1
|
Baek I, Lim S, Jang JH, Hong SM, Prom LK, Kirubakaran S, Cohen SP, Lakshman D, Kim MS, Meinhardt LW, Park S, Ahn E. Pathogen-specific stomatal responses in cacao leaves to Phytophthora megakarya and Rhizoctonia solani. Sci Rep 2025; 15:10584. [PMID: 40148497 PMCID: PMC11950177 DOI: 10.1038/s41598-025-94859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cacao is a globally significant crop, but its production is severely threatened by diseases, particularly Black Pod Rot (BPR) caused by Phytophthora spp. Understanding plant-pathogen interactions, especially stomatal responses, is crucial for disease management. Machine learning offers a powerful, yet largely untapped, approach to analyze and interpret complex plant responses in plant biology and pathology, particularly in the context of plant-pathogen interactions. This study explores the use of machine learning to analyze and interpret complex stomatal responses in cacao leaves during pathogen interactions. We investigated the impact of the black pod rot pathogen (Phytophthora megakarya) and a non-pathogenic fungus (Rhizoctonia solani) on stomatal aperture in two cacao genotypes (SCA6 and Pound7) under varying light conditions. Image analysis revealed diverse stomatal responses, including no change, opening, and closure, that were influenced by the interplay of genotype, pathogen isolate, and light conditions. Notably, SCA6 exhibited stomatal opening in response to P. megakarya specifically under a 12-hour light/dark cycle, suggesting a light-dependent activation of pathogen virulence factors. In contrast, Pound7 displayed stomatal closure in response to both P. megakarya and R. solani, indicating the potential recognition of conserved Pathogen-Associated Molecular Patterns (PAMPs) and a broader defense response. To further analyze these interactions, we employed machine learning techniques to predict stomatal area size. Our analysis identified key morphological features, with size-related traits being the strongest predictors. Shape-related traits also played a significant role when size-related traits were excluded from the prediction. This study demonstrates the power of combining image analysis and machine learning for discerning subtle, multivariate traits in stomatal dynamics during plant-pathogen interactions, paving the way for future applications in high-throughput disease phenotyping and the development of resistant crop varieties.
Collapse
Affiliation(s)
- Insuck Baek
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Seunghyun Lim
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Jae Hee Jang
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Seok Min Hong
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Louis K Prom
- Insect Control and Cotton Disease Research, Agricultural Research Service, Southern Plains Agricultural Research Center, United States, Department of Agriculture, College Station, TX, 77845, USA
| | - Silvas Kirubakaran
- Grape Genetics Research Unit, Agricultural Research Service, United States, Department of Agriculture, Geneva, NY, 14456, USA
| | - Stephen P Cohen
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Dilip Lakshman
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Moon S Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sunchung Park
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Ezekiel Ahn
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
2
|
Ding L, Laurent MJ, Milhiet T, Aesaert S, Van Lijsbettens M, Pauwels L, Nelissen H, Inzé D, Chaumont F. The maize aquaporin ZmPIP1;6 enhances stomatal opening and CO2- and ABA-induced stomatal closure. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae500. [PMID: 39700432 DOI: 10.1093/jxb/erae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 12/21/2024]
Abstract
The plasma membrane aquaporin ZmPIP1;6 is expressed in maize stomatal complexes, with higher expression during the day than at night. To elucidate the role of ZmPIP1;6 in gas exchange and stomatal movement, it was expressed in maize (inbred line B104) under the control of p35S promoter (OE) or its native promoter fused with mYFP cDNA (mYFP-ZmPIP1;6). In stomatal complexes of the leaf mature zone, mYFP-ZmPIP1;6 showed higher expression in subsidiary cells than in guard cells, with light and dark treatments influencing its subcellular localization. Notably, ZmPIP1;6 internalization increased in dark conditions versus light. Stomatal opening was greater in ZmPIP1;6 OE than in wild type (WT), while closure exhibited greater sensitivity to elevated CO2 concentration or ABA treatment. Our finding revealed that reactive oxygen species (H2O2) was involved in ABA-induced stomatal closure, while ZmPIP1;6 was unable to facilitate H2O2 diffusion when expressed in yeast. Finally, ZmPIP1;6 OE and mYFP-ZmPIP1;6 transgenic plants exhibited higher abaxial stomatal density than WT. Overall, these results indicate that ZmPIP1;6 plays important roles in stomatal opening and CO2- and ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Maxime J Laurent
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Thomas Milhiet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mieke Van Lijsbettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Jian Y, Liu Z, He P, Shan L. An emerging connected view: Phytocytokines in regulating stomatal, apoplastic, and vascular immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102623. [PMID: 39236593 DOI: 10.1016/j.pbi.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Foliar pathogens exploit natural openings, such as stomata and hydathodes, to invade plants, multiply in the apoplast, and potentially spread through the vasculature. To counteract these threats, plants dynamically regulate stomatal movement and apoplastic water potential, influencing hydathode guttation and water transport. This review highlights recent advances in understanding how phytocytokines, plant small peptides with immunomodulatory functions, regulate these processes to limit pathogen entry and proliferation. Additionally, we discuss the coordinated actions of stomatal movement, hydathode guttation, and the vascular system in restricting pathogen entry, multiplication, and dissemination. We also explore future perspectives and key questions arising from these findings, aiming to advance our knowledge of plant immunity and improve disease resistance strategies.
Collapse
Affiliation(s)
- Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Tang B, Feng L, Hulin MT, Ding P, Ma W. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 2023; 31:1732-1747.e5. [PMID: 37741284 DOI: 10.1016/j.chom.2023.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023]
Abstract
Pathogen infection is a dynamic process. Here, we employ single-cell transcriptomics to investigate plant response heterogeneity. By generating an Arabidopsis thaliana leaf atlas encompassing 95,040 cells during infection by a fungal pathogen, Colletotrichum higginsianum, we unveil cell-type-specific gene expression, notably an enrichment of intracellular immune receptors in vasculature cells. Trajectory inference identifies cells that had different interactions with the invading fungus. This analysis divulges transcriptional reprogramming of abscisic acid signaling specifically occurring in guard cells, which is consistent with a stomatal closure dependent on direct contact with the fungus. Furthermore, we investigate the transcriptional plasticity of genes involved in glucosinolate biosynthesis in cells at the fungal infection sites, emphasizing the contribution of the epidermis-expressed MYB122 to disease resistance. This work underscores spatially dynamic, cell-type-specific plant responses to a fungal pathogen and provides a valuable resource that supports in-depth investigations of plant-pathogen interactions.
