1
|
Xia Y, Lalande J, Badeck FW, Girardin C, Bathellier C, Gleixner G, Werner RA, Ghiasi S, Faucon M, Cosnier K, Fresneau C, Tcherkez G, Ghashghaie J. Nitrogen nutrition effects on δ 13C of plant respired CO 2 are mostly caused by concurrent changes in organic acid utilisation and remobilisation. PLANT, CELL & ENVIRONMENT 2024; 47:5511-5526. [PMID: 39219416 DOI: 10.1111/pce.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Nitrogen (N) nutrition impacts on primary carbon metabolism and can lead to changes in δ13C of respired CO2. However, uncertainty remains as to whether (1) the effect of N nutrition is observed in all species, (2) N source also impacts on respired CO2 in roots and (3) a metabolic model can be constructed to predict δ13C of respired CO2 under different N sources. Here, we carried out isotopic measurements of respired CO2 and various metabolites using two species (spinach, French bean) grown under different NH4 +:NO3 - ratios. Both species showed a similar pattern, with a progressive 13C-depletion in leaf-respired CO2 as the ammonium proportion increased, while δ13C in root-respired CO2 showed little change. Supervised multivariate analysis showed that δ13C of respired CO2 was mostly determined by organic acid (malate, citrate) metabolism, in both leaves and roots. We then took advantage of nonstationary, two-pool modelling that explained 73% of variance in δ13C in respired CO2. It demonstrates the critical role of the balance between the utilisation of respiratory intermediates and the remobilisation of stored organic acids, regardless of anaplerotic bicarbonate fixation by phosphoenolpyruvate carboxylase and the organ considered.
Collapse
Affiliation(s)
- Yang Xia
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution (ESE), Gif-sur-Yvette, France
- Collage of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Julie Lalande
- Institut de recherche en horticulture et semences, UMR 1345, Université d'Angers, SFR Quasav, Beaucouzé, France
| | - Franz-W Badeck
- Research centre for Genomics & Bioinformatics (CREA- GB), Council for Agricultural Research and Economics, Fiorenzuola d'Arda, Italy
| | - Cyril Girardin
- Université Paris-Saclay, INRAE, UMR 1402 ECOSYS, Campus Agro Paris-Saclay, Palaiseau, France
| | | | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland A Werner
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Shiva Ghiasi
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Department Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Mélodie Faucon
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution (ESE), Gif-sur-Yvette, France
| | - Karen Cosnier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution (ESE), Gif-sur-Yvette, France
| | - Chantal Fresneau
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution (ESE), Gif-sur-Yvette, France
| | - Guillaume Tcherkez
- Institut de recherche en horticulture et semences, UMR 1345, Université d'Angers, SFR Quasav, Beaucouzé, France
- Research school of biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jaleh Ghashghaie
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution (ESE), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Diao H, Wu J. Extreme precipitation reduces the recent photosynthetic carbon isotope signal detected in ecosystem respiration in an old-growth temperate forest. TREE PHYSIOLOGY 2024; 44:tpae118. [PMID: 39246247 PMCID: PMC11469762 DOI: 10.1093/treephys/tpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2 and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.
Collapse
Affiliation(s)
- Haoyu Diao
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| |
Collapse
|
3
|
Yu YZ, Liu HT, Yang F, Li L, Schäufele R, Tcherkez G, Schnyder H, Gong XY. δ13C of bulk organic matter and cellulose reveal post-photosynthetic fractionation during ontogeny in C4 grass leaves. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1451-1464. [PMID: 37943576 DOI: 10.1093/jxb/erad445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The 13C isotope composition (δ13C) of leaf dry matter is a useful tool for physiological and ecological studies. However, how post-photosynthetic fractionation associated with respiration and carbon export influences δ13C remains uncertain. We investigated the effects of post-photosynthetic fractionation on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. With increasing leaf age class, the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2 (ΔDM) increased while that of cellulose (Δcel) was almost constant. The divergence between ΔDM and Δcel increased with leaf age class, with a maximum value of 1.6‰, indicating the accumulation of post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with carbon export of -0.5‰ to -1.0‰. Different ΔDM among leaves, pseudostems, daughter tillers, and roots indicate that post-photosynthetic fractionation happens at the whole-plant level. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the lower sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.
Collapse
Affiliation(s)
- Yong Zhi Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hai Tao Liu
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Fang Yang
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- College of Resources and Environment, Jilin Agricultural University, Changchun 130117, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Science, Australian National University, Canberra ACT 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
4
|
Salomón RL, Rodríguez-Calcerrada J, De Roo L, Miranda JC, Bodé S, Boeckx P, Steppe K. Carbon isotope composition of respired CO2 in woody stems and leafy shoots of three tree species along the growing season: physiological drivers for respiratory fractionation. TREE PHYSIOLOGY 2023; 43:1731-1744. [PMID: 37471648 DOI: 10.1093/treephys/tpad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.
Collapse
Affiliation(s)
- Roberto L Salomón
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent 9000, Belgium
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040, Madrid, Spain
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040, Madrid, Spain
| | - Linus De Roo
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| | - José Carlos Miranda
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040, Madrid, Spain
| | - Samuel Bodé
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Coupure links 653, Gent 9000, Belgium
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Coupure links 653, Gent 9000, Belgium
| | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| |
Collapse
|
5
|
Wang S, Epron D, Kobayashi K, Takanashi S, Dannoura M. Sources of carbon supporting the fast growth of developing immature moso bamboo ( Phyllostachys edulis) culms: inference from carbon isotopes and anatomy. AOB PLANTS 2023; 15:plad046. [PMID: 37497441 PMCID: PMC10368343 DOI: 10.1093/aobpla/plad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Phyllostachys edulis is a spectacularly fast-growing species that completes its height growth within 2 months after the shoot emerges without producing leaves (fast-growing period, FGP). This phase was considered heterotrophic, with the carbon necessary for the growth being transferred from the mature culms via the rhizomes, although previous studies observed key enzymes and anatomical features related to C4-carbon fixation in developing culms. We tested whether C4-photosynthesis or dark-CO2 fixation through anaplerotic reactions significantly contributes to the FGP, resulting in differences in the natural abundance of δ13C in bulk organic matter and organic compounds. Further, pulse-13CO2-labelling was performed on developing culms, either from the surface or from the internal hollow, to ascertain whether significant CO2 fixation occurs in developing culms. δ13C of young shoots and developing culms were higher (-26.3 to -26.9 ‰) compared to all organs of mature bamboos (-28.4 to -30.1 ‰). Developing culms contained chlorophylls, most observed in the skin tissues. After pulse-13CO2-labelling, the polar fraction extracted from the skin tissues was slightly enriched in 13C, and only a weak 13C enrichment was observed in inner tissues. Main carbon source sustaining the FGP was not assimilated by the developing culm, while a limited anaplerotic fixation of respired CO2 cannot be excluded and is more likely than C4-photosynthetic carbon fixation.
Collapse
Affiliation(s)
| | - Daniel Epron
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keito Kobayashi
- Kansai Research Centre, Forestry and Forest Products Research Institute, 68 Momoyamacho Nagaikyutaro, Fushimi-ku, Kyoto 612-0855, Japan
| | - Satoru Takanashi
- Kansai Research Centre, Forestry and Forest Products Research Institute, 68 Momoyamacho Nagaikyutaro, Fushimi-ku, Kyoto 612-0855, Japan
| | - Masako Dannoura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Imada S, Tako Y. Seasonal accumulation of photoassimilated carbon relates to growth rate and use for new aboveground organs of young apple trees in following spring. TREE PHYSIOLOGY 2022; 42:2294-2305. [PMID: 35796531 PMCID: PMC9652006 DOI: 10.1093/treephys/tpac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Deciduous trees accumulate carbon (C) in woody parts during the growth season which is subsequently used for the initial development and growth of newly formed organs in the following season; however, it is unclear which period during the growth season contributes to C accumulation. Three-year-old potted Malus domestica (apple) trees were grown in controlled growth chambers during the growth season and exposed to 13CO2 in an exposure chamber at seven different periods of the growth season, including vegetative and reproductive growth periods. Approximately half of the trees were harvested in late autumn, and the remaining trees were grown in a field in the following year. The 13C accumulation in the different organs in late autumn, and its concentration in the new aboveground growth during the following growth season, was determined. The concentration of the photoassimilated 13C in woody parts (shoots, trunk, rootstock and coarse roots) in the late autumn was higher in the trees labeled during the period of vigorous vegetative growth than in those labeled during other periods of growth. Furthermore, 13C concentration in the leaves, annual shoots, flower buds and flowers in the following early spring was also high in the trees labeled during this period. The concentration of 13C in the flower buds and flowers was positively correlated with that in the woody parts in the late autumn and old shoots in the following spring. Hence, the seasonal accumulation of photoassimilated C in woody parts in late autumn is related to growth rates during the growth season and its use for the initial development of newly formed organs in the following spring. These results suggest that under non-stressed conditions, C accumulated during the period of vigorous vegetative growth largely contributes to the C reserves that are used for the development of new organs in the following year.
