.1007/s12088-024-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 07/17/2024] Open
Abstract
Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of Bacillus, Rhizobium, Pseudomonas, Azotobacter, Burkholderia, Enterobacte, Microbacterium, Serratia, Burkholderia, and Beijerinckia. Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Qibray, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
- School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology (NAAC Accredited Grade 'A', Deemed to-be-University), NH-58, Modipuram, Meerut, 250110 India
| | - Bakhodir Mamarasulov
- Institute of Microbiology of the Academy of Sciences of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Kakhramon Davranov
- Institute of Microbiology of the Academy of Sciences of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Yuriy Enakiev
- Nikola Pushkarov Institute of Soil Science, Agrotechnologies and Plant Protection, Agricultural Academy, Sofia, Bulgaria
| | - Neha Bisht
- School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology (NAAC Accredited Grade 'A', Deemed to-be-University), NH-58, Modipuram, Meerut, 250110 India
| | - Sachidanand Singh
- Department of Biotechnology School of Energy and Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, 382007 Gujarat India
| | - Svilen Stoyanov
- Dobrudzha College of Technology, Technical University of Varna, 9010 Varna, Bulgaria
| | - Amar P Garg
- Swami Vivekanand Subharti University, NH-58, Subhartipuram, Meerut, 250005 India
| |
Collapse
|
11
|
Nourashrafeddin SM, Ramandi A, Seifi A. Rhizobacteria isolated from xerophyte Haloxylon ammodendron manipulate root system architecture and enhance drought and salt tolerance in Arabidopsis thaliana. Int Microbiol 2024; 27:337-347. [PMID: 37392309 DOI: 10.1007/s10123-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50-100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.
Collapse
Affiliation(s)
| | - Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
12
|
Abou Jaoudé R, Luziatelli F, Ficca AG, Ruzzi M. A plant's perception of growth-promoting bacteria and their metabolites. FRONTIERS IN PLANT SCIENCE 2024; 14:1332864. [PMID: 38328622 PMCID: PMC10848262 DOI: 10.3389/fpls.2023.1332864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Many recent studies have highlighted the importance of plant growth-promoting (rhizo)bacteria (PGPR) in supporting plant's development, particularly under biotic and abiotic stress. Most focus on the plant growth-promoting traits of selected strains and the latter's effect on plant biomass, root architecture, leaf area, and specific metabolite accumulation. Regarding energy balance, plant growth is the outcome of an input (photosynthesis) and several outputs (i.e., respiration, exudation, shedding, and herbivory), frequently neglected in classical studies on PGPR-plant interaction. Here, we discuss the primary evidence underlying the modifications triggered by PGPR and their metabolites on the plant ecophysiology. We propose to detect PGPR-induced variations in the photosynthetic activity using leaf gas exchange and recommend setting up the correct timing for monitoring plant responses according to the specific objectives of the experiment. This research identifies the challenges and tries to provide future directions to scientists working on PGPR-plant interactions to exploit the potential of microorganisms' application in improving plant value.
Collapse
Affiliation(s)
- Renée Abou Jaoudé
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | | | | | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
13
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
14
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
15
|
Kim H, Woo OG, Kim JB, Yoon SY, Kim JS, Sul WJ, Hwang JY, Lee JH. Flavobacterium sp. strain GJW24 ameliorates drought resistance in Arabidopsis and Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1257137. [PMID: 37900757 PMCID: PMC10613084 DOI: 10.3389/fpls.2023.1257137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Candidate strains that contribute to drought resistance in plants have been previously screened using approximately 500 plant growth-promoting rhizobacteria (PGPR) obtained from Gotjawal, South Korea, to further understand PGPR associated with plant drought tolerance. In this study, a selected PGPR candidate, Flavobacterium sp. strain GJW24, was employed to enhance plant drought tolerance. GJW24 application to Arabidopsis increased its survival rate under drought stress and enhanced stomatal closure. Furthermore, GJW24 promoted Arabidopsis survival under salt stress, which is highly associated with drought stress. GJW24 ameliorated the drought/salt tolerance of Brassica as well as Arabidopsis, indicating that the drought-resistance characteristics of GJW24 could be applied to various plant species. Transcriptome sequencing revealed that GJW24 upregulated a large portion of drought- and drought-related stress-inducible genes in Arabidopsis. Moreover, Gene Ontology analysis revealed that GJW24-upregulated genes were highly related to the categories involved in root system architecture and development, which are connected to amelioration of plant drought resistance. The hyper-induction of many drought/salt-responsive genes by GJW24 in Arabidopsis and Brassica demonstrated that the drought/salt stress tolerance conferred by GJW24 might be achieved, at least in part, through regulating the expression of the corresponding genes. This study suggests that GJW24 can be utilized as a microbial agent to offset the detrimental effects of drought stress in plants.
