1
|
Hersch‐Green EI, Fay PA, Hass HB, Smith NG. Mechanistic insights into plant community responses to environmental variables: genome size, cellular nutrient investments, and metabolic tradeoffs. THE NEW PHYTOLOGIST 2025; 245:2336-2349. [PMID: 39722202 PMCID: PMC11798896 DOI: 10.1111/nph.20374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Affecting biodiversity, plants with larger genome sizes (GS) may be restricted in nutrient-poor conditions. This pattern has been attributed to their greater cellular nitrogen (N) and phosphorus (P) investments and hypothesized nutrient-investment tradeoffs between cell synthesis and physiological attributes associated with growth. However, the influence of GS on cell size and functioning may also contribute to GS-dependent growth responses to nutrients. To test whether and how GS is associated with cellular nutrient, stomata, and/or physiological attributes, we examined > 500 forbs and grasses from seven grassland sites conducting a long-term N and P fertilization experiment. Larger GS plants had increased cellular nutrient contents and larger, but fewer stomata than smaller GS plants. Larger GS grasses (but not forbs) also had lower photosynthetic rates and water-use efficiencies. However, nutrients had no direct effect on GS-dependent physiological attributes and GS-dependent physiological changes likely arise from how GS influences cells. At the driest sites, large GS grasses displayed high water-use efficiency mostly because transpiration was reduced relative to photosynthesis in these conditions. We suggest that climatic conditions and GS-associated cell traits that modify physiological responses, rather than resource-investment tradeoffs, largely explain GS-dependent growth responses to nutrients (especially for grasses).
Collapse
Affiliation(s)
- Erika I. Hersch‐Green
- Department of Biological SciencesMichigan Technological UniversityHoughtonMI49931USA
| | - Philip A. Fay
- USDA ARS Grassland Soil and Water Research LabTempleTX76502USA
| | - Hailee B. Hass
- Department of Biological SciencesMichigan Technological UniversityHoughtonMI49931USA
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAL35487USA
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| |
Collapse
|
2
|
Givnish TJ. High metabolic rates drive tiny genomes in plants (and birds): a commentary on 'The smallest angiosperm genomes may be the price for effective traps of bladderworts'. ANNALS OF BOTANY 2024; 134:i-iv. [PMID: 39361413 DOI: 10.1093/aob/mcae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Zedek F, Šmerda J, Halasová A, Adamec L, Veleba A, Plačková K, Bureš P. The smallest angiosperm genomes may be the price for effective traps of bladderworts. ANNALS OF BOTANY 2024; 134:1131-1138. [PMID: 39012023 PMCID: PMC11688529 DOI: 10.1093/aob/mcae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Species of the carnivorous family Lentibulariaceae exhibit the smallest genomes in flowering plants. We explored the hypothesis that their minute genomes result from the unique mitochondrial cytochrome c oxidase (COX) mutation. The mutation may boost mitochondrial efficiency, which is especially useful for suction-bladder traps of Utricularia, but also increase DNA-damaging reactive oxygen species, leading to genome shrinkage through deletion-biased DNA repair. We aimed to explore the impact of this mutation on genome size, providing insights into genetic mutation roles in plant genome evolution under environmental pressures. METHODS We compiled and measured genome and mean chromosome sizes for 127 and 67 species, respectively, representing all three genera (Genlisea, Pinguicula and Utricularia) of Lentibulariaceae. We also isolated and analysed COX sequences to detect the mutation. Through phylogenetic regressions and Ornstein-Uhlenbeck models of trait evolution, we assessed the impact of the COX mutation on the genome and chromosome sizes across the family. RESULTS Our findings reveal significant correlations between the COX mutation and smaller genome and chromosome sizes. Specifically, species carrying the ancestral COX sequence exhibited larger genomes and chromosomes than those with the novel mutation. This evidence supports the notion that the COX mutation contributes to genome downsizing, with statistical analyses confirming a directional evolution towards smaller genomes in species harbouring these mutations. CONCLUSIONS Our study confirms that the COX mutation in Lentibulariaceae is associated with genome downsizing, probably driven by increased reactive oxygen species production and subsequent DNA damage requiring deletion-biased repair mechanisms. While boosting mitochondrial energy output, this genetic mutation compromises genome integrity and may potentially affect recombination rates, illustrating a complex trade-off between evolutionary advantages and disadvantages. Our results highlight the intricate processes by which genetic mutations and environmental pressures shape genome size evolution in carnivorous plants.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Aneta Halasová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lubomír Adamec
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Adam Veleba
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Klára Plačková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
4
|
Fedeli SB, Leibler S. Toward systems agroecology: Design and control of intercropping. Proc Natl Acad Sci U S A 2024; 121:e2415315121. [PMID: 39680765 DOI: 10.1073/pnas.2415315121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
In view of changing climatic conditions and disappearing natural resources such as fertile soil and water, exploring alternatives to today's industrial monocrop farming becomes essential. One promising farming practice is intercropping (IC), in which two or more crop species are grown together. Many experiments have shown that, under certain circumstances, IC can decrease soil erosion and fertilizer use, improve soil health and land management, while preserving crop production levels. However, there have been no quantitative approaches to predict, design, and control appropriate IC implementation for given particular environmental and farming conditions, and to assess its robustness. Here, we develop such an approach, based on methods and concepts developed in data science and systems biology. Our dataset groups the results of 2258 IC experiments, involving 274 pairs of 69 different plants. The data include 4 soil characteristics and 5 environmental and farming conditions, together with 8 traits for each of the two intercropped plants. We performed a dimensional reduction of the resulting 25-dimensional variable space and showed that, from a few quantities, one can predict IC yield relative to sole cultivation with good accuracy. For given environmental conditions, our computational approach can help to choose a companion plant and appropriate farming practices. It also indicates how to estimate the robustness of IC to external perturbations. This approach, together with its results, can be viewed as an initial step toward "systems agriculture," which would ultimately develop systems of multiple plant grown together in appropriately designed and controlled settings.
Collapse
Affiliation(s)
- Sirio Belga Fedeli
- Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540
| | - Stanislas Leibler
- Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540
- Laboratory of Living Matter, The Rockefeller University, New York, NY 10065
| |
Collapse
|
5
|
Morton JA, Arnillas CA, Biedermann L, Borer ET, Brudvig LA, Buckley YM, Cadotte MW, Davies K, Donohue I, Ebeling A, Eisenhauer N, Estrada C, Haider S, Hautier Y, Jentsch A, Martinson H, McCulley RL, Raynaud X, Roscher C, Seabloom EW, Stevens CJ, Vesela K, Wallace A, Leitch IJ, Leitch AR, Hersch-Green EI. Genome size influences plant growth and biodiversity responses to nutrient fertilization in diverse grassland communities. PLoS Biol 2024; 22:e3002927. [PMID: 39661599 PMCID: PMC11633961 DOI: 10.1371/journal.pbio.3002927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities. We found that after nitrogen treatment, species with larger genomes generally increased more in cover compared to those with smaller genomes, potentially due to a release from nutrient limitation. Responses were strongest for C3 grasses and in less seasonal, low precipitation environments, indicating that genome size effects on water-use-efficiency modulates genome size-nutrient interactions. Cumulatively, the data suggest that genome size is informative and improves predictions of species' success in grassland communities.
