1
|
Niu F, Yuan M, Zhao H, Pang Z, Yan J, Ning R, Shi L, Yu F, Wei D, Yang R, Zhang R, Yang H. Heterologous expression of SpsTAC2 in Arabidopsis affected branch angle and secondary vascular system development. PLANT SIGNALING & BEHAVIOR 2025; 20:2450821. [PMID: 39907140 PMCID: PMC11801345 DOI: 10.1080/15592324.2025.2450821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025]
Abstract
To investigate the biological functions of Tiller Angle Control 2 (TAC2) in Salix psammophila. In this study, TAC2 was cloned from Salix psammophila, and an overexpression and subcellular localization expression vector for the SpsTAC2 gene was constructed. The SpsTAC2 gene was overexpressed in Arabidopsis and analyzed for phenotypic changes. The subcellular localization of SpsTAC2 was analyzed via Agrobacterium-mediated transient expression in onion (Allium cepa L.) epidermal cells. Phenotypic characterization of SpsTAC2 overexpressing Arabidopsis strains revealed that the branching angle of the transgenic strains was significantly greater than that of the wild type, and the anatomical structures of the stems and hypocotyls of the transgenic strains indicated that the vascular system of the transgenic strains developed more slowly than did that of the wild type. The subcellular localization of the SpsTAC2 gene revealed that the localization signals of the SpsTAC2 gene were mainly in the nucleus, and weak signals also appeared in the cell membrane, suggesting that the SpsTAC2 gene was mainly expressed mainly in the nucleus, with a small amount of expression in the cell membrane. This findings suggest that the SpsTAC2 gene influences the development of the branching angle of plants and xylem, and exerts its effects mainly in the nucleus and membrane. This study can help to characterize the regulatory effect of the TAC gene on the branching angle and explore its effect on the branching angle and vascular system development, and also help to explore the possible molecular regulatory mechanism, which can provide a theoretical basis for further elucidation of the mechanism of action of the IGT gene family.
Collapse
Affiliation(s)
- Fangshu Niu
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Mengru Yuan
- Key Laboratory, South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxia Zhao
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhi Pang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Jie Yan
- Inner Mongolia Autonomous Region Forestry and Grassland Seeding General Station, Inner Mongolia Autonomous Region Forestry and Grassland Bureau, Hohhot, China
| | - RuiXie Ning
- Inner Mongolia Autonomous Region Forestry and Grassland Seeding General Station, Inner Mongolia Autonomous Region Forestry and Grassland Bureau, Hohhot, China
| | - Lin Shi
- Operation room, Ordos Institute of Forestry and Grassland Science, Ordos, China
| | - Fengqiang Yu
- Seedling Technology Section, Ordos Forestry and Grassland Development Center in Inner Mongolia, Ordos, China
| | - Dongshan Wei
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Yang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Runming Zhang
- Seed Industry Development Department, Agricultural and Animal Husbandry Technology Extension Center of Inner Mongolia Autonomous Region, Hohhot, China
| | - Haifeng Yang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Das S, Basnet P, Seidel D, Röll A, Ehbrecht M, Hölscher D. Tree Architecture and Structural Complexity in Mountain Forests of the Annapurna Region, Himalaya. Ecol Evol 2025; 15:e71341. [PMID: 40297317 PMCID: PMC12034751 DOI: 10.1002/ece3.71341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Mountain ranges comprise heterogeneous environments and high plant diversity, but little is known about the architecture and structural complexity of trees in mountain forests. We studied the relationship between tree architecture, environmental conditions, and tree structural complexity in forests of the Annapurna region in the Himalaya. We further asked whether and how tree structural complexity translates into forest stand structural complexity. The study covers 546 trees on 14 undisturbed study plots across wide ranges of elevation (1300 to 3400 m asl.) and annual precipitation (1180 to 3600 mm yr.-1). They were assessed by ground-based mobile laser scanning. We found that tree structural complexity, expressed as box-dimension (D b ), was lowest for the needle-leaved Pinus wallichiana and highest for the broad-leaved Daphniphyllum himalense. A high share of the variation in D b was explained by tree architecture. In multivariate models, tree height, crown radius, and crown length explained more than 60% of the observed variation in D b . Stem density of the plot accounted for 19% of the variation in D b , and there was no influence of tree diversity. Precipitation explained l3% of the observed variation in tree D b , but elevation and slope did not have significant influences. As expected, tree height decreased with increasing elevation, but small trees often had relatively high D b values. The standard deviation of tree-level D b within a plot explained 47% of the variation in stand-level structural complexity among plots, surpassing the maximum tree-level D b . This suggests that both the sole removal of small or large trees would reduce the stand-level complexity by 36%. We conclude that in the Himalayan forests, species identity and tree architecture play a significant role in determining tree structural complexity, while environmental factors have a smaller role. Furthermore, structural variation among the trees within a plot plays a crucial role for the structural complexity at the stand level.