Collapse
Affiliation(s)
- Hani Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Ji Bin Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - So-Young Yoon
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Jong-Shik Kim
- Marine Industry Research Institute for East Sea Rim, Uljin, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
16
|
Dao J, Xing Y, Chen C, Chen M, Wang Z. Adaptation of rhizosphere bacterial communities of drought-resistant sugarcane varieties under different degrees of drought stress. Microbiol Spectr 2023; 11:e0118423. [PMID: 37698408 PMCID: PMC10580969 DOI: 10.1128/spectrum.01184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/12/2023] [Indexed: 09/13/2023] Open
Abstract
Sugarcane is highly sensitive to changes in moisture, and increased drought severely restricts its growth and productivity. Recent studies have shown that plant growth-promoting microorganisms are essential to reduce the adverse effects of environmental stresses, especially drought. However, our knowledge about the dynamics of rhizosphere microbial community structure in sugarcane under varying degrees of drought stress is limited. We analyzed the effects of different degrees of drought stress on the rhizosphere microbial communities of Zhongzhe 1(ZZ1) and Zhongzhe 6(ZZ6) with differences in drought resistance, by combining soil enzyme activity, nutrient content, and physiological and morphological characteristics of sugarcane roots. The results showed that rhizosphere bacterial community began to change at a field capacity of 50%, enriching the sugarcane rhizosphere with drought-resistant bacteria. The core strains of ZZ1 and ZZ6 rhizosphere enrichment were mainly Streptomycetales, Sphingomonadales, and Rhizobiales. However, compared to ZZ1, the changes in rhizosphere bacterial abundance in ZZ6 were primarily associated with the abundance of Streptomycetales as drought levels increased. Rhizobiales and Streptomycetales, enriched in the rhizosphere of ZZ6 under drought, were positively correlated with root tip number and total root length (TRL), increasing the distribution area of roots and, thus, improving water and nutrient uptake by the roots thereby enhancing the resistance of sugarcane to drought stress. This research enhances our understanding of the composition of the rhizosphere microbial community in sugarcane under different levels of drought stress and its interaction with the roots, thereby providing valuable insights for enhancing drought resistance in sugarcane. IMPORTANCE Drought stress is expected to further increase in intensity, frequency, and duration, causing substantial losses in sugarcane yields. Here, we exposed sugarcane to varying degrees of drought treatment during growth and quantified the eventual composition of the resulting sugarcane rhizosphere bacterial community groups. We found that sugarcane rhizosphere under mild drought began to recruit specific bacterial communities to resist drought stress and used the interactions of root tip number, total root length, and drought-resistant strains to improve sugarcane survival under drought. This research provides a theoretical basis for the rhizosphere microbiome to help sugarcane improve its resistance under different levels of drought stress.
Collapse
Affiliation(s)
- Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Chunyi Chen
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Mianhe Chen
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
18
|
Raj Y, Kumar A, Kumari S, Kumar R, Kumar R. Comparative Genomics and Physiological Investigations Supported Multifaceted Plant Growth-Promoting Activities in Two Hypericum perforatum L.-Associated Plant Growth-Promoting Rhizobacteria for Microbe-Assisted Cultivation. Microbiol Spectr 2023; 11:e0060723. [PMID: 37199656 PMCID: PMC10269543 DOI: 10.1128/spectrum.00607-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 μg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 μg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sareeka Kumari
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
Faist H, Trognitz F, Antonielli L, Symanczik S, White PJ, Sessitsch A. Potato root-associated microbiomes adapt to combined water and nutrient limitation and have a plant genotype-specific role for plant stress mitigation. ENVIRONMENTAL MICROBIOME 2023; 18:18. [PMID: 36918963 PMCID: PMC10012461 DOI: 10.1186/s40793-023-00469-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Due to climate change and reduced use of fertilizers combined stress scenarios are becoming increasingly frequent in crop production. In a field experiment we tested the effect of combined water and phosphorus limitation on the growth performance and plant traits of eight tetraploid and two diploid potato varieties as well as on root-associated microbiome diversity and functional potential. Microbiome and metagenome analysis targeted the diversity and potential functions of prokaryotes, fungi, plasmids, and bacteriophages and was linked to plant traits like tuber yield or timing of canopy closure. RESULTS The different potato genotypes responded differently to the combined stress and hosted distinct microbiota in the rhizosphere and the root endosphere. Proximity to the root, stress and potato genotype had significant effects on bacteria, whereas fungi were only mildly affected. To address the involvement of microbial functions, we investigated well and poorly performing potato genotypes (Stirling and Desirée, respectively) under stress conditions and executed a metagenome analysis of rhizosphere microbiomes subjected to stress and no stress conditions. Functions like ROS detoxification, aromatic amino acid and terpene metabolism were enriched and in synchrony with the metabolism of stressed plants. In Desirée, Pseudonocardiales had the genetic potential to take up assimilates produced in the fast-growing canopy and to reduce plant stress-sensing by degrading ethylene, but overall yield losses were high. In Stirling, Xanthomonadales had the genetic potential to reduce oxidative stress and to produce biofilms, potentially around roots. Biofilm formation could be involved in drought resilience and nutrient accessibility of Stirling and explain the recorded low yield losses. In the rhizosphere exposed to combined stress, the relative abundance of plasmids was reduced, and the diversity of phages was enriched. Moreover, mobile elements like plasmids and phages were affected by combined stresses in a genotype-specific manner. CONCLUSION Our study gives new insights into the interconnectedness of root-associated microbiota and plant stress responses in the field. Functional genes in the metagenome, phylogenetic composition and mobile elements play a role in potato stress adaption. In a poor and a well performing potato genotype grown under stress conditions, distinct functional genes pinpoint to a distinct stress sensing, water availability and compounds in the rhizospheres.