Collapse
Affiliation(s)
- Joseph A. Morton
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Carlos Alberto Arnillas
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lori Biedermann
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Lars A. Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Yvonne M. Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - Marc W. Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kendi Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Ian Donohue
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research Halle-Jena- Leipzig (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Catalina Estrada
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Yann Hautier
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Holly Martinson
- Department of Biology, McDaniel College, Westminster, Maryland, United States of America
| | - Rebecca L. McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRA, Université Paris-Cité, UPEC, Institute of Ecology and Environmental Sciences, Sorbonne Université - Paris, France
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research Halle-Jena- Leipzig (iDiv), Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Carly J. Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Katerina Vesela
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Alison Wallace
- Department of Biosciences, Minnesota State University Moorhead, Minnesota, United States of America
| | - Ilia J. Leitch
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Andrew R. Leitch
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Erika I. Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
6
|
Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, Leitch IJ. Bigger genomes provide environment-dependent growth benefits in grasses. THE NEW PHYTOLOGIST 2024; 244:2049-2061. [PMID: 39351620 DOI: 10.1111/nph.20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Increasing genome size (GS) has been associated with slower rates of DNA replication and greater cellular nitrogen (N) and phosphorus demands. Despite most plant species having small genomes, the existence of larger GS species suggests that such costs may be negligible or represent benefits under certain conditions. Focussing on the widespread and diverse grass family (Poaceae), we used data on species' climatic niches and growth rates under different environmental conditions to test for growth costs or benefits associated with GS. The influence of photosynthetic pathway, life history and evolutionary history on grass GS was also explored. We found that evolutionary history, photosynthetic pathway and life history all influence the distribution of grass species' GS. Genomes were smaller in annual and C4 species, the latter allowing for small cells necessary for C4 leaf anatomy. We found larger GS were associated with high N availability and, for perennial species, low growth-season temperature. Our findings reveal that GS is a globally important predictor of grass performance dependent on environmental conditions. The benefits for species with larger GS are likely due to associated larger cell sizes, allowing rapid biomass production where soil fertility meets N demands and/or when growth occurs via temperature-independent cell expansion.
Collapse
Affiliation(s)
- Kimberley J Simpson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
- Botany Department, Rhodes University, Makhanda, Eastern Cape, 6140, South Africa
| | - Sahr Mian
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Elisabeth J Forrestel
- Department of Viticultural and Enology, University of California, Davis, CA, 95616-5270, USA
| | - Jan Hackel
- Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Joseph A Morton
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Andrew R Leitch
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Ilia J Leitch
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
7
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
8
|
Castro N, Vilela B, Mata-Sucre Y, Marques A, Gagnon E, Lewis GP, Costa L, Souza G. Repeatome evolution across space and time: Unravelling repeats dynamics in the plant genus Erythrostemon Klotzsch (Leguminosae Juss). Mol Ecol 2024:e17510. [PMID: 39248108 DOI: 10.1111/mec.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024]
Abstract
Fluctuations in genomic repetitive fractions (repeatome) are known to impact several facets of evolution, such as ecological adaptation and speciation processes. Therefore, investigating the divergence of repetitive elements can provide insights into an important evolutionary force. However, it is not clear how the different repetitive element clades are impacted by the different factors such as ecological changes and/or phylogeny. To discuss this, we used the Neotropical legume genus Erythrostemon (Caesalpinioideae) as a model, given its ancient origin (~33 Mya), lineage-specific niche conservatism, macroecological heterogeneity, and disjunct distribution in Meso- and South American (MA and SA respectively) lineages. We performed a comparative repeatomic analysis of 18 Erythrostemon species to test the impact of environmental variables over repeats diversification. Overall, repeatome composition was diverse, with high abundances of satDNAs and Ty3/gypsy-Tekay transposable elements, predominantly in the MA and SA lineages respectively. However, unexpected repeatome profiles unrelated to the phylogeny/biogeography were found in a few MA (E. coccineus, E. pannosus and E. placidus) and SA (E. calycinus) species, related to reticulate evolution and incongruence between nuclear and plastid topology, suggesting ancient hybridizations. The plesiomorphic Tekay and satDNA pattern was altered in the MA-sensu stricto subclade with a striking genomic differentiation (expansion of satDNA and retraction of Tekay) associated with the colonization of a new environment in Central America around 20 Mya. Our data reveal that the current species-specific Tekay pool was the result of two bursts of amplification probably in the Miocene, with distinct patterns for the MA and SA repeatomes. This suggests a strong role of the Tekay elements as modulators of the genome-environment interaction in Erythrostemon, providing macroevolutionary insights about mechanisms of repeatome differentiation and plant diversification across space and time.
Collapse
Affiliation(s)
- Natália Castro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Bruno Vilela
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Gwilym P Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
Soto Gomez M, Brown MJM, Pironon S, Bureš P, Verde Arregoitia LD, Veselý P, Elliott TL, Zedek F, Pellicer J, Forest F, Nic Lughadha E, Leitch IJ. Genome size is positively correlated with extinction risk in herbaceous angiosperms. THE NEW PHYTOLOGIST 2024; 243:2470-2485. [PMID: 39080986 DOI: 10.1111/nph.19947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.
Collapse
Affiliation(s)
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Petr Bureš
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | | | - Pavel Veselý
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Tammy L Elliott
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - František Zedek
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Institut Botanic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Spain
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
10
|
Bureš P, Elliott TL, Veselý P, Šmarda P, Forest F, Leitch IJ, Nic Lughadha E, Soto Gomez M, Pironon S, Brown MJM, Šmerda J, Zedek F. The global distribution of angiosperm genome size is shaped by climate. THE NEW PHYTOLOGIST 2024; 242:744-759. [PMID: 38264772 DOI: 10.1111/nph.19544] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.
Collapse
Affiliation(s)
- Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Tammy L Elliott
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - Pavel Veselý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
| | | | | | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
| | | | - Jakub Šmerda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
11
|
Záveská E, Šída O, Leong-Škorničková J, Chumová Z, Trávníček P, Newman MF, Poulsen AD, Böhmová A, Chudáčková H, Fér T. Testing the large genome constraint hypothesis in tropical rhizomatous herbs: life strategies, plant traits and habitat preferences in gingers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1223-1238. [PMID: 37991980 DOI: 10.1111/tpj.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Plant species with large genomes tend to be excluded from climatically more extreme environments with a shorter growing season. Species that occupy such environments are assumed to be under natural selection for more rapid growth and smaller genome size (GS). However, evidence for this is available only for temperate organisms. Here, we study the evolution of GS in two subfamilies of the tropical family Zingiberaceae to find out whether species with larger genomes are confined to environments where the vegetative season is longer. We tested our hypothesis on 337 ginger species from regions with contrasting climates by correlating their GS with an array of plant traits and environmental variables. We revealed 16-fold variation in GS which was tightly related to shoot seasonality. Negative correlations of GS with latitude, temperature and precipitation emerged in the subfamily Zingiberoidae, demonstrating that species with larger GS are excluded from areas with a shorter growing season. In the subfamily Alpinioideae, GS turned out to be correlated with the type of stem and light requirements and its members cope with seasonality mainly by adaptation to shady and moist habitats. The Ornstein-Uhlenbeck models suggested that evolution in regions with humid climates favoured larger GS than in drier regions. Our results indicate that climate seasonality exerts an upper constraint on GS not only in temperate regions but also in the tropics, unless species with large genomes find alternative ways to escape from that constraint.
Collapse
Affiliation(s)
- E Záveská
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - O Šída
- Department of Botany, National Museum in Prague, Prague, Czech Republic
| | - J Leong-Škorničková
- The Herbarium, Singapore Botanic Gardens, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Z Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - P Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - M F Newman
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - A D Poulsen
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - A Böhmová
- Department of Botany, National Museum in Prague, Prague, Czech Republic
- Department of Botany, Charles University, Prague, Czech Republic
| | - H Chudáčková
- Department of Botany, Charles University, Prague, Czech Republic
| | - T Fér
- Department of Botany, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Walczyk AM, Hersch-Green EI. Genome-material costs and functional trade-offs in the autopolyploid Solidago gigantea (giant goldenrod) series. AMERICAN JOURNAL OF BOTANY 2023; 110:e16218. [PMID: 37551707 DOI: 10.1002/ajb2.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023]
Abstract
PREMISE Increased genome-material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient-dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype-dependent growth, metabolic, and/or resource-use trade-offs is limited. METHODS We grew diploid, autotetraploid, and autohexaploid Solidago gigantea plants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource-use. RESULTS Relative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material-cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N-use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water-use efficiencies than diploids, both of which were more pronounced under nutrient-limiting conditions. CONCLUSIONS N and P material costs increase with ploidy level, but material-cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material-cost constraints in polyploids that could impact ploidy (or genome-size)-specific performances, cytogeographic patterning, and multispecies community structuring.