Collapse
Affiliation(s)
- Smita Das
- Tropical Silviculture and Forest EcologyUniversity of GöttingenGottingenGermany
| | - Prakash Basnet
- Department for Spatial Structures and Digitization of ForestsUniversity of GöttingenGottingenGermany
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of ForestsUniversity of GöttingenGottingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGottingenGermany
| | - Alexander Röll
- Tropical Silviculture and Forest EcologyUniversity of GöttingenGottingenGermany
- Horticultural SciencesUniversity of Bonn, Institute for Crop Science and Resource ConservationBonnGermany
| | - Martin Ehbrecht
- Department of Silviculture and Forest Ecology of the Temperate ZonesUniversity of GöttingenGottingenGermany
| | - Dirk Hölscher
- Tropical Silviculture and Forest EcologyUniversity of GöttingenGottingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGottingenGermany
| |
Collapse
|
3
|
Xiong S, Wu L, Chen Y, Shi X, Wang Y. Multi-omics analysis reveals the regulatory mechanism of branching development in Quercus fabri. J Proteomics 2025; 313:105373. [PMID: 39778766 DOI: 10.1016/j.jprot.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q. fabri. A total of 12,888 differentially expressed genes (DEGs), 8193 differentially accumulated proteins (DAPs), and 1788 differentially accumulated metabolites (DAMs) were identified through comparisons among the stages and subjected to multi-omics joint analysis. Conduct interaction network analysis on DEGs and DAPs to identify the significant transcription factor family (AP2/ERF) involved in the regulation of axillary bud development. Furthermore, KEGG enrichment analysis of DEGs, DAPs and DAMs indicated significant enrichment in plant hormone signaling pathways. The analysis of endogenous hormone levels and qRT-PCR results for pathway genes demonstrated that the expression levels of IAA and tZ significantly increased during late developmental stages, whereas the expression levels of ABA, ACC and JA significantly decreased. In summary, these findings contribute to a comprehensive understanding of the regulatory networks underlying the branching development of Q. fabri. SIGNIFICANCE: Q. fabri exhibits robust vegetative growth, and its primary trunk is prone to branching, significantly influencing the wood yield rate. Through a joint analysis of transcriptomics, proteomics, and metabolomics, we comprehensively examined the regulatory network governing the axillary bud development of Q. fabri. Our findings revealed the crucial roles of the AP2/ERF transcription factor family and plant hormone signal transduction pathways in branch development. These insights contribute to a deeper understanding of the mechanisms regulating branch development.
Collapse
Affiliation(s)
- Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
4
|
Mottiar Y, Tschaplinski T, Ralph J, Mansfield S. Suppression of Chorismate Mutase 1 in Hybrid Poplar to Investigate Potential Redundancy in the Supply of Lignin Precursors. PLANT DIRECT 2025; 9:e70053. [PMID: 40084040 PMCID: PMC11897905 DOI: 10.1002/pld3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Chorismate is an important branchpoint metabolite in the biosynthesis of lignin and a wide array of metabolites in plants. Chorismate mutase (CM), the enzyme responsible for transforming chorismate into prephenate, is a key regulator of metabolic flux towards the synthesis of aromatic amino acids and onwards to lignin. We examined three CM genes in hybrid poplar (Populus alba × grandidentata; P39, abbreviated as Pa×g) and used RNA interference (RNAi) to suppress the expression of Pa×gCM1, the most highly expressed isoform found in xylem tissue. Although this strategy was successful in disrupting Pa×gCM1 transcripts, there was also an unanticipated increase in lignin content, a shift towards guaiacyl lignin units, and more xylem vessels with smaller lumen areas, at least in the most severely affected transgenic line. This was accompanied by compensatory expression of the other two CM isoforms, Pa×gCM2 and Pa×gCM3, as well as widespread changes in gene expression and metabolism. This study investigates potential redundancy within the CM gene family in the developing xylem of poplar and highlights the pivotal role of chorismate in plant metabolism, development, and physiology.
Collapse
Affiliation(s)
- Yaseen Mottiar
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - John Ralph
- Department of BiochemistryUniversity of WisconsinMadisonWisconsinUSA
- Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWisconsinUSA
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWisconsinUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
5
|
Cheng J, Shao Y, Hu X, Gao L, Zheng X, Tan B, Ye X, Wang W, Zhang H, Wang X, Lian X, Li Z, Feng J, Zhang L. A simple and efficient gene functional analysis method for studying the growth and development of peach seedlings. HORTICULTURE RESEARCH 2024; 11:uhae155. [PMID: 39005999 PMCID: PMC11246241 DOI: 10.1093/hr/uhae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
Stable genetic transformation of peach [Prunus persica (L.) Batsch] still faces many technical challenges, and existing transient expression methods are limited by tissue type or developmental stage, making it difficult to conduct functional analysis of genes regulating shoot growth. To overcome this dilemma, we developed a three-step method for efficient analysis of gene functions during peach seedling growth and development. This method resulted in transformation frequencies ranging from 48 to 87%, depending on the gene. From transformation of germinating seeds to phenotyping of young saplings took just 1.5 months and can be carried out any time of year. To test the applicability of this method, the function of three tree architecture-related genes, namely PpPDS, PpMAX4, and PpWEEP, and two lateral root-related genes, PpIAA14-1 and -2, were confirmed. Since functional redundancy can challenge gene functional analyses, tests were undertaken with the growth-repressor DELLA, which has three homologous genes, PpDGYLA (DG), PpDELLA1 (D1), and -2 (D2), in peach that are functionally redundant. Silencing using a triple-target vector (TRV2-DG-D1-D2) resulted in transgenic plants taller than those carrying just TRV2-DG or TRV2. Simultaneously silencing the three DELLA genes also attenuated the stature of two dwarf genotypes, 'FHSXT' and 'HSX', which normally accumulate DELLA proteins. Our study provides a method for the functional analysis of genes in peach and can be used for the study of root, stem, and leaf development. We believe this method can be replicated in other woody plants.