Collapse
Affiliation(s)
- Bozeng Tang
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Li Feng
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Michelle T Hulin
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK.
| |
Collapse
|
5
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
6
|
Hawkins TJ, Kopischke M, Duckney PJ, Rybak K, Mentlak DA, Kroon JTM, Bui MT, Richardson AC, Casey M, Alexander A, De Jaeger G, Kalde M, Moore I, Dagdas Y, Hussey PJ, Robatzek S. NET4 and RabG3 link actin to the tonoplast and facilitate cytoskeletal remodelling during stomatal immunity. Nat Commun 2023; 14:5848. [PMID: 37730720 PMCID: PMC10511709 DOI: 10.1038/s41467-023-41337-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Members of the NETWORKED (NET) family are involved in actin-membrane interactions. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function being downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure involves a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune-triggered osmotic changes and actin cytoskeletal remodelling likely driving compact vacuolar morphologies.
Collapse
Affiliation(s)
- Timothy J Hawkins
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Michaela Kopischke
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany
| | - Patrick J Duckney
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Katarzyna Rybak
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany
| | - David A Mentlak
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Johan T M Kroon
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Mai Thu Bui
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, AUT, Austria
| | | | - Mary Casey
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Geert De Jaeger
- VIB-University Ghent, Center for Plant System Biology, Technologiepark 927, 9052, Ghent, BE, Belgium
| | - Monika Kalde
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1 3RB, UK
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, AUT, Austria
| | - Patrick J Hussey
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK.
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany.
| |
Collapse
|
7
|
Sai N, Bockman JP, Chen H, Watson-Haigh N, Xu B, Feng X, Piechatzek A, Shen C, Gilliham M. StomaAI: an efficient and user-friendly tool for measurement of stomatal pores and density using deep computer vision. THE NEW PHYTOLOGIST 2023; 238:904-915. [PMID: 36683442 DOI: 10.1111/nph.18765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user-friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai-app.
Collapse
Affiliation(s)
- Na Sai
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - James Paul Bockman
- The Australian Institute for Machine Learning, Adelaide, SA, 5005, Australia
- School of Computer Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hao Chen
- The Australian Institute for Machine Learning, Adelaide, SA, 5005, Australia
- School of Computer Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nathan Watson-Haigh
- South Australian Genomics Centre, SAHMRI, Adelaide, SA, 5000, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, Vic., 3000, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Xueying Feng
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Adriane Piechatzek
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Chunhua Shen
- The Australian Institute for Machine Learning, Adelaide, SA, 5005, Australia
- School of Computer Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| |
Collapse
|
8
|
Jones JJ, Huang S, Hedrich R, Geilfus CM, Roelfsema MRG. The green light gap: a window of opportunity for optogenetic control of stomatal movement. THE NEW PHYTOLOGIST 2022; 236:1237-1244. [PMID: 36052708 DOI: 10.1111/nph.18451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| |
Collapse
|
9
|
Martínez‐Arias C, Witzell J, Solla A, Martin JA, Rodríguez‐Calcerrada J. Beneficial and pathogenic plant-microbe interactions during flooding stress. PLANT, CELL & ENVIRONMENT 2022; 45:2875-2897. [PMID: 35864739 PMCID: PMC9543564 DOI: 10.1111/pce.14403] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/29/2023]
Abstract
The number and intensity of flood events will likely increase in the future, raising the risk of flooding stress in terrestrial plants. Understanding flood effects on plant physiology and plant-associated microbes is key to alleviate flooding stress in sensitive species and ecosystems. Reduced oxygen supply is the main constrain to the plant and its associated microbiome. Hypoxic conditions hamper root aerobic respiration and, consequently, hydraulic conductance, nutrient uptake, and plant growth and development. Hypoxia favours the presence of anaerobic microbes in the rhizosphere and roots with potential negative effects to the plant due to their pathogenic behaviour or their soil denitrification ability. Moreover, plant physiological and metabolic changes induced by flooding stress may also cause dysbiotic changes in endosphere and rhizosphere microbial composition. The negative effects of flooding stress on the holobiont (i.e., the host plant and its associated microbiome) can be mitigated once the plant displays adaptive responses to increase oxygen uptake. Stress relief could also arise from the positive effect of certain beneficial microbes, such as mycorrhiza or dark septate endophytes. More research is needed to explore the spiralling, feedback flood responses of plant and microbes if we want to promote plant flood tolerance from a holobiont perspective.
Collapse
Affiliation(s)
- Clara Martínez‐Arias
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain
| | - Johanna Witzell
- Department of Forestry and Wood TechnologyLinnaeus UniversityVäxjöSweden
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA)Universidad de ExtremaduraPlasenciaSpain
| | - Juan Antonio Martin
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain
| | - Jesús Rodríguez‐Calcerrada
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
10
|
Liu L, Li Y, Xu Z, Chen H, Zhang J, Manion B, Liu F, Zou L, Fu ZQ, Chen G. The Xanthomonas type III effector XopAP prevents stomatal closure by interfering with vacuolar acidification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1994-2008. [PMID: 35972796 DOI: 10.1111/jipb.13344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid (ABA) or salicylic acid (SA) and after recognition of pathogen-associated molecular patterns (PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type III effectors (T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms. Here, we show that the virulence and infection of Xanthomonas oryzae pv. oryzicola (Xoc), which is the causal agent of rice bacterial leaf streak disease, drastically increased in transgenic rice (Oryza sativa L.) plants overexpressing the Xoc T3E gene XopAP, which encodes a protein annotated as a lipase. We discovered that XopAP binds to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ), a membrane phospholipid that functions in pH control in lysosomes, membrane dynamics, and protein trafficking. XopAP inhibited the acidification of vacuoles by competing with vacuolar H+ -pyrophosphatase (V-PPase) for binding to PtdIns(3,5)P2 , leading to stomatal opening. Transgenic rice overexpressing XopAP also showed inhibition of stomatal closure when challenged by Xoc infection and treatment with the PAMP flg22. Moreover, XopAP suppressed flg22-induced gene expression, reactive oxygen species burst and callose deposition in host plants, demonstrating that XopAP subverts PAMP-triggered immunity during Xoc infection. Taken together, these findings demonstrate that XopAP overcomes stomatal immunity in plants by binding to lipids.