Collapse
Affiliation(s)
- Hanna Faist
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Friederike Trognitz
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Livio Antonielli
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Sarah Symanczik
- Soil Science Department, Research Institute of Organic Agriculture (FiBL), Ackerstraße 113, 5070 Frick, Switzerland
| | | | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
20
|
Abstract
Developmental processes in animals are influenced by colonization and/or signaling from microbial symbionts. Here, we show that bacteria from the environment are linked to development of a symbiotic organ that houses a bacterial consortium in female Hawaiian bobtail squid, Euprymna scolopes. In addition to the well-characterized light organ association with the bioluminescent bacterium Vibrio fischeri, female E. scolopes house a simple bacterial community in a reproductive organ, the accessory nidamental gland (ANG). In order to understand the influences of bacteria on ANG development, squid were raised in the laboratory under conditions where exposure to environmental microorganisms was experimentally manipulated. Under conditions where hosts were exposed to depleted environmental bacteria, ANGs were completely absent or stunted, a result independent of the presence of the light organ symbiont V. fischeri. When squid were raised in the laboratory with substrate from the host's natural environment containing the native microbiota, normal ANG development was observed, and the bacterial communities were similar to wild-caught animals. Analysis of the bacterial communities from ANGs and substrates of wild-caught and laboratory-raised animals suggests that certain bacterial groups, namely, the Verrucomicrobia, are linked to ANG development. The ANG community composition was also experimentally manipulated. Squid raised with natural substrate supplemented with a specific ANG bacterial strain, Leisingera sp. JC1, had high proportions of this strain in the ANG, suggesting that once ANG development is initiated, specific strains can be introduced and subsequently colonize the organ. Overall, these data suggest that environmental bacteria are required for development of the ANG in E. scolopes. IMPORTANCE Microbiota have profound effects on animal and plant development. Hosts raised axenically or without symbionts often suffer negative outcomes resulting in developmental defects or reduced organ function. Using defined experimental conditions, we demonstrate that environmental bacteria are required for the formation of a female-specific symbiotic organ in the Hawaiian bobtail squid, Euprymna scolopes. Although nascent tissues from this organ that are involved with bacterial recruitment formed initially, the mature organ failed to develop and was absent or severely reduced in sexually mature animals that were not exposed to microbiota from the host's natural environment. This is the first example of complete organ development relying on exposure to symbiotic bacteria in an animal host. This study broadens the use of E. scolopes as a model organism for studying the influence of beneficial bacteria on animal development.
Collapse
|
21
|
Lastochkina OV, Allagulova CR. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). APPL BIOCHEM MICRO+ 2023; 59:14-32. [DOI: 10.1134/s0003683823010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/23/2023]
|
22
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|
23
|
Narayanasamy S, Thankappan S, Kumaravel S, Ragupathi S, Uthandi S. Complete genome sequence analysis of a plant growth-promoting phylloplane Bacillus altitudinis FD48 offers mechanistic insights into priming drought stress tolerance in rice. Genomics 2023; 115:110550. [PMID: 36565792 DOI: 10.1016/j.ygeno.2022.110550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Bacillus altitudinis FD48 is a multifunctional plant growth-promoting bacterium isolated from the phylloplane of rice and survives at --10 bars of osmotic potential (--1.0 MPa). It also serves as an ideal PGPM against drought stress by triggering antioxidant defense mechanisms in rice. To further unravel the genetic determinants of osmotic stress tolerance and plant growth-promoting traits, the whole genome sequence of FD48 was compared with its related strains. The whole genome analysis revealed a single chromosome with a total length of 3,752,533 bp (3.7 Mb) and an average G + C ratio of 41.19%. A total of 4029 genes were predicted, of which 3964 (98.4%) were protein-encoding genes (PEGs) and 65 (1.6%) were non-protein-coding genes. The interaction of FD48 with the host plants is associated with many chemotactic and motility-related genes. The ability of FD48 to colonize plants and maintain plant growth under adverse environmental conditions was evidenced by the presence of genes for plant nutrient acquisition, phytohormone synthesis, trehalose, choline, and glycine betaine biosynthesis, microbial volatile organic compounds (acetoin synthesis), heat and cold shock chaperones, translation elongation factor TU (Ef-Tu), siderophore production, DEAD/DEAH boxes, and non- ribosomal peptide synthase clusters (bacilysin, fengycin, and bacitracin). This study sheds light on the drought stress-resilient mechanism, metabolic pathways and potential activity, and plant growth-promoting traits of B. altitudinis FD48 at the genetic level.
Collapse
Affiliation(s)
- Shobana Narayanasamy
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sugitha Thankappan
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sowmya Kumaravel
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sridar Ragupathi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India.