Collapse
|
6
|
Nauber T, Hodač L, Wäldchen J, Mäder P. Parametrization of biological assumptions to simulate growth of tree branching architectures. TREE PHYSIOLOGY 2024; 44:tpae045. [PMID: 38696364 PMCID: PMC11128038 DOI: 10.1093/treephys/tpae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.
Collapse
Affiliation(s)
- Tristan Nauber
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ehrenbergstraße 29, Ilmenau 98693, Germany
| | - Ladislav Hodač
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Jana Wäldchen
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
- German Centre for Integrative Biodiversity Research, iDiv (Halle-Jena-Leipzig), Puschstraße 4, Leipzig 04103, Germany
| | - Patrick Mäder
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ehrenbergstraße 29, Ilmenau 98693, Germany
- German Centre for Integrative Biodiversity Research, iDiv (Halle-Jena-Leipzig), Puschstraße 4, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Fürstengraben 1, Jena 07737, Germany
| |
Collapse
|
7
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
8
|
Nunes MH, Vaz MC, Camargo JLC, Laurance WF, de Andrade A, Vicentini A, Laurance S, Raumonen P, Jackson T, Zuquim G, Wu J, Peñuelas J, Chave J, Maeda EE. Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests. Nat Commun 2023; 14:8129. [PMID: 38097604 PMCID: PMC10721830 DOI: 10.1038/s41467-023-44004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Habitat fragmentation could potentially affect tree architecture and allometry. Here, we use ground surveys of terrestrial LiDAR in Central Amazonia to explore the influence of forest edge effects on tree architecture and allometry, as well as forest biomass, 40 years after fragmentation. We find that young trees colonising the forest fragments have thicker branches and architectural traits that optimise for light capture, which result in 50% more woody volume than their counterparts of similar stem size and height in the forest interior. However, we observe a disproportionately lower height in some large trees, leading to a 30% decline in their woody volume. Despite the substantial wood production of colonising trees, the lower height of some large trees has resulted in a net loss of 6.0 Mg ha-1 of aboveground biomass - representing 2.3% of the aboveground biomass of edge forests. Our findings indicate a strong influence of edge effects on tree architecture and allometry, and uncover an overlooked factor that likely exacerbates carbon losses in fragmented forests.
Collapse
Affiliation(s)
- Matheus Henrique Nunes
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA.
| | - Marcel Caritá Vaz
- Institute for Environmental Science and Sustainabilty, Wilkes University, Wilkes-Barre, PA, USA
| | - José Luís Campana Camargo
- Ecology Graduate Program, National Institute for Amazonian Research, (INPA), Manaus, Brazil
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Ana de Andrade
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - Alberto Vicentini
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
- Coordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brasil
| | - Susan Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Pasi Raumonen
- Computing Sciences, Tampere University, Tampere, Finland
| | - Toby Jackson
- Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gabriela Zuquim
- Amazon Research Team, Department of Biology, University of Turku, Turku, Finland
| | - Jin Wu
- School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, CNRS, UPS, IRD, Université Paul Sabatier, Toulouse, France
| | - Eduardo Eiji Maeda
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Finnish Meteorological Institute, FMI, Helsinki, Finland.
| |
Collapse
|
9
|
Buell CR, Dardick C, Parrott W, Schmitz RJ, Shih PM, Tsai CJ, Urbanowicz B. Engineering custom morpho- and chemotypes of Populus for sustainable production of biofuels, bioproducts, and biomaterials. FRONTIERS IN PLANT SCIENCE 2023; 14:1288826. [PMID: 37965014 PMCID: PMC10642751 DOI: 10.3389/fpls.2023.1288826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology. These modifications have resulted in increased yield, more efficient agronomic practices, and enhanced quality traits. Precision knowledge of gene regulation and function through high-resolution single-cell omics technologies, coupled with the ability to engineer plant genomes at the DNA sequence, chromatin accessibility, and gene expression levels, can enable engineering of complex and complementary traits at the biosystem level. Populus spp., the primary genetic model system for woody perennials, are among the fastest growing trees in temperate zones and are important for both carbon sequestration and global carbon cycling. Ample genomic and transcriptomic resources for poplar are available including emerging single-cell omics datasets. To expand use of poplar outside of valorization of woody biomass, chassis with novel morphotypes in which stem branching and tree height are modified can be fabricated thereby leading to trees with altered leaf to wood ratios. These morphotypes can then be engineered into customized chemotypes that produce high value biofuels, bioproducts, and biomaterials not only in specific organs but also in a cell-type-specific manner. For example, the recent discovery of triterpene production in poplar leaf trichomes can be exploited using cell-type specific regulatory sequences to synthesize high value terpenes such as the jet fuel precursor bisabolene specifically in the trichomes. By spatially and temporally controlling expression, not only can pools of abundant precursors be exploited but engineered molecules can be sequestered in discrete cell structures in the leaf. The structural diversity of the hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial production and by leveraging cell-type-specific omics data, cell wall composition can be modified in a tailored and targeted specific manner to generate poplar wood with novel chemical features that are amenable for processing or advanced manufacturing. Precision engineering poplar as a multi-purpose sustainable feedstock highlights how genome engineering can be used to re-imagine a crop species.