Collapse
Affiliation(s)
| | - Yasuhiro Tako
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| |
Collapse
|
7
|
Domergue J, Abadie C, Lalande J, Deswarte J, Ober E, Laurent V, Zimmerli C, Lerebour P, Duchalais L, Bédard C, Derory J, Moittie T, Lamothe‐Sibold M, Beauchêne K, Limami AM, Tcherkez G. Grain carbon isotope composition is a marker for allocation and harvest index in wheat. PLANT, CELL & ENVIRONMENT 2022; 45:2145-2157. [PMID: 35475551 PMCID: PMC9323493 DOI: 10.1111/pce.14339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The natural 13 C abundance (δ13 C) in plant leaves has been used for decades with great success in agronomy to monitor water-use efficiency and select modern cultivars adapted to dry conditions. However, in wheat, it is also important to find genotypes with high carbon allocation to spikes and grains, and thus with a high harvest index (HI) and/or low carbon losses via respiration. Finding isotope-based markers of carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we took the advantage of a set of field trials made of more than 600 plots with several wheat cultivars and measured agronomic parameters as well as δ13 C values in leaves and grains. We find a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδcorr ), and the respiration use efficiency-to-HI ratio. It means that overall, efficient carbon allocation to grains is associated with a small isotopic difference between leaves and grains. This effect is explained by postphotosynthetic isotope fractionations, and we show that this can be modelled by equations describing the carbon isotope composition in grains along the wheat growth cycle. Our results show that 13 C natural abundance in grains could be useful to find genotypes with better carbon allocation properties and assist current wheat breeding technologies.
Collapse
Affiliation(s)
- Jean‐Baptiste Domergue
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Cyril Abadie
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Julie Lalande
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Jean‐Charles Deswarte
- Arvalis Institut du Végétal, Pôle valorisation de l'écophysiologie, ZA des GraviersVilliers le BâcleFrance
| | - Eric Ober
- National Institute of Agricultural BotanyCambridgeUK
| | | | | | | | | | | | | | | | - Marlène Lamothe‐Sibold
- Plateforme Metabolisme MetabolomeSPOmics plant métabolisme métabolome platform, Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRAe, University Paris‐SaclayOrsayFrance
| | - Katia Beauchêne
- Arvalis Institut du Végétal, Pôle PhenoHD3Beauce‐La‐RomaineFrance
| | - Anis M. Limami
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
- Research School of Biology, ANU College of ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
8
|
Diao H, Wang A, Yuan F, Guan D, Wu J. Autotrophic respiration modulates the carbon isotope composition of soil respiration in a mixed forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150834. [PMID: 34627921 DOI: 10.1016/j.scitotenv.2021.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Carbon isotopic composition of soil respired CO2 (soil δ13CR) has been regarded as a good indicator of the linkages between aboveground processes and soil respiration. However, whether δ13CR of autotrophic or heterotrophic component of soil respiration dominates the temporal variability of total soil δ13CR was rarely examined by previous studies. In this study, carbon isotopic composition of atmospheric CO2 (δ13Cair) and soil δ13CR in control (with roots) and trenched (without roots) plots were measured in a temperated mixed forest. A 13C isotopic profile system and an automated soil respiration system were used for δ 13Cair and soil δ13CR measurements, respectively. We found that soil δ13CR in the control plots changed substantially in the growing season and it was more negative (by ~0.6‰) than that in the trenched plots, while soil δ13CR in the trenched plots showed a minor temporal variability. This suggests that δ13CR from the autotrophic respiration is the key decider of the seasonal variation pattern of the soil δ13CR. Moreover, the seasonal variation of soil δ13CR in the control plots showed a similar pattern with the seasonal variation of δ13Cair. A significant time-lag was found between δ13Cair and soil δ13CR, showing that soil δ13CR generally lagged behind δ13Cair 15 days. This result supports the hypothesis that soil respiration is closely related to carbon assimilation at the leaf-level and also stressed the importance of δ13Cair in shaping soil δ13CR. These findings are highly valuable to develop the process-based models of the carbon cycle of forest ecosystems.
Collapse
Affiliation(s)
- Haoyu Diao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Dexin Guan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
9
|
Metcalfe JZ. C 3 plant isotopic variability in a boreal mixed woodland: implications for bison and other herbivores. PeerJ 2021; 9:e12167. [PMID: 34631314 PMCID: PMC8466085 DOI: 10.7717/peerj.12167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
Plant isotopic baselines are critical for accurately reconstructing ancient diets and environments and for using stable isotopes to monitor ecosystem conservation. This study examines the stable carbon and nitrogen isotope compositions (δ 13C, δ 15N) of terrestrial C3 plants in Elk Island National Park (EINP), Alberta, Canada, with a focus on plants consumed by grazers. EINP is located in a boreal mixed woodland ecozone close to the transition area between historic wood and plains bison habitats, and is currently home to separate herds of wood and plains bison. For this study, 165 C3 plant samples (grasses, sedges, forbs, shrubs, and horsetail) were collected from three habitat types (open, closed, and wet) during two seasons (summer and fall). There were no statistically significant differences in the δ 13C or δ 15N values of grasses, sedges, shrubs and forbs. On the other hand, plant δ 13C and δ 15N values varied among habitats and plant parts, and the values increased from summer to fall. These results have several implications for interpreting herbivore tissue isotopic compositions: (1) consuming different proportions of grasses, sedges, shrubs, and forbs might not result in isotopic niche partitioning, (2) feeding in different microhabitats or selecting different parts of the same types of plants could result in isotopic niche partitioning, and (3) seasonal isotopic changes in herbivore tissues could reflect seasonal isotopic changes in dietary plants rather than (or in addition to) changes in animal diet or physiology. In addition, the positively skewed plant δ 15N distributions highlight the need for researchers to carefully evaluate the characteristics of their distributions prior to reporting data (e.g., means, standard deviations) or applying statistical models (e.g., parametric tests that assume normality). Overall, this study reiterates the importance of accessing ecosystem-specific isotopic baselines for addressing research questions in archaeology, paleontology, and ecology.
Collapse
Affiliation(s)
- Jessica Z Metcalfe
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
10
|
Hilman B, Muhr J, Helm J, Kuhlmann I, Schulze ED, Trumbore S. The size and the age of the metabolically active carbon in tree roots. PLANT, CELL & ENVIRONMENT 2021; 44:2522-2535. [PMID: 34096615 DOI: 10.1111/pce.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the sources and age of C respired by tree roots. Previous research in stems identified two functional pools of non-structural carbohydrates (NSC): an "active" pool supplied directly from canopy photo-assimilates supporting metabolism and a "stored" pool used when fresh C supplies are limited. We compared the C isotope composition of water-soluble NSC and respired CO2 for aspen roots (Populus tremula hybrids) cut off from fresh C supply after stem-girdling or prolonged incubation of excised roots. We used bomb radiocarbon to estimate the time elapsed since C fixation for respired CO2 , water-soluble NSC and structural α-cellulose. While freshly excised roots (mostly <2.9 mm in diameter) respired CO2 fixed <1 year previously, the age increased to 1.6-2.9 year within a week after root excision. Freshly excised roots from trees girdled ~3 months ago had respiration rates and NSC stocks similar to un-girdled trees but respired older C (~1.2 year). We estimate that over 3 months NSC in girdled roots must be replaced 5-7 times by reserves remobilized from root-external sources. Using a mixing model and observed correlations between Δ14 C of water-soluble C and α-cellulose, we estimate ~30% of C is "active" (~5 mg C g-1 ).