| |
Collapse
|
24
|
Nasif SO, Siddique AB, Siddique AB, Islam MM, Hassan O, Deepo DM, Hossain A. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis 2022. [DOI: 10.1007/s13199-022-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Yaghoubian I, Modarres-Sanavy SAM, Smith DL. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:55-66. [PMID: 36183672 DOI: 10.1016/j.plaphy.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Drought, as an important challenge in Iran, affects all growth indicators for plants. Application of plant growth promoting microorganisms (PGPM) can reduce the detrimental effects of water deficit on plants. Two separate field experiments were conducted at the Tehran and Hashtrood sites, Iran in 2019 to study the influences of Azotobacter chroococcum (Az) and Piriformospora indica (Pi) or Az + Pi on growth, physio-biochemical properties and oil content of soybean (Glycine max L.) under water deficit conditions. Although water deficit dramatically reduced the plant height, percent vegetation cover and relative water content (RWC), plots treated with Az and Pi exhibited higher performance mentioned traits at both sites. Besides, co-inoculation of Az and Pi increased proline in Tehran (48.85 and 29.24% in leaf and root, respectively) and Hashtrood (46.91 and 48.91% in leaf and root, respectively) under severe water deficit. Accumulation of glycine betaine, soluble sugars and proteins increased for plots which received Az and Pi. Under severe water deficit conditions, the co-inoculation with Az and Pi enhanced the oil content of soybean by 12.87 and 9.37% at Tehran and Hashtrood sites respectively. Application of Az and Pi resulted in reducing the adverse effects of water deficit on oil quality of soybean by increasing the linoleic and linolenic acid in oil. Moreover, inoculation of soybean with Az and Pi can provide drought tolerance by improving ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) activity. However, co-inoculation with Az and Pi was generally more effective in the alleviation of water deficit detrimental effects than sole inoculation with Az and Pi. Consequently, it can be a good approach for improving tolerance, growth and oil production of soybean under water deficit conditions.
Collapse
Affiliation(s)
- Iraj Yaghoubian
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | | | - Donald L Smith
- Department of Plant Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Fadiji AE, Orozco-Mosqueda MDC, Santos-Villalobos SDL, Santoyo G, Babalola OO. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223090. [PMID: 36432820 PMCID: PMC9698351 DOI: 10.3390/plants11223090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world's food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant's development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2568
| |
Collapse
|
27
|
Cortés-Patiño S, Vargas CD, Alvarez-Flórez F, Estrada-Bonilla G. Co-Inoculation of Plant-Growth-Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. PLANTS (BASEL, SWITZERLAND) 2022; 11:2543. [PMID: 36235409 PMCID: PMC9570635 DOI: 10.3390/plants11192543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Perennial ryegrass is a forage commonly used in temperate regions for livestock feeding; however, its yield is affected by reduced biomass production under water deficit. In a previous study, three co-inoculations of beneficial bacteria were selected based on their ability to promote plant growth under reduced water availability. The aim of this work was to elucidate some mechanisms by which the selected bacteria can help improve the response of perennial ryegrass to water deficit. Ryegrass plants were inoculated with each of the co-inoculations (Herbaspirillum sp. AP02−Herbaspirillum sp. AP21; Herbaspirillum sp. AP02−Pseudomonas sp. N7; Herbaspirillum sp. AP21−Azospirillum brasilense D7) and subjected to water deficit for 10 days. Physiological and biochemical measurements were taken 10 days after stress and shortly after rehydration. The results showed that bacteria had a positive effect on shoot biomass production, dissipation of excess energy, and proline and chlorophyll pigments during the days of water deficit (p < 0.05). The leaf water status of the inoculated plants was 12% higher than that of the uninoculated control after rehydration. Two Herbaspirillum strains showed greater potential for use as biofertilizers that help ameliorate the effects of water deficit.
Collapse
Affiliation(s)
- Sandra Cortés-Patiño
- Rothamsted Research, Protection of Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 #26-85, Bogotá 111321, Colombia
| | - Christian D. Vargas
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 #26-85, Bogotá 111321, Colombia
| | - Fagua Alvarez-Flórez
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 #26-85, Bogotá 111321, Colombia
| | - German Estrada-Bonilla
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Tibaitatá, Kilómetro 14 vía Mosquera-Bogotá, Mosquera 250047, Colombia
| |
Collapse
|
28
|
Management of Rhizosphere Microbiota and Plant Production under Drought Stress: A Comprehensive Review. PLANTS 2022; 11:plants11182437. [PMID: 36145836 PMCID: PMC9502053 DOI: 10.3390/plants11182437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
Drought generates a complex scenario worldwide in which agriculture should urgently be reframed from an integrative point of view. It includes the search for new water resources and the use of tolerant crops and genotypes, improved irrigation systems, and other less explored alternatives that are very important, such as biotechnological tools that may increase the water use efficiency. Currently, a large body of evidence highlights the role of specific strains in the main microbial rhizosphere groups (arbuscular mycorrhizal fungi, yeasts, and bacteria) on increasing the drought tolerance of their host plants through diverse plant growth-promoting (PGP) characteristics. With this background, it is possible to suggest that the joint use of distinct PGP microbes could produce positive interactions or additive beneficial effects on their host plants if their co-inoculation does not generate antagonistic responses. To date, such effects have only been partially analyzed by using single omics tools, such as genomics, metabolomics, or proteomics. However, there is a gap of information in the use of multi-omics approaches to detect interactions between PGP and host plants. This approach must be the next scale-jump in the study of the interaction of soil–plant–microorganism. In this review, we analyzed the constraints posed by drought in the framework of an increasing global demand for plant production, integrating the important role played by the rhizosphere biota as a PGP agent. Using multi-omics approaches to understand in depth the processes that occur in plants in the presence of microorganisms can allow us to modulate their combined use and drive it to increase crop yields, improving production processes to attend the growing global demand for food.