Collapse
Affiliation(s)
- Longyu Liu
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | - Ying Li
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Xu
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jingyi Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Brittany Manion
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lifang Zou
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | - Gongyou Chen
- State Key Laboratory of Microbial Metabolism/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Xing J, Li M, Li J, Shen W, Li P, Zhao J, Zhang Y. Stem canker pathogen Botryosphaeria dothidea inhibits poplar leaf photosynthesis in the early stage of inoculation. FRONTIERS IN PLANT SCIENCE 2022; 13:1008834. [PMID: 36204063 PMCID: PMC9530914 DOI: 10.3389/fpls.2022.1008834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Fungal pathogens can induce canker lesions, wilting, and even dieback in many species. Trees can suffer serious physiological effects from stem cankers. In this study, we investigated the effects of Botryosphaeria dothidea (B. dothidea) on Populus bolleana (P. bolleana) leaves photosynthesis and stomatal responses, when stems were inoculated with the pathogen. To provide experimental and theoretical basis for preventing poplar canker early. One-year-old poplar stems were inoculated with B. dothidea using an epidermal scraping method. In the early stage of B. dothidea inoculation (2-14 days post inoculation, dpi), the gas exchange, stomatal dynamics, hormone content, photosynthetic pigments content, chlorophyll fluorescence parameters, and non-structural carbohydrate (NSC) were evaluated to elucidate the pathophysiological mechanism of B. dothidea inhibiting photosynthesis. Compared with the control groups, B. dothidea noteworthily inhibited the net photosynthetic rate (P n), stomatal conductance (G s), intercellular CO2 concentration (C i), transpiration rate (T r), and other photosynthetic parameters of poplar leaves, but stomatal limit value (L s) increased. Consistent with the above results, B. dothidea also reduced stomatal aperture and stomatal opening rate. In addition, B. dothidea not only remarkably reduced the content of photosynthetic pigments, but also decreased the maximum photochemical efficiency (F v/F m), actual photochemical efficiency (Φ PSII), electron transfer efficiency (ETR), and photochemical quenching coefficient (q P). Furthermore, both chlorophyll and Φ PSII were positively correlated with P n. In summary, the main reason for the abated P n under stem canker pathogen was that B. dothidea not merely inhibited the stomatal opening, but hindered the conversion of light energy, electron transfer and light energy utilization of poplar leaves. In general, the lessened CO2 and P n would reduce the synthesis of photosynthetic products. Whereas, sucrose and starch accumulated in poplar leaves, which may be due to the local damage caused by B. dothidea inoculation in phloem, hindering downward transport of these products.
Collapse
|
12
|
Sabharwal T, Lu Z, Slocum RD, Kang S, Wang H, Jiang HW, Veerappa R, Romanovicz D, Nam JC, Birk S, Clark G, Roux SJ. Constitutive expression of a pea apyrase, psNTP9, increases seed yield in field-grown soybean. Sci Rep 2022; 12:10870. [PMID: 35760854 PMCID: PMC9237067 DOI: 10.1038/s41598-022-14821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
To address the demand for food by a rapidly growing human population, agricultural scientists have carried out both plant breeding and genetic engineering research. Previously, we reported that the constitutive expression of a pea apyrase (Nucleoside triphosphate, diphosphohydrolase) gene, psNTP9, under the control of the CaMV35S promoter, resulted in soybean plants with an expanded root system architecture, enhanced drought resistance and increased seed yield when they are grown in greenhouses under controlled conditions. Here, we report that psNTP9-expressing soybean lines also show significantly enhanced seed yields when grown in multiple different field conditions at multiple field sites, including when the gene is introgressed into elite germplasm. The transgenic lines have higher leaf chlorophyll and soluble protein contents and decreased stomatal density and cuticle permeability, traits that increase water use efficiency and likely contribute to the increased seed yields of field-grown plants. These altered properties are explained, in part, by genome-wide gene expression changes induced by the transgene.
Collapse
Affiliation(s)
- Tanya Sabharwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Robert D Slocum
- Program in Biological Sciences, Goucher College, Towson, MD, 21204, USA
| | - Seongjoon Kang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Huan Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Han-Wei Jiang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Roopadarshini Veerappa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dwight Romanovicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ji Chul Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Simon Birk
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Ou X, Li T, Zhao Y, Chang Y, Wu L, Chen G, Day B, Jiang K. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153585. [PMID: 34894596 DOI: 10.1016/j.jplph.2021.153585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Tianqi Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yuankai Chang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Lihong Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Guoqingzi Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
14
|
Synek L, Rawat A, L'Haridon F, Weisskopf L, Saad MM, Hirt H. Multiple strategies of plant colonization by beneficial endophytic Enterobacter sp. SA187. Environ Microbiol 2021; 23:6223-6240. [PMID: 34472197 DOI: 10.1111/1462-2920.15747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
Although many endophytic plant growth-promoting rhizobacteria have been identified, relatively little is still known about the mechanisms by which they enter plants and promote plant growth. The beneficial endophyte Enterobacter sp. SA187 was shown to maintain the productivity of crops in extreme agricultural conditions. Here we present that roots of its natural host (Indigofera argentea), alfalfa, tomato, wheat, barley and Arabidopsis are all efficiently colonized by SA187. Detailed analysis of the colonization process in Arabidopsis showed that colonization already starts during seed germination, where seed-coat mucilage supports SA187 proliferation. The meristematic zone of growing roots attracts SA187, allowing epiphytic colonization in the elongation zone. Unlike primary roots, lateral roots are significantly less epiphytically colonized by SA187. Root endophytic colonization was found to occur by passive entry of SA187 at lateral-root bases. However, SA187 also actively penetrates the root epidermis by enzymatic disruption of plant cell wall material. In contrast to roots, endophytic colonization of shoots occurs via stomata, whereby SA187 can actively re-open stomata similarly to pathogenic bacteria. In summary, several entry strategies were identified that allow SA187 to establish itself as a beneficial endophyte in several plant species, supporting its use as a plant growth-promoting bacterium in agriculture systems.
Collapse
Affiliation(s)
- Lukas Synek
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, 165 02, Czech Republic
| | - Anamika Rawat
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Maged M Saad
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Heribert Hirt
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, Vienna, 1030, Austria
| |
Collapse
|
15
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
16
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
17
|
Hu S, Bidochka MJ. Abscisic acid implicated in differential plant responses of Phaseolus vulgaris during endophytic colonization by Metarhizium and pathogenic colonization by Fusarium. Sci Rep 2021; 11:11327. [PMID: 34059713 PMCID: PMC8167117 DOI: 10.1038/s41598-021-90232-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Metarhizium robertsii is an insect pathogen as well as an endophyte, and can antagonize the phytopathogen, Fusarium solani during bean colonization. However, plant immune responses to endophytic colonization by Metarhizium are largely unknown. We applied comprehensive plant hormone analysis, transcriptional expression and stomatal size analysis in order to examine plant immune responses to colonization by Metarhizium and/or Fusarium. The total amount of abscisic acid (ABA) and ABA metabolites decreased significantly in bean leaves by plant roots colonized by M. robertsii and increased significantly with F. solani compared to the un-inoculated control bean plant. Concomitantly, in comparison to the un-inoculated bean, root colonization by Metarhizium resulted in increased stomatal size in leaves and reduced stomatal size with Fusarium. Meanwhile, expression of plant immunity genes was repressed by Metarhizium and, alternately, triggered by Fusarium compared to the un-inoculated plant. Furthermore, exogenous application of ABA resulted in reduction of bean root colonization by Metarhizium but increased colonization by Fusarium compared to the control without ABA application. Our study suggested that ABA plays a central role in differential responses to endophytic colonization by Metarhizium and pathogenic colonization by Fusarium and, we also observed concomitant differences in stomatal size and expression of plant immunity genes.
