1
|
Ibáñez I, McPherson MR, Upchurch RA, Zak DR. Mycorrhizal Fungi Influence on Mature Tree Growth: Stronger in High-Nitrogen Soils for an EMF-Associated Tree and in Low-Nitrogen Soils for Two AMF-Associated Trees. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70055. [PMID: 40342515 PMCID: PMC12059558 DOI: 10.1002/pei3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
The plant-mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)-associated tree species, Acer rubrum and A. saccharum, and one ectomycorrhizal fungi (EMF)-associated tree species, Quercus rubra, to assess how the mycorrhizal fungi-plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non-linear associations with tree growth; positive associations for the two AMF-associated trees were mostly under low N, whereas positive to neutral associations for the EMF-associated tree mainly took place at high N. Only A. rubrum exhibited greater tree growth with its tree soil-specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth.
Collapse
Affiliation(s)
- Inés Ibáñez
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan R. McPherson
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Rima A. Upchurch
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Donald R. Zak
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Melkikh AV. Progressive evolution of plants: A critical review. Biosystems 2025; 251:105444. [PMID: 40054834 DOI: 10.1016/j.biosystems.2025.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
A comprehensive review of the evolutionary mechanisms in plants has been performed. This review examines fundamental questions regarding plant evolution, including the development of sexes, convergent characteristics, and neutral effects in plant ecosystems. The available evidence suggests that plant evolution is not a random process, as previously hypothesized. Instead, a substantial body of evidence points to the existence of directed and predictable patterns in plant evolution, applicable not only to plants but also to other organisms. The concept of directed evolution is explored in the context of plant biology.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
3
|
Zhang Y, Anthony MA, Yuan Q, Wang Y, Zhao P, Chen E, Peng S. Capacity to form common mycorrhizal networks reduces the positive impact of clonal integration between plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70149. [PMID: 40084491 DOI: 10.1111/ppl.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Both clonal plant capabilities for physiological integration and common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) can influence the distribution of nutrients and growth among interconnected individuals. Using a microcosm model system, we aimed to disentangle how CMNs interact with clonal integration to influence plant growth and development. We grew Sphagneticola trilobata clones with isolated root systems in individual, adjacent containers while preventing, disrupting, or allowing clonal integration aboveground via spacers and belowground CMNs to form. We assessed multiple metrics of plant development (e.g., growth, specific leaf area, soluble sugar content), 15N transfer from donor (mother) to receiver (daughter) plants, and variation in AMF communities. We show that spacer formation between ramets and the capacity to form CMNs promoted and inhibited the growth of smaller daughter plants, respectively. In contrast to the independent effects of CMNs and spacers, CMNs, in combination with spacers, significantly weakened the promotion of daughter plants by clonal integration. AMF species richness was also negatively correlated with overall plant growth. Our results demonstrate that two common modes of plant interconnection interact in non-additive ways to affect clonal plant integration and growth. These findings, based on Sphagneticola trilobata, question the underlying assumptions of the positive effects of both AMF CMNs and species richness in comparison to direct plant interconnections.
Collapse
Affiliation(s)
- Yuanhao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Mark A Anthony
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Qianfeng Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Enjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Stocker BD, Dong N, Perkowski EA, Schneider PD, Xu H, de Boer HJ, Rebel KT, Smith NG, Van Sundert K, Wang H, Jones SE, Prentice IC, Harrison SP. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. THE NEW PHYTOLOGIST 2025; 245:49-68. [PMID: 39444238 PMCID: PMC11617667 DOI: 10.1111/nph.20178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2 and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
Collapse
Affiliation(s)
- Benjamin D. Stocker
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - Evan A. Perkowski
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Pascal D. Schneider
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Hugo J. de Boer
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Karin T. Rebel
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Kevin Van Sundert
- Department of BiologyUniversity of AntwerpUniversiteitsplein 12610WilrijkBelgium
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sarah E. Jones
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - I. Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Geography and Environmental ScienceUniversity of ReadingReadingRG6 6ABUK
| |
Collapse
|
5
|
Chen Q, Strashnov I, van Dongen B, Johnson D, Cox F. Environmental dependency of ectomycorrhizal fungi as soil organic matter oxidizers. THE NEW PHYTOLOGIST 2024; 244:2536-2547. [PMID: 39417445 PMCID: PMC11579442 DOI: 10.1111/nph.20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Forest soils play a pivotal role as global carbon (C) sinks, where the dynamics of soil organic matter (SOM) are significantly influenced by ectomycorrhizal (ECM) fungi. While correlations between ECM fungal community composition and soil C storage have been documented, the underlying mechanisms behind this remain unclear. Here, we conducted controlled experiments using pure cultures growing on naturally complex SOM extracts to test how ECM fungi regulate soil C and nitrogen (N) dynamics in response to varying inorganic N availability, in both monoculture and mixed culture conditions. ECM species dominant in N-poor soils exhibited superior SOM decay capabilities compared with those prevalent in N-rich soils. Inorganic N addition alleviated N limitation for ECM species but exacerbated their C limitation, reflected by reduced N compound decomposition and increased C compound decomposition. In mixed cultures without inorganic N supplementation, ECM species with greater SOM decomposition potential facilitated the persistence of less proficient SOM decomposers. Regardless of inorganic N availability, ECM species in mixed cultures demonstrated a preference for C over N, intensifying relatively labile C compound decomposition. This study highlights the complex interactions between ECM species, their nutritional requirements, the nutritional environment of their habitat, and their role in modifying SOM.
Collapse
Affiliation(s)
- Qiuyu Chen
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Ilya Strashnov
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Bart van Dongen
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - David Johnson
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Filipa Cox
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
6
|
F K, L B, M EM, M R B, N F, R B, F B, A DS, C D, M N F, G G, M J G, M L, A L, W L M, A N, A S, G S, E I V, K V, L V, B Z, L A, D D, M B. "Ectomycorrhizal exploration type" could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms. MYCORRHIZA 2024; 34:203-216. [PMID: 38700516 DOI: 10.1007/s00572-024-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.
Collapse
Affiliation(s)
- Khalfallah F
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France
- INRAE, BEF, Nancy, F-54000, France
| | - Bon L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - El Mazlouzi M
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
- IEES, Université Paris Est Créteil, CNRS, INRAE, IRD, Créteil, 94010, 94010, France
| | - Bakker M R
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Fanin N
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Bellanger R
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Bernier F
- INRAE, Domaine de l'Hermitage, Cestas Pierroton, 0570 UEFP, 33610, France
| | - De Schrijver A
- Departement Biowetenschappen en Industriële Technologie, AgroFoodNature HOGENT, Melle, 9090, Belgium
| | - Ducatillon C
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Fotelli M N
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Gateble G
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Gundale M J
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Larsson M
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Legout A
- INRAE, BEF, Nancy, F-54000, France
| | - Mason W L
- Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, Scotland, UK
| | - Nordin A
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Smolander A
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Spyroglou G
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Vanguelova E I
- Forest Research, Alice Holt, Alice Holt Lodge, Farnham, GU10 4LH, UK
| | - Verheyen K
- Forest & Nature Lab, Ghent University, Gontrode, Melle, 9090, Belgium
| | - Vesterdal L
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Zeller B
- INRAE, BEF, Nancy, F-54000, France
| | - Augusto L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France.
| | | | - Buée M
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France.
| |
Collapse
|
7
|
Du Z, Zhou L, Thakur MP, Zhou G, Fu Y, Li N, Liu R, He Y, Chen H, Li J, Zhou H, Li M, Lu M, Zhou X. Mycorrhizal associations relate to stable convergence in plant-microbial competition for nitrogen absorption under high nitrogen conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e17338. [PMID: 38822535 DOI: 10.1111/gcb.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.