Collapse
Affiliation(s)
- Boaz Hilman
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Jan Muhr
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- Department of Bioclimatology, Georg-August University Göttingen, Göttingen, Germany
| | - Juliane Helm
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Iris Kuhlmann
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Ernst-Detlef Schulze
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Susan Trumbore
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
11
|
Eggels S, Blankenagel S, Schön CC, Avramova V. The carbon isotopic signature of C 4 crops and its applicability in breeding for climate resilience. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1663-1675. [PMID: 33575820 PMCID: PMC8205923 DOI: 10.1007/s00122-020-03761-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Carbon isotope discrimination is a promising trait for indirect screening for improved water use efficiency of C4 crops. In the context of a changing climate, drought is one of the major factors limiting plant growth and yield. Hence, breeding efforts are directed toward improving water use efficiency (WUE) as a key factor in climate resilience and sustainability of crop production. As WUE is a complex trait and its evaluation is rather resource consuming, proxy traits, which are easier to screen and reliably reflect variation in WUE, are needed. In C3 crops, a trait established to be indicative for WUE is the carbon isotopic composition (δ13C) of plant material, which reflects the preferential assimilation of the lighter carbon isotope 12C over 13C during photosynthesis. In C4 crops, carbon fixation is more complex and δ13C thus depends on many more factors than in C3 crops. Recent physiological and genetic studies indicate a correlation between δ13C and WUE also in C4 crops, as well as a colocalization of quantitative trait loci for the two traits. Moreover, significant intraspecific variation as well as a medium to high heritability of δ13C has been shown in some of the main C4 crops, such as maize, sorghum and sugarcane, indicating its potential for indirect selection and breeding. Further research on physiological, genetic and environmental components influencing δ13C is needed to support its application in improving WUE and making C4 crops resilient to climate change.
Collapse
Affiliation(s)
- Stella Eggels
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Sonja Blankenagel
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Viktoriya Avramova
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany.
| |
Collapse
|
12
|
Carbon dioxide isotopic compositions during tundra ecosystem respiration and photosynthesis in relation to environmental variables in maritime Antarctica. Polar Biol 2021. [DOI: 10.1007/s00300-021-02829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA. A novel 13 C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. THE NEW PHYTOLOGIST 2021; 230:857-866. [PMID: 33253439 DOI: 10.1111/nph.17118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/24/2020] [Indexed: 05/21/2023]
Abstract
Rhizodeposition plays an important role in below-ground carbon (C) cycling. However, quantification of rhizodeposition in intact plant-soil systems has remained elusive due to methodological issues. We used a 13 C-CO2 pulse-labelling method to quantify the contribution of rhizodeposition to below-ground respiration. Intact plant-soil cores were taken from a grassland field, and in half, shoots and roots were removed (unplanted cores). Both unplanted and planted cores were assigned to drought and nitrogen (N) treatments. Afterwards, shoots in planted cores were pulse labelled with 13 C-CO2 and then clipped to determine total below-ground respiration and its δ13 C. Simultaneously, δ13 C was measured for the respiration of live roots, soils with rhizodeposits, and unplanted treatments, and used as endmembers with which to determine root respiration and rhizodeposit C decomposition using two-source mixing models. Rhizodeposit decomposition accounted for 7-31% of total below-ground respiration. Drought reduced decomposition of both rhizodeposits and soil organic carbon (SOC), while N addition increased root respiration but not the contribution of rhizodeposit C decomposition to below-ground respiration. This study provides a new approach for the partitioning of below-ground respiration into different sources, and indicates that decomposition of rhizodeposit C is an important component of below-ground respiration that is sensitive to drought and N addition in grassland ecosystems.
Collapse
Affiliation(s)
- Ruzhen Wang
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Camden, NSW, 2570, Australia
| | - Bahareh Bicharanloo
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Camden, NSW, 2570, Australia
| | - Milad Bagheri Shirvan
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Camden, NSW, 2570, Australia
| | - Timothy R Cavagnaro
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5065, Australia
| | - Yong Jiang
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Claudia Keitel
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Camden, NSW, 2570, Australia
| | - Feike A Dijkstra
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
14
|
Ghiasi S, Lehmann MM, Badeck FW, Ghashghaie J, Hänsch R, Meinen R, Streb S, Hüdig M, Ruckle ME, Carrera DÁ, Siegwolf RTW, Buchmann N, Werner RA. Nitrate and ammonium differ in their impact on δ 13C of plant metabolites and respired CO 2 from tobacco leaves. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:11-34. [PMID: 32885670 DOI: 10.1080/10256016.2020.1810683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The carbon isotopic composition (δ13C) of foliage is often used as proxy for plant performance. However, the effect of N O 3 - vs. N H 4 + supply on δ13C of leaf metabolites and respired CO2 is largely unknown. We supplied tobacco plants with a gradient of N O 3 - to N H 4 + concentration ratios and determined gas exchange variables, concentrations and δ13C of tricarboxylic acid (TCA) cycle intermediates, δ13C of dark-respired CO2, and activities of key enzymes nitrate reductase, malic enzyme and phosphoenolpyruvate carboxylase. Net assimilation rate, dry biomass and concentrations of organic acids and starch decreased along the gradient. In contrast, respiration rates, concentrations of intercellular CO2, soluble sugars and amino acids increased. As N O 3 - decreased, activities of all measured enzymes decreased. δ13C of CO2 and organic acids closely co-varied and were more positive under N O 3 - supply, suggesting organic acids as potential substrates for respiration. Together with estimates of intra-molecular 13C enrichment in malate, we conclude that a change in the anaplerotic reaction of the TCA cycle possibly contributes to 13C enrichment in organic acids and respired CO2 under N O 3 - supply. Thus, the effect of N O 3 - vs. N H 4 + on δ13C is highly relevant, particularly if δ13C of leaf metabolites or respiration is used as proxy for plant performance.
Collapse
Affiliation(s)
- Shiva Ghiasi
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Franz-W Badeck
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Fiorenzuola d´Arda, Italy
| | - Jaleh Ghashghaie
- Laboratoire d'Ecologie Systématique Evolution (ESE), Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Rieke Meinen
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Meike Hüdig
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Michael E Ruckle
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Dániel Á Carrera
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Rolf T W Siegwolf
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Roland A Werner
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Environmental Effects on Carbon Isotope Discrimination from Assimilation to Respiration in a Coniferous and Broad-Leaved Mixed Forest of Northeast China. FORESTS 2020. [DOI: 10.3390/f11111156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon (C) isotope discrimination during photosynthetic CO2 assimilation has been extensively studied, but the whole process of fractionation from leaf to soil has been less well investigated. In the present study, we investigated the δ13C signature along the C transfer pathway from air to soil in a coniferous and broad-leaved mixed forest in northeast China and examined the relationship between δ13C of respiratory fluxes (leaf, trunk, soil, and the entire ecosystem) and environmental factors over a full growing season. This study found that the δ13C signal of CO2 from canopy air was strongly imprinted in the organic and respiratory pools throughout C transfer due to the effects of discrimination and isotopic mixing on C assimilation, allocation, and respiration processes. A significant difference in isotopic patterns was found between conifer and broadleaf species in terms of seasonal variations in leaf organic matter. This study also found that δ13C in trunk respiration, compared with that in leaf and soil respiration, was more sensitive to seasonal variations of environmental factors, especially soil temperature and soil moisture. Variation in the δ13C of ecosystem respiration was correlated with air temperature with no time lag and correlated with soil temperature and vapor pressure deficit with a lag time of 10 days, but this correlation was relatively weak, indicating a delayed linkage between above- and belowground processes. The isotopic linkage might be confounded by variations in atmospheric aerodynamic and soil diffusion conditions. These results will help with understanding species differences in isotopic patterns and promoting the incorporation of more influencing factors related to isotopic variation into process-based ecosystem models.