Collapse
Affiliation(s)
- Shasha Hu
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
18
|
Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124820. [PMID: 33516974 DOI: 10.1016/j.jhazmat.2020.124820] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Exogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g. Lsi1, Lsi2, and Lsi6), but the precise mechanisms involved in overall Si transport and its beneficial effects remains unclear. In stressed plants, the accumulation of Si leads to a defence mechanism involving the formation of amorphous or hydrated silicic acid caused by their polymerization and interaction with other organic substances. Silicon also regulates plant ionic homeostasis, which involves the nutrient acquisition, availability, and replenishment in the soil through biogeochemical cycles. Furthermore, Si is implicated in modulating ethylene-dependent and jasmonate pathways, as well as other phytohormones, particularly under stress conditions. Crosstalk between Si and phytohormones could lead to improvements in Si-mediated crop growth, especially when plants are exposed to stress. The integration of Si with reactive oxygen species (ROS) metabolism appears to be a part of the signaling cascade that regulates plant phytohormone homeostasis, as well as morphological, biochemical, and molecular responses. This review aims to provide an update on Si interplays with ROS, phytohormones, and other signaling molecules that regulate plant development under stress conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent PG College of University of Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sowbiya Muneer
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynská dolina, Bratislava, Slovakia; Institute of Botany, Plant Science. and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, Granada, Spain.
| |
Collapse
|
19
|
Sen S, DasGupta M. Involvement of Arachis hypogaea Jasmonate ZIM domain/TIFY proteins in root nodule symbiosis. JOURNAL OF PLANT RESEARCH 2021; 134:307-326. [PMID: 33558946 DOI: 10.1007/s10265-021-01256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate ZIM domain (JAZ) proteins are the key negative regulators of jasmonate signaling, an important integrator of plant-microbe relationships. Versatility of jasmonate signaling outcomes are maintained through the multiplicity of JAZ proteins and their definitive functionalities. How jasmonate signaling influences the legume-Rhizobium symbiotic relationship is still unclear. In Arachis hypogaea (peanut), a legume plant, one JAZ sub-family (JAZ1) gene and one TIFY sequence containing protein family member (TIFY8) gene show enhanced expression in the early stage and late stage of root nodule symbiosis (RNS) respectively. In plants, JAZ sub-family proteins belong to a larger TIFY family. Here, this study denotes the first attempt to reveal in planta interactions of downstream jasmonate signaling regulators through proteomics and mass spectrometry to find out the mode of jasmonate signaling participation in the RNS process of A. hypogaea. From 4-day old Bradyrhizobium-infected peanut roots, the JAZ1-protein complex shows its contribution towards the rhizobial entry, nodule development, autoregulation of nodulation and photo-morphogenesis during the early stage of symbiosis. From 30-day old Bradyrhizobium infected roots, the TIFY8-protein complex reveals repressor functionality of TIFY8, suppression of root jasmonate signaling, modulation of root circadian rhythm and nodule development. Cellular localization and expression level of the interaction partners during the nodulation process further substantiate the in planta interaction pairs. This study provides a comprehensive insight into the jasmonate functionality in RNS through modulation of nodule number and development, during the early stage and root circadian rhythm during the late stage of nodulation, through the protein complexes of JAZ1 and TIFY8 respectively in A. hypogaea.
Collapse
Affiliation(s)
- Saswati Sen
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
20
|
Bharath P, Gahir S, Raghavendra AS. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:615114. [PMID: 33746999 PMCID: PMC7969522 DOI: 10.3389/fpls.2021.615114] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.
Collapse
|
21
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
22
|
Muir CD. A Stomatal Model of Anatomical Tradeoffs Between Gas Exchange and Pathogen Colonization. FRONTIERS IN PLANT SCIENCE 2020; 11:518991. [PMID: 33193466 PMCID: PMC7658178 DOI: 10.3389/fpls.2020.518991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Stomatal pores control leaf gas exchange and are one route for infection of internal plant tissues by many foliar pathogens, setting up the potential for tradeoffs between photosynthesis and pathogen colonization. Anatomical shifts to lower stomatal density and/or size may also limit pathogen colonization, but such developmental changes could permanently reduce the gas exchange capacity for the life of the leaf. I developed and analyzed a spatially explicit model of pathogen colonization on the leaf as a function of stomatal size and density, anatomical traits which partially determine maximum rates of gas exchange. The model predicts greater stomatal size or density increases the probability of colonization, but the effect is most pronounced when the fraction of leaf surface covered by stomata is low. I also derived scaling relationships between stomatal size and density that preserves a given probability of colonization. These scaling relationships set up a potential anatomical conflict between limiting pathogen colonization and minimizing the fraction of leaf surface covered by stomata. Although a connection between gas exchange and pathogen defense has been suggested empirically, this is the first mathematical model connecting gas exchange and pathogen defense via stomatal anatomy. A limitation of the model is that it does not include variation in innate immunity and stomatal closure in response to pathogens. Nevertheless, the model makes predictions that can be tested with experiments and may explain variation in stomatal size and density among plants. The model is generalizable to many types of pathogens, but lacks significant biological realism that may be needed for precise predictions.
Collapse
|
23
|
Boevink PC, Birch PRJ, Turnbull D, Whisson SC. Devastating intimacy: the cell biology of plant-Phytophthora interactions. THE NEW PHYTOLOGIST 2020; 228:445-458. [PMID: 32394464 PMCID: PMC7540312 DOI: 10.1111/nph.16650] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/15/2020] [Indexed: 05/07/2023]
Abstract
An understanding of the cell biology underlying the burgeoning molecular genetic and genomic knowledge of oomycete pathogenicity is essential to gain the full context of how these pathogens cause disease on plants. An intense research focus on secreted Phytophthora effector proteins, especially those containing a conserved N-terminal RXLR motif, has meant that most cell biological studies into Phytophthora diseases have focussed on the effectors and their host target proteins. While these effector studies have provided novel insights into effector secretion and host defence mechanisms, there remain many unanswered questions about fundamental processes involved in spore biology, host penetration and haustorium formation and function.