Collapse
Affiliation(s)
- Zhenggang Du
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Lingyan Zhou
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, Shanghai, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Madhav P Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Guiyao Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Yuling Fu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Nan Li
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ruiqiang Liu
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yanghui He
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hongyang Chen
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jie Li
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Huimin Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ming Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meng Lu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Xuhui Zhou
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Bogar LM. Modified source-sink dynamics govern resource exchange in ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:1523-1528. [PMID: 37691279 DOI: 10.1111/nph.19259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Ectomycorrhizal symbiosis between roots and fungi is founded on the movement of carbon from plants to fungi, and of soil resources from fungi to plants. Framing this movement as a trade can facilitate an understanding of how this mutualism has developed over evolutionary time, but fails to explain experimental observations of carbon and nutrient movement. Here, I propose that source-sink dynamics are an essential basic model to explain the movement of plant and fungal resources, which may be modified by plant immune response, variability in fungal molecular repertoires, and competition in the soil. Source-sink dynamics provide testable hypotheses to illuminate mechanisms of ectomycorrhizal resource movement and its consequences for mutualism stability and forest function under climate change.
Collapse
Affiliation(s)
- Laura M Bogar
- Department of Plant Biology, University of California, Davis, 605 Hutchison Dr., Davis, CA, 95616, USA
| |
Collapse
|
9
|
Fernandez-Tschieder E, Marshall JD, Binkley D. Carbon budget at the individual-tree scale: dominant Eucalyptus trees partition less carbon belowground. THE NEW PHYTOLOGIST 2024. [PMID: 38641865 DOI: 10.1111/nph.19764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/06/2024] [Indexed: 04/21/2024]
Abstract
Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.
Collapse
Affiliation(s)
- Ezequiel Fernandez-Tschieder
- National Institute of Agricultural Technology (INTA), Agricultural Experimental Station of Delta del Paraná, Campana, B2804, Argentina
- Graduate Degree Program in Ecology, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, 15374, Germany
- Department of Geological Sciences, Gothenburg University, Gothenburg, 405 30, Sweden
- Department of Energy and Matter Fluxes, Czech Globe, Belidla, 603 00, Czechia
| | - Dan Binkley
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
10
|
Medina-Vega JA, Zuleta D, Aguilar S, Alonso A, Bissiengou P, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Castaño N, Chave J, Dalling JW, de Oliveira AA, Duque Á, Ediriweera S, Ewango CEN, Filip J, Hubbell SP, Itoh A, Kiratiprayoon S, Lum SKY, Makana JR, Memiaghe H, Mitre D, Mohamad MB, Nathalang A, Nilus R, Nkongolo NV, Novotny V, O'Brien MJ, Pérez R, Pongpattananurak N, Reynolds G, Russo SE, Tan S, Thompson J, Uriarte M, Valencia R, Vicentini A, Yao TL, Zimmerman JK, Davies SJ. Tropical tree ectomycorrhiza are distributed independently of soil nutrients. Nat Ecol Evol 2024; 8:400-410. [PMID: 38200369 DOI: 10.1038/s41559-023-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.
Collapse
Affiliation(s)
- José A Medina-Vega
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA.
| | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| | | | - Alfonso Alonso
- Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Pulchérie Bissiengou
- Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Libreville, Gabon
| | - Warren Y Brockelman
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sarayudh Bunyavejchewin
- Thai Long-Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Nicolás Castaño
- Herbario Amazónico Colombiano, Instituto Amazónico de Investigaciones Científicas Sinchi, Bogotá, Colombia
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, CNRS, UPS, IRD, Université Paul Sabatier, Toulouse, France
| | - James W Dalling
- Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alexandre A de Oliveira
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Álvaro Duque
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sisira Ediriweera
- Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Corneille E N Ewango
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jonah Filip
- Binatang Research Center, Madang, Papua New Guinea
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Akira Itoh
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Somboon Kiratiprayoon
- Faculty of Science and Technology, Thammasat University (Rangsit), Pathum Thani, Thailand
| | - Shawn K Y Lum
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Jean-Remy Makana
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Hervé Memiaghe
- Institut de Recherche en Ecologie Tropicale, Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - David Mitre
- Smithsonian Tropical Research Institute, Balboa, Panama
| | | | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Thailand
| | - Reuben Nilus
- Sabah Forestry Department, Forest Research Centre, Sandakan, Malaysia
| | - Nsalambi V Nkongolo
- School of Science, Navajo Technical University, Crownpoint, NM, USA
- Institut Facultaire des Sciences Agronomiques (IFA) de Yangambi, Kisangani, Democratic Republic of the Congo
| | - Vojtech Novotny
- Biology Centre, Institute of Entomology of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Rolando Pérez
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Nantachai Pongpattananurak
- Thai Long-Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Glen Reynolds
- Southeast Asia Rainforest Research Partnership (SEARRP), Kota Kinabalu, Malaysia
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | | | | | - María Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alberto Vicentini
- Coordenação de Dinâmica Ambiental (CODAM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Tze Leong Yao
- Forestry and Environment Division, Forest Research Institute Malaysia, Kepong, Malaysia
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| |
Collapse
|
11
|
Hupperts SF, Islam KS, Gundale MJ, Kardol P, Sundqvist MK. Warming influences carbon and nitrogen assimilation between a widespread Ericaceous shrub and root-associated fungi. THE NEW PHYTOLOGIST 2024; 241:1062-1073. [PMID: 37950517 DOI: 10.1111/nph.19384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
High-latitude ecosystems are warming faster than other biomes and are often dominated by a ground layer of Ericaceous shrubs, which can respond positively to warming. The carbon-for-nitrogen (C-for-N) exchange between Ericaceous shrubs and root-associated fungi may underlie shrub responses to warming, but has been understudied. In a glasshouse setting, we examined the effects of warming on the C-for-N exchange between the Ericaceous shrub Empetrum nigrum ssp. hermaphroditum and its root-associated fungi. We applied different 13 C and 15 N isotope labels, including a simple organic N form (glycine) and a complex organic N form (moss litter) and quantified their assimilation into soil, plant biomass, and root fungal biomass pools. We found that warming lowered the amount of 13 C partitioned to root-associated fungi per unit of glycine 15 N assimilated by E. nigrum, but only in the short term. By contrast, warming increased the amount of 13 C partitioned to root-associated fungi per unit of moss 15 N assimilated by E. nigrum. Our study suggests that climate warming affects the short-term exchange of C and N between a widespread Ericaceous shrub and root-associated fungi. Furthermore, while most isotope tracing studies use labile N sources, we demonstrate that a ubiquitous recalcitrant N source may produce contrasting results.
Collapse
Affiliation(s)
- Stefan F Hupperts
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Kazi Samiul Islam
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Maja K Sundqvist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| |
Collapse
|
12
|
Netherway T, Bengtsson J, Buegger F, Fritscher J, Oja J, Pritsch K, Hildebrand F, Krab EJ, Bahram M. Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nat Commun 2024; 15:159. [PMID: 38167673 PMCID: PMC10761831 DOI: 10.1038/s41467-023-44172-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Jan Bengtsson
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| | - Franz Buegger
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Joachim Fritscher
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Jane Oja
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Eveline J Krab
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| |
Collapse
|
13
|
Pena R, Bluhm SL, Ammerschubert S, Agüi-Gonzalez P, Rizzoli SO, Scheu S, Polle A. Mycorrhizal C/N ratio determines plant-derived carbon and nitrogen allocation to symbiosis. Commun Biol 2023; 6:1230. [PMID: 38053000 PMCID: PMC10698078 DOI: 10.1038/s42003-023-05591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.