Collapse
|
29
|
Wang L, Gong L, Gan D, Li X, Yao J, Wang L, Qu J, Cong J, Zhang Y. Diversity, function and assembly of the Trifolium repens L. root-associated microbiome under lead stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129510. [PMID: 35816797 DOI: 10.1016/j.jhazmat.2022.129510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Root-associated microbial layers provide unique niches that drive specific microbe assemblies. While the rhizosphere microbiome has long received much attention, endophytic microbes remain largely elusive. Characterizing metal-tolerant plants' strategies for assembling different root-associated microbial layers is important for optimizing phytoremediation. Here, a pre-stratified rhizo-box assay was conducted with Trifolium repens L. under greenhouse conditions with artificial Pb-contaminated soil. Cultivation compensated for the pollution-driven loss of soil microbial biomass carbon, enzyme activities and abundance. The acid-soluble Pb proportion increased in the rhizosphere (from 6.5-13.7% to 7.1-18.0%) compared with bulk soil. Under stress, root-layer variants were a considerable source of variation in the microbiome, with the endosphere representing a unique and independent niche. A core set of root microbes were selected by T. repens, with Proteobacteria and Actinobacteria composed of diverse plant-growth-promoting bacteria (PGPBs) and metal-tolerant members. Cluster analysis revealed endosphere-enriched genera, with Rhizobium, Nocardioides, Novosphingobium, Phyllobacterium, and Sphingomonas being the most dominant. Finally, inferred microbial metabolic pathways suggested that these potential metal-tolerant PGPB species provide critical services to hosts, enabling them to tolerate and even flourish in contaminated soil. Our results provide novel insights for understanding how root-associated microbes help metal-tolerant plants cope with abiotic stress.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Gong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Deping Gan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinying Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiaxuan Yao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingmin Cong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
30
|
Ahmad HM, Fiaz S, Hafeez S, Zahra S, Shah AN, Gul B, Aziz O, Mahmood-Ur-Rahman, Fakhar A, Rafique M, Chen Y, Yang SH, Wang X. Plant Growth-Promoting Rhizobacteria Eliminate the Effect of Drought Stress in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:875774. [PMID: 36035658 PMCID: PMC9406510 DOI: 10.3389/fpls.2022.875774] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 07/21/2023]
Abstract
Plants evolve diverse mechanisms to eliminate the drastic effect of biotic and abiotic stresses. Drought is the most hazardous abiotic stress causing huge losses to crop yield worldwide. Osmotic stress decreases relative water and chlorophyll content and increases the accumulation of osmolytes, epicuticular wax content, antioxidant enzymatic activities, reactive oxygen species, secondary metabolites, membrane lipid peroxidation, and abscisic acid. Plant growth-promoting rhizobacteria (PGPR) eliminate the effect of drought stress by altering root morphology, regulating the stress-responsive genes, producing phytohormones, osmolytes, siderophores, volatile organic compounds, and exopolysaccharides, and improving the 1-aminocyclopropane-1-carboxylate deaminase activities. The use of PGPR is an alternative approach to traditional breeding and biotechnology for enhancing crop productivity. Hence, that can promote drought tolerance in important agricultural crops and could be used to minimize crop losses under limited water conditions. This review deals with recent progress on the use of PGPR to eliminate the harmful effects of drought stress in traditional agriculture crops.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Sumaira Hafeez
- Department of Plant Breeding and Molecular Genetics, University of Poonch, Rawalakot, Pakistan
| | - Sadaf Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Bushra Gul
- Department of Biosciences, University of Wah, Wah, Pakistan
| | - Omar Aziz
- Department of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Mahmood-Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ali Fakhar
- Department of Soil and Climate Change, The University of Haripur, Haripur, Pakistan
| | - Mazhar Rafique
- Department of Soil and Climate Change, The University of Haripur, Haripur, Pakistan
| | - Yinglong Chen
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
31
|
Fadiji AE, Santoyo G, Yadav AN, Babalola OO. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol 2022; 13:962427. [PMID: 35966701 PMCID: PMC9372271 DOI: 10.3389/fmicb.2022.962427] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, agriculture is under a lot of pressure due to rising population and corresponding increases in food demand. However, several variables, including improper mechanization, limited arable land, and the presence of several biotic and abiotic pressures, continually impact agricultural productivity. Drought is a notable destructive abiotic stress and may be the most serious challenge confronting sustainable agriculture, resulting in a significant crop output deficiency. Numerous morphological and physiological changes occur in plants as a result of drought stress. Hence, there is a need to create mitigation techniques since these changes might permanently harm the plant. Current methods used to reduce the effects of drought stress include the use of film farming, super-absorbent hydrogels, nanoparticles, biochar, and drought-resistant plant cultivars. However, most of these activities are money and labor-intensive, which offer limited plant improvement. The use of plant-growth-promoting bacteria (PGPB) has proven to be a preferred method that offers several indirect and direct advantages in drought mitigation. PGPB are critical biological elements which have favorable impacts on plants’ biochemical and physiological features, leading to improved sugar production, relative water content, leaf number, ascorbic acid levels, and photosynthetic pigment quantities. This present review revisited the impacts of PGPB in ameliorating the detrimental effects of drought stress on plants, explored the mechanism of action employed, as well as the major challenges encountered in their application for plant growth and development.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Eternal University, Baru Sahib, India