Collapse
Affiliation(s)
- Petra C. Boevink
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
- Division of Plant SciencesUniversity of DundeeErrol RoadInvergowrieDundeeDD2 5DAUK
| | - Dionne Turnbull
- Division of Plant SciencesUniversity of DundeeErrol RoadInvergowrieDundeeDD2 5DAUK
| | - Stephen C. Whisson
- Cell and Molecular SciencesJames Hutton InstituteErrol RoadInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
24
|
Singh R, Bhardwaj VK, Sharma J, Purohit R. Identification of novel and selective agonists for ABA receptor PYL3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:387-395. [PMID: 32629182 DOI: 10.1016/j.plaphy.2020.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) although complicated and expensive to produce, plays an important role in signalling responsible for regulation of developmental manifestations such as seed maturation and surviving through stress conditions. Hence, development of cost effective molecules with minimal side effects that mimic the functions of ABA is the need of the hour. In this agreement, we screened a series of 27 in-house synthesized 3-methyleneisoindolin-1-one molecules over three ABA receptors (PYR1, PYL1, and PYL3). The commercial ABA agonist Pyrabactin was taken as a standard ligand in this study. The top three molecules for each receptor were selected and further evaluated to estimate the dynamical contribution and complex stability via Molecular Mechanics-Poisson Boltzmann surface area calculations. Two molecules (Mol26 and Mol25) showed higher binding free energy and stable complex conformation for PYL3 in comparison to Pyrabactin. This study revealed the structural basis of the binding mechanism of 3-methyleneisoindolin-1-one molecules with ABA receptors. Mol26 and Mol25 were identified for the development of specific PYL3 agonists with a vast potential in agriculture to accentuate the ABA like action in plants.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India
| | - Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India.
| |
Collapse
|
25
|
Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, Giraldo JP. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS NANO 2020; 14:7970-7986. [PMID: 32628442 DOI: 10.1021/acsnano.9b09178] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
Collapse
Affiliation(s)
- Peiguang Hu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jing An
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Maquela M Faulkner
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
26
|
Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl Jasmonate Treated Leaves of Cucumber ( Cucumis sativa). Int J Mol Sci 2020; 21:ijms21031018. [PMID: 32033119 PMCID: PMC7038070 DOI: 10.3390/ijms21031018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.
Collapse
|
27
|
David L, Kang J, Chen S. Targeted Metabolomics of Plant Hormones and Redox Metabolites in Stomatal Immunity. Methods Mol Biol 2020; 2085:79-92. [PMID: 31734918 DOI: 10.1007/978-1-0716-0142-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phytohormones and redox metabolites are important molecules in a number of biological processes related to plant growth, development, and stress responses. Understanding how these metabolites are involved in abiotic and biotic stress is a frequent topic of plant biology research. However, many factors, such as low physiological concentrations and the inherent complexity of plant samples, make identification and quantification of these important metabolites difficult. Here, we describe a method for metabolite extraction from whole leaves and guard cell-enriched samples and a targeted metabolomics strategy for the identification and quantification of specific hormone- and redox-related metabolites. In our experiment, we used the reference plant Arabidopsis thaliana infected with the biotrophic pathogen Pseudomonas syringe pv. tomato (Pst) DC3000, and examined the changes in hormone and redox metabolites in systemic leaves, using the targeted metabolomics strategy in order to investigate potential functions of these metabolites in systemic acquired resistance (SAR) during a plant's immune responses. The methods reported here can be expanded to other metabolites and other biological systems beyond plants and bacterial pathogens.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute (UFGI), Gainesville, FL, USA.,College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, USA. .,University of Florida Genetics Institute (UFGI), Gainesville, FL, USA. .,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA. .,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Yan J, Yu H, Li B, Fan A, Melkonian J, Wang X, Zhou T, Hua J. Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense. PLoS Pathog 2019; 15:e1008094. [PMID: 31652291 PMCID: PMC6834285 DOI: 10.1371/journal.ppat.1008094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/06/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
Stomatal closure defense and apoplastic defense are two major immunity mechanisms restricting the entry and propagation of microbe pathogens in plants. Surprisingly, activation of plant intracellular immune receptor NLR genes, while enhancing whole plant disease resistance, was sometimes linked to a defective stomatal defense in autoimmune mutants. Here we report the use of high temperature and genetic chimera to investigate the inter-dependence of stomatal and apoplastic defenses in autoimmunity. High temperature inhibits both stomatal and apoplastic defenses in the wild type, suppresses constitutive apoplastic defense responses and rescues the deficiency of stomatal closure response in autoimmune mutants. Chimeric plants have been generated to activate NLR only in guard cells or the non-guard cells. NLR activation in guard cells inhibits stomatal closure defense response in a cell autonomous manner likely through repressing ABA responses. At the same time, it leads to increased whole plant resistance accompanied by a slight increase in apoplastic defense. In addition, NLR activation in both guard and non-guard cells affects stomatal aperture and water potential. This study thus reveals that NLR activation has a differential effect on immunity in a cell type specific matter, which adds another layer of immune regulation with spatial information.
Collapse
Affiliation(s)
- Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America
| | - Huiyun Yu
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America.,Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Li
- School of Applied Physics and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Anqi Fan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America.,State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey Melkonian
- School of Integrative Plant Science, Crop and Soil Sciences, Cornell University, Ithaca, NY, United States of America
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
29
|
Liu Y, Maierhofer T, Rybak K, Sklenar J, Breakspear A, Johnston MG, Fliegmann J, Huang S, Roelfsema MRG, Felix G, Faulkner C, Menke FL, Geiger D, Hedrich R, Robatzek S. Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure. eLife 2019; 8:44474. [PMID: 31524595 PMCID: PMC6776436 DOI: 10.7554/elife.44474] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.