Collapse
Affiliation(s)
- Rodica Pena
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Sustainable Land Management, School of Agriculture Policy and Development, University of Reading, Reading, UK
| | - Sarah L Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Silke Ammerschubert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Bassett KR, Östlund L, Gundale MJ, Fridman J, Jämtgård S. Forest inventory tree core archive reveals changes in boreal wood traits over seven decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165795. [PMID: 37499833 DOI: 10.1016/j.scitotenv.2023.165795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Boreal forests play an important role in the global carbon (C) cycle, and there is great interest in understanding how they respond to environmental change, including nitrogen (N) and water limitation, which could impact future forest growth and C storage. Utilizing tree cores archived by the Swedish National Forest Inventory, we measured stemwood traits, including stable N and C isotope composition which provides valuable information related to N availability and water stress, respectively, as well as N and C content, and C/N ratio over 1950-2017 in two central Swedish counties covering an area of ca. 55,000 sq. km (n = 1038). We tested the hypothesis that wood traits are changing over time, and that temporal patterns would differ depending on alternative dendrochronological reconstruction methods, i.e. the commonly applied "single tree method" (STM) or a conceptually stronger "multiple tree method" (MTM). Averaged across all MTMs, our data showed that all five wood traits for Picea abies and Pinus sylvestris changed over time. Wood δ15N strongly declined, indicating progressive nitrogen limitation. The decline in δ13C tracked the known atmospheric δ13CO2 signal, suggesting no change in water stress occurred. Additionally, wood N significantly increased, while C and C/N ratios declined over time. Furthermore, wood trait patterns sometimes differed between dendrochronological methods. The most notable difference was for δ15N, where the slope was much shallower for the STM compared to MTMs for both species, indicating that mobility of contemporary N is problematic when using the STM, resulting in substantially less sensitivity to detect historical signals. Our study indicates strong temporal changes in boreal wood traits and also indicates that the field of dendroecology should adopt new methods and archiving practices for studying highly mobile element cycles, such as nitrogen, which are critical for understanding environmental change in high latitude ecosystems.
Collapse
Affiliation(s)
- Kelley R Bassett
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden.
| | - Lars Östlund
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| |
Collapse
|
15
|
Becklin KM, Viele BM, Coleman HD. Nutrient conditions mediate mycorrhizal effects on biomass production and cell wall chemistry in poplar. TREE PHYSIOLOGY 2023; 43:1571-1583. [PMID: 37166359 DOI: 10.1093/treephys/tpad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Large-scale biofuel production from lignocellulosic feedstock is limited by the financial and environmental costs associated with growing and processing lignocellulosic material and the resilience of these plants to environmental stress. Symbiotic associations with arbuscular (AM) and ectomycorrhizal (EM) fungi represent a potential strategy for expanding feedstock production while reducing nutrient inputs. Comparing AM and EM effects on wood production and chemical composition is a necessary step in developing biofuel feedstocks. Here, we assessed the productivity, biomass allocation and secondary cell wall (SCW) composition of greenhouse-grown Populus tremuloidesMichx. inoculated with either AM or EM fungi. Given the long-term goal of reducing nutrient inputs for biofuel production, we further tested the effects of nutrient availability and nitrogen:phosphorus stoichiometry on mycorrhizal responses. Associations with both AM and EM fungi increased plant biomass by 14-74% depending on the nutrient conditions but had minimal effects on SCW composition. Mycorrhizal plants, especially those inoculated with EM fungi, also allocated a greater portion of their biomass to roots, which could be beneficial in the field where plants are likely to experience both water and nutrient stress. Leaf nutrient content was weakly but positively correlated with wood production in mycorrhizal plants. Surprisingly, phosphorus played a larger role in EM plants compared with AM plants. Relative nitrogen and phosphorus availability were correlated with shifts in SCW composition. For AM associations, the benefit of increased wood biomass may be partially offset by increased lignin content, a trait that affects downstream processing of lignocellulosic tissue for biofuels. By comparing AM and EM effects on the productivity and chemical composition of lignocellulosic tissue, this work links broad functional diversity in mycorrhizal associations to key biofuel traits and highlights the importance of considering both biotic and abiotic factors when developing strategies for sustainable biofuel production.
Collapse
Affiliation(s)
- Katie M Becklin
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Bethanie M Viele
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| |
Collapse
|
16
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
17
|
Li W, Lu Q, Alharbi SA, Soromotin AV, Kuzyakov Y, Lei Y. Plant-soil-microbial interactions mediate vegetation succession in retreating glacial forefields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162393. [PMID: 36841408 DOI: 10.1016/j.scitotenv.2023.162393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Andrey V Soromotin
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, 6 Volodarskogo Street, 625003 Tyumen, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia; Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Yanbao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
18
|
Henriksson N, Marshall J, Högberg MN, Högberg P, Polle A, Franklin O, Näsholm T. Re-examining the evidence for the mother tree hypothesis - resource sharing among trees via ectomycorrhizal networks. THE NEW PHYTOLOGIST 2023. [PMID: 37149889 DOI: 10.1111/nph.18935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/19/2023] [Indexed: 05/09/2023]
Abstract
Seminal scientific papers positing that mycorrhizal fungal networks can distribute carbon (C) among plants have stimulated a popular narrative that overstory trees, or 'mother trees', support the growth of seedlings in this way. This narrative has far-reaching implications for our understanding of forest ecology and has been controversial in the scientific community. We review the current understanding of ectomycorrhizal C metabolism and observations on forest regeneration that make the mother tree narrative debatable. We then re-examine data and conclusions from publications that underlie the mother tree hypothesis. Isotopic labeling methods are uniquely suited for studying element fluxes through ecosystems, but the complexity of mycorrhizal symbiosis, low detection limits, and small carbon discrimination in biological processes can cause researchers to make important inferences based on miniscule shifts in isotopic abundance, which can be misleading. We conclude that evidence of a significant net C transfer via common mycorrhizal networks that benefits the recipients is still lacking. Furthermore, a role for fungi as a C pipeline between trees is difficult to reconcile with any adaptive advantages for the fungi. Finally, the hypothesis is neither supported by boreal forest regeneration patterns nor consistent with the understanding of physiological mechanisms controlling mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Nils Henriksson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Mona N Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Peter Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oskar Franklin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
19
|
Sáenz-Hidalgo HK, Jacobo-Cuellar JL, Zúñiga-Rodríguez E, Avila-Quezada GD, Olalde-Portugal V, Hashem A, Abd_Allah EF. Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico. J Fungi (Basel) 2023; 9:jof9040440. [PMID: 37108895 PMCID: PMC10140891 DOI: 10.3390/jof9040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Pecan trees form a symbiotic relationship with ectomycorrhizal fungi (ECM), which actively provide nutrition to the roots and protect them from phytopathogens. Although these trees originated in the southern United States and northern Mexico, information on their root colonization by ECM is insufficient in terms of a representative number of samples, both in these regions and worldwide. Therefore, the objectives of this study were to determine the percentage of ectomycorrhizal colonization (ECM) of pecan trees of different ages in conventional and organic agronomic orchards and to identify ectomycorrhizal sporocarps, both morphologically and molecularly. The rhizospheric soil properties and the ECM percentages were analyzed for 14 Western variety pecan tree orchards between 3 and 48 years of age and grouped according to the agronomic management method. DNA extraction, internal transcribed spacer amplification, and sequencing were conducted on the fungal macroforms. The ECM colonization percentage fluctuated between 31.44 and 59.89%. Soils with low phosphorus content showed higher ECM colonization. The ECM concentrations were relatively homogeneous in relation to the ages of the trees, and organic matter content did not affect the percentage of ECM colonization. The highest ECM percentages occurred with the sandy clay crumb texture soil, with an average of 55% ECM, followed by sandy clay loam soils with 49.5%. The Pisolithus arenarius and Pisolithus tinctorius fungi were molecularly identified from sporocarps associated with pecan trees. This is the first study that reports Pisolithus arenarius as being associated with this tree.