Collapse
|
16
|
Song W, Liu Y. Survival strategy of the endangered tree Acer catalpifolium Rehd., based on 13C fractionation. Ecol Evol 2020; 10:8532-8537. [PMID: 32884637 PMCID: PMC7452789 DOI: 10.1002/ece3.6600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/05/2022] Open
Abstract
We conducted a field investigation and evaluation of 13C natural abundance to determine the growth habit and propagation strategy of Acer catalpifolium Rehd., a tree species native to China that is highly endangered. The results showed that A. catalpifolium is a K-selected strategist and pioneer species. Its narrow ecological range limits its geographical distribution, and poor fecundity limits its population size. The analysis of 13C natural abundance showed that A. catalpifolium does not use organic matter for reproduction when its stand volume is less than 1.08 × 106 cm3 or it is less than 18.6 m tall, but it does use this strategy when it has a sufficient 1.08 × 106 cm3 stand volume or more or is taller than 18.6 m. If environmental conditions are not conducive (e.g., severe human disturbance, cliff edges, or fierce interspecific competition) to the continued growth of the tree, A. catalpifolium may allocate organic matter for reproduction. Human disturbance seems to promote the population expansion of A. catalpifolium. We provide our suggestions for the promotion and protection of A. catalpifolium as a species.
Collapse
Affiliation(s)
- Wenchen Song
- College of ForestryBeijing Forestry UniversityBeijingChina
- College of Life and Environment SciencesMinzu University of ChinaBeijingChina
| | - Yanhong Liu
- College of ForestryBeijing Forestry UniversityBeijingChina
| |
Collapse
|
17
|
Sonawane BV, Cousins AB. Mesophyll CO 2 conductance and leakiness are not responsive to short- and long-term soil water limitations in the C 4 plant Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1590-1602. [PMID: 32438487 DOI: 10.1111/tpj.14849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
Breeding economically important C4 crops for enhanced whole-plant water-use efficiency (WUEplant ) is needed for sustainable agriculture. WUEplant is a complex trait and an efficient phenotyping method that reports on components of WUEplant , such as intrinsic water-use efficiency (WUEi , the rate of leaf CO2 assimilation relative to water loss via stomatal conductance), is needed. In C4 plants, theoretical models suggest that leaf carbon isotope composition (δ13 C), when the efficiency of the CO2 -concentrating mechanism (leakiness, ϕ) remains constant, can be used to screen for WUEi . The limited information about how ϕ responds to water limitations confines the application of δ13 C for WUEi screening of C4 crops. The current research aimed to test the response of ϕ to short- or long-term moderate water limitations, and the relationship of δ13 C with WUEi and WUEplant , by addressing potential mesophyll CO2 conductance (gm ) and biochemical limitations in the C4 plant Sorghum bicolor. We demonstrate that gm and ϕ are not responsive to short- or long-term water limitations. Additionally, δ13 C was not correlated with gas-exchange estimates of WUEi under short- and long-term water limitations, but showed a significant negative relationship with WUEplant . The observed association between the δ13 C and WUEplant suggests an intrinsic link of δ13 C with WUEi in this C4 plant, and can potentially be used as a screening tool for WUEplant in sorghum.
Collapse
Affiliation(s)
- Balasaheb V Sonawane
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
18
|
Commendador AS, Finney BP, Fuller BT, Tromp M, Dudgeon JV. Multiproxy isotopic analyses of human skeletal material from Rapa Nui: Evaluating the evidence from carbonates, bulk collagen, and amino acids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:714-729. [PMID: 31062347 DOI: 10.1002/ajpa.23851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Stable isotope ratio analysis of bulk bone collagen dominates research into past diet; however, bone carbonate and compound specific isotope analyses (CSIA) of amino acids provide alternative, yet complementary, lines of evidence toward that same research goal. Together they inform on different aspects of diet, allowing greater certainty in reconstructions. Here we present new data on carbonate isotopes for Rapa Nui and reevaluate prehistoric diet in the context of these new and previously published bulk collagen and CSIA data. MATERIALS AND METHODS We analyzed carbon isotopes in bone carbonate from 28 prehistoric human teeth from Rapa Nui. These represent a subset of material examined previously for carbon and nitrogen isotope ratios in bulk collagen. We then reevaluate prehistoric diet in light of these and other published data. In addition, we analyzed carbon and nitrogen isotope ratios in 28 modern plant specimens from Rapa Nui to better approximate the isotopic value of the terrestrial endmember. RESULTS Bulk data suggest a predominantly terrestrial diet, with the amount of marine sources incorporated varying though time. While previously argued to reveal greater amounts of marine consumption, reanalysis of recently published CSIA data suggests this result may relate to the proportion of carbon assimilated rather than consumed. Utilizing models incorporating concentration dependence for estimating dietary proportions results in much lower estimates of marine consumption, in line with findings of the bulk data. DISCUSSION While these data indicate a larger focus on terrestrial resources, limitations in all forms of analysis make it difficult to determine exact dietary contributions in this mixed system. Better understanding of the complex physiological processes governing isotopic routing and fractionation, and knowledge of appropriate isotopic endmember values are needed to advance this research.
Collapse
Affiliation(s)
- Amy S Commendador
- Idaho Museum of Natural History, Idaho State University, Pocatello, Idaho
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| | - Bruce P Finney
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
- Center for Archaeology, Materials and Applied Spectroscopy, Idaho State University, Pocatello, Idaho
- Department of Geosciences, Idaho State University, Pocatello, Idaho
| | - Benjamin T Fuller
- Department of Archaeology and Heritage Studies, School of Culture and Society, Aarhus University, Højbjerg, Denmark
| | - Monica Tromp
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - John V Dudgeon
- Center for Archaeology, Materials and Applied Spectroscopy, Idaho State University, Pocatello, Idaho
| |
Collapse
|
19
|
Bögelein R, Lehmann MM, Thomas FM. Differences in carbon isotope leaf-to-phloem fractionation and mixing patterns along a vertical gradient in mature European beech and Douglas fir. THE NEW PHYTOLOGIST 2019; 222:1803-1815. [PMID: 30740705 DOI: 10.1111/nph.15735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/03/2019] [Indexed: 05/13/2023]
Abstract
While photosynthetic isotope discrimination is well understood, the postphotosynthetic and transport-related fractionation mechanisms that influence phloem and subsequently tree ring δ13 C are less investigated and may vary among species. We studied the seasonal and diel courses of leaf-to-phloem δ13 C differences of water-soluble organic matter (WSOM) in vertical crown gradients and followed the assimilate transport via the branches to the trunk phloem at breast height in European beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii). δ13 C of individual sugars and cyclitols from a subsample was determined by compound-specific isotope analysis. In beech, leaf-to-phloem δ13 C differences in WSOM increased with height and were partly caused by biochemical isotope fractionation between leaf compounds. 13 C-Enrichment of phloem sugars relative to leaf sucrose implies an additional isotope fractionation mechanism related to leaf assimilate export. In Douglas fir, leaf-to-phloem δ13 C differences were much smaller and isotopically invariant pinitol strongly influenced leaf and phloem WSOM. Trunk phloem WSOM at breast height reflected canopy-integrated δ13 C in beech but not in Douglas fir. Our results demonstrate that leaf-to-phloem isotope fractionation and δ13 C mixing patterns along vertical gradients can differ between tree species. These effects have to be considered for functional interpretations of trunk phloem and tree ring δ13 C.
Collapse
Affiliation(s)
- Rebekka Bögelein
- Faculty of Regional and Environmental Sciences - Geobotany, University of Trier, Behringstraße 21, Trier, 54296, Germany
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute WSL Birmensdorf, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Frank M Thomas
- Faculty of Regional and Environmental Sciences - Geobotany, University of Trier, Behringstraße 21, Trier, 54296, Germany
| |
Collapse
|
20
|
Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.). FORESTS 2019. [DOI: 10.3390/f10040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leaf stable isotope compositions (δ13C and δ15N) are influenced by various abiotic and biotic factors. Qinghai spruce (Picea crassifolia Kom.) as one of the dominant tree species in Qilian Mountains plays a key role in the ecological stability of arid region in the northwest of China. However, our knowledge of the relative importance of multiple factors on leaf δ13C and δ15N remains incomplete. In this work, we investigated the relationships of δ13C and δ15N to leaf age, tree age and leaf nutrients to examine the patterns and controls of leaf δ13C and δ15N variation of Picea crassifolia. Results showed that 13C and 15N of current-year leaves were more enriched than older ones at each tree age level. There was no significant difference in leaf δ13C values among trees of different ages, while juvenile trees (<50 years old) were 15N depleted compared to middle-aged trees (50–100 years old) at each leaf age level except for 1-year-old leaves. Meanwhile, relative importance analysis has demonstrated that leaf age was one of the most important indicators for leaf δ13C and δ15N. Moreover, leaf N concentrations played a dominant role in the variations of δ13C and δ15N. Above all, these results provide valuable information on the eco-physiological responses of P. crassifolia in arid and semi-arid regions.