Collapse
Affiliation(s)
- C. Robin Buell
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Christopher Dardick
- Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, WV, United States
| | - Wayne Parrott
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Breeanna Urbanowicz
- Center for Complex Carbohydrate Research, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Yoichi W, Matsuzawa S, Tamaki I, Nagano AJ, Oh SH. Genetic differentiation and evolution of broad-leaved evergreen shrub and tree varieties of Daphniphyllum macropodum (Daphniphyllaceae). Heredity (Edinb) 2023; 131:211-220. [PMID: 37460735 PMCID: PMC10462706 DOI: 10.1038/s41437-023-00637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
Tree form evolution is an important ecological specialization for woody species, but its evolutionary process with adaptation is poorly understood, especially on the microevolutionary scale. Daphniphyllum macropodum comprises two varieties: a tree variety growing in a warm temperate climate with light snowfall and a shrub variety growing in a cool temperate climate with heavy snowfall in Japan. Chloroplast DNA variations and genome-wide single-nucleotide polymorphisms across D. macropodum populations and D. teijsmannii as an outgroup were used to reveal the evolutionary process of the shrub variety. Population genetic analysis indicated that the two varieties diverged but were weakly differentiated. Approximate Bayesian computation analysis supported a scenario that assumed migration between the tree variety and the southern populations of the shrub variety. We found migration between the two varieties where the distributions of the two varieties are in contact, and it is concordant with higher tree height in the southern populations of the shrub variety than the northern populations. The genetic divergence between the two varieties was associated with snowfall. The heavy snowfall climate is considered to have developed since the middle Quaternary in this region. The estimated divergence time between the two varieties suggests that the evolution of the two varieties may be concordant with such paleoclimatic change.
Collapse
Affiliation(s)
- Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| | - Sae Matsuzawa
- Faculty of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Sang-Hun Oh
- Department of Biology, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, South Korea
| |
Collapse
|
11
|
Chu LL, Yan Z, Sheng XX, Liu HQ, Wang QY, Zeng RF, Hu CG, Zhang JZ. Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin biosynthesis. PLANT PHYSIOLOGY 2023; 192:1947-1968. [PMID: 36913259 PMCID: PMC10315275 DOI: 10.1093/plphys/kiad159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.
Collapse
Affiliation(s)
- Le Le Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Xing Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai Qiang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Ye Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Fang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun Gen Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
13
|
Li WF, Ma ZH, Guo ZG, Zuo CW, Chu MY, Mao J, Chen BH. Insights on the stem elongation of spur-type bud sport mutant of 'Red Delicious' apple. PLANTA 2023; 257:48. [PMID: 36740622 DOI: 10.1007/s00425-023-04086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The decreased capacity of auxin-, CTK-, and BR-mediated cell division and cell enlargement pathways, combined with the enhanced capacity of GA and ETH-, JA-, ABA-, SA-mediated stress-resistant pathways were presumed to be the crucial reasons for the formation of spur-type 'Red Delicious' mutants. Vallee Spur', which exhibit short internodes and compact tree shape, is the fourth generation of the spur-type bud sport mutant of 'Red Delicious'. However, the underlying molecular mechanism of these properties remains unclear. Here, comparative phenotypic, full-length transcriptome and phytohormone analyses were performed between 'Red Delicious' (NSP) and 'Vallee Spur' (SP). The new shoot internode length of NSP was ˃ 1.53-fold higher than that of the SP mutant. Cytological analysis showed that the stem cells of the SP mutant were smaller and more tightly arranged relative to the NSP. By Iso-Seq, a total of 1426 differentially expressed genes (DEGs) were detected, including 808 upregulated and 618 downregulated genes in new shoot apex with 2 leaves of the SP mutant. Gene expressions involved in auxin, cytokinin (CTK), and brassinosteroid (BR) signal transduction were mostly downregulated in the SP mutant, whereas those involved in gibberellin (GA), ethylene (ETH), jasmonate (JA), ABA, and salicylic acid (SA) signal transduction were mostly upregulated. The overall thermogram analysis of hormone levels in the shoot apex carrying two leaves detected by LC-MS/MS absolute quantification showed that the levels of IAA-Asp, IAA, iP7G, OPDA, and 6-deoxyCS were significantly upregulated in the SP mutant, while the remaining 28 hormones were significantly downregulated. It is speculated that the decreased capacity of auxin, CTK, and BR-mediated cell division and cell enlargement pathways is crucial for the formation of the SP mutant. GA and stress-resistant pathways of ETH, JA, ABA, and SA also play vital roles in stem elongation. These results highlight the involvement of phytohormones in the formation of stem elongation occurring in 'Red Delicious' spur-type bud sport mutants and provide information for exploring its biological mechanism.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhi-Gang Guo
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741000, China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
14
|
Belhassine F, Pallas B, Pierru-Bluy S, Martinez S, Fumey D, Costes E. A genotype-specific architectural and physiological profile is involved in the flowering regularity of apple trees. TREE PHYSIOLOGY 2022; 42:2306-2318. [PMID: 35951430 DOI: 10.1093/treephys/tpac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior.