Collapse
Affiliation(s)
- Yi Liu
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Katarzyna Rybak
- LMU Biocenter, Ludwig-Maximilian-University of Munich, Martinsried, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich, United Kingdom
| | | | | | - Judith Fliegmann
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Shouguang Huang
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - M Rob G Roelfsema
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Georg Felix
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | | | | | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich, United Kingdom.,LMU Biocenter, Ludwig-Maximilian-University of Munich, Martinsried, Germany
| |
Collapse
|
30
|
Bourdais G, McLachlan DH, Rickett LM, Zhou J, Siwoszek A, Häweker H, Hartley M, Kuhn H, Morris RJ, MacLean D, Robatzek S. The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic 2019; 20:168-180. [PMID: 30447039 DOI: 10.1111/tra.12625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Expansion of gene families facilitates robustness and evolvability of biological processes but impedes functional genetic dissection of signalling pathways. To address this, quantitative analysis of single cell responses can help characterize the redundancy within gene families. We developed high-throughput quantitative imaging of stomatal closure, a response of plant guard cells, and performed a reverse genetic screen in a group of Arabidopsis mutants to five stimuli. Focussing on the intersection between guard cell signalling and the endomembrane system, we identified eight clusters based on the mutant stomatal responses. Mutants generally affected in stomatal closure were mostly in genes encoding SNARE and SCAMP membrane regulators. By contrast, mutants in RAB5 GTPase genes played specific roles in stomatal closure to microbial but not drought stress. Together with timed quantitative imaging of endosomes revealing sequential patterns in FLS2 trafficking, our imaging pipeline can resolve non-redundant functions of the RAB5 GTPase gene family. Finally, we provide a valuable image-based tool to dissect guard cell responses and outline a genetic framework of stomatal closure.
Collapse
Affiliation(s)
- Gildas Bourdais
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Deirdre H McLachlan
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Lydia M Rickett
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Ji Zhou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Heidrun Häweker
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Hannah Kuhn
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | | | - Dan MacLean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| |
Collapse
|
31
|
Förster S, Schmidt LK, Kopic E, Anschütz U, Huang S, Schlücking K, Köster P, Waadt R, Larrieu A, Batistič O, Rodriguez PL, Grill E, Kudla J, Becker D. Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex. Dev Cell 2019; 48:87-99.e6. [DOI: 10.1016/j.devcel.2018.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/28/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
|
32
|
David L, Harmon AC, Chen S. Plant immune responses - from guard cells and local responses to systemic defense against bacterial pathogens. PLANT SIGNALING & BEHAVIOR 2019; 14:e1588667. [PMID: 30907231 PMCID: PMC6512940 DOI: 10.1080/15592324.2019.1588667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When plants are infected by pathogens two distinct responses can occur, the early being a local response in the infected area, and later a systemic response in non-infected tissues. Closure of stomata has recently been found to be a local response to bacterial pathogens. Stomata closure is linked to both salicylic acid (SA), an essential hormone in local responses and systemic acquired resistance (SAR), and absisic acid (ABA) a key regulator of drought and other abiotic stresses. SAR reduces the effects of later infections. In this review we discuss recent research elucidating the role of guard cells in local and systemic immune responses, guard cell interactions with abiotic and hormone signals, as well as putative functions and interactions between long-distance SAR signals.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
| | - Alice C. Harmon
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
- CONTACT Sixue Chen Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
33
|
Vicente J, Mendiondo GM, Pauwels J, Pastor V, Izquierdo Y, Naumann C, Movahedi M, Rooney D, Gibbs DJ, Smart K, Bachmair A, Gray JE, Dissmeyer N, Castresana C, Ray RV, Gevaert K, Holdsworth MJ. Distinct branches of the N-end rule pathway modulate the plant immune response. THE NEW PHYTOLOGIST 2019; 221:988-1000. [PMID: 30117535 DOI: 10.1111/nph.15387] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants.
Collapse
Affiliation(s)
- Jorge Vicente
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Victoria Pastor
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, E-12071, Spain
| | - Yovanny Izquierdo
- Centro National de Biotecnología CSIC, C/Darwin, 3, Campus of Cantoblanco, E-28049, Madrid, Spain
| | - Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, 06120 Halle (Saale), Germany
| | - Mahsa Movahedi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Daniel Rooney
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Katherine Smart
- SABMiller Plc, SABMiller House, Church Street West, Woking, GU21 6HS, UK
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, Vienna, A-1030, Austria
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, 06120 Halle (Saale), Germany
| | - Carmen Castresana
- Centro National de Biotecnología CSIC, C/Darwin, 3, Campus of Cantoblanco, E-28049, Madrid, Spain
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | |
Collapse
|
34
|
Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radic Res 2018; 52:826-839. [DOI: 10.1080/10715762.2018.1473572] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| |
Collapse
|
35
|
Carella P, Gogleva A, Tomaselli M, Alfs C, Schornack S. Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proc Natl Acad Sci U S A 2018; 115:E3846-E3855. [PMID: 29615512 DOI: 10.1101/188912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The expansion of plants onto land was a formative event that brought forth profound changes to the earth's geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Anna Gogleva
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Marta Tomaselli
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Carolin Alfs
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| |
Collapse
|
36
|
Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proc Natl Acad Sci U S A 2018; 115:E3846-E3855. [PMID: 29615512 PMCID: PMC5910834 DOI: 10.1073/pnas.1717900115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the importance of liverworts as the earliest diverging land plant lineage to support fungal symbiosis, it is unknown whether filamentous pathogens can establish intracellular interactions within living cells of these nonvascular plants. Here, we demonstrate that an oomycete pathogen invades Marchantia polymorpha and related liverworts to form intracellular infection structures inside cells of the photosynthetic layer. Plants lacking this tissue layer display enhanced resistance to infection, revealing an architectural susceptibility factor in complex thalloid liverworts. Moreover, we show that dedicated host cellular trafficking proteins are recruited to pathogen interfaces within liverwort cells, supporting the idea that intracellular responses to microbial invasion originated in nonvascular plants. The expansion of plants onto land was a formative event that brought forth profound changes to the earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.
Collapse
|
37
|
Woolfenden HC, Bourdais G, Kopischke M, Miedes E, Molina A, Robatzek S, Morris RJ. A computational approach for inferring the cell wall properties that govern guard cell dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:5-18. [PMID: 28741858 PMCID: PMC5637902 DOI: 10.1111/tpj.13640] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 07/13/2017] [Indexed: 05/02/2023]
Abstract
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.