Collapse
|
21
|
Salmon Y, Li X, Yang B, Ma K, Siegwolf RTW, Schmid B. Surrounding species diversity improves subtropical seedlings' carbon dynamics. Ecol Evol 2018; 8:7055-7067. [PMID: 30073067 PMCID: PMC6065279 DOI: 10.1002/ece3.4225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/31/2018] [Accepted: 05/06/2018] [Indexed: 11/07/2022] Open
Abstract
Increasing biodiversity has been linked to higher primary productivity in terrestrial ecosystems. However, the underlying ecophysiological mechanisms remain poorly understood. We investigated the effects of surrounding species richness (monoculture, two- and four-species mixtures) on the ecophysiology of Lithocarpus glaber seedlings in experimental plots in subtropical China. A natural rain event isotopically labelled both the water uptaken by the L. glaber seedlings and the carbon in new photoassimilates through changes of photosynthetic discrimination. We followed the labelled carbon (C) and oxygen (O) in the plant-soil-atmosphere continuum. We measured gas-exchange variables (C assimilation, transpiration and above- and belowground respiration) and δ13C in leaf biomass, phloem, soil microbial biomass, leaf- and soil-respired CO 2 as well as δ18O in leaf and xylem water. The 13C signal in phloem and respired CO 2 in L. glaber in monoculture lagged behind those in species mixture, showing a slower transport of new photoassimilates to and through the phloem in monoculture. Furthermore, leaf-water 18O enrichment above the xylem water in L. glaber increased after the rain in lower diversity plots suggesting a lower ability to compensate for increased transpiration. Lithocarpus glaber in monoculture showed higher C assimilation rate and water-use efficiency. However, these increased C resources did not translate in higher growth of L. glaber in monoculture suggesting the existence of larger nongrowth-related C sinks in monoculture. These ecophysiological responses of L. glaber, in agreement with current understanding of phloem transport are consistent with a stronger competition for water resources in monoculture than in species mixtures. Therefore, increasing species diversity in the close vicinity of the studied plants appears to alleviate physiological stress induced by water competition and to counterbalance the negative effects of interspecific competition on assimilation rates for L. glaber by allowing a higher fraction of the C assimilated to be allocated to growth in species mixture than in monoculture.
Collapse
Affiliation(s)
- Yann Salmon
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- School of GeosciencesUniversity of EdinburghEdinburghUK
- Institute for Atmospheric and Earth System Research/PhysicsFaculty of ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research/Forest SciencesFaculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
| | - Xuefei Li
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Institute for Atmospheric and Earth System Research/PhysicsFaculty of ScienceUniversity of HelsinkiHelsinkiFinland
| | - Bo Yang
- Key Laboratory of Speciality Resources Biodiversity of Jiangxi ProvinceJingdezhen UniversityJingdezhenJiangxiChina
| | - Keping Ma
- State Key Laboratory of Environment and Vegetation ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Rolf T. W. Siegwolf
- Lab for Atmospheric Chemistry, Ecosystem Fluxes and Stable Isotope ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
22
|
Zhong S, Chai H, Xu Y, Li Y, Ma JY, Sun W. Drought Sensitivity of the Carbon Isotope Composition of Leaf Dark-Respired CO 2 in C 3 ( Leymus chinensis) and C 4 ( Chloris virgata and Hemarthria altissima) Grasses in Northeast China. FRONTIERS IN PLANT SCIENCE 2017; 8:1996. [PMID: 29375587 PMCID: PMC5770615 DOI: 10.3389/fpls.2017.01996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/07/2017] [Indexed: 05/13/2023]
Abstract
Whether photosynthetic pathway differences exist in the amplitude of nighttime variations in the carbon isotope composition of leaf dark-respired CO2 (δ13Cl) and respiratory apparent isotope fractionation relative to biomass (ΔR,biomass) in response to drought stress is unclear. These differences, if present, would be important for the partitioning of C3-C4 mixed ecosystem C fluxes. We measured δ13Cl, the δ13C of biomass and of potential respiratory substrates and leaf gas exchange in one C3 (Leymus chinensis) and two C4 (Chloris virgata and Hemarthria altissima) grasses during a manipulated drought period. For all studied grasses, δ13Cl decreased from 21:00 to 03:00 h. The magnitude of the nighttime shift in δ13Cl decreased with increasing drought stress. The δ13Cl values were correlated with the δ13C of respiratory substrates, whereas the magnitude of the nighttime shift in δ13Cl strongly depended on the daytime carbon assimilation rate and the range of nighttime variations in the respiratory substrate content. The ΔR,biomass in the C3 and C4 grasses varied in opposite directions with the intensification of the drought stress. The contribution of C4 plant-associated carbon flux is likely to be overestimated if carbon isotope signatures are used for the partitioning of ecosystem carbon exchange and the δ13C of biomass is used as a substitute for leaf dark-respired CO2. The detected drought sensitivities in δ13Cl and differences in respiratory apparent isotope fractionation between C3 and C4 grasses have marked implications for isotope partitioning studies at the ecosystem level.
Collapse
Affiliation(s)
- Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Hua Chai
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yueqiao Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jian-Ying Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
23
|
Miao SY, Chen W, Tao W, Dai W, Long L, Huang J. Application of stable isotopes to examine N proportions within a simulated Aegiceras corniculatum wetland. CHEMICAL SPECIATION & BIOAVAILABILITY 2017. [DOI: 10.1080/09542299.2017.1339573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shen Yu Miao
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Weilin Chen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wenqin Tao
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wentan Dai
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liandi Long
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jinling Huang
- School of Architecture and Urban Planning, Guangzhou University, Guangzhou, China
| |
Collapse
|
24
|
Bernal B, Megonigal JP, Mozdzer TJ. An invasive wetland grass primes deep soil carbon pools. GLOBAL CHANGE BIOLOGY 2017; 23:2104-2116. [PMID: 27779794 DOI: 10.1111/gcb.13539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/21/2016] [Indexed: 05/25/2023]
Abstract
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real-time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant-derived, surface SOM-derived (0-40 cm, active root zone of native marsh vegetation), and deep SOM-derived mineralization (40-80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep-buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long-term C sink.
Collapse
Affiliation(s)
- Blanca Bernal
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - J Patrick Megonigal
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Thomas J Mozdzer
- Department of Biology, Bryn Mawr College, 101 N Merion Ave, Bryn Mawr, PA, 19010, USA
| |
Collapse
|
25
|
Xiong X, Zhou W, Cheng P, Wu S, Niu Z, Du H, Lu X, Fu Y, Burr GS. Δ 14CO 2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO 2. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 169-170:79-84. [PMID: 28092812 DOI: 10.1016/j.jenvrad.2017.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
Radiocarbon (14C) has been widely used for quantification of fossil fuel CO2 (CO2ff) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14C signature of fossil fuels and other sources. In past studies, the 14C content of CO2 derived from plants has been equated with the 14C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO2 we determine Δ14Cres values, and from the bulk organic matter we determine Δ14Cbom values. A significant difference between Δ14Cres and Δ14Cbom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ14Cres values are in agreement with mean atmospheric Δ14CO2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ14C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO2ff, an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ14C in plants to quantify atmospheric CO2ff.
Collapse
Affiliation(s)
- Xiaohu Xiong
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China.
| | - Peng Cheng
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Shugang Wu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Hua Du
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Yunchong Fu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - George S Burr
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| |
Collapse
|
26
|
Lehmann MM, Wegener F, Werner RA, Werner C. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:776-84. [PMID: 27086877 DOI: 10.1111/plb.12464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/13/2016] [Indexed: 05/19/2023]
Abstract
Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 .
Collapse
Affiliation(s)
- M M Lehmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - F Wegener
- Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - R A Werner
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - C Werner
- Ecosystem Physiology, University Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|
28
|
Maurer GE, Chan AM, Trahan NA, Moore DJP, Bowling DR. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains. PLANT, CELL & ENVIRONMENT 2016; 39:1513-1523. [PMID: 26824577 DOI: 10.1111/pce.12716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ(13) C) of soil respiration (δJ ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near-surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3-7; and (c) a second period of enrichment (1-2‰) in years 8-10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more (13) C-depleted deeper in the soil than near the surface, while the bulk soil followed the well-established pattern of (13) C-enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰).