Collapse
Affiliation(s)
- Hilda Karina Sáenz-Hidalgo
- Centro de Investigación en Alimentación y Desarrollo, Chihuahua 33089, Mexico
- Facultad de Ciencias Agrotecnológica, Universidad Autónoma de Chihuahua, Campus 1, Chihuahua 31000, Mexico
| | - Juan Luis Jacobo-Cuellar
- Facultad de Ciencias Agrotecnológica, Universidad Autónoma de Chihuahua, Campus 1, Chihuahua 31000, Mexico
| | - Erick Zúñiga-Rodríguez
- Facultad de Ciencias Agrotecnológica, Universidad Autónoma de Chihuahua, Campus 1, Chihuahua 31000, Mexico
| | | | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Karst J, Jones MD, Hoeksema JD. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat Ecol Evol 2023; 7:501-511. [PMID: 36782032 DOI: 10.1038/s41559-023-01986-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
A common mycorrhizal network (CMN) is formed when mycorrhizal fungal hyphae connect the roots of multiple plants of the same or different species belowground. Recently, CMNs have captured the interest of broad audiences, especially with respect to forest function and management. We are concerned, however, that recent claims in the popular media about CMNs in forests are disconnected from evidence, and that bias towards citing positive effects of CMNs has developed in the scientific literature. We first evaluated the evidence supporting three common claims. The claims that CMNs are widespread in forests and that resources are transferred through CMNs to increase seedling performance are insufficiently supported because results from field studies vary too widely, have alternative explanations or are too limited to support generalizations. The claim that mature trees preferentially send resources and defence signals to offspring through CMNs has no peer-reviewed, published evidence. We next examined how the results from CMN research are cited and found that unsupported claims have doubled in the past 25 years; a bias towards citing positive effects may obscure our understanding of the structure and function of CMNs in forests. We conclude that knowledge on CMNs is presently too sparse and unsettled to inform forest management.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
21
|
Horning AL, Koury SS, Meachum M, Kuehn KA, Hoeksema JD. Dirt cheap: an experimental test of controls on resource exchange in an ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2023; 237:987-998. [PMID: 36346200 DOI: 10.1111/nph.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.
Collapse
Affiliation(s)
- Amber L Horning
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Stephanie S Koury
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Mariah Meachum
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Kevin A Kuehn
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| |
Collapse
|
22
|
Friggens NL, Hartley IP, Parker TC, Subke J, Wookey PA. Trees out‐forage understorey shrubs for nitrogen patches in a subarctic mountain birch forest. OIKOS 2022. [DOI: 10.1111/oik.09567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nina L. Friggens
- Geography, Faculty of Environment, Science and Economy, Univ. of Exeter Exeter UK
- Biological & Environmental Sciences, Faculty of Natural Sciences, Univ. of Stirling Stirling UK
| | - Iain P. Hartley
- Geography, Faculty of Environment, Science and Economy, Univ. of Exeter Exeter UK
| | - Thomas C. Parker
- Ecological Sciences, The James Hutton Inst. Craigiebuckler Aberdeen UK
| | - Jens‐Arne Subke
- Biological & Environmental Sciences, Faculty of Natural Sciences, Univ. of Stirling Stirling UK
| | - Philip A. Wookey
- Biological & Environmental Sciences, Faculty of Natural Sciences, Univ. of Stirling Stirling UK
| |
Collapse
|
23
|
Zhang S, Tsuruta M, Li C, Vaario LM, Xia Y, Matsushita N, Kurokochi H, Xu R, Li J, Lian C. Estimation of the most suitable nitrogen concentration for sporocarp formation in Laccaria japonica colonizing Pinus densiflora seedlings through in vitro mycelial culture. MYCORRHIZA 2022; 32:451-464. [PMID: 35764713 DOI: 10.1007/s00572-022-01085-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Many ectomycorrhizal (ECM) fungi produce commercially valuable edible sporocarps. However, the effects of nitrogen (N) application on ECM fungal sporocarp formation remain poorly understood. In this study, we investigated the effect of application of various N concentrations (0, 5, 25, 50, 100, and 200 mg/L) on the growth of Laccaria japonica mycelia in vitro for 1 month. The results showed that L. japonica mycelial biomass was highest in the 50 mg/L treatment and was significantly inhibited at N concentrations higher than 200 mg/L. Next, we investigated the effects of N application on mycorrhizal colonization and sporocarp formation in L. japonica colonizing Pinus densiflora seedlings in pots. The seedlings were watered with nutrient solutions containing 0, 5, 25, 50, or 100 mg N/L. The biomass, photosynthetic rate, and mycorrhizal colonization rates of the seedlings were measured at 45 days (first appearance of primordia), 65 days (sporocarp appearance on the substrate surface), and 4 months after seedlings were transplanted. The numbers of primordia and sporocarps were recorded during the experimental period. Total carbon (C) and N content were determined in seedlings at 4 months after transplantation, and in L. japonica sporocarps. Both mycelial growth and sporocarp production reached their maximum at an N application concentration of 50 mg/L, suggesting that the most suitable N concentration for ECM fungal sporocarp formation can easily be estimated in vitro during mycelial growth. This finding may help determine the most suitable N conditions for increasing edible ECM fungus sporocarp production in natural forests.
Collapse
Affiliation(s)
- Shijie Zhang
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Lu-Min Vaario
- Department of Forest Sciences, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Kurokochi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ruiyang Xu
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiali Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests. Proc Natl Acad Sci U S A 2022; 119:e2118852119. [PMID: 35727987 PMCID: PMC9245616 DOI: 10.1073/pnas.2118852119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in DNA sequencing have provided an unprecedented view of the complex microbial communities that populate global ecosystems. We present a metatranscriptomic analysis of samples from the boreal forest—the largest terrestrial carbon store—capturing the seasonally resolved transcriptomes of Norway spruce roots and more than 350 root-associated fungal species. Our findings link the functional response of host-trees to increased nutrient availability, with profound perturbations in the fungal community. Notably, we observed an exchange in prevalence and host-coordination of specialist ectomycorrhizal species critical for enzymatic cycling of recalcitrant carbon, to metabolically versatile species with resilient melanized cell walls. This research unites kingdom-spanning taxonomic and functional details of the boreal root microbiome, contributing a missing perspective toward modeling global carbon cycling. Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree–microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host–microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.