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
32
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|
33
|
Sarkar S, Kamke A, Ward K, Rudick AK, Baer SG, Ran Q, Feehan B, Thapa S, Anderson L, Galliart M, Jumpponen A, Johnson L, Lee STM. Bacterial but Not Fungal Rhizosphere Community Composition Differ among Perennial Grass Ecotypes under Abiotic Environmental Stress. Microbiol Spectr 2022; 10:e0239121. [PMID: 35442065 PMCID: PMC9241903 DOI: 10.1128/spectrum.02391-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kaitlyn Ward
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Aoesta K. Rudick
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Sara G. Baer
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - QingHong Ran
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Brandi Feehan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Shiva Thapa
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Lauren Anderson
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Matthew Galliart
- Department of Biological Sciences, Fort Hays State University, Hays, Kansas, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Loretta Johnson
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
34
|
Biologicals and their plant stress tolerance ability. Symbiosis 2022. [DOI: 10.1007/s13199-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
36
|
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:342-358. [PMID: 34863007 PMCID: PMC9300012 DOI: 10.1111/tpj.15619] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Miki Fujita
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
| | - Fuminori Takahashi
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Department of Biological Science and TechnologyGraduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijyuku, Katsushika‐kuTokyo125‐8585Japan
| | - Kazuko Yamaguchi‐Shinozaki
- Laboratory of Plant Molecular PhysiologyGraduate School of Agricultural and Life SciencesThe University of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
- Research Institute for Agricultural and Life SciencesTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Biotechonology CenterNational Chung Hsing University (NCHU)Taichung402Taiwan
| |
Collapse
|
37
|
Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides. Int J Mol Sci 2021; 22:ijms222312979. [PMID: 34884785 PMCID: PMC8657635 DOI: 10.3390/ijms222312979] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
Drought is a major abiotic stress imposed by climate change that affects crop production and soil microbial functions. Plants respond to water deficits at the morphological, biochemical, and physiological levels, and invoke different adaptation mechanisms to tolerate drought stress. Plant growth-promoting bacteria (PGPB) can help to alleviate drought stress in plants through various strategies, including phytohormone production, the solubilization of mineral nutrients, and the production of 1-aminocyclopropane-1-carboxylate deaminase and osmolytes. However, PGPB populations and functions are influenced by adverse soil factors, such as drought. Therefore, maintaining the viability and stability of PGPB applied to arid soils requires that the PGPB have to be protected by suitable coatings. The encapsulation of PGPB is one of the newest and most efficient techniques for protecting beneficial bacteria against unfavorable soil conditions. Coatings made from polysaccharides, such as sodium alginate, chitosan, starch, cellulose, and their derivatives, can absorb and retain substantial amounts of water in the interstitial sites of their structures, thereby promoting bacterial survival and better plant growth.
Collapse
|
38
|
Monohon SJ, Manter DK, Vivanco JM. Conditioned soils reveal plant-selected microbial communities that impact plant drought response. Sci Rep 2021; 11:21153. [PMID: 34707132 PMCID: PMC8551274 DOI: 10.1038/s41598-021-00593-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizobacterial communities can contribute to plant trait expression and performance, including plant tolerance against abiotic stresses such as drought. The conditioning of microbial communities related to disease resistance over generations has been shown to develop suppressive soils which aid in plant defense responses. Here, we applied this concept for the development of drought resistant soils. We hypothesized that soils conditioned under severe drought stress and tomato cultivation over two generations, will allow for plant selection of rhizobacterial communities that provide plants with improved drought resistant traits. Surprisingly, the plants treated with a drought-conditioned microbial inoculant showed significantly decreased plant biomass in two generations of growth. Microbial community composition was significantly different between the inoculated and control soils within each generation (i.e., microbial history effect) and for the inoculated soils between generations (i.e., conditioning effect). These findings indicate a substantial effect of conditioning soils on the abiotic stress response and microbial recruitment of tomato plants undergoing drought stress.
Collapse
Affiliation(s)
- Samantha J Monohon
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel K Manter
- USDA-ARS, Soil Management and Sugar Beet Research, Fort Collins, CO, USA
| | - Jorge M Vivanco
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
39
|
Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. [PMID: 34759901 PMCID: PMC8573356 DOI: 10.3389/fmicb.2021.743512] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms-plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions-in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress.