Collapse
Affiliation(s)
- Gregory E Maurer
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Allison M Chan
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nicole A Trahan
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - David R Bowling
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
29
|
Lehmann MM, Wegener F, Barthel M, Maurino VG, Siegwolf RTW, Buchmann N, Werner C, Werner RA. Metabolic Fate of the Carboxyl Groups of Malate and Pyruvate and their Influence on δ(13)C of Leaf-Respired CO2 during Light Enhanced Dark Respiration. FRONTIERS IN PLANT SCIENCE 2016; 7:739. [PMID: 27375626 PMCID: PMC4891945 DOI: 10.3389/fpls.2016.00739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
The enhanced CO2 release of illuminated leaves transferred into darkness, termed "light enhanced dark respiration (LEDR)", is often associated with an increase in the carbon isotope ratio of the respired CO2 (δ(13)CLEDR). The latter has been hypothesized to result from different respiratory substrates and decarboxylation reactions in various metabolic pathways, which are poorly understood so far. To provide a better insight into the underlying metabolic processes of δ(13)CLEDR, we fed position-specific (13)C-labeled malate and pyruvate via the xylem stream to leaves of species with high and low δ(13)CLEDR values (Halimium halimifolium and Oxalis triangularis, respectively). During respective label application, we determined label-derived leaf (13)CO2 respiration using laser spectroscopy and the (13)C allocation to metabolic fractions during light-dark transitions. Our results clearly show that both carboxyl groups (C-1 and C-4 position) of malate similarly influence respiration and metabolic fractions in both species, indicating possible isotope randomization of the carboxyl groups of malate by the fumarase reaction. While C-2 position of pyruvate was only weakly respired, the species-specific difference in natural δ(13)CLEDR patterns were best reflected by the (13)CO2 respiration patterns of the C-1 position of pyruvate. Furthermore, (13)C label from malate and pyruvate were mainly allocated to amino and organic acid fractions in both species and only little to sugar and lipid fractions. In summary, our results suggest that respiration of both carboxyl groups of malate (via fumarase) by tricarboxylic acid cycle reactions or by NAD-malic enzyme influences δ(13)CLEDR. The latter supplies the pyruvate dehydrogenase reaction, which in turn determines natural δ(13)CLEDR pattern by releasing the C-1 position of pyruvate.
Collapse
Affiliation(s)
- Marco M. Lehmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer InstituteVilligen, Switzerland
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| | | | - Matti Barthel
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| | - Veronica G. Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University and Cluster of Excellence on Plant Sciences (CEPLAS)Düsseldorf, Germany
| | - Rolf T. W. Siegwolf
- Laboratory of Atmospheric Chemistry, Paul Scherrer InstituteVilligen, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| | | | - Roland A. Werner
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| |
Collapse
|
30
|
Ghashghaie J, Badeck FW, Girardin C, Huignard C, Aydinlis Z, Fonteny C, Priault P, Fresneau C, Lamothe-Sibold M, Streb P, Terwilliger VJ. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2603-15. [PMID: 26970389 DOI: 10.1093/jxb/erw075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes. As such data on C4 plants are scarce and contradictory, we investigated apparent respiratory fractionations of carbon and their possible causes in different organs of maize plants during early ontogeny. As in the C3 plants, leaf-respired CO2 was (13)C enriched whereas root-respired CO2 was (13)C depleted relative to their putative sources. In contrast to the findings for C3 plants, however, not only root- but also leaf-respired CO2 became more (13)C depleted during ontogeny. Leaf-respired CO2 was highly (13)C enriched just after light-dark transition but the enrichment rapidly decreased over time in darkness. We conclude that (i) although carbon isotopic fractionations in C4 maize and leguminous C3 crop roots are similar, increasing phosphoenolpyruvate-carboxylase activity during maize ontogeny could have produced the contrast between the progressive (13)C depletion of maize leaf-respired CO2 and (13)C enrichment of C3 leaf-respired CO2 over time, and (ii) in both maize and C3 leaves, highly (13)C enriched leaf-respired CO2 at light-to-dark transition and its rapid decrease during darkness, together with the observed decrease in leaf malate content, may be the result of a transient effect of light-enhanced dark respiration.
Collapse
Affiliation(s)
- Jaleh Ghashghaie
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Franz W Badeck
- Genomics Research Centre, Council for Agricultural Research and Economics, 29017 Fiorenzuola d'Arda (PC), Italy
| | - Cyril Girardin
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Christophe Huignard
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Zackarie Aydinlis
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Charlotte Fonteny
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Pierrick Priault
- Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, 54506 Vandoeuvre-lès-Nancy, France INRA, UMR Ecologie et Ecophysiologie Forestière, 54280 Champenoux, France
| | - Chantal Fresneau
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Marlène Lamothe-Sibold
- Institute of Plant Sciences Paris-Saclay, IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405 Orsay, France
| | - Peter Streb
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Valery J Terwilliger
- Department of Geography, 1475 Jayhawk Drive, University of Kansas, Lawrence, KS 66045, USA School of Natural Sciences, 5200 North Lake Road, University of California, CA 95343, USA
| |
Collapse
|
31
|
Salmon Y, Buchmann N, Barnard RL. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species. PLoS One 2016; 11:e0151583. [PMID: 27010947 PMCID: PMC4807002 DOI: 10.1371/journal.pone.0151583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/01/2016] [Indexed: 02/05/2023] Open
Abstract
Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.
Collapse
Affiliation(s)
- Yann Salmon
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
32
|
Mueller P, Jensen K, Megonigal JP. Plants mediate soil organic matter decomposition in response to sea level rise. GLOBAL CHANGE BIOLOGY 2016; 22:404-414. [PMID: 26342160 DOI: 10.1111/gcb.13082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.
Collapse
Affiliation(s)
- Peter Mueller
- Applied Plant Ecology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Kai Jensen
- Applied Plant Ecology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | | |
Collapse
|
33
|
Lamade E, Tcherkez G, Darlan NH, Rodrigues RL, Fresneau C, Mauve C, Lamothe-Sibold M, Sketriené D, Ghashghaie J. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern. PLANT, CELL & ENVIRONMENT 2016; 39:199-212. [PMID: 26228944 DOI: 10.1111/pce.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.
Collapse
Affiliation(s)
- Emmanuelle Lamade
- UPR34 Performance of Perennial Cropping Systems, CIRAD-PERSYST, Montpellier, 34398, France
| | - Guillaume Tcherkez
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Nuzul Hijri Darlan
- Indonesian Oil Palm Research Institute, IOPRI, Jl. Brigjen Katamso 51, Medan, North Sumatra, Indonesia
| | | | - Chantal Fresneau
- ESE, Université Paris-Sud, CNRS UMR 8079, Orsay cedex, 91405, France
| | - Caroline Mauve
- Plateforme Métabolisme-Métabolome, Université Paris-Sud, IPS2, Orsay cedex, 91405, France
| | - Marlène Lamothe-Sibold
- Plateforme Métabolisme-Métabolome, Université Paris-Sud, IPS2, Orsay cedex, 91405, France
| | - Diana Sketriené
- ESE, Université Paris-Sud, CNRS UMR 8079, Orsay cedex, 91405, France
| | - Jaleh Ghashghaie
- ESE, Université Paris-Sud, CNRS UMR 8079, Orsay cedex, 91405, France
| |
Collapse
|
34
|
Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Wohlfahrt G, Gu L. The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe. PLANT, CELL & ENVIRONMENT 2015; 38:2500-7. [PMID: 25988305 PMCID: PMC4681079 DOI: 10.1111/pce.12569] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 05/18/2023]
Abstract
(1) Gross photosynthesis is a key term in plant biology and carbon cycle science, however has been used with different meanings by different communities (2) We review the history of this term and associated concepts to clarify the terminology and make recommendations about a consistent use of terms in accordance with photosynthetic theory. (3) We show that a widely used eddy covariance CO2 flux partitioning approach yields estimates which are quantitatively closer to the definition of true photosynthesis despite aiming at estimating apparent photosynthesis.