Collapse
Affiliation(s)
- Fares Belhassine
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
- ITK, 34830, Clapiers, France
| | - Benoît Pallas
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | - Sylvie Pierru-Bluy
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | - Sébastien Martinez
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | | | - Evelyne Costes
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| |
Collapse
|
15
|
Wang L, Pan L, Niu L, Cui G, Wei B, Zeng W, Wang Z, Lu Z. Fine mapping of the gene controlling the weeping trait of Prunus persica and its uses for MAS in progenies. BMC PLANT BIOLOGY 2022; 22:459. [PMID: 36153492 PMCID: PMC9508784 DOI: 10.1186/s12870-022-03840-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Fruit tree yield and fruit quality are affected by the tree's growth type, and branching angle is an important agronomic trait of fruit trees, which largely determines the crown structure. The weeping type of peach tree shows good ventilation and light transmission; therefore, it is commonly cultivated. However, there is no molecular marker closely linked with peach weeping traits for target gene screening and assisted breeding. RESULTS First, we confirmed that the peach weeping trait is a recessive trait controlled by a single gene by constructing segregating populations. Based on BSA-seq, we mapped the gene controlling this trait within 159 kb of physical distance on chromosome 3. We found a 35 bp deletion in the candidate area in standard type, which was not lacking in weeping type. For histological assessments, different types of branches were sliced and examined, showing fiber bundles in the secondary xylem of ordinary branches but not in weeping branches. CONCLUSIONS This study established a molecular marker that is firmly linked to weeping trait. This marker can be used for the selection of parents in the breeding process and the early screening of hybrid offspring to shorten the breeding cycle. Moreover, we preliminary explored histological differences between growth types. These results lay the groundwork for a better understanding of the weeping growth habit of peach trees.
Collapse
Affiliation(s)
- Luwei Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lei Pan
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Liang Niu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Guochao Cui
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Bin Wei
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Wenfang Zeng
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhiqiang Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Zhenhua Lu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
16
|
Molecular Mechanisms Regulating the Columnar Tree Architecture in Apple. FORESTS 2022. [DOI: 10.3390/f13071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The columnar apple cultivar ‘McIntosh Wijcik’ was discovered as a spontaneous mutant from the top of a ‘McIntosh’ tree in the early 1960s. ‘McIntosh Wijcik’ exhibits the columnar growth phenotype: compact and sturdy growth, short internodes, and very few lateral shoots. Classical genetic analysis revealed that the columnar growth phenotype of ‘McIntosh Wijcik’ is controlled by a single dominant gene, Co. This review focuses on the advances made toward understanding the molecular mechanisms of columnar growth in the last decade. Molecular studies have shown that an 8.2 kb insertion in the intergenic region of the Co locus is responsible for the columnar growth phenotype of ‘McIntosh Wijcik’, implying that the insertion affects the expression patterns of adjacent genes. Among the candidate genes in the Co region, the expression pattern of MdDOX-Co, putatively encoding 2-oxoglutarate-dependent dioxygenase (DOX), was found to vary between columnar and non-columnar apples. Recent studies have found three functions of MdDOX-Co: facilitating bioactive gibberellin deficiency, increasing strigolactone levels, and positively regulating abscisic acid levels. Consequently, changes in these plant hormone levels caused by the ectopic expression of MdDOX-Co in the aerial organs of ‘McIntosh Wijcik’ can lead to dwarf trees with fewer lateral branches. These findings will contribute to the breeding and cultivation of new columnar apple cultivars with improved fruit quality.