Collapse
Affiliation(s)
- Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Biology Department, Gustavus Adolphus College, 800 West College Avenue, St. Peter, MN, 56082, USA
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
13
|
Pyšek P, Lučanová M, Dawson W, Essl F, Kreft H, Leitch IJ, Lenzner B, Meyerson LA, Pergl J, van Kleunen M, Weigelt P, Winter M, Guo WY. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. THE NEW PHYTOLOGIST 2023; 239:2389-2403. [PMID: 37438886 DOI: 10.1111/nph.19135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.
Collapse
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Bernd Lenzner
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Laura A Meyerson
- University of Rhode Island, Natural Resources Science, 9 East Alumni Avenue, Kingston, 02881, RI, USA
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, D-78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Wen-Yong Guo
- Research Centre for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Kołodziejczyk I, Tomczyk P, Kaźmierczak A. Endoreplication-Why Are We Not Using Its Full Application Potential? Int J Mol Sci 2023; 24:11859. [PMID: 37511616 PMCID: PMC10380914 DOI: 10.3390/ijms241411859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Endoreplication-a process that is common in plants and also accompanies changes in the development of animal organisms-has been seen from a new perspective in recent years. In the paper, we not only shed light on this view, but we would also like to promote an understanding of the application potential of this phenomenon in plant cultivation. Endoreplication is a pathway for cell development, slightly different from the classical somatic cell cycle, which ends with mitosis. Since many rounds of DNA synthesis take place within its course, endoreplication is a kind of evolutionary compensation for the relatively small amount of genetic material that plants possess. It allows for its multiplication and active use through transcription and translation. The presence of endoreplication in plants has many positive consequences. In this case, repeatedly produced copies of genes, through the corresponding transcripts, help the plant acquire the favorable properties for which proteins are responsible directly or indirectly. These include features that are desirable in terms of cultivation and marketing: a greater saturation of fruit and flower colors, a stronger aroma, a sweeter fruit taste, an accumulation of nutrients, an increased resistance to biotic and abiotic stress, superior tolerance to adverse environmental conditions, and faster organ growth (and consequently the faster growth of the whole plant and its biomass). The two last features are related to the nuclear-cytoplasmic ratio-the greater the content of DNA in the nucleus, the higher the volume of cytoplasm, and thus the larger the cell size. Endoreplication not only allows cells to reach larger sizes but also to save the materials used to build organelles, which are then passed on to daughter cells after division, thus ending the classic cell cycle. However, the content of genetic material in the cell nucleus determines the number of corresponding organelles. The article also draws attention to the potential practical applications of the phenomenon and the factors currently limiting its use.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/14, 90237 Lodz, Poland
| | - Przemysław Tomczyk
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96100 Skierniewice, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90237 Lodz, Poland
| |
Collapse
|
15
|
Roxo G, Brilhante M, Moura M, de Sequeira MM, Silva L, Costa JC, Vasconcelos R, Talhinhas P, Romeiras MM. Genome size variation within Crithmum maritimum: Clues on the colonization of insular environments. Ecol Evol 2023; 13:e10009. [PMID: 37091572 PMCID: PMC10116024 DOI: 10.1002/ece3.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Angiosperms present an astonishing diversity of genome sizes that can vary intra- or interspecifically. The remarkable new cytogenomic data shed some light on our understanding of evolution, but few studies were performed with insular and mainland populations to test possible correlations with dispersal, speciation, and adaptations to insular environments. Here, patterns of cytogenomic diversity were assessed among geographic samples (ca. 114) of Crithmum maritimum (Apiaceae), collected across the Azores and Madeira archipelagos, as well as in adjacent continental areas of Portugal. Using flow cytometry, the results indicated a significant intraspecific genome size variation, spanning from reduced sizes in the insular populations to larger ones in the mainland populations. Moreover, there was a tendency for an increase in genome size along the mainland populations, associated with lower temperatures, higher precipitation, and lower precipitation seasonality. However, this gradient might be the result of historic phylogeographical events associated with previous dispersal and extinction of local populations. Overall, our findings provided evidence that smaller genome sizes might play a critical role in the colonization of islands, corroborating other studies that argue that organisms with smaller genomes use fewer resources, having a selective advantage under insular environments. Although further studies are needed to improve our understanding of the mechanisms underlying genome size evolution on islands, conservation strategies must be promoted to protect the rich cytogenomic diversity found among C. maritimum populations, which occur in coastal areas that are particularly threatened by human activity, pollution, invasive species, and climate changes.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - Miguel Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Mónica Moura
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | | | - Luís Silva
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Raquel Vasconcelos
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| |
Collapse
|
16
|
Zhang HY, Lü XT, Wei CZ, Powell JR, Wang XB, Xing DL, Xu ZW, Li HL, Han XG. β-diversity in temperate grasslands is driven by stronger environmental filtering of plant species with large genomes. Ecology 2023; 104:e3941. [PMID: 36469035 DOI: 10.1002/ecy.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS) has long been hypothesized to potentially affect species' capacity to tolerate environmental stress and might therefore help drive community assembly. However, its role in driving β-diversity (i.e., spatial variability in species composition) remains unclear. We measured GS for 161 plant species and community composition across 52 sites spanning a 3200-km transect in the temperate grasslands of China. By correlating the turnover of species composition with environmental dissimilarity, we found that resource filtering (i.e., environmental dissimilarity that includes precipitation, and soil nitrogen and phosphorus concentrations) affected β-diversity patterns of large-GS species more than small-GS species. By contrast, geographical distance explained more variation of β-diversity for small-GS than for large-GS species. In a 10-year experiment manipulating levels of water, nitrogen, and phosphorus, adding resources increased plant biomass in species with large GS, suggesting that large-GS species are more sensitive to the changes in resource availability. These findings highlight the role of GS in driving community assembly and predicting species responses to global change.
Collapse
Affiliation(s)
- Hai-Yang Zhang
- College of Life Sciences, Hebei University, Baoding, China.,Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Cun-Zheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Xiao-Bo Wang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,Center for Grassland Microbiome, State Key Laboratory of Grassland Agroecosystems, and College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ding-Liang Xing
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhu-Wen Xu
- Department of Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huan-Long Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xing-Guo Han
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Elliott TL, Zedek F, Barrett RL, Bruhl JJ, Escudero M, Hroudová Z, Joly S, Larridon I, Luceño M, Márquez-Corro JI, Martín-Bravo S, Muasya AM, Šmarda P, Thomas WW, Wilson KL, Bureš P. Chromosome size matters: genome evolution in the cyperid clade. ANNALS OF BOTANY 2022; 130:999-1014. [PMID: 36342743 PMCID: PMC9851305 DOI: 10.1093/aob/mcac136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/03/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
Collapse
Affiliation(s)
- Tammy L Elliott
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Australian Botanic Garden, Locked Bag 6002, Mount Annan, New South Wales 2567, Australia
| | - Jeremy J Bruhl
- Botany and N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes 6, 41012 Seville, Spain
| | - Zdenka Hroudová
- Institute of Botany of the Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
- National Museum, Department of Botany, Cirkusová 1740, 193 00 Prague 9, Czech Republic
| | - Simon Joly
- Montreal Botanical Garden, 4101, Sherbrooke East, Montreal, QC H1X 2B2, Canada
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101, Sherbrooke East, Montreal, QC H1X 2B2, Canada
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Modesto Luceño
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - José Ignacio Márquez-Corro
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - Santiago Martín-Bravo
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africaand
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | | | - Karen L Wilson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Australian Botanic Garden, Locked Bag 6002, Mount Annan, New South Wales 2567, Australia
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
18
|
Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X, Jiang Y, Leitch AR, Wei C. Plant genome size modulates grassland community responses to multi-nutrient additions. THE NEW PHYTOLOGIST 2022; 236:2091-2102. [PMID: 36110049 DOI: 10.1111/nph.18496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Grassland ecosystems cover c. 40% of global land area and contain c. 40% of soil organic carbon. Understanding the effects of adding nutrients to grasslands is essential because they provide much of our food, support diverse ecosystem services and harbor rich biodiversity. Using the meadow steppe (grassland) study site of Inner Mongolia, we manipulated seven key nutrients and a cocktail of micronutrients to examine their effects on grassland biomass productivity and diversity. The results, explained in structural equation models, link two previously disparate hypotheses in grassland ecology: (1) the light asymmetry competition hypothesis and (2) the genome size-nutrient interaction hypothesis. We show that aboveground net primary productivity increases predominantly from species with large genome sizes with the addition of nitrogen, and nitrogen plus phosphorus. This drives an asymmetric competition for light, causing a decline in species richness mainly in species with small genome sizes. This dynamic is likely to be caused by the nutrient demands of the nucleus and/or the scaling effects of nuclear size on cell size which impact water use efficiency. The model will help inform the best management approaches to reverse the rapid and unprecedented degradation of grasslands globally.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jianxia Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Maïté S Guignard
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Dong Cao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyuan Zhao
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Huanlong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Walczyk AM, Hersch-Green EI. Do water and soil nutrient scarcities differentially impact the performance of diploid and tetraploid Solidago gigantea (Giant Goldenrod, Asteraceae)? PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1031-1042. [PMID: 35727918 DOI: 10.1111/plb.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype-specific trait responses differ based on water and/or nutrient availability. Diploid and autotetraploid Solidago gigantea (Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above- and belowground biomass, R/S), and physiological (Anet , E, WUE) responses were measured. Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high-water and nutrient treatments were larger, plants grown in low-water or high-nutrient treatments had higher WUE but lower E, and Anet and E rates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and larger Anet than diploids. Nutrient and water availability could influence intra- and interspecific competitive outcomes. Although S. gigantea cytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploid S. gigantea might render them more competitive for resources and niche space than diploids.