Collapse
|
25
|
Weemstra M, Kuyper TW, Sterck FJ, Umaña MN. Incorporating belowground traits: avenues towards a whole‐tree perspective on performance. OIKOS 2022. [DOI: 10.1111/oik.08827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monique Weemstra
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - María Natalia Umaña
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| |
Collapse
|
26
|
Semchenko M, Barry KE, de Vries FT, Mommer L, Moora M, Maciá-Vicente JG. Deciphering the role of specialist and generalist plant-microbial interactions as drivers of plant-soil feedback. THE NEW PHYTOLOGIST 2022; 234:1929-1944. [PMID: 35338649 DOI: 10.1111/nph.18118] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Feedback between plants and soil microbial communities can be a powerful driver of vegetation dynamics. Plants elicit changes in the soil microbiome that either promote or suppress conspecifics at the same location, thereby regulating population density-dependence and species co-existence. Such effects are often attributed to the accumulation of host-specific antagonistic or beneficial microbiota in the rhizosphere. However, the identity and host-specificity of the microbial taxa involved are rarely empirically assessed. Here we review the evidence for host-specificity in plant-associated microbes and propose that specific plant-soil feedbacks can also be driven by generalists. We outline the potential mechanisms by which generalist microbial pathogens, mutualists and decomposers can generate differential effects on plant hosts and synthesize existing evidence to predict these effects as a function of plant investments into defence, microbial mutualists and dispersal. Importantly, the capacity of generalist microbiota to drive plant-soil feedbacks depends not only on the traits of individual plants but also on the phylogenetic and functional diversity of plant communities. Identifying factors that promote specialization or generalism in plant-microbial interactions and thereby modulate the impact of microbiota on plant performance will advance our understanding of the mechanisms underlying plant-soil feedback and the ways it contributes to plant co-existence.
Collapse
Affiliation(s)
- Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kathryn E Barry
- Ecology and Biodiversity, Department of Biology, Institute of Science, Utrecht University, Padualaan 8, Utrecht, the Netherlands
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
27
|
Hagh-Doust N, Färkkilä SM, Hosseyni Moghaddam MS, Tedersoo L. Symbiotic fungi as biotechnological tools: Methodological challenges and relative benefits in agriculture and forestry. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, Schaub M, Rautio P, Ferretti M, Vesterdal L, De Vos B, Dettwiler M, Eickenscheidt N, Schmitz A, Meesenburg H, Andreae H, Jacob F, Dietrich HP, Waldner P, Gessler A, Frey B, Schramm O, van den Bulk P, Hensen A, Averill C. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. THE ISME JOURNAL 2022; 16:1327-1336. [PMID: 35001085 PMCID: PMC9038731 DOI: 10.1038/s41396-021-01159-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.
Collapse
Affiliation(s)
- Mark A Anthony
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, The Netherlands
| | | | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | - Filipa Cox
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pasi Rautio
- Natural Resources Institute Finland, Rovaniemi, Finland
| | - Marco Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Bruno De Vos
- Environment & Climate Unit, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mike Dettwiler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nadine Eickenscheidt
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
- Thuenen Institut of Forest Ecosystems, 16225, Eberswalde, Germany
| | | | | | - Frank Jacob
- Sachsenforst State Forest, 01796, Pirna OT Graupa, Germany
| | | | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schramm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pim van den Bulk
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Arjan Hensen
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Alternative stable states of the forest mycobiome are maintained through positive feedbacks. Nat Ecol Evol 2022; 6:375-382. [PMID: 35210576 PMCID: PMC7612595 DOI: 10.1038/s41559-022-01663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/04/2022] [Indexed: 02/03/2023]
Abstract
Most trees on Earth forms a symbiosis with either arbuscular mycorrhizal or ectomycorrhizal fungi. By forming common mycorrhizal networks, actively modifying the soil environment, and other ecological mechanisms - these contrasting symbioses may generate positive feedbacks that favor their own mycorrhizal strategy (i.e. the con-mycorrhizal strategy) at the expense of the alternative strategy. Positive con-mycorrhizal feedbacks set the stage for alternative stable states of forests and their fungi, where the presence of different forest mycorrhizal strategies is determined not only by external environmental conditions but also mycorrhiza-mediated feedbacks embedded within the forest ecosystem. Here we test this hypothesis using thousands of U.S. forest inventory sites to show arbuscular and ectomycorrhizal tree recruitment and survival exhibit positive con-mycorrhizal density dependence. Data-driven simulations show these positive feedbacks are sufficient in magnitude to generate and maintain alternative stable states of the forest mycobiome. Given the links between forest mycorrhizal strategy and carbon sequestration potential, the presence of mycorrhizal-mediated alternative stable states affects how we forecast forest composition, carbon sequestration and terrestrial climate feedbacks.
Collapse
|
30
|
Wan J, Crowther TW. Uniting the scales of microbial biogeochemistry with trait‐based modeling. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Joe Wan
- Institute of Integrative Biology ETH Zürich Zürich Switzerland
| | | |
Collapse
|
31
|
Bogar LM, Tavasieff OS, Raab TK, Peay KG. Does resource exchange in ectomycorrhizal symbiosis vary with competitive context and nitrogen addition? THE NEW PHYTOLOGIST 2022; 233:1331-1344. [PMID: 34797927 DOI: 10.1111/nph.17871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ectomycorrhizal symbiosis is essential for the nutrition of most temperate forest trees and helps regulate the movement of carbon (C) and nitrogen (N) through forested ecosystems. The factors governing the exchange of plant C for fungal N, however, remain obscure. Because competition and soil resources may influence ectomycorrhizal resource movement, we performed a 10-month split-root microcosm study using Pinus muricata seedlings with Thelephora terrestris, Suillus pungens, or no ectomycorrhizal fungus, under two N concentrations in artificial soil. Fungi competed directly with roots and indirectly with each other. We used stable isotope enrichment to track plant photosynthate and fungal N. For T. terrestris, plants received N commensurate with the C given to their fungal partners. Thelephora terrestris was a superior mutualist under high-N conditions. For S. pungens, plant C and fungal N exchange were not coupled. However, in low-N conditions, plants preferentially allocated C to S. pungens rather than T. terrestris. Our results suggest that ectomycorrhizal resource transfer depends on competitive and nutritional context. Plants can exchange C for fungal N, but coupling of these resources can depend on the fungal species and soil N. Understanding the diversity of fungal strategies, and how they change with environmental context, reveals mechanisms driving this important symbiosis.
Collapse
Affiliation(s)
- Laura M Bogar
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Oceana S Tavasieff
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ted K Raab
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
32
|
Can Carbon Offset Policies Be Effectively Implemented in All Regions of China? An Evolutionary Game Analysis of Decision-Making Dynamics of Local Governments. SUSTAINABILITY 2022. [DOI: 10.3390/su14031591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon offset policies are an effective means of coordinating regional ecological conservation, promoting environmentally friendly economic development, and achieving carbon neutrality; they are being gradually implemented in all regions of China. This study analyzed the decision-making behavior of local governments before and after the introduction of incentive and restraint mechanisms. To this end, it constructed a dynamic evolutionary game model for local governments with a carbon surplus and those with a carbon deficit. The results indicate that it is difficult to implement carbon offset policies between regions without the intervention of the central government. They also show that the effects of different incentive and restraint mechanisms vary significantly. Specifically, a mechanism that targets both carbon surplus and carbon deficit local governments and a unilateral mechanism that targets only carbon deficit local governments are shown to be effective. Finally, the results indicate that the implementation costs of incentive and restraint mechanisms differ, and their implementation intensity affects the time required for carbon offset policies to be rolled out in all regions. Based on these findings, we propose policy recommendations for promoting the implementation of carbon offset policies in all regions of China and alleviating carbon emission pressure.