Collapse
|
17
|
Liu C, Chen S, Wang G, Chen S. Decoding the molecular regulation mechanism of plant architecture in woody plants. THE NEW PHYTOLOGIST 2022; 235:8-10. [PMID: 35460568 DOI: 10.1111/nph.18145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| | - Guohua Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
- College of Information and Computer Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040, Harbin, China
| |
Collapse
|
18
|
Sun C, Liang W, Yan K, Xu D, Qin T, Fiaz S, Kear P, Bi Z, Liu Y, Liu Z, Zhang J, Bai J. Expression of Potato StDRO1 in Arabidopsis Alters Root Architecture and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:836063. [PMID: 35665176 PMCID: PMC9161210 DOI: 10.3389/fpls.2022.836063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Potato (Solanum tuberosum L) is the third important crop for providing calories to a large human population, and is considered sensitive to moderately sensitive to drought stress conditions. The development of drought-tolerant, elite varieties of potato is a challenging task, which can be achieved through molecular breeding. Recently, the DEEPER ROOTING 1 (DRO1) gene has been identified in rice, which influences plant root system and regulates grain yield under drought stress conditions. The potato StDRO1 protein is mainly localized in the plasma membrane of tobacco leaf cells, and overexpression analysis of StDRO1 in Arabidopsis resulted in an increased lateral root number, but decreased lateral root angle, lateral branch angle, and silique angle. Additionally, the drought treatment analysis indicated that StDRO1 regulated drought tolerance and rescued the defective root architecture and drought-tolerant phenotypes of Atdro1, an Arabidopsis AtDRO1 null mutant. Furthermore, StDRO1 expression was significantly higher in the drought-tolerant potato cultivar "Unica" compared to the drought-sensitive cultivar "Atlantic." The transcriptional response of StDRO1 under drought stress occurred significantly earlier in Unica than in Atlantic. Collectively, the outcome of the present investigation elucidated the role of DRO1 function in the alternation of root architecture, which potentially acts as a key gene in the development of a drought stress-tolerant cultivar. Furthermore, these findings will provide the theoretical basis for molecular breeding of drought-tolerant potato cultivars for the farming community.
Collapse
Affiliation(s)
- Chao Sun
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjun Liang
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Derong Xu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Tianyuan Qin
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific (CCCAP), Beijing, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Zhao BG, Li G, Wang YF, Yan Z, Dong FQ, Mei YC, Zeng W, Lu MZ, Li HB, Chao Q, Wang BC. PdeHCA2 affects biomass in Populus by regulating plant architecture, the transition from primary to secondary growth, and photosynthesis. PLANTA 2022; 255:101. [PMID: 35397691 DOI: 10.1007/s00425-022-03883-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
PdeHCA2 regulates the transition from primary to secondary growth, plant architecture, and affects photosynthesis by targeting PdeBRC1 and controlling the anatomy of the mesophyll, and intercellular space, respectively. Branching, secondary growth, and photosynthesis are vital developmental processes of woody plants that determine plant architecture and timber yield. However, the mechanisms underlying these processes are unknown. Here, we report that the Populus transcription factor High Cambium Activity 2 (PdeHCA2) plays a role in the transition from primary to secondary growth, vascular development, and branching. In Populus, PdeHCA2 is expressed in undifferentiated provascular cells during primary growth, in phloem cells during secondary growth, and in leaf veins, which is different from the expression pattern of its homolog in Arabidopsis. Overexpression of PdeHCA2 has pleiotropic effects on shoot and leaf development; overexpression lines showed delayed growth of shoots and leaves, reduced photosynthesis, and abnormal shoot branching. In addition, auxin-, cytokinin-, and photosynthesis-related genes were differentially regulated in these lines. Electrophoretic mobility shift assays and transcriptome analysis indicated that PdeHCA2 directly up-regulates the expression of BRANCHED1 and the MADS-box gene PdeAGL9, which regulate plant architecture, by binding to cis-elements in the promoters of these genes. Taken together, our findings suggest that HCA2 regulates several processes in woody plants including vascular development, photosynthesis, and branching by affecting the proliferation and differentiation of parenchyma cells.
Collapse
Affiliation(s)
- Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Feng Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Qin Dong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chang Mei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A and F University, Hangzhou, 311300, China
| | - Meng-Zhu Lu
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A and F University, Hangzhou, 311300, China
| | - Hong-Bin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Coupel‐Ledru A, Pallas B, Delalande M, Segura V, Guitton B, Muranty H, Durel C, Regnard J, Costes E. Tree architecture, light interception and water-use related traits are controlled by different genomic regions in an apple tree core collection. THE NEW PHYTOLOGIST 2022; 234:209-226. [PMID: 35023155 PMCID: PMC9305758 DOI: 10.1111/nph.17960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/19/2021] [Indexed: 05/17/2023]
Abstract
Tree architecture shows large genotypic variability, but how this affects water-deficit responses is poorly understood. To assess the possibility of reaching ideotypes with adequate combinations of architectural and functional traits in the face of climate change, we combined high-throughput field phenotyping and genome-wide association studies (GWAS) on an apple tree (Malus domestica) core-collection. We used terrestrial light detection and ranging (T-LiDAR) scanning and airborne multispectral and thermal imagery to monitor tree architecture, canopy shape, light interception, vegetation indices and transpiration on 241 apple cultivars submitted to progressive field soil drying. GWAS was performed with single nucleotide polymorphism (SNP)-by-SNP and multi-SNP methods. Large phenotypic and genetic variability was observed for all traits examined within the collection, especially canopy surface temperature in both well-watered and water deficit conditions, suggesting control of water loss was largely genotype-dependent. Robust genomic associations revealed independent genetic control for the architectural and functional traits. Screening associated genomic regions revealed candidate genes involved in relevant pathways for each trait. We show that multiple allelic combinations exist for all studied traits within this collection. This opens promising avenues to jointly optimize tree architecture, light interception and water use in breeding strategies. Genotypes carrying favourable alleles depending on environmental scenarios and production objectives could thus be targeted.