Collapse
Affiliation(s)
- A M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - E I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
20
|
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. TRENDS IN PLANT SCIENCE 2021; 26:1039-1049. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Angiosperms show a remarkable range in genome size (GS), yet most species have small genomes, despite the frequency of polyploidy and repeat amplification in the ancestries of most lineages. It has been suggested that larger genomes incur costs that have driven selection for GS reduction, although the nature of these costs and how they might impact selection remain unclear. We explore potential costs of increased GS encompassing impacts on minimum cell size with consequences for photosynthesis and water-use efficiency and effects of greater nitrogen and phosphorus demands of the nucleus leading to more severe trade-offs with photosynthesis. We suggest that nutrient-, water-, and/or CO2-stressed conditions might favour species with smaller genomes, with implications for species' ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Lubna Faizullah
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Joseph A Morton
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | - Ilia J Leitch
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.
| |
Collapse
|
21
|
Jiang M, Yang X, Wang T, Xu Y, Dong K, He L, Liu Y, Wang J, Zhao N, Gao Y. A direct comparison of the effects and mechanisms between species richness and genotype richness in a dominant species on multiple ecosystem functions. Ecol Evol 2021; 11:14125-14134. [PMID: 34707845 PMCID: PMC8525171 DOI: 10.1002/ece3.8125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Both species (interspecific) richness and genotype (intraspecific) richness of dominant species have significant effects on ecosystem functioning directly or indirectly by regulating plant community functional structure. However, the similarities and differences of the effects between inter- and intraspecific levels are poorly understood. In this study, we selected the main species in the semi-arid Eurasian typical steppe as study objects and simultaneously carried out a species richness experiment and a genotype richness experiment of Stipa grandis which is one of the dominant species in this region. We investigated how plants at each of the two richness levels affected multiple ecosystem functions (biomass, soil C, N and P cycles) directly and indirectly by regulating community functional structure, including community-weighted mean trait values (CWM) and functional dispersion (FDis). Both species richness and genotype richness showed significant direct effects on soil P cycle, and FDis significantly mediated the responses of aboveground biomass and soil N cycle to the changes of species richness and the response of belowground biomass to the changes of genotype richness in S. grandis. CWM showed significant effects on biomass in the species richness experiment and soil nutrient cycles in the genotype richness experiment, independently of the levels of plant richness. These findings provide experimental insights of intraspecific richness effects into the relationships between biodiversity and ecosystem functioning, and highlight the importance of conserving the intraspecific diversity of dominant species in the semi-arid steppe regions.
Collapse
Affiliation(s)
- Man Jiang
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Xue Yang
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Tao Wang
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Yujuan Xu
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Ke Dong
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Luoyang He
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Yulin Liu
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Jinlong Wang
- College of Agronomy & Resources and EnvironmentTianjin Agricultural UniversityTianjinChina
| | - Nianxi Zhao
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| | - Yubao Gao
- Department of Plant Biology and EcologyCollege of Life ScienceNankai UniversityTianjinChina
| |
Collapse
|
22
|
Liddell LG, Lee WG, Dale EE, Meudt HM, Matzke NJ. Pioneering polyploids: the impact of whole-genome duplication on biome shifting in New Zealand Coprosma (Rubiaceae) and Veronica (Plantaginaceae). Biol Lett 2021; 17:20210297. [PMID: 34464540 PMCID: PMC8437022 DOI: 10.1098/rsbl.2021.0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
The role of whole-genome duplication (WGD) in facilitating shifts into novel biomes remains unknown. Focusing on two diverse woody plant groups in New Zealand, Coprosma (Rubiaceae) and Veronica (Plantaginaceae), we investigate how biome occupancy varies with ploidy level, and test the hypothesis that WGD increases the rate of biome shifting. Ploidy levels and biome occupancy (forest, open and alpine) were determined for indigenous species in both clades. The distribution of low-ploidy (Coprosma: 2x, Veronica: 6x) versus high-ploidy (Coprosma: 4-10x, Veronica: 12-18x) species across biomes was tested statistically. Estimation of the phylogenetic history of biome occupancy and WGD was performed using time-calibrated phylogenies and the R package BioGeoBEARS. Trait-dependent dispersal models were implemented to determine support for an increased rate of biome shifting among high-ploidy lineages. We find support for a greater than random portion of high-ploidy species occupying multiple biomes. We also find strong support for high-ploidy lineages showing a three- to eightfold increase in the rate of biome shifts. These results suggest that WGD promotes ecological expansion into new biomes.