Collapse
Affiliation(s)
- Georg Wohlfahrt
- Institute of Ecology, University of Innsbruck, 6020, Innsbruck, Austria
- European Academy of Bolzano, 39100, Bolzano, Italy
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
36
|
Gong XY, Schäufele R, Feneis W, Schnyder H. (13) CO2 /(12) CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components. PLANT, CELL & ENVIRONMENT 2015; 38:2417-2432. [PMID: 25944155 DOI: 10.1111/pce.12564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/19/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Leaks and isotopic disequilibria represent potential errors and artefacts during combined measurements of gas exchange and carbon isotope discrimination (Δ). This paper presents new protocols to quantify, minimize, and correct such phenomena. We performed experiments with gradients of CO2 concentration (up to ±250 μmol mol(-1) ) and δ(13) CCO2 (34‰), between a clamp-on leaf cuvette (LI-6400) and surrounding air, to assess (1) leak coefficients for CO2 , (12) CO2 , and (13) CO2 with the empty cuvette and with intact leaves of Holcus lanatus (C3 ) or Sorghum bicolor (C4 ) in the cuvette; and (2) isotopic disequilibria between net photosynthesis and dark respiration in light. Leak coefficients were virtually identical for (12) CO2 and (13) CO2 , but ∼8 times higher with leaves in the cuvette. Leaks generated errors on Δ up to 6‰ for H. lanatus and 2‰ for S. bicolor in full light; isotopic disequilibria produced similar variation of Δ. Leak errors in Δ in darkness were much larger due to small biological : leak flux ratios. Leak artefacts were fully corrected with leak coefficients determined on the same leaves as Δ measurements. Analysis of isotopic disequilibria enabled partitioning of net photosynthesis and dark respiration, and indicated inhibitions of dark respiration in full light (H. lanatus: 14%, S. bicolor: 58%).
Collapse
Affiliation(s)
- Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| | - Wolfgang Feneis
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| |
Collapse
|
37
|
Cui H, Wang Y, Jiang Q, Chen S, Ma JY, Sun W. Carbon Isotope Composition of Nighttime Leaf-Respired CO2 in the Agricultural-Pastoral Zone of the Songnen Plain, Northeast China. PLoS One 2015; 10:e0137575. [PMID: 26356083 PMCID: PMC4565631 DOI: 10.1371/journal.pone.0137575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022] Open
Abstract
Variations in the carbon isotope signature of leaf dark-respired CO2 (δ13CR) within a single night is a widely observed phenomenon. However, it is unclear whether there are plant functional type differences with regard to the amplitude of the nighttime variation in δ13CR. These differences, if present, would be important for interpreting the short-term variations in the stable carbon signature of ecosystem respiration and the partitioning of carbon fluxes. To assess the plant functional type differences relating to the magnitude of the nighttime variation in δ13CR and the respiratory apparent fractionation, we measured the δ13CR, the leaf gas exchange, and the δ13C of the respiratory substrates of 22 species present in the agricultural-pastoral zone of the Songnen Plain, northeast China. The species studied were grouped into C3 and C4 plants, trees, grasses, and herbs. A significant nocturnal shift in δ13CR was detected in 20 of the studied species, with the magnitude of the shift ranging from 1‰ to 5.8‰. The magnitude of the nighttime variation in δ13CR was strongly correlated with the daytime cumulative carbon assimilation, which suggests that variation in δ13CR were influenced, to some extent, by changes in the contribution of malate decarboxylation to total respiratory CO2 flux. There were no differences in the magnitude of the nighttime variation in δ13CR between the C3 and C4 plants, as well as among the woody plants, herbs and graminoids. Leaf respired CO2 was enriched in 13C compared to biomass, soluble carbohydrates and lipids; however the magnitude of enrichment differed between 8 pm and 4 am, which were mainly caused by the changes in δ13CR. We also detected the plant functional type differences in respiratory apparent fractionation relative to biomass at 4 am, which suggests that caution should be exercised when using the δ13C of bulk leaf material as a proxy for the δ13C of leaf-respired CO2.
Collapse
Affiliation(s)
- Haiying Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| | - Yunbo Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| | - Qi Jiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China, 100093
| | - Jian-Ying Ma
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, P. R. China, 830011
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| |
Collapse
|
38
|
Lehmann MM, Rinne KT, Blessing C, Siegwolf RTW, Buchmann N, Werner RA. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5769-81. [PMID: 26139821 PMCID: PMC4566975 DOI: 10.1093/jxb/erv279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle.
Collapse
Affiliation(s)
- Marco M Lehmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| | - Katja T Rinne
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Carola Blessing
- Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| | - Rolf T W Siegwolf
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| | - Roland A Werner
- Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
39
|
Balazs Z, Ristoiu D, Magdas DA, Cristea G, Dehelean A, Voica C, Puscas R, Pirnau A, Feher I, Radu S, Vadan M. Determination of Isotopic Ratios and Metal Concentrations inNicotiana tabacum(Tobacco). ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1045591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wegener F, Beyschlag W, Werner C. Dynamic carbon allocation into source and sink tissues determine within-plant differences in carbon isotope ratios. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:620-629. [PMID: 32480706 DOI: 10.1071/fp14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/10/2015] [Indexed: 05/28/2023]
Abstract
Organs of C3 plants differ in their C isotopic signature (δ13C). In general, leaves are 13C-depleted relative to other organs. To investigate the development of spatial δ13C patterns, we induced different C allocation strategies by reducing light and nutrient availability for 12 months in the Mediterranean shrub Halimium halimifolium L. We measured morphological and physiological traits and the spatial δ13C variation among seven tissue classes during the experiment. A reduction of light (Low-L treatment) increased aboveground C allocation, plant height and specific leaf area. Reduced nutrient availability (Low-N treatment) enhanced C allocation into fine roots and reduced the spatial δ13C variation. In contrast, control and Low-L plants with high C allocation in new leaves showed a high δ13C variation within the plant (up to 2.5‰). The spatial δ13C variation was significantly correlated with the proportion of second-generation leaves from whole-plant biomass (R2=0.46). According to our results, isotope fractionation in dark respiration can influence the C isotope composition of plant tissues but cannot explain the entire spatial pattern seen. Our study indicates a foliar depletion in 13C during leaf development combined with export of relatively 13C-enriched C by mature source leaves as an important reason for the observed spatial δ13C pattern.
Collapse
Affiliation(s)
- Frederik Wegener
- AgroEcosystem Research, BAYCEER, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Wolfram Beyschlag
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christiane Werner
- AgroEcosystem Research, BAYCEER, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
41
|
Rasheed F, Dreyer E, Richard B, Brignolas F, Brendel O, Le Thiec D. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L. PLANT, CELL & ENVIRONMENT 2015; 38:670-84. [PMID: 25099629 DOI: 10.1111/pce.12423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 05/02/2023]
Abstract
Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth.