Collapse
|
33
|
Plett KL, Snijders F, Castañeda-Gómez L, Wong-Bajracharya JWH, Anderson IC, Carrillo Y, Plett JM. Nitrogen fertilization differentially affects the symbiotic capacity of two co-occurring ectomycorrhizal species. Environ Microbiol 2022; 24:309-323. [PMID: 35023254 DOI: 10.1111/1462-2920.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Forest trees rely on ectomycorrhizal (ECM) fungi to obtain growth-limiting nutrients. While addition of nitrogen (N) has the potential to disrupt these critical relationships, there is conflicting evidence as to the mechanism by which ECM:host mutualism may be affected. We evaluated how N fertilization altered host interactions and gene transcription between Eucalyptus grandis and Pisolithus microcarpus or Pisolithus albus, two closely related ECM species that typically co-occur within the same ecosystem. Our investigation demonstrated species-specific responses to elevated N: P. microcarpus maintained its ability to transport microbially sourced N to its host but had a reduced ability to penetrate into root tissues, while P. albus maintained its colonization ability but reduced delivery of N to its host. Transcriptomic analysis suggests that regulation of different suites of N-transporters may be responsible for these species-specific differences. In addition to N-dependent responses, we were also able to define a conserved 'core' transcriptomic response of Eucalyptus grandis to mycorrhization that was independent of abiotic conditions. Our results demonstrate that even between closely related ECM species, responses to N fertilization can vary considerably, suggesting that a better understanding of the breadth and mechanisms of their responses is needed to support forest ecosystems into the future.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, 2568, Australia
| | - Fridtjof Snijders
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Laura Castañeda-Gómez
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Johanna W-H Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, 2568, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
34
|
Jörgensen K, Granath G, Strengbom J, Lindahl BD. Links between boreal forest management, soil fungal communities and below‐ground carbon sequestration. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karolina Jörgensen
- Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden
| | - Gustaf Granath
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Joachim Strengbom
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Björn D. Lindahl
- Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
35
|
The Contribution of Roots, Mycorrhizal Hyphae, and Soil Free-Living Microbes to Soil Respiration and Its Temperature Sensitivity in a Larch Forest. FORESTS 2021. [DOI: 10.3390/f12101410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil respiration plays a critical role in driving soil carbon (C) cycling in terrestrial forest ecosystems. However, evidence to demonstrate the response of roots, mycorrhizal hyphae, and soil free-living microbes of soil respiration and their temperature sensitivity (Q10) remains lacking. Here, we used a root exclusion method to assess the contribution and response of root respiration (Rroot), mycorrhizal respiration (Rmyc), and (soil organic matter) SOM respiration (Rsom) to soil temperature in a larch forest. During the growing period, the contributions of Rroot, Rmyc, and Rsom to soil respiration were 42%, 6%, and 52%, respectively. The respiration rates of all components increased exponentially with increasing temperature. Based on these constitutive respiration rates with soil temperature, the Q10 values for Rroot, Rmyc, and Rsom were 3.84, 5.18, and 1.86, respectively. The results showed that the response to temperature change was different among roots, mycorrhizal hyphae, and microbes in the soil, while the temperature sensitivity of autotrophic respiration was higher than that of heterotrophic respiration. Importantly, the Rmyc at this site was extremely sensitive to temperature, although its overall emission was small. Mycorrhizal associations were identified as the key drivers of soil respiration and temperature sensitivity. A good understanding of the different soil CO2 efflux components will provide useful information for determining soil C fluxes and predicting soil C dynamics under changing environments.
Collapse
|
36
|
Steidinger BS, Peay KG. Optimal Allocation Ratios: A Square Root Relationship between the Ratios of Symbiotic Costs and Benefits. Am Nat 2021; 198:460-472. [PMID: 34559611 DOI: 10.1086/716182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAll organisms struggle to make sense of environmental stimuli in order to maximize their fitness. For animals, the responses of single cells and superorganisms to stimuli are generally proportional to stimulus ratios, a phenomenon described by Weber's law. However, Weber's law has not yet been used to predict how plants respond to stimuli generated from their symbiotic partners. Here we develop a model for quantitatively predicting the ratios of carbon (C) allocation to symbionts that provide nutrients to their plant host. Consistent with Weber's law, our model demonstrates that the optimal ratio of resources allocated to a less beneficial relative to a more beneficial symbiont scale to the ratio of the growth benefits of the two strains. As C allocation to symbionts increases, the ratio of C allocation to two strains approaches the square root of the ratio of symbiotic growth benefits (e.g., a worse symbiont providing one-fourth the benefits gets 1/4=1/2 the C of a better symbiont). We document a compelling correspondence between our square root model prediction and a meta-analysis of experimental literature on C allocation. This type of preferential allocation can promote coexistence between more beneficial and less beneficial symbionts, offering a potential mechanism behind the high diversity of microbial symbionts observed in nature.
Collapse
|
37
|
Suz LM, Bidartondo MI, van der Linde S, Kuyper TW. Ectomycorrhizas and tipping points in forest ecosystems. THE NEW PHYTOLOGIST 2021; 231:1700-1707. [PMID: 34110018 DOI: 10.1111/nph.17547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points.
Collapse
Affiliation(s)
| | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, 6706 EA, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
38
|
Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brännström Å, de Boer H, Dieckmann U, Joshi J, Keenan TF, Lavergne A, Manzoni S, Mengoli G, Morfopoulos C, Peñuelas J, Pietsch S, Rebel KT, Ryu Y, Smith NG, Stocker BD, Wright IJ. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. THE NEW PHYTOLOGIST 2021; 231:2125-2141. [PMID: 34131932 DOI: 10.1111/nph.17558] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
Collapse
Affiliation(s)
- Sandy P Harrison
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Wolfgang Cramer
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence Cedex 04, F-13545, France
| | - Oskar Franklin
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Iain Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Åke Brännström
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Hugo de Boer
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Ulf Dieckmann
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, 240-0193, Japan
| | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Aliénor Lavergne
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Giulia Mengoli
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Catherine Morfopoulos
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Josep Peñuelas
- CSIC, Global Ecology, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Valles, Barcelona, Catalonia, 08193, Spain
| | - Stephan Pietsch
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- BOKU - University of Life Sciences and Natural Resources, Gregor-Medel-Strasse 33, Vienna, 1180, Austria
| | - Karin T Rebel
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Benjamin D Stocker
- Department of Environmental System Science, ETH, Universitätstrasse 2, Zürich, CH-8092, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zrcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
39
|
Karst J, Wasyliw J, Birch JD, Franklin J, Chang SX, Erbilgin N. Long-term nitrogen addition does not sustain host tree stem radial growth but doubles the abundance of high-biomass ectomycorrhizal fungi. GLOBAL CHANGE BIOLOGY 2021; 27:4125-4138. [PMID: 34002431 DOI: 10.1111/gcb.15713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Global change has altered nitrogen availability in boreal forest soils. As ectomycorrhizal fungi play critical ecological functions, shifts in their abundance and community composition must be considered in the response of forests to changes in nitrogen availability. Furthermore, ectomycorrhizas are symbiotic, so the response of ectomycorrhizal fungi to nitrogen cannot be understood in isolation of their plant partners. Most previous studies, however, neglect to measure the response of host trees to nitrogen addition simultaneously with that of fungal communities. In addition to being one-sided, most of these studies have also been conducted in coniferous forests. Deciduous and "dual-mycorrhizal" tree species, namely those that form ecto- and arbuscular mycorrhizas, have received little attention despite being widespread in the boreal forest. We applied nitrogen (30 kg ha-1 year-1 ) for 13 years to stands dominated by aspen (Populus tremuloides Michx.) and hypothesized that tree stem radial growth would increase, ectomycorrhizal fungal biomass would decrease, ectomycorrhizal fungal community composition would shift, and the abundance of arbuscular mycorrhizal (AM) fungi would increase. Nitrogen addition initially increased stem radial growth of aspen, but it was not sustained at the time we characterized their mycorrhizas. After 13 years, the abundance of fungi possessing extramatrical hyphae, or "high-biomass" ectomycorrhizas, doubled. No changes occurred in ectomycorrhizal and AM fungal community composition, or in ecto- and AM abundance measured as root colonization. This dual-mycorrhizal tree species did not shift away from ectomycorrhizal fungal dominance with long-term nitrogen input. The unexpected increase in high-biomass ectomycorrhizal fungi with nitrogen addition may be due to increased carbon allocation to their fungal partners by growth-limited trees. Given the focus on conifers in past studies, reconciling results of plant-mycorrhizal fungal relationships in stands of deciduous trees may demand a broader view on the impacts of nitrogen addition on the structure and function of boreal forests.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Joshua Wasyliw