Collapse
Affiliation(s)
- Luke G. Liddell
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - William G. Lee
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Ecosystems and Conservation, Manaaki Whenua - Landcare Research Dunedin, Dunedin 9054, New Zealand
| | - Esther E. Dale
- Ecosystems and Conservation, Manaaki Whenua - Landcare Research Dunedin, Dunedin 9054, New Zealand
- Department of Botany, University of Otago, Dunedin 9054, New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington 6011, New Zealand
| | - Nicholas J. Matzke
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
23
|
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1003-1015. [PMID: 34077584 DOI: 10.1111/tpj.15363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Collapse
Affiliation(s)
- Xiaotong Wang
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Joseph A Morton
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, Barcelona, 08038, Spain
| | | | - Andrew R Leitch
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
24
|
Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. ANNALS OF BOTANY 2021; 127:887-902. [PMID: 33675229 PMCID: PMC8225284 DOI: 10.1093/aob/mcab028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/21/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS We investigate patterns of evolution of genome size across a morphologically and ecologically diverse clade of Brassicaceae, in relation to ecological and life history traits. While numerous hypotheses have been put forward regarding autecological and environmental factors that could favour small vs. large genomes, a challenge in understanding genome size evolution in plants is that many hypothesized selective agents are intercorrelated. METHODS We contribute genome size estimates for 47 species of Streptanthus Nutt. and close relatives, and take advantage of many data collections for this group to assemble data on climate, life history, soil affinity and composition, geographic range and plant secondary chemistry to identify simultaneous correlates of variation in genome size in an evolutionary framework. We assess models of evolution across clades and use phylogenetically informed analyses as well as model selection and information criteria approaches to identify variables that can best explain genome size variation in this clade. KEY RESULTS We find differences in genome size and heterogeneity in its rate of evolution across subclades of Streptanthus and close relatives. We show that clade-wide genome size is positively associated with climate seasonality and glucosinolate compounds. Model selection and information criteria approaches identify a best model that includes temperature seasonality and fraction of aliphatic glucosinolates, suggesting a possible role for genome size in climatic adaptation or a role for biotic interactions in shaping the evolution of genome size. We find no evidence supporting hypotheses of life history, range size or soil nutrients as forces shaping genome size in this system. CONCLUSIONS Our findings suggest climate seasonality and biotic interactions as potential forces shaping the evolution of genome size and highlight the importance of evaluating multiple factors in the context of phylogeny to understand the effect of possible selective agents on genome size.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
- Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA
- Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, USA
| | - Patrick J McIntyre
- Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA
- NatureServe, Boulder, CO, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, USA
- DynaMo Centre of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Sharon Y Strauss
- Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
25
|
Wang D, Zheng Z, Li Y, Hu H, Wang Z, Du X, Zhang S, Zhu M, Dong L, Ren G, Yang Y. Which factors contribute most to genome size variation within angiosperms? Ecol Evol 2021; 11:2660-2668. [PMID: 33767827 PMCID: PMC7981209 DOI: 10.1002/ece3.7222] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Genome size varies greatly across the flowering plants and has played an important role in shaping their evolution. It has been reported that many factors correlate with the variation in genome size, but few studies have systematically explored this at the genomic level. Here, we scan genomic information for 74 species from 74 families in 38 orders covering the major groups of angiosperms (the taxonomic information was acquired from the latest Angiosperm Phylogeny Group (APG IV) system) to evaluate the correlation between genome size variation and different genome characteristics: polyploidization, different types of repeat sequence content, and the dynamics of long terminal repeat retrotransposons (LTRs). Surprisingly, we found that polyploidization shows no significant correlation with genome size, while LTR content demonstrates a significantly positive correlation. This may be due to genome instability after polyploidization, and since LTRs occupy most of the genome content, it may directly result in most of the genome variation. We found that the LTR insertion time is significantly negatively correlated with genome size, which may reflect the competition between insertion and deletion of LTRs in each genome, and that the old insertions are usually easy to recognize and eliminate. We also noticed that most of the LTR burst occurred within the last 3 million years, a timeframe consistent with the violent climate fluctuations in the Pleistocene. Our findings enhance our understanding of genome size evolution within angiosperms, and our methods offer immediate implications for corresponding research in other datasets.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Ying Li
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Xin Du
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Longwei Dong
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| |
Collapse
|
26
|
Yoo MJ, Lee BY, Kim S, Lim CE. Phylogenomics With Hyb-Seq Unravels Korean Hosta Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:645735. [PMID: 34305959 PMCID: PMC8296909 DOI: 10.3389/fpls.2021.645735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/16/2021] [Indexed: 05/14/2023]
Abstract
The genus Hosta (Agavoideae and Asparagaceae) is one of the most popular landscaping and ornamental plants native to temperate East Asia. Their popularity has led to extensive hybridization to develop various cultivars. However, their long history of hybridization, cultivation, and selection has brought about taxonomic confusion in the Hosta species delimitation along with their indistinguishable morphology. Here, we conducted the first broad phylogenetic analyses of Hosta species based on the most comprehensive genomic data set to date. To do so, we captured 246 nuclear gene sequences and plastomes from 55 accessions of Korean Hosta species using the Hyb-Seq method. As a result, this study provides the following novel and significant findings: (1) phylogenetic analyses of the captured sequences retrieved six species of Hosta in South Korea compared to five to eleven species based on the previous studies, (2) their phylogenetic relationships suggested that the large genome size was ancestral and the diversification of Korean Hosta species was accompanied by decreases in genome sizes, (3) comparison between nuclear genes and plastome revealed several introgressive hybridization events between Hosta species, and (4) divergence times estimated here showed that Hosta diverged 35.59 million years ago, while Korean Hosta species rapidly diversified during the late Miocene. Last, we explored whether these genomic data could be used to infer the origin of cultivars. In summary, this study provides the most comprehensive genomic resources to be used in phylogenetic, population, and conservation studies of Hosta, as well as for unraveling the origin of many cultivars.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Byoung-Yoon Lee
- National Institute of Biological Resources, Incheon, South Korea
| | - Sangtae Kim
- Department of Biotechnology, Sungshin Women’s University, Seoul, South Korea
| | - Chae Eun Lim
- National Institute of Biological Resources, Incheon, South Korea
- *Correspondence: Chae Eun Lim,
| |
Collapse
|
27
|
Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K. Intricate Distribution Patterns of Six Cytotypes of Allium oleraceum at a Continental Scale: Niche Expansion and Innovation Followed by Niche Contraction With Increasing Ploidy Level. FRONTIERS IN PLANT SCIENCE 2020; 11:591137. [PMID: 33362819 PMCID: PMC7755979 DOI: 10.3389/fpls.2020.591137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/06/2020] [Indexed: 05/23/2023]
Abstract
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
Collapse
Affiliation(s)
- Martin Duchoslav
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michaela Jandová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
- Institute of Botany, Czech Academy of Sciences, Pruhonice, Czechia
| | - Lucie Kobrlová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lenka Šafářová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Kateřina Vojtěchová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
28
|
Siljak-Yakovlev S, Lamy F, Takvorian N, Valentin N, Gouesbet V, Hennion F, Robert T. Genome size and chromosome number of ten plant species from Kerguelen Islands. Polar Biol 2020. [DOI: 10.1007/s00300-020-02755-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Veleba A, Zedek F, Horová L, Veselý P, Srba M, Šmarda P, Bureš P. Is the evolution of carnivory connected with genome size reduction? AMERICAN JOURNAL OF BOTANY 2020; 107:1253-1259. [PMID: 32882073 DOI: 10.1002/ajb2.1526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/13/2020] [Indexed: 05/24/2023]
Abstract
PREMISE As repeatedly shown, the remarkable variation in the genome size of angiosperms can be shaped by extrinsic selective pressures, including nutrient availability. Carnivory has evolved independently in 10 angiosperm clades, but all carnivorous plants share a common affinity to nutrient-poor habitats. As such, carnivory and genome reduction could be responses to the same environmental pressure. Indeed, the smallest genomes among flowering plants are found in the carnivorous family Lentibulariaceae, where a unique mutation in cytochrome c oxidase (COX) is suspected to promote genome miniaturization. Despite these hypotheses, a phylogenetically informed test of genome size and nutrient availability across carnivorous clades has so far been missing. METHODS Using linear mixed models, we compared genome sizes of 127 carnivorous plants from 7 diverse angiosperm clades with 1072 of their noncarnivorous relatives. We also tested whether genome size in Lentibulariaceae reflects the presence of the COX mutation. RESULTS The genome sizes of carnivorous plants do not differ significantly from those of their noncarnivorous relatives. Based on available data, no significant association between the COX mutation and genome miniaturization could be confirmed, not even when considering polyploidy. CONCLUSIONS Carnivory alone does not seem to significantly affect genome size decrease. Plausibly, it might actually counterbalance the effect of nutrient limitation on genome size evolution. The role of the COX mutation in genome miniaturization needs to be evaluated by analysis of a broader data set because current knowledge of its presence across Lentibulariaceae covers less than 10% of the species diversity in this family.