Collapse
Affiliation(s)
- Aude Coupel‐Ledru
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Benoît Pallas
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Magalie Delalande
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Vincent Segura
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Baptiste Guitton
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Hélène Muranty
- IRHSSFR QuaSaVUniversité d’Angers, Institut Agro, INRAE49000AngersFrance
| | - Charles‐Eric Durel
- IRHSSFR QuaSaVUniversité d’Angers, Institut Agro, INRAE49000AngersFrance
| | - Jean‐Luc Regnard
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Evelyne Costes
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| |
Collapse
|
21
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
22
|
Li Y, Tan X, Guo J, Hu E, Pan Q, Zhao Y, Chu Y, Zhu Y. Functional Characterization of MdTAC1a Gene Related to Branch Angle in Apple ( Malus x domestica Borkh.). Int J Mol Sci 2022; 23:1870. [PMID: 35163793 PMCID: PMC8836888 DOI: 10.3390/ijms23031870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022] Open
Abstract
The Tiller Angle Control 1 (TAC1) gene belongs to the IGT family, which mainly controls plant branch angle, thereby affecting plant form. Two members of MdTAC1 are identified in apple; the regulation of apple branch angle by MdTAC1 is still unclear. In this study, a subcellular localization analysis detected MdTAC1a in the nucleus and cell membrane, but MdTAC1b was detected in the cell membrane. Transgenic tobacco by overexpression of MdTAC1a or MdTAC1b showed enlarged leaf angles, the upregulation of several genes, such as GA 2-oxidase (GA2ox), and a sensitive response to light and gravity. According to a qRT-PCR analysis, MdTAC1a and MdTAC1b were strongly expressed in shoot tips and vegetative buds of weeping cultivars but were weakly expressed in columnar cultivars. In the MdTAC1a promoter, there were losses of 2 bp in spur cultivars and 6 bp in weeping cultivar compared with standard and columnar cultivars. An InDel marker specific to the MdTAC1a promoter was developed to distinguish apple cultivars and F1 progeny. We identified a protein, MdSRC2, that interacts with MdTAC1a, whose encoding gene which was highly expressed in trees with large branch angles. Our results indicate that differences in the MdTAC1a promoter are major contributors to branch-angle variation in apple, and the MdTAC1a interacts with MdSRC2 to affect this trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (Y.L.); (X.T.); (J.G.); (E.H.); (Q.P.); (Y.Z.); (Y.C.)
| |
Collapse
|
23
|
Li D, Zhao M, Yu X, Zhao L, Xu Z, Han X. Over-Expression of Rose RrLAZY1 Negatively Regulates the Branch Angle of Transgenic Arabidopsis Inflorescence. Int J Mol Sci 2021; 22:ijms222413664. [PMID: 34948467 PMCID: PMC8709306 DOI: 10.3390/ijms222413664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Branch angle is a key shoot architecture trait that strongly influences the ornamental and economic value of garden plants. However, the mechanism underlying the control of branch angle, an important aspect of tree architecture, is far from clear in roses. In the present study, we isolated the RrLAZY1 gene from the stems of Rosa rugosa ‘Zilong wochi’. Sequence analysis showed that the encoded RrLAZY1 protein contained a conserved GΦL (A/T) IGT domain, which belongs to the IGT family. Quantitative real-time PCR (qRT-PCR) analyses revealed that RrLAZY1 was expressed in all tissues and that expression was highest in the stem. The RrLAZY1 protein was localized in the plasma membrane. Based on a yeast two-hybrid assay and bimolecular fluorescence complementation experiments, the RrLAZY1 protein was found to interact with auxin-related proteins RrIAA16. The over-expression of the RrLAZY1 gene displayed a smaller branch angle in transgenic Arabidopsis inflorescence and resulted in changes in the expression level of genes related to auxin polar transport and signal transduction pathways. This study represents the first systematic analysis of the LAZY1 gene family in R. rugosa. The results of this study will provide a theoretical basis for the improvement of rose plant types and molecular breeding and provide valuable information for studying the regulation mechanism of branch angle in other woody plants.