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Joseph D Birch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - James Franklin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Martignoni MM, Garnier J, Zhang X, Rosa D, Kokkoris V, Tyson RC, Hart MM. Co-inoculation with arbuscular mycorrhizal fungi differing in carbon sink strength induces a synergistic effect in plant growth. J Theor Biol 2021; 531:110859. [PMID: 34389360 DOI: 10.1016/j.jtbi.2021.110859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi play a key role in determining ecosystem functionality. Understanding how diversity in the fungal community affects plant productivity is therefore an important question in ecology. Current research has focused on understanding the role of functional complementarity in the fungal community when the host plant faces multiple stress factors. Fewer studies, however, have investigated how variation in traits affecting nutrient exchange can impact the plant growth dynamics, even in the absence of environmental stressors. Combining experimental data and a mathematical model based on ordinary differential equations, we investigate the role played by carbon sink strength on plant productivity. We simulate and measure plant growth over time when the plant is associated with two fungal isolates with different carbon sink strength, and when the plant is in pairwise association with each of the isolates alone. Overall, our theoretical as well as our experimental results show that co-inoculation with fungi with different carbon sink strength can induce positive non-additive effects (or synergistic effects) in plant productivity. Fungi with high carbon sink strength are able to quickly establish a fungal community and increase the nutrient supply to the plant, with a consequent positive impact on plant growth rate. On the other side, fungi with low carbon sink strength inflict lower carbon costs to the host plant, and support maximal plant productivity once plant biomass is large. As AM fungi are widely used as organic fertilizers worldwide, our findings have important implications for restoration ecology and agricultural management.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Mathematics, University of British Columbia, Kelowna (BC), Canada; Department of Mathematics and Statistics, Memorial University, St. John's (NL), Canada
| | - Jimmy Garnier
- LAboratoire de MAthématiques (LAMA), CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Chambery, France
| | - Xinlu Zhang
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| | - Daniel Rosa
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa (ON), Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa (ON), Canada
| | - Rebecca C Tyson
- Department of Mathematics, University of British Columbia, Kelowna (BC), Canada
| | - Miranda M Hart
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| |
Collapse
|
41
|
Peng L, Shan X, Yang Y, Wang Y, Druzhinina IS, Pan X, Jin W, He X, Wang X, Zhang X, Martin FM, Yuan Z. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. PLANT, CELL & ENVIRONMENT 2021; 44:2793-2809. [PMID: 33764571 DOI: 10.1111/pce.14053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoliang Shan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xueyu Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wei Jin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinghua He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinyu Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, France
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
42
|
Chen L, Jiang C, Wang X, Feng Q, Liu X, Tang Z, Sun OJ. Nutrient trade-offs mediated by ectomycorrhizal strategies in plants: Evidence from an Abies species in subalpine forests. Ecol Evol 2021; 11:5281-5294. [PMID: 34026006 PMCID: PMC8131813 DOI: 10.1002/ece3.7417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
Ectomycorrhizal (ECM) symbiosis is an evolutionary biological trait of higher plants for effective nutrient uptakes. However, little is known that how the formation and morphological differentiations of ECM roots mediate the nutrients of below- and aboveground plant tissues and the balance among nutrient elements across environmental gradients. Here, we investigated the effects of ECM foraging strategies on root and foliar N and P concentrations and N:P ratio Abies faxoniana under variations of climate and soil conditions.The ECM symbionts preferentially mediated P uptake under both N and P limitations. The uptake efficiency of N and P was primarily associated with the ECM root traits, for example, ECM root tip density, superficial area of ECM root tips, and the ratio of living to dead root tips, and was affected by the ECM proliferations and morphological differentiations. The tissue N and P concentrations were positively associated with the abundance of the contact exploration type and negatively with that of the short-distance exploration type.Our findings indicate that the nutritional status of both below- and aboveground plant tissues can be strongly affected by ECM symbiosis in natural environments. Variations in the ECM strategies in response to varying environmental conditions significantly influence plant nutrient uptakes and trade-offs.
Collapse
Affiliation(s)
- Lulu Chen
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| | - Chao Jiang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| | - Xiangping Wang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| | - Qiuhong Feng
- Sichuan Wolong Forest Ecosystem Research StationSichuan Academy of ForestryChengduChina
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan ProvinceSichuan Academy of ForestryChengduChina
| | - Xingliang Liu
- Sichuan Wolong Forest Ecosystem Research StationSichuan Academy of ForestryChengduChina
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan ProvinceSichuan Academy of ForestryChengduChina
| | - Zuoxin Tang
- College of Agricultural and Life SciencesKunming UniversityKunmingChina
| | - Osbert Jianxin Sun
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| |
Collapse
|
43
|
Guerrieri R, Correia M, Martín‐Forés I, Alfaro‐Sánchez R, Pino J, Hampe A, Valladares F, Espelta JM. Land‐use legacies influence tree water‐use efficiency and nitrogen availability in recently established European forests. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rossella Guerrieri
- CREAF Centre de Recerca Ecològica i Aplicacions ForestalsCatalonia Spain
- DISTAL University of Bologna Bologna Italy
| | - Marta Correia
- Centre for Functional Ecology Department of Life Sciences Calçada Martim de FreitasUniversity of Coimbra Coimbra Portugal
| | - Irene Martín‐Forés
- Department of Biogeography and Global Change National Museum of Natural SciencesSpanish Council for Scientific ResearchCSIC Madrid Spain
- School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Raquel Alfaro‐Sánchez
- CREAF Centre de Recerca Ecològica i Aplicacions ForestalsCatalonia Spain
- Department of Biology Wilfrid Laurier University Waterloo ON Canada
| | - Joan Pino
- CREAF Centre de Recerca Ecològica i Aplicacions ForestalsCatalonia Spain
- Universitat Autònoma de Barcelona Catalonia Spain
| | - Arndt Hampe
- INRAEUniversity of BordeauxBIOGECO Cestas France
| | - Fernando Valladares
- Department of Biogeography and Global Change National Museum of Natural SciencesSpanish Council for Scientific ResearchCSIC Madrid Spain
| | - Josep Maria Espelta
- CREAF Centre de Recerca Ecològica i Aplicacions ForestalsCatalonia Spain
- Universitat Autònoma de Barcelona Catalonia Spain
| |
Collapse
|
44
|
Henriksson N, Franklin O, Tarvainen L, Marshall J, Lundberg‐Felten J, Eilertsen L, Näsholm T. The mycorrhizal tragedy of the commons. Ecol Lett 2021; 24:1215-1224. [DOI: 10.1111/ele.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Nils Henriksson
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Oskar Franklin
- International Institute for Applied Systems Analysis Schlossplatz 1 LaxenburgA‐2361Austria
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences University of Gothenburg GothenburgSE‐40530Sweden
| | - John Marshall
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Lill Eilertsen
- Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| |
Collapse
|
45
|
Sapes G, Demaree P, Lekberg Y, Sala A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. THE NEW PHYTOLOGIST 2021; 229:3172-3183. [PMID: 33280134 DOI: 10.1111/nph.17134] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Under prolonged drought and reduced photosynthesis, plants consume stored nonstructural carbohydrates (NSCs). Stored NSC depletion may impair the regulation of plant water balance, but the underlying mechanisms are poorly understood, and whether such mechanisms are independent of plant water deficit is not known. If so, carbon costs of fungal symbionts could indirectly influence plant drought tolerance through stored NSC depletion. We connected well-watered Pinus ponderosa seedling pairs via ectomycorrhizal (EM) networks where one seedling was shaded (D) and the other kept illuminated (LD) and compared responses to seedling pairs in full light (L). We measured plant NSCs, osmotic and water potential, and transfer of 13 CO2 through EM to explore mechanisms linking stored NSCs to plant water balance regulation and identify potential tradeoffs between plant water retention and EM fungi under carbon-limiting conditions. NSCs decreased from L to LD to D seedlings. Even without drought, NSC depletion impaired osmoregulation and turgor maintenance, both of which are critical for drought tolerance. Importantly, EM networks propagated NSC depletion and its negative effects on water retention from carbon stressed to nonstressed hosts. We demonstrate that NSC storage depletion influences turgor maintenance independently of plant water deficit and reveal carbon allocation tradeoffs between supporting fungal symbionts and retaining water.