Collapse
Affiliation(s)
- Fahad Rasheed
- INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280, Champenoux, France; University of Agriculture, Department of Forestry, Range Management & Wildlife, 38000, Faisalabad, Pakistan; Université de Lorraine, UMR 1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500, Vandoeuvre-lès-Nancy, France; INRA, EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, Orléans, F-45067, France
| | | | | | | | | | | |
Collapse
|
42
|
Zhou Y, Stuart-Williams H, Grice K, Kayler ZE, Zavadlav S, Vogts A, Rommerskirchen F, Farquhar GD, Gessler A. Allocate carbon for a reason: priorities are reflected in the ¹³C/¹²C ratios of plant lipids synthesized via three independent biosynthetic pathways. PHYTOCHEMISTRY 2015; 111:14-20. [PMID: 25576502 DOI: 10.1016/j.phytochem.2014.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
It has long been theorized that carbon allocation, in addition to the carbon source and to kinetic isotopic effects associated with a particular lipid biosynthetic pathway, plays an important role in shaping the carbon isotopic composition ((13)C/(12)C) of lipids (Park and Epstein, 1961). If the latter two factors are properly constrained, valuable information about carbon allocation during lipid biosynthesis can be obtained from carbon isotope measurements. Published work of Chikaraishi et al. (2004) showed that leaf lipids isotopic shifts from bulk leaf tissue Δδ(13)C(bk-lp) (defined as δ(13)C(bulkleaftissue)-δ(13)C(lipid)) are pathway dependent: the acetogenic (ACT) pathway synthesizing fatty lipids has the largest isotopic shift, the mevalonic acid (MVA) pathway synthesizing sterols the lowest and the phytol synthesizing 1-deoxy-D-xylulose 5-phosphate (DXP) pathway gives intermediate values. The differences in Δδ(13)C(bk-lp) between C3 and C4 plants Δδ(13)C(bk-lp,C4-C3) are also pathway-dependent: Δδ(13)C(ACT)(bk-lp,C4-C3) > Δδ(13)C(DXP(bk-lp,C4-C3) > Δδ(13)C(MVA)(bk-lp,C4-C3). These pathway-dependent differences have been interpreted as resulting from kinetic isotopic effect differences of key but unspecified biochemical reactions involved in lipids biosynthesis between C3 and C4 plants. After quantitatively considering isotopic shifts caused by (dark) respiration, export-of-carbon (to sink tissues) and photorespiration, we propose that the pathway-specific differences Δδ(13)C(bk-lp,C4-C3) can be successfully explained by C4-C3 carbon allocation (flux) differences with greatest flux into the ACT pathway and lowest into the MVA pathways (when flux is higher, isotopic shift relative to source is smaller). Highest carbon allocation to the ACT pathway appears to be tied to the most stringent role of water-loss-minimization by leaf waxes (composed mainly of fatty lipids) while the lowest carbon allocation to the MVA pathway can be largely explained by the fact that sterols act as regulatory hormones and membrane fluidity modulators in rather low concentrations.
Collapse
Affiliation(s)
- Youping Zhou
- Institute for Landscape Biogeochemistry, ZALF, Germany; Department of Chemistry, Curtin University, Perth, Australia; SKLLQG, Chinese Academy of Sciences, Xi'an, China; Leibniz Institute for Freshwater Ecology & Inland Fisheries, Germany.
| | | | - Kliti Grice
- Department of Chemistry, Curtin University, Perth, Australia
| | | | | | - Angela Vogts
- Leibniz-Institut für Ostseeforschung, Rostock, Germany
| | | | | | - Arthur Gessler
- Institute for Landscape Biogeochemistry, ZALF, Germany; Swiss Federal Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
43
|
Ghashghaie J, Badeck FW, Girardin C, Sketriené D, Lamothe-Sibold M, Werner RA. Changes in δ(13)C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:93-108. [PMID: 25704798 DOI: 10.1080/10256016.2015.1011635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon isotope composition in respired CO2 and organic matter of individual organs were measured on peanut seedlings during early ontogeny in order to compare fractionation during heterotrophic growth and transition to autotrophy in a species with lipid seed reserves with earlier results obtained on beans. Despite a high lipid content in peanut seeds (48%) compared with bean seeds (1.5%), the isotope composition of leaf- and root-respired CO2 as well as its changes during ontogeny were similar to already published data on bean seedlings: leaf-respired CO2 became (13)C-enriched reaching -21.5‰, while root-respired CO2 became (13)C-depleted reaching around -31‰ at the four-leaf stage. The opposite respiratory fractionation in leaves vs. roots already reported for C3 herbs was thus confirmed for peanuts. However, contrarily to beans, the peanut cotyledon-respired CO2 was markedly (13)C-enriched, and its (13)C-depletion was noted from the two-leaf stage onwards only. Carbohydrate amounts being very low in peanut seeds, this cannot be attributed solely to their use as respiratory substrate. The potential role of isotope fractionation during glyoxylate cycle and/or gluconeogenesis on the (13)C-enriched cotyledon-respired CO2 is discussed.
Collapse
Affiliation(s)
- Jaleh Ghashghaie
- a Laboratoire d'Ecologie, Systématique et Evolution (ESE) , Université de Paris-Sud (XI) , Orsay , France
| | | | | | | | | | | |
Collapse
|
44
|
Blessing CH, Barthel M, Buchmann N. Bias in estimated online leaf carbon isotope discrimination due to woody tissues. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:109-123. [PMID: 25664572 DOI: 10.1080/10256016.2015.1007050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Branch or shoot chamber measurements integrate over both foliar and woody tissue carbon dioxide (CO2) fluxes and their associated influences on the carbon isotopic composition of atmospheric/headspace CO2. Here, we quantified the bias introduced by woody tissue carbon isotope fluxes on apparent leaf (13)C discrimination (Δ(13)Capparent) estimates, using laser spectroscopy under controlled conditions. CO2 efflux from woody tissues of defoliated beech saplings in the dark was strongly related to temperature (R(2) = 0.78), which served as the basis to model light-dependent woody tissue photosynthesis (R(2) = 0.72). We then quantified the contributions of leaf and woody tissues to leaf Δ(13)Capparent of foliated beech saplings in the light. Unbiased foliar Δ(13)C was 1.1 to 4.9‰ lower than leaf Δ(13)Capparent, depending on photosynthetic rates of woody tissues. Therefore, we strongly recommend accounting for isotope-related bias due to woody tissues when estimating leaf Δ(13)Capparent based on branch or shoot chamber measurements.
Collapse
Affiliation(s)
- Carola H Blessing
- a Institute of Agricultural Sciences, ETH Zürich , Zürich , Switzerland
| | | | | |
Collapse
|
45
|
Pérez-López U, Mena-Petite A, Muñoz-Rueda A. Will carbon isotope discrimination be useful as a tool for analysing the functional response of barley plants to salinity under the future atmospheric CO₂ conditions? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:71-81. [PMID: 25113452 DOI: 10.1016/j.plantsci.2014.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 05/05/2023]
Abstract
The objective of this study was to determine the response of barley's carbon isotope composition and other physiological parameters to the interaction of salt stress and elevated CO2 levels, and the usefulness of carbon isotope discrimination (Δ(13)C) as indicative of the functional performance of barley (Hordeum vulgare L.). Barley plants were grown under ambient (350 μmol mol(-1)) and elevated (700 μmol mol(-1)) CO2 conditions and subjected to salt stress (0, 80, 160, and 240 mM NaCl) for 14 days. Elevated CO2 levels increased biomass production, water use efficiency and the photosynthetic rate, although this parameter was partly acclimated to elevated CO2 levels. Salt stress decreased this acclimation response because it enhanced the sink strength of the plant. Elevated CO2 significantly decreased the (13)C isotopic composition (δ(13)C) in all plant organs; however, the ratio of δ(13)C between the root and the leaf was increased, indicating a higher allocation of δ(13)C to the below-ground parts. Conversely, salt stress increased plant δ(13)C, showing differences between plant organs. From the strong correlations between Δ(13)C and biomass production, the photosynthetic rate or water use efficiency both at ambient and elevated CO2, we concluded that Δ(13)C is a useful parameter for evaluating leaf and whole plant responses to salinity and can provide an integrated index of processes to understand the mechanisms underlying salt tolerance of barley both under current and future environmental CO2 conditions.
Collapse
Affiliation(s)
- Usue Pérez-López
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain.
| | - Amaia Mena-Petite
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain.
| | - Alberto Muñoz-Rueda
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain.
| |
Collapse
|
46
|
Nogués S, Aljazairi S, Arias C, Sánchez E, Aranjuelo I. Two distinct plant respiratory physiotypes might exist which correspond to fast-growing and slow-growing species. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1157-1163. [PMID: 24973588 DOI: 10.1016/j.jplph.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
The origin of the carbon atoms in CO2 respired by leaves in the dark of several plant species has been studied using 13C/12C stable isotopes. This study was conducted using an open gas exchange system for isotope labeling that was coupled to an elemental analyzer and further linked to an isotope ratio mass spectrometer (EA-IRMS) or coupled to a gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS). We demonstrate here that the carbon, which is recently assimilated during photosynthesis, accounts for nearly ca. 50% of the carbon in the CO2 lost through dark respiration (Rd) after illumination in fast-growing and cultivated plants and trees and, accounts for only ca. 10% in slow-growing plants. Moreover, our study shows that fast-growing plants, which had the largest percentages of newly fixed carbon of leaf-respired CO2, were also those with the largest shoot/root ratios, whereas slow-growing plants showed the lowest shoot/root values.
Collapse
Affiliation(s)
- Salvador Nogués
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Salvador Aljazairi
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Claudia Arias
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Elena Sánchez
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Iker Aranjuelo
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|