Collapse
Affiliation(s)
- Hugh C. Woolfenden
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Gildas Bourdais
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgrónomicaAlimentaria y de Biosistemas, UPM28040MadridSpain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgrónomicaAlimentaria y de Biosistemas, UPM28040MadridSpain
| | - Silke Robatzek
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
38
|
Hedrich R, Geiger D. Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure. THE NEW PHYTOLOGIST 2017; 216:46-61. [PMID: 28722226 DOI: 10.1111/nph.14685] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/25/2017] [Indexed: 05/22/2023]
Abstract
Contents 46 I. 46 II. 47 III. 50 IV. 53 V. 56 VI. 57 58 58 References 58 SUMMARY: Stomatal guard cells control leaf CO2 intake and concomitant water loss to the atmosphere. When photosynthetic CO2 assimilation is limited and the ratio of CO2 intake to transpiration becomes suboptimal, guard cells, sensing the rise in CO2 concentration in the substomatal cavity, deflate and the stomata close. Screens for mutants that do not close in response to experimentally imposed high CO2 atmospheres identified the guard cell-expressed Slowly activating anion channel, SLAC1, as the key player in the regulation of stomatal closure. SLAC1 evolved, though, before the emergence of guard cells. In Arabidopsis, SLAC1 is the founder member of a family of anion channels, which comprises four homologues. SLAC1 and SLAH3 mediate chloride and nitrate transport in guard cells, while SLAH1, SLAH2 and SLAH3 are engaged in root nitrate and chloride acquisition, and anion translocation to the shoot. The signal transduction pathways involved in CO2 , water stress and nutrient-sensing activate SLAC/SLAH via distinct protein kinase/phosphatase pairs. In this review, we discuss the role that SLAC/SLAH channels play in guard cell closure, on the one hand, and in the root-shoot continuum on the other, along with the molecular basis of the channels' anion selectivity and gating.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, 97082, Germany
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, 97082, Germany
| |
Collapse
|
39
|
The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. Sci Rep 2017; 7:9260. [PMID: 28835689 PMCID: PMC5569028 DOI: 10.1038/s41598-017-08932-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Plant defense responses at stomata and apoplast are the most important early events during plant-bacteria interactions. The key components for the signaling of stomatal defense and nonhost resistance have not been fully characterized. Here we report the newly identified small GTPase, Nucleolar GTP-binding protein 1 (NOG1), functions for plant immunity against bacterial pathogens. Virus-induced gene silencing of NOG1 compromised nonhost resistance in N. benthamiana and tomato. Comparative genomic analysis showed that two NOG1 copies are present in all known plant species: NOG1-1 and NOG1-2. Gene downregulation and overexpression studies of NOG1-1 and NOG1-2 in Arabidopsis revealed the novel function of these genes in nonhost resistance and stomatal defense against bacterial pathogens, respectively. Specially, NOG1-2 regulates guard cell signaling in response to biotic and abiotic stimuli through jasmonic acid (JA)- and abscisic acid (ABA)-mediated pathways. The results here provide valuable information on the new functional role of small GTPase, NOG1, in guard cell signaling and early plant defense in response to bacterial pathogens.
Collapse
|
40
|
Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc Natl Acad Sci U S A 2017; 114:9200-9205. [PMID: 28784763 DOI: 10.1073/pnas.1704754114] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the AtPIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability (Pf) of guard cell protoplasts through activation of AtPIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H2O2), revealed that both ABA and flg22 triggered an accumulation of H2O2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H2O2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced Pf and both phosphorylated AtPIP2;1 on Ser121 in vitro. Accumulation of H2O2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of AtPIP2;1. We propose a mechanism whereby phosphorylation of AtPIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H2O2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H2O2 signaling.
Collapse
|
41
|
Ueda M, Egoshi S, Dodo K, Ishimaru Y, Yamakoshi H, Nakano T, Takaoka Y, Tsukiji S, Sodeoka M. Noncanonical Function of a Small-Molecular Virulence Factor Coronatine against Plant Immunity: An In Vivo Raman Imaging Approach. ACS CENTRAL SCIENCE 2017; 3:462-472. [PMID: 28573209 PMCID: PMC5445528 DOI: 10.1021/acscentsci.7b00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 05/11/2023]
Abstract
Coronatine (1), a small-molecular virulence factor produced by plant-pathogenic bacteria, promotes bacterial infection by inducing the opening of stomatal pores, the major route of bacterial entry into the plant, via the jasmonate-mediated COI1-JAZ signaling pathway. However, this pathway is also important for multiple plant functions, including defense against wounding by herbivorous insects. Thus, suppression of the COI1-JAZ signaling pathway to block bacterial infection would concomitantly impair plant defense against herbivorous wounding. Here, we report additional, COI1-JAZ-independent, action of 1 in Arabidopsis thaliana guard cells. First, we found that a stereoisomer of 1 regulates the movement of Arabidopsis guard cells without affecting COI1-JAZ signaling. Second, we found using alkyne-tagged Raman imaging (ATRI) that 1 is localized to the endoplasmic reticulum (ER) of living guard cells of Arabidopsis. The use of arc6 mutant lacking chloroplast formation was pivotal to circumvent the issue of autofluorescence during ATRI. These findings indicate that 1 has an ER-related action on Arabidopsis stomata that bypasses the COI1-JAZ signaling module. It may be possible to suppress the action of 1 on stomata without impairing plant defense responses against herbivores.
Collapse
Affiliation(s)
- Minoru Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- E-mail: . Tel and fax: +81-22-795-6553
| | - Syusuke Egoshi
- Department
of Chemistry, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN
Center for Sustainable Resource Science, Hirosawa, Wako, Saitama, 351-0198, Japan
- AMED-CREST,
Japan Agency for Medical Research and Development, Wako, Saitama, 351-0198, Japan
| | - Yasuhiro Ishimaru
- Department
of Chemistry, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroyuki Yamakoshi
- Synthetic
Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takeshi Nakano
- RIKEN
Center for Sustainable Resource Science, Hirosawa, Wako, Saitama, 351-0198, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Yousuke Takaoka
- Department
of Chemistry, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Shinya Tsukiji
- Frontier
Research Institute for Materials Science (FRIMS), Department of Life
Science and Applied Chemistry, Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN
Center for Sustainable Resource Science, Hirosawa, Wako, Saitama, 351-0198, Japan
- AMED-CREST,
Japan Agency for Medical Research and Development, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
42
|
Zhou Y, Vroegop-Vos I, Schuurink RC, Pieterse CMJ, Van Wees SCM. Atmospheric CO 2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine. FRONTIERS IN PLANT SCIENCE 2017; 8:700. [PMID: 28559899 PMCID: PMC5432532 DOI: 10.3389/fpls.2017.00700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different CO2 levels: high (800 ppm), ambient (450 ppm), and low (150 ppm). Under all conditions tested, infection by Pst resulted in stomatal closure within 1 h after inoculation. However, subsequent stomatal reopening at 4 h, triggered by the virulence factor coronatine (COR), occurred only at ambient and high CO2, but not at low CO2. Moreover, infection by Pst was reduced at low CO2 to the same extent as infection by mutant Pst cor- . Under all CO2 conditions, the ABA mutants aba2-1 and abi1-1 were as resistant to Pst as wild-type plants under low CO2, which contained less ABA. Moreover, stomatal reopening mediated by COR was dependent on ABA. Our results suggest that reduced ABA levels at low CO2 contribute to the observed enhanced resistance to Pst by deregulation of virulence responses. This implies that enhanced ABA levels at increasing CO2 levels may have a role in weakening plant defense.