Collapse
Affiliation(s)
- Mousami Poudel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - Lilian A. S. Costa
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, Mao Z. Isolation, Identification, and Antibacterial Mechanisms of Bacillus amyloliquefaciens QSB-6 and Its Effect on Plant Roots. Front Microbiol 2021; 12:746799. [PMID: 34603274 PMCID: PMC8482014 DOI: 10.3389/fmicb.2021.746799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Apple replant disease (ARD) is a common problem in major apple planting areas, and biological factors play a leading role in its etiology. Here, we isolated the bacterial strain QSB-6 from the rhizosphere soil of healthy apple trees in a replanted orchard using the serial dilution method. Strain QSB-6 was provisionally identified as Bacillus amyloliquefaciens based on its morphology, physiological and biochemical characteristics, carbon source utilization, and chemical sensitivity. Maximum likelihood analysis based on four gene sequences [16S ribosomal RNA gene (16S rDNA), DNA gyrase subunit A (gyrA), DNA gyrase subunit B (gyrB), and RNA polymerase subunit B (rpoB)] from QSB-6 and other strains indicated that it had 100% homology with B. amyloliquefaciens, thereby confirming its identification. Flat standoff tests showed that strain QSB-6 had a strong inhibitory effect on Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Fusarium oxysporum, Alternaria alternata, Aspergillus flavus, Phoma sp., Valsa mali, Rhizoctonia solani, Penicillium brasilianum, and Albifimbria verrucaria, and it had broad-spectrum antibacterial characteristics. Extracellular metabolites from strain QSB-6 showed a strong inhibitory effect on Fusarium hyphal growth and spore germination, causing irregular swelling, atrophy, rupture, and cytoplasmic leakage of fungal hyphae. Analysis of its metabolites showed that 1,2-benzenedicarboxylic acid and benzeneacetic acid, 3- hydroxy-, methyl ester had good inhibitory effects on Fusarium, and increased the length of primary roots and the number of lateral roots of Arabidopsis thaliana plantlet. Pot experiments demonstrated that a QSB-6 bacterial fertilizer treatment (T2) significantly improved the growth of Malus hupehensis Rehd. seedlings. It increased root length, surface area, tips, and forks, respiration rate, protective enzyme activities, and the number of soil bacteria while reducing the number of soil fungi. Fermentation broth from strain QSB-6 effectively prevented root damage from Fusarium. terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR (qPCR) assays showed that the T2 treatment significantly reduced the abundance of Fusarium in the soil and altered the soil fungal community structure. In summary, B. amyloliquefaciens QSB-6 has a good inhibitory effect on Fusarium in the soil and can significantly promote plant root growth. It has great potential as a biological control agent against ARD.
Collapse
Affiliation(s)
- Yanan Duan
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Ran Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Rong Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Weitao Jiang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Xuesen Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Chengmiao Yin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Zhiquan Mao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| |
Collapse
|
41
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
42
|
Fiodor A, Singh S, Pranaw K. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms 2021; 9:1841. [PMID: 34576736 PMCID: PMC8472176 DOI: 10.3390/microorganisms9091841] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Combating the consequences of climate change is extremely important and critical in the context of feeding the world's population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.
Collapse
Affiliation(s)
- Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| |
Collapse
|
43
|
Kaur C, Gupta M, Garai S, Mishra SK, Chauhan PS, Sopory S, Singla-Pareek SL, Adlakha N, Pareek A. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ Microbiol 2021; 24:2817-2836. [PMID: 34435423 DOI: 10.1111/1462-2920.15743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.
Collapse
Affiliation(s)
- Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashank K Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Adlakha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
44
|
The Diversity of Culture-Dependent Gram-Negative Rhizobacteria Associated with Manihot esculenta Crantz Plants Subjected to Water-Deficit Stress. DIVERSITY 2021. [DOI: 10.3390/d13080366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a lack of studies on the root-associated bacterial microbiome of cassava plants. The identification and characterization of rhizobacteria can contribute to understanding the adaptation of the agriculturally important crop plants to abiotic stress. Rhizobacteria play a significant role in plants, as they can alleviate the drought stress by various mechanisms that enhance the plant growth under these stressor conditions. In this study, Gram-negative bacterial strains from the plant rhizosphere of cassava Manihot esculenta Crantz CIAT MCOL1734 variety subjected to water deprivation were isolated, characterized according to their morphological properties, and then identified by VITEK® 2. An increase in the diversity, abundance, and species richness of Gram-negative rhizobacterial community was found in cassava plants subjected to water-deficit stress. In total, 58 rhizobacterial strains were isolated from cassava plants. The identification process found that the bacteria belonged to 12 genera: Achromobacter, Acinetobacter, Aeromonas, Buttiauxella, Cronobacter, Klebsiella, Ochrobactrum, Pluralibacter, Pseudomonas, Rhizobium, Serratia, and Sphingomonas. Interestingly, Pseudomonas luteola and Ocrhobactrum anthropi were rhizobacteria isolated exclusively from plants submitted to drought conditions. The cassava roots constitute a great reservoir of Gram-negative bacteria with a remarkable potential for biotechnological application to improve the drought tolerance of plant crops under water-deficit conditions.
Collapse
|
45
|
Ali S, Xie L. Plant Growth Promoting and Stress Mitigating Abilities of Soil Born Microorganisms. Recent Pat Food Nutr Agric 2021; 11:96-104. [PMID: 31113355 DOI: 10.2174/2212798410666190515115548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 02/16/2019] [Indexed: 12/16/2022]
Abstract
Abiotic stresses affect the plant growth in different ways and at different developmental stages that reduce the crop yields. The increasing world population continually demands more crop yields; therefore it is important to use low-cost technologies against abiotic stresses to increase crop productivity. Soil microorganisms survive in the soil associated with plants in extreme condition. It was demonstrated that these beneficial microorganisms promote plant growth and development under various stresses. The soil microbes interact with the plant through rhizospheric or endophytic association and promote the plant growth through different processes such as nutrients mobilization, disease suppression, and hormone secretions. The microorganisms colonized in the rhizospheric region and imparted the abiotic stress tolerance by producing 1-aminocyclopropane-1- carboxylate (ACC) deaminase, antioxidant, and volatile compounds, inducing the accumulation of osmolytes, production of exopolysaccharide, upregulation or downregulation of stress genes, phytohormones and change the root morphology. A large number of these rhizosphere microorganisms are now patented. In the present review, an attempt was made to throw light on the mechanism of micro-organism that operates during abiotic stresses and promotes plant survival and productivity.