Collapse
Affiliation(s)
- Gerard Sapes
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Patrick Demaree
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
46
|
Netherway T, Bengtsson J, Krab EJ, Bahram M. Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Keiluweit M, Kuyper TW. Proteins unbound - how ectomycorrhizal fungi can tap a vast reservoir of mineral-associated organic nitrogen. THE NEW PHYTOLOGIST 2020; 228:406-408. [PMID: 32735045 DOI: 10.1111/nph.16796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Marco Keiluweit
- School of Earth & Sustainability, University of Massachusetts, Amherst, MA, 01003, USA
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
48
|
Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I. Surplus Carbon Drives Allocation and Plant-Soil Interactions. Trends Ecol Evol 2020; 35:1110-1118. [PMID: 32928565 DOI: 10.1016/j.tree.2020.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Plant growth is usually constrained by the availability of nutrients, water, or temperature, rather than photosynthetic carbon (C) fixation. Under these conditions leaf growth is curtailed more than C fixation, and the surplus photosynthates are exported from the leaf. In plants limited by nitrogen (N) or phosphorus (P), photosynthates are converted into sugars and secondary metabolites. Some surplus C is translocated to roots and released as root exudates or transferred to root-associated microorganisms. Surplus C is also produced under low moisture availability, low temperature, and high atmospheric CO2 concentrations, with similar below-ground effects. Many interactions among above- and below-ground ecosystem components can be parsimoniously explained by the production, distribution, and release of surplus C under conditions that limit plant growth.
Collapse
Affiliation(s)
- Cindy E Prescott
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T1Z4.
| | - Sue J Grayston
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T1Z4
| | - Heljä-Sisko Helmisaari
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Eva Kaštovská
- Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice 37005, Czech Republic
| | - Christian Körner
- Institute of Botany, University of Basel, Schönbeinstr. 6, CH-4056 Basel, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - Ina C Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073 Göttingen, Germany
| | - Peter Millard
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
49
|
Deckmyn G, Flores O, Mayer M, Domene X, Schnepf A, Kuka K, Van Looy K, Rasse DP, Briones MJ, Barot S, Berg M, Vanguelova E, Ostonen I, Vereecken H, Suz LM, Frey B, Frossard A, Tiunov A, Frouz J, Grebenc T, Öpik M, Javaux M, Uvarov A, Vindušková O, Henning Krogh P, Franklin O, Jiménez J, Curiel Yuste J. KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. PeerJ 2020; 8:e9750. [PMID: 32974092 PMCID: PMC7486829 DOI: 10.7717/peerj.9750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.
Collapse
Affiliation(s)
- Gaby Deckmyn
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
| | - Omar Flores
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
- Biogeography and Global Change, National Museum of Natural Sciences-Spanish National Research Council (MNCN-CSIC), Madrid, Spain
| | - Mathias Mayer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Biogeochemistry Group, Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Xavier Domene
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Andrea Schnepf
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katrin Kuka
- Institute for Crop and Soil Science, Julius Kühn-Institut (JKI), Braunschwei, Germany
| | - Kris Van Looy
- OVAM, Flemish Institute for Materials and Soils, Mechelen, Belgium
| | - Daniel P. Rasse
- Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Maria J.I. Briones
- Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Sébastien Barot
- Institute of Ecology and Environmental Sciences, IRD, UPEC, CNRS, INRA, Sorbonne Université, Paris, France
| | - Matty Berg
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Harry Vereecken
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Laura M. Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, London, UK
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Alexei Tiunov
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Jan Frouz
- Institute for Environmental Studies, Charles University, Prague, Czech Republic
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Javaux
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alexei Uvarov
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Olga Vindušková
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
| | | | - Oskar Franklin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- International Institute for Applied Systems Analysis IIASA, Laxenburg, Austria
| | - Juan Jiménez
- Department of Biodiversity Conservation and Ecosystem Restoration, ARAID/IPE-CSIC, Jaca, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Bilbao, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
50
|
Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME JOURNAL 2020; 14:2829-2842. [PMID: 32814865 PMCID: PMC7784882 DOI: 10.1038/s41396-020-00740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
Mutualisms between symbiotic microbes and animals have been well documented, and nutritional relationships provide the foundation for maintaining beneficial associations. The well-studied mutualism between bark beetles and their fungi has become a classic model system in the study of symbioses. Despite the nutritional competition between bark beetles and beneficial fungi in the same niche due to poor nutritional feeding substrates, bark beetles still maintain mutualistic associations with beneficial fungi over time. The mechanism behind this phenomenon, however, remains largely unknown. Here, we demonstrated the bark beetle Dendroctonus valens LeConte relies on the symbiotic bacterial volatile ammonia, as a nitrogen source, to regulate carbohydrate metabolism of its mutualistic fungus Leptographium procerum to alleviate nutritional competition, thereby maintaining the stability of the bark beetle–fungus mutualism. Ammonia significantly reduces competition of L. procerum for carbon resources for D. valens larval growth and increases fungal growth. Using stable isotope analysis, we show the fungus breakdown of phloem starch into d-glucose by switching on amylase genes only in the presence of ammonia. Deletion of amylase genes interferes with the conversion of starch to glucose. The acceleration of carbohydrate consumption and the conversion of starch into glucose benefit this invasive beetle–fungus complex. The nutrient consumption–compensation strategy mediated by tripartite beetle–fungus–bacterium aids the maintenance of this invasive mutualism under limited nutritional conditions, exacerbating its invasiveness with this competitive nutritional edge.
Collapse
Affiliation(s)
- Fanghua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qingjie Cao
- College of Forestry, Hebei Agricultural University, 071000, Baoding, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|