Collapse
Affiliation(s)
- Yeling Zhou
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Irene Vroegop-Vos
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Robert C. Schuurink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
43
|
Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA, Gudesblat GE. Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production. FRONTIERS IN PLANT SCIENCE 2016; 7:1851. [PMID: 28018388 PMCID: PMC5155495 DOI: 10.3389/fpls.2016.01851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 05/19/2023]
Abstract
Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Pablo S. Torres
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Susana M. Gallego
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María P. Benavídes
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Gustavo E. Gudesblat
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Departamento de Biodiversidad y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
44
|
Murray RR, Emblow MSM, Hetherington AM, Foster GD. Plant virus infections control stomatal development. Sci Rep 2016; 6:34507. [PMID: 27687773 PMCID: PMC5043284 DOI: 10.1038/srep34507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/14/2016] [Indexed: 11/23/2022] Open
Abstract
Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.
Collapse
Affiliation(s)
- Rose R Murray
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark S M Emblow
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Gary D Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
45
|
Hückelhoven R, Seidl A. PAMP-triggered immune responses in barley and susceptibility to powdery mildew. PLANT SIGNALING & BEHAVIOR 2016; 11:e1197465. [PMID: 27348336 PMCID: PMC4991337 DOI: 10.1080/15592324.2016.1197465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pathogen-associated molecular pattern-triggered immunity (PTI) builds one of the first layers of plant disease resistance. In susceptible plants, PTI is overcome by adapted pathogens. This can be achieved by suppression of PTI with the help of pathogen virulence effectors. However, effectors may also contribute to modification of host metabolism or cell architecture to ensure successful pathogenesis. Barley responds to treatment with the pathogen-associated molecular patterns flg22 or chitin with phosphorylation of mitogen-activated protein kinases and an oxidative burst. RAC/ROP GTPases can act as positive or negative modulators of these plant immune responses. The RAC/ROP GTPase RACB is a powdery mildew susceptibility factor of barley. However, RACB apparently does not negatively control early PTI responses but functions in polar cell development during invasion of the pathogen into living host epidermal cells. Here, we further discuss the incomplete picture of PTI in Triticeae.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- CONTACT Ralph Hückelhoven
| | - Anna Seidl
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
46
|
Zhou C, Li C. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:315. [PMID: 27047502 PMCID: PMC4801893 DOI: 10.3389/fpls.2016.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 06/01/2023]
Abstract
We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.
Collapse
|
47
|
Egoshi S, Takaoka Y, Saito H, Nukadzuka Y, Hayashi K, Ishimaru Y, Yamakoshi H, Dodo K, Sodeoka M, Ueda M. Dual function of coronatine as a bacterial virulence factor against plants: possible COI1–JAZ-independent role. RSC Adv 2016. [DOI: 10.1039/c5ra20676f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A phytotoxin coronatine has a dual mode of action, triggering stomatal reopening through COI1–JAZ-dependent and independent pathways.
Collapse
Affiliation(s)
| | | | - Hiroaki Saito
- Institute of Science and Engineering
- Kanazawa University
- Kanazawa
- Japan
| | | | - Kengo Hayashi
- Department of Chemistry
- Tohoku University
- Aoba-ku
- Japan
| | | | | | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
| | - Minoru Ueda
- Department of Chemistry
- Tohoku University
- Aoba-ku
- Japan
| |
Collapse
|
48
|
Ye W, Murata Y. Microbe Associated Molecular Pattern Signaling in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:583. [PMID: 27200056 PMCID: PMC4855242 DOI: 10.3389/fpls.2016.00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Stomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion. The perception of MAMPs induces signal transduction including recruitment of second messengers, such as Ca(2+) and H2O2, phosphorylation events, and change of transporter activity, leading to stomatal movement. In the present review, we summarize recent findings in signaling underlying MAMP-induced stomatal movement by comparing with other signalings.
Collapse
|
49
|
Panchal S, Roy D, Chitrakar R, Price L, Breitbach ZS, Armstrong DW, Melotto M. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night. FRONTIERS IN PLANT SCIENCE 2016; 7:880. [PMID: 27446113 PMCID: PMC4914978 DOI: 10.3389/fpls.2016.00880] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/03/2016] [Indexed: 05/03/2023]
Abstract
In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface.
Collapse
Affiliation(s)
- Shweta Panchal
- Department of Biology, University of Texas at ArlingtonArlington, TX, USA
| | - Debanjana Roy
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Reejana Chitrakar
- Department of Biology, University of Texas at ArlingtonArlington, TX, USA
| | - Lenore Price
- Department of Biology, University of Texas at ArlingtonArlington, TX, USA
| | | | | | - Maeli Melotto
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- *Correspondence: Maeli Melotto,
| |
Collapse
|
50
|
Zhang H, Teng W, Liang J, Liu X, Zhang H, Zhang Z, Zheng X. MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpin(Xoo). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:131-41. [PMID: 26466663 DOI: 10.1093/jxb/erv448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MADS-box transcription factor genes are well known for their role in floral organ and seed development. In this study, a novel MADS-box-containing gene, designated NbMADS1, was isolated from leaves of Nicotiana benthamiana. The full-length cDNA was 666 bp and encoded a putative polypeptide of 221 aa with a mass of 24.3 kDa. To assess the role of NbMADS1 in the defence response to bacterial harpin(Xoo), an elicitor of the hypersensitive response, a loss-of-function experiment was performed in N. benthamiana plants using virus-induced gene silencing. Analyses of electrolyte leakage revealed more extensive cell death in the control plants than in NbMADS1-silenced plants. The NbMADS1-silenced plants showed impaired harpin(Xoo)-induced stomatal closure, decreased harpin(Xoo)-induced production of hydrogen peroxide (H2O2) and nitric oxide (NO) in guard cells, and reduced harpin(Xoo)-induced resistance to Phytophthora nicotianae. The compromised stomatal closure observed in the NbMADS1-silenced plants was inhibited by the application of H2O2 and sodium nitroprusside (an NO donor). Taken together, these results demonstrate that the NbMADS1-H2O2-NO pathway mediates multiple harpin(Xoo)-triggered responses, including stomatal closure, hypersensitive cell death, and defence-related gene expression, suggesting that NbMADS1 plays an important role in regulating the response to harpin(Xoo) in N. benthamiana plants.
Collapse
Affiliation(s)
- Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Wenjun Teng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Jingang Liang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| |
Collapse
|