Collapse
Affiliation(s)
- Adam Veleba
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Pavel Veselý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Miroslav Srba
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, CZ, 12844, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ, 61137, Czech Republic
| |
Collapse
|
30
|
Moura YA, Alves-Pereira A, da Silva CC, Souza LM, de Souza AP, Koehler S. Secondary origin, hybridization and sexual reproduction in a diploid-tetraploid contact zone of the facultatively apomictic orchid Zygopetalum mackayi. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:939-948. [PMID: 32558140 DOI: 10.1111/plb.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 05/26/2023]
Abstract
The production of triploids and apomictic reproduction are important processes for polyploid establishment and cytotype coexistence, but we know little about the interaction between triploids and facultatively apomictic plants. To bridge this gap, we studied the pollen-dependent, facultatively apomictic orchid Zygopetalum mackayi from high-elevation outcrops of southeast Brazil. We described the nature of the contact between Z. mackayi cytotypes and patterns of genetic diversity and structure based on eight microsatellite markers and 155 individuals of pure tetraploid, pure diploid and mixed cytotype populations. Our results revealed high values of genetic and genotypic diversity within all populations of Z. mackayi. Each cytotype emerged as a genetic distinct cluster, combining individuals from different populations. Triploids clustered in an intermediate position between diploids and tetraploids. Most genetic variance is associated with individuals within populations and genetic differentiation is high among populations. Mixed cytotype populations of Z. mackayi originate from secondary contact. Triploids are hybrids between diploids and tetraploids and likely act as a bridge. Our results point to the predominance of sexual reproduction in all populations but do not corroborate previous basic chromosome number for this species. Polyploidy rather than facultative apomixis may explain the larger geographic distribution of tetraploids of Z. mackayi.
Collapse
Affiliation(s)
- Y A Moura
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - A Alves-Pereira
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - C C da Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - L M Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - A P de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - S Koehler
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| |
Collapse
|
31
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
32
|
Paule J, Heller S, Maciel JR, Monteiro RF, Leme EMC, Zizka G. Early Diverging and Core Bromelioideae (Bromeliaceae) Reveal Contrasting Patterns of Genome Size Evolution and Polyploidy. FRONTIERS IN PLANT SCIENCE 2020; 11:1295. [PMID: 33013949 PMCID: PMC7509451 DOI: 10.3389/fpls.2020.01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 05/13/2023]
Abstract
The subfamily Bromelioideae is one of the most diverse groups among the neotropical Bromeliaceae. Previously, key innovations have been identified which account for the extraordinary radiation and species richness of this subfamily, especially in the so-called core Bromelioideae. However, in order to extend our understanding of the evolutionary mechanisms, the genomic mechanisms (e.g. polyploidy, dysploidy) that potentially underlie this accelerated speciation also need to be tested. Here, using PI and DAPI staining and flow cytometry we estimated genome size and GC content of 231 plants covering 30 genera and 165 species and combined it with published data. The evolutionary and ecological significance of all three genomic characters was tested within a previously generated dated phylogenetic framework using ancestral state reconstructions, comparative phylogenetic methods, and multiple regressions with climatic variables. The absolute genome size (2C) of Bromelioideae varied between 0.59 and 4.11 pg, and the GC content ranged between 36.73 and 41.43%. The monoploid genome sizes (Cx) differed significantly between core and early diverging lineages. The occurrence of dysploidy and polyploidy was, with few exceptions, limited to the phylogenetically isolated early diverging tank-less lineages. For Cx and GC content Ornstein-Uhlenbeck models outperformed the Brownian motion models suggesting adaptive potential linked to the temperature conditions. 2C-values revealed different rates of evolution in core and early diverging lineages also related to climatic conditions. Our results suggest that polyploidy is not associated with higher net diversification and fast radiation in core bromelioids. On the other hand, although coupled with higher extinction rates, dysploidy, polyploidy, and resulting genomic reorganizations might have played a role in the survival of the early diverging bromelioids in hot and arid environments.
Collapse
Affiliation(s)
- Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Juraj Paule,
| | - Sascha Heller
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | | | - Raquel F. Monteiro
- Department of Botany, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elton M. C. Leme
- Marie Selby Botanical Gardens, Sarasota, FL, United States
- Rio de Janeiro Botanical Garden, Rio de Janeiro, Brazil
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Walczyk AM, Hersch-Green EI. Impacts of soil nitrogen and phosphorus levels on cytotype performance of the circumboreal herb Chamerion angustifolium: implications for polyploid establishment. AMERICAN JOURNAL OF BOTANY 2019; 106:906-921. [PMID: 31283844 DOI: 10.1002/ajb2.1321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Although polyploidy commonly occurs in angiosperms, not all polyploidization events lead to successful lineages, and environmental conditions could influence cytotype dynamics and polyploid success. Low soil nitrogen and/or phosphorus concentrations often limit ecosystem primary productivity, and changes in these nutrients might differentially favor some cytotypes over others, thereby influencing polyploid establishment. METHODS We grew diploid, established tetraploid, and neotetraploid Chamerion angustifolium (fireweed) in a greenhouse under low and high soil nitrogen and phosphorus conditions and different competition treatments and measured plant performance (height, biomass, flower production, and root bud production) and insect damage responses. By comparing neotetraploids to established tetraploids, we were able to examine traits and responses that might directly arise from polyploidization before they are modified by natural selection and/or genetic drift. RESULTS We found that (1) neopolyploids were the least likely to survive and flower and experienced the most herbivore damage, regardless of nutrient conditions; (2) both neo- and established tetraploids had greater biomass and root bud production under nutrient-enriched conditions, whereas diploid biomass and root bud production was not significantly affected by nutrients; and (3) intra-cytotype competition more negatively affected diploids and established tetraploids than it did neotetraploids. CONCLUSIONS Following polyploidization, biomass and clonal growth might be more immediately affected by environmental nutrient availabilities than plant survival, flowering, and/or responses to herbivory, which could influence competitive dynamics. Specifically, polyploids might have competitive and colonizing advantages over diploids under nutrient-enriched conditions favoring their establishment, although establishment may also depend upon the density and occurrences of other related cytotypes in a population.
Collapse
Affiliation(s)
- Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| |
Collapse
|
34
|
Anneberg TJ, Segraves KA. Intraspecific polyploidy correlates with colonization by arbuscular mycorrhizal fungi in Heuchera cylindrica. AMERICAN JOURNAL OF BOTANY 2019; 106:894-900. [PMID: 31162645 DOI: 10.1002/ajb2.1294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Polyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth-limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth-limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists. METHODS We used Heuchera cylindrica (Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence of AMF in H. cylindrica, and then we used field-collected specimens to quantify and compare the presence of AMF structures while controlling for site-specific variation. RESULTS Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional-exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. CONCLUSIONS The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional-exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with their AMF partners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy on AMF colonization.
Collapse
Affiliation(s)
- Thomas J Anneberg
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
- Archbold Biological Station, Venus, FL, 33960, USA
| |
Collapse
|
35
|
Guignard MS, Crawley MJ, Kovalenko D, Nichols RA, Trimmer M, Leitch AR, Leitch IJ. Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proc Biol Sci 2019; 286:20182619. [PMID: 30890100 PMCID: PMC6452068 DOI: 10.1098/rspb.2018.2619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Angiosperm genome sizes (GS) vary ca 2400-fold. Recent research has shown that GS influences plant abundance, and plant competition. There are also tantalizing reports that herbivores may select plants as food dependent on their GS. To test the hypothesis that GS plays a role in shaping plant communities under herbivore pressure, we exploit a grassland experiment that has experimentally excluded herbivores and applied nutrient over 8 years. Using phylogenetically informed statistical models and path analyses, we show that under rabbit grazing, plant species with small GS generated the most biomass. By contrast, on mollusc and insect-grazed plots, it was the plant species with larger GS that increased in biomass. GS was also shown to influence plant community properties (e.g. competitive strategy, total biomass) although the impact varied between different herbivore guilds (i.e. rabbits versus invertebrates) and nutrient inputs. Overall, we demonstrate that GS plays a role in influencing plant-herbivore interactions, and suggest potential reasons for this response, which include the impact of GS on a plant's response to different herbivore guilds, and on a plant's nutrient quality. The inclusion of GS in ecological models has the potential to expand our understanding of plant productivity and community ecology under nutrient and herbivore stress.