Collapse
Affiliation(s)
- Shahid Ali
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Linan Xie
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
46
|
Morcillo RJL, Manzanera M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites 2021; 11:337. [PMID: 34074032 PMCID: PMC8225083 DOI: 10.3390/metabo11060337] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions.
Collapse
Affiliation(s)
- Rafael J L Morcillo
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| | - Maximino Manzanera
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| |
Collapse
|
47
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
48
|
Bhattacharyya A, Pablo CHD, Mavrodi OV, Weller DM, Thomashow LS, Mavrodi DV. Rhizosphere plant-microbe interactions under water stress. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:65-113. [PMID: 34140134 DOI: 10.1016/bs.aambs.2021.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for the adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.
Collapse
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Clint H D Pablo
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David M Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda S Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
49
|
Farssi O, Saih R, El Moukhtari A, Oubenali A, Mouradi M, Lazali M, Ghoulam C, Bouizgaren A, Berrougui H, Farissi M. Synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on Moroccan alfalfa population grown under limited phosphorus availability. Saudi J Biol Sci 2021; 28:3870-3879. [PMID: 34220242 PMCID: PMC8241706 DOI: 10.1016/j.sjbs.2021.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
This study looked at the synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on the Moroccan alfalfa population (Oued Lmaleh) grown under symbiotic nitrogen fixation and limited phosphorus (P) availability. The experiment was conducted in a growth chamber and after two weeks of sowing, the young seedlings were inoculated with Sinorhizobium meliloti Rm41 alone or combined with a suspension of Pseudomonas alkylphenolica PF9. Then, the seedlings were submitted to limited available P (insoluble P using Ca3HPO4) versus a soluble P form (KH2PO4) at a final concentration of 250 μmol P·plant−1·week−1. After two months of P stress, the experiment was evaluated through some agro-physiological and biochemical parameters. The results indicated that the inoculation of alfalfa plants with Sinorhizobium strain alone or combined with Pseudomonas strain significantly (p < 0.001) improved the plant growth, the physiological and the biochemical traits focused in comparison to the uninoculated and P-stressed plants. For most sets of parameters, the improvement was more obvious in plants co-inoculated with both strains than in those inoculated with Sinorhizobium meliloti Rm41 alone. In fact, under limited P-availability, the co-inoculation with two strains significantly (p < 0.01) enhanced the growth of alfalfa plants evaluated by fresh and dry biomasses, plant height and leaf area. The results indicated also that the enhancement noted in plant growth was positively correlated with the shoot and root P contents. Furthermore, the incensement in plant P contents in response to bacterial inoculation improved cell membrane stability, reflected by low malonyldialdehyde (MDA) and electrolyte leakage (EL) contents, and photosynthetic-related parameters such as chlorophyll contents, the maximum quantum yield of PS II (Fv/Fm) and stomatal conductance (gs). Our findings suggest that Pseudomonas alkylphenolica PF9 can act synergistically with Sinorhizobium meliloti Rm41 in promoting alfalfa growth under low-P availability.
Collapse
Affiliation(s)
- Omar Farssi
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
- Polyvalent Laboratory on R&D, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Rabie Saih
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Ahmed El Moukhtari
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Aziz Oubenali
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Mohammed Mouradi
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Mohamed Lazali
- ERP Research Laboratory, Faculty of Natural and Life Sciences and Earth Sciences, University of Khemis Miliana, Algeria
| | - Cherki Ghoulam
- Unit of Plant Biotechnology and Agro-physiology of Symbiosis, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakesh & Mohamed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdelaziz Bouizgaren
- Unit of Plant Breeding, National Institute for Agronomic Research, Marrakesh (INRA-Marrakech), Morocco
| | - Hicham Berrougui
- Polyvalent Laboratory on R&D, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
| | - Mohamed Farissi
- Unit of Biotechnology and Plant-Microbe Interaction, Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Morocco
- Corresponding author at: Polydisciplinary Faculty of Beni-Mella, Sultan Moulay Slimane University, Mghila, PO Box 592, Beni-Mellal 23000, Morocco.
| |
Collapse
|
50
|
Jangra S, Chaudhary V, Yadav RC, Yadav NR. High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:31-53. [PMID: 36939738 PMCID: PMC9590473 DOI: 10.1007/s43657-020-00007-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of high-throughput phenotyping technologies has progressed considerably in the last 10 years. These technologies provide precise measurements of desired traits among thousands of field-grown plants under diversified environments; this is a critical step towards selection of better performing lines as to yield, disease resistance, and stress tolerance to accelerate crop improvement programs. High-throughput phenotyping techniques and platforms help unraveling the genetic basis of complex traits associated with plant growth and development and targeted traits. This review focuses on the advancements in technologies involved in high-throughput, field-based, aerial, and unmanned platforms. Development of user-friendly data management tools and softwares to better understand phenotyping will increase the use of field-based high-throughput techniques, which have potential to revolutionize breeding strategies and meet the future needs of stakeholders.
Collapse
Affiliation(s)
- Sumit Jangra
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Vrantika Chaudhary
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Ram C. Yadav
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|