Collapse
Affiliation(s)
- Maïté S. Guignard
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Michael J. Crawley
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berks SL5 7PY, UK
| | - Dasha Kovalenko
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard A. Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mark Trimmer
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
36
|
Müller LLB, Zotz G, Albach DC. Bromeliaceae subfamilies show divergent trends of genome size evolution. Sci Rep 2019; 9:5136. [PMID: 30914753 PMCID: PMC6435678 DOI: 10.1038/s41598-019-41474-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/25/2022] Open
Abstract
Genome size is known to vary widely across plants. Yet, the evolutionary drivers and consequences of genome size variation across organisms are far from understood. We investigated genome size variation and evolution in two major subfamilies of the Neotropical family Bromeliaceae by determining new genome size values for 83 species, testing phylogenetic signal in genome size variation, and assessing the fit to different evolutionary models. For a subset of epiphytic bromeliad species, we also evaluated the relationship of genome size with thermal traits and relative growth rate (RGR), respectively. Genome size variation in Bromelioideae appears to be evolutionary conserved, while genome size among Tillandsioideae varies considerably, not just due to polyploidy but arguably also due to environmental factors. The subfamilies show fundamental differences in genome size and RGR: Bromelioideae have, on average, lower genome sizes than Tillandsioideae and at the same time exhibit higher RGR. We attribute this to different resource use strategies in the subfamilies. Analyses among subfamilies, however, revealed unexpected positive relationships between RGR and genome size, which might be explained by the nutrient regime during cultivation. Future research should test whether there is indeed a trade-off between genome size and growth efficiency as a function of nutrient supply.
Collapse
Affiliation(s)
- Lilian-Lee B Müller
- Carl-von-Ossietzky University Oldenburg, Institute of Biology and Environmental Sciences, P.O. Box 2503, 26111, Oldenburg, Germany.
| | - Gerhard Zotz
- Carl-von-Ossietzky University Oldenburg, Institute of Biology and Environmental Sciences, P.O. Box 2503, 26111, Oldenburg, Germany
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancón, Panamá, Republic of Panama
| | - Dirk C Albach
- Carl-von-Ossietzky University Oldenburg, Institute of Biology and Environmental Sciences, P.O. Box 2503, 26111, Oldenburg, Germany
| |
Collapse
|
37
|
Bales AL, Hersch‐Green EI. Effects of soil nitrogen on diploid advantage in fireweed, Chamerion angustifolium (Onagraceae). Ecol Evol 2019; 9:1095-1109. [PMID: 30805143 PMCID: PMC6374662 DOI: 10.1002/ece3.4797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
In many ecosystems, plant growth and reproduction are nitrogen limited. Current and predicted increases of global reactive nitrogen could alter the ecological and evolutionary trajectories of plant populations. Nitrogen is a major component of nucleic acids and cell structures, and it has been predicted that organisms with larger genomes should require more nitrogen for growth and reproduction and be more negatively affected by nitrogen scarcities than organisms with smaller genomes. In a greenhouse experiment, we tested this hypothesis by examining whether the amount of soil nitrogen supplied differentially influenced the performance (fitness, growth, and resource allocation strategies) of diploid and autotetraploid fireweed (Chamerion angustifolium). We found that soil nitrogen levels differentially impacted cytotype performance, and in general, diploids were favored under low nitrogen conditions, but this diploid advantage disappeared under nitrogen enrichment. Specifically, when nitrogen was scarce, diploids produced more seeds and allocated more biomass toward seed production relative to investment in plant biomass or total plant nitrogen than did tetraploids. As nitrogen supplied increased, such discrepancies between cytotypes disappeared. We also found that cytotype resource allocation strategies were differentially dependent on soil nitrogen, and that whereas diploids adopted resource allocation strategies that favored current season reproduction when nitrogen was limiting and future reproduction when nitrogen was more plentiful, tetraploids adopted resource allocation strategies that favored current season reproduction under nitrogen enrichment. Together these results suggest nitrogen enrichment could differentially affect cytotype performance, which could have implications for cytotypes' ecological and evolutionary dynamics under a globally changing climate.
Collapse
Affiliation(s)
- Alex L. Bales
- Microbiology DepartmentUniversity of MassachusettsAmherstMassachusetts
| | | |
Collapse
|
38
|
Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I. The global biogeography of polyploid plants. Nat Ecol Evol 2019; 3:265-273. [PMID: 30697006 DOI: 10.1038/s41559-018-0787-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/11/2018] [Indexed: 11/09/2022]
Abstract
Deciphering the global distribution of polyploid plants is fundamental for understanding plant evolution and ecology. Many factors have been hypothesized to affect the uneven distribution of polyploid plants across the globe. Nevertheless, the lack of large comparative datasets has restricted such studies to local floras and to narrow taxonomical scopes, limiting our understanding of the underlying drivers of polyploid plant distribution. We present a map portraying the worldwide polyploid frequencies, based on extensive spatial data coupled with phylogeny-based polyploidy inference for tens of thousands of species. This allowed us to assess the potential global drivers affecting polyploid distribution. Our data reveal a clear latitudinal trend, with polyploid frequency increasing away from the equator. Climate, especially temperature, appears to be the most influential predictor of polyploid distribution. However, we find this effect to be mostly indirect, mediated predominantly by variation in plant lifeforms and, to a lesser extent, by taxonomical composition and species richness. Thus, our study presents an emerging view of polyploid distribution that highlights attributes that facilitate the establishment of new polyploid lineages by providing polyploids with sufficient time (that is, perenniality) and space (low species richness) to compete with pre-adapted diploid relatives.
Collapse
Affiliation(s)
- Anna Rice
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Maria Novosolov
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel.,Steinhardt Museum of Natural History, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Drori
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Glick
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Niv Sabath
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Shai Meiri
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel.,Steinhardt Museum of Natural History, Tel-Aviv University, Tel-Aviv, Israel
| | - Jonathan Belmaker
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel.,Steinhardt Museum of Natural History, Tel-Aviv University, Tel-Aviv, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
39
|
Čertner M, Sudová R, Weiser M, Suda J, Kolář F. Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in Knautia serpentinicola (Caprifoliaceae). THE NEW PHYTOLOGIST 2019; 221:1117-1127. [PMID: 30221362 DOI: 10.1111/nph.15426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Whole genome duplication is a key process in plant evolution and has direct phenotypic consequences. However, it remains unclear whether ploidy-related phenotypic changes can significantly alter the fitness of polyploids in nature and thus contribute to establishment of new polyploid mutants in diploid populations. We addressed this question using a unique natural system encompassing a diploid and its sympatric locally established autotetraploid derivative. By setting a common garden experiment with two manipulated environmental factors (presence/absence of serpentine substrate and competition), we tested whether these two locally important factors differently shape the phenotypic response of the two ploidy levels. Tetraploids attained significantly higher values of both above- and below-ground biomass, and root : shoot ratio compared to their diploid progenitors. Tetraploid superiority in vegetative fitness indicators was most prominent when they were cultivated together with a competitor in nutrient-rich nonserpentine substrate. We show that even genetically very closely related diploids and tetraploids can respond differently to key environmental factors. Provided there are sufficient nutrients, tetraploids can be more successful in tolerating interspecific competition than their diploid progenitors. Such superior performance might have provided an adaptive advantage for the newly established tetraploid promoting colonisation of new (micro-)habitats, which was indeed observed at the natural site.
Collapse
Affiliation(s)
- Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Radka Sudová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Martin Weiser
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
| | - Jan Suda
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Institute of Botany, University of Innsbruck, AT-6020, Innsbruck, Austria
| |
Collapse
|
40
|
Sudová R, Kohout P, Kolaříková Z, Rydlová J, Voříšková J, Suda J, Španiel S, Müller-Schärer H, Mráz P. Sympatric diploid and tetraploid cytotypes of Centaurea stoebe s.l. do not differ in arbuscular mycorrhizal communities and mycorrhizal growth response. AMERICAN JOURNAL OF BOTANY 2018; 105:1995-2007. [PMID: 30552673 DOI: 10.1002/ajb2.1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Genome duplication is associated with multiple changes at different levels, including interactions with pollinators and herbivores. Yet little is known whether polyploidy may also shape belowground interactions. METHODS To elucidate potential ploidy-specific interactions with arbuscular mycorrhizal fungi (AMF), we compared mycorrhizal colonization and assembly of AMF communities in roots of diploid and tetraploid Centaurea stoebe s.l. (Asteraceae) co-occurring in a Central European population. In a follow-up greenhouse experiment, we tested inter-cytotype differences in mycorrhizal growth response by combining ploidy, substrate, and inoculation with native AMF in a full-factorial design. KEY RESULTS All sampled plants were highly colonized by AMF, with the Glomeraceae predominating. AMF-community composition revealed by 454-pyrosequencing reflected the spatial distribution of the hosts, but not their ploidy level or soil characteristics. In the greenhouse experiment, the tetraploids produced more shoot biomass than the diploids did when grown in a more fertile substrate, while no inter-cytotype differences were found in a less fertile substrate. AMF inoculation significantly reduced plant growth and improved P uptake, but its effects did not differ between the cytotypes. CONCLUSIONS The results do not support our hypotheses that the cytotype structure in a mixed-ploidy population of C. stoebe is mirrored in AMF-community composition and that ploidy-specific fungal communities contribute to cytotype co-existence. Causes and implications of the observed negative growth response to AMF are discussed.
Collapse
Affiliation(s)
- Radka Sudová
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, CZ-128 44, Prague, Czech Republic
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Ecology Department, Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jan Suda
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Stanislav Španiel
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovakia
| | - Heinz Müller-Schärer
- Department of Biology, Ecology and Evolution, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Patrik Mráz
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
41
|
Plue J, Kimberley A, Slotte T. Interspecific variation in ploidy as a key plant trait outlining local extinction risks and community patterns in fragmented landscapes. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jan Plue
- School of Natural Sciences, Technology and Environmental StudiesSödertörn University Stockholm Sweden
- Biogeography and GeomaticsDepartment of Physical GeographyStockholm University Stockholm Sweden
| | - Adam Kimberley
- Biogeography and GeomaticsDepartment of Physical GeographyStockholm University Stockholm Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant SciencesScience for Life LaboratoryStockholm University Stockholm Sweden
| |
Collapse
|
42
|
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes (Basel) 2018; 9:E88. [PMID: 29443885 PMCID: PMC5852584 DOI: 10.3390/genes9020088] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.
Collapse
Affiliation(s)
- Jaume Pellicer
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Oriane Hidalgo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Steven Dodsworth
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| |
Collapse
|
43
|
Lavrenov NG, Zauzanova LD, Onipchenko VG. Seed reproduction traits of alpine plants depend on soil enrichment. RUSS J ECOL+ 2017. [DOI: 10.1134/s1067413617060054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Zeng Z, Huang H, Han N, Huang CY, Langridge P, Bian H, Zhu M. Endopolyploidy levels in barley vary in different root types and significantly decrease under phosphorus deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:11-21. [PMID: 28601019 DOI: 10.1016/j.plaphy.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Increased endopolyploidy is important for plant growth and development as well as for adaptation to environmental stresses. However, little is known about the role of reduced endopolyploidy, especially in root systems. In this report, endopolyploidy variations were examined in different types of barley (Hordeum vulgare L.) roots, and the effects of phosphorus (P) deficiency and salinity (NaCl) stress on root endopolyploidy were also studied. The results showed that the endopolyploidy levels were lower in lateral roots than in either primary or nodal roots. The lower endopolyploidy in lateral roots was attributed to cortical cells. P deficiency reduced the endopolyploidy levels in lateral roots and mature zone of primary roots. By contrast, salinity had no effects on the endopolyploidy levels in either lateral or primary roots, but had a minor effect on nodal roots. Transcript analysis of cell cycle-related genes showed that multiple cell cycle-related genes were more highly expressed in lateral roots than in primary roots, suggesting their roles in lowering endopolyploidy. P deficiency reduced HvCCS52A1 transcripts in the mature zone of primary roots, but had little effect on the transcripts of 12 cell cycle-related genes in lateral roots, suggesting that endopolyploidy regulation differs between lateral roots and primary roots. Our results revealed that endopolyploidy reduction in root systems could be an integrated part of endopolyploidy plasticity in barley growth and development as well as in adaptation to a low P environment.
Collapse
Affiliation(s)
- Zhanghui Zeng
- Institute of Genetic and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Huahong Huang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Ning Han
- Institute of Genetic and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Y Huang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Muyuan Zhu
- Institute of Genetic and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
45
|
Guignard MS, Leitch AR, Acquisti C, Eizaguirre C, Elser JJ, Hessen DO, Jeyasingh PD, Neiman M, Richardson AE, Soltis PS, Soltis DE, Stevens CJ, Trimmer M, Weider LJ, Woodward G, Leitch IJ. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00070] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Segraves KA. The effects of genome duplications in a community context. THE NEW PHYTOLOGIST 2017; 215:57-69. [PMID: 28418074 DOI: 10.1111/nph.14564] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Contents 57 I. 57 II. 59 III. 59 IV. 63 V. 64 VI. 64 VII. 66 66 References 66 SUMMARY: Whole-genome duplication (WGD), or polyploidy, has important effects on the genotype and phenotype of plants, potentially altering ecological interactions with other organisms. Even though the connections between polyploidy and species interactions have been recognized for some time, we are only just beginning to test whether WGD affects community context. Here I review the sparse information on polyploidy and community context and then present a set of hypotheses for future work. Thus far, community-level studies of polyploids suggest an array of outcomes, from no changes in community context to shifts in the abundance and composition of interacting species. I propose a number of mechanisms for how WGD could alter community context and how the emergence of polyploids in populations could also alter the community context of parental diploids and other plant species. Resolving how and when these changes are expected to occur will require a deeper understanding of the connections among WGD, phenotypic changes, and the direct and indirect effects of species interactions.
Collapse
Affiliation(s)
- Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
- Archbold Biological Station, Venus, FL, 33960, USA
| |
Collapse
|
47
|
Rey PJ, Manzaneda AJ, Alcántara JM. The interplay between aridity and competition determines colonization ability, exclusion and ecological segregation in the heteroploid Brachypodium distachyon species complex. THE NEW PHYTOLOGIST 2017; 215:85-96. [PMID: 28436561 DOI: 10.1111/nph.14574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
A higher competitive advantage of polyploid plants compared with their parental diploids is frequently invoked to explain their establishment success, colonization of novel environments and cytotypic ecological segregation, yet there is scarce experimental evidence supporting such hypotheses. Here, we investigated whether differential competitive ability of species of the Brachypodium distachyon (Poaceae) species complex, a model system for genomic, ecological and evolutionary studies of temperate grasses, contributes to explaining their ecological segregation as well as their coexistence in diploid/allotetraploid contact zones. We conducted two field experiments in dry and humid localities to evaluate the tolerance to competition of diploids and allotetraploids in densely occupied environments, and to parameterize models of intra- and intercytotype competition as a mechanism for species exclusion/coexistence. We provide experimental evidence supporting the hypothesis that, under natural field conditions, allotetraploids have superior ecological success compared with one of their parental diploids in terms of both colonizing competitive habitats and intercytotypic competition, with the balance of intra/intercytotype competition favoring polyploid population establishment. These findings, together with previous data on ecogeographic segregation and adaptive response to water stress, suggest that the interplay between aridity and competitive outcome determines the ability to colonize competitive environments, the exclusion of diploids, especially in arid localities, and species geographic segregation.
Collapse
Affiliation(s)
- Pedro J Rey
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, E 23071, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, E 23071, Spain
| | - Julio M Alcántara
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, E 23071, Spain
| |
Collapse
|
48
|
Hájek M, Dresler P, Hájková P, Hettenbergerová E, Milo P, Plesková Z, Pavonič M. Long-lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species-rich Grassland: A Battle of Species Pools on Mesic Soils. Ecosystems 2017. [DOI: 10.1007/s10021-017-0107-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Šmarda P, Veselý P, Šmerda J, Bureš P, Knápek O, Chytrá M. Polyploidy in a 'living fossil' Ginkgo biloba. THE NEW PHYTOLOGIST 2016; 212:11-4. [PMID: 27265838 DOI: 10.1111/nph.14062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Ondřej Knápek
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Magdaléna Chytrá
- Botanical Garden of the Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| |
Collapse
|
50
|
|