Collapse
Affiliation(s)
| | | | | | | | - Zongda Xu
- Correspondence: (Z.X.); (X.H.); Tel.: +86-0538-824-2216 (Z.X. & X.H.)
| | - Xu Han
- Correspondence: (Z.X.); (X.H.); Tel.: +86-0538-824-2216 (Z.X. & X.H.)
| |
Collapse
|
24
|
Zhang H, Wang W, Huang J, Wang Y, Hu L, Yuan Y, Lyu M, Wu B. Role of gibberellin and its three GID1 receptors in Jasminum sambac stem elongation and flowering. PLANTA 2021; 255:17. [PMID: 34889996 DOI: 10.1007/s00425-021-03805-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Taken together, our results establish a reciprocal relationship between vine elongation and flowering, and reveal that GA is a positive signal for stem elogation but a negative regulator of flowering in this species. Vines or climbing plants exhibit vigorous vegetative shoot extension. GA have long been recognized as an important signal for seasonal stem elongation and flowering in many woody perennials. However, less is explored as how GA pathway is involved in the regulation of shoot extension in woody vines. Here, we investigated the role of GA and its signaling components in shoot elongation in Jasminum sambac. We found high accumulation of GA4 in the elongating internode, in contrast to a depletion of GAs in the floral differentiating shoot, which in turn featured a higher zeatin content, and a lower IAA and JA concentrations. This GA accumulation was coincident with the strong expression of JsGA20ox1 and JsGAS1 in the leaves, as well as of the JsGA2ox3 in the internode. Treatment of GA biosynthesis inhibitor reduced elongation while stimulated the terminal flowering. Remarkably, three B-type GA-receptor genes were abundantly expressed in both internodes and leaves of the extending shoots, which could enhance GA responsiveness in heterologous transgenic Arabidopsis. Furthermore, these JsGID1s showed distinct GA-dependent interaction with the JsDELLA in a yeast-two-hybrid assay. Taken together, our results establish a reciprocal relationship between vine elongation and flowering, and reveal that GA is a positive signal for stem elogation but a negative regulator of flowering in this species.
Collapse
Affiliation(s)
- Hongliang Zhang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wei Wang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jinfeng Huang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuting Wang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Li Hu
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuan Yuan
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meiling Lyu
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Binghua Wu
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
25
|
Zeng RF, Zhou H, Fu LM, Yan Z, Ye LX, Hu SF, Gan ZM, Ai XY, Hu CG, Zhang JZ. Two citrus KNAT-like genes, CsKN1 and CsKN2, are involved in the regulation of spring shoot development in sweet orange. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7002-7019. [PMID: 34185082 DOI: 10.1093/jxb/erab311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/26/2021] [Indexed: 05/21/2023]
Abstract
Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.
Collapse
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Yan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Montesinos Á, Dardick C, Rubio-Cabetas MJ, Grimplet J. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS One 2021; 16:e0252001. [PMID: 34644299 PMCID: PMC8513883 DOI: 10.1371/journal.pone.0252001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Almond breeding programs aimed at selecting cultivars adapted to intensive orchards have recently focused on the optimization of tree architecture. This multifactorial trait is defined by numerous components controlled by processes such as hormonal responses, gravitropism and light perception. Gravitropism sensing is crucial to control the branch angle and therefore, the tree habit. A gene family, denominated IGT family after a shared conserved domain, has been described as involved in the regulation of branch angle in several species, including rice and Arabidopsis, and even in fruit trees like peach. Here we identified six members of this family in almond: LAZY1, LAZY2, TAC1, DRO1, DRO2, IGT-like. After analyzing their protein sequences in forty-one almond cultivars and wild species, little variability was found, pointing a high degree of conservation in this family. To our knowledge, this is the first effort to analyze the diversity of IGT family proteins in members of the same tree species. Gene expression was analyzed in fourteen cultivars of agronomical interest comprising diverse tree habit phenotypes. Only LAZY1, LAZY2 and TAC1 were expressed in almond shoot tips during the growing season. No relation could be established between the expression profile of these genes and the variability observed in the tree habit. However, some insight has been gained in how LAZY1 and LAZY2 are regulated, identifying the IPA1 almond homologues and other transcription factors involved in hormonal responses as regulators of their expression. Besides, we have found various polymorphisms that could not be discarded as involved in a potential polygenic origin of regulation of architectural phenotypes. Therefore, we have established that neither the expression nor the genetic polymorphism of IGT family genes are correlated to diversity of tree habit in currently commercialized almond cultivars, with other gene families contributing to the variability of these traits.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| | - Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States of America
| | - María José Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
27
|
Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cropping potential of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) cultivars is determined by their adaptation to edaphoclimatic and environmental conditions. The effects of scion–rootstock interactions on vigor have a decisive impact on this cropping success. Intensively planted orchards with smaller less vigorous trees present several potential benefits for increasing orchard profitability. While several studies have examined rootstock effects on tree vigor, it is less clear how rootstocks influence more specific aspects of tree architecture. The objective of this current study was to identify which architectural traits of commercially important scion cultivars are influenced by rootstock and which of these traits can be useful as descriptors of rootstock performance in breeding evaluations. To do this, 6 almond cultivars of commercial significance were grafted onto 5 hybrid rootstocks, resulting in 30 combinations that were measured after their second year of growth. We observed that rootstock choice mainly influenced branch production, but the effects were not consistent across the different scion–rootstock combinations evaluated. This lack of consistency in response highlights the importance of the unique interaction between each rootstock and its respective scion genotype.
Collapse
|
28
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
29
|
Zhuo X, Zheng T, Li S, Zhang Z, Zhang M, Zhang Y, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. HORTICULTURE RESEARCH 2021; 8:131. [PMID: 34059642 PMCID: PMC8167129 DOI: 10.1038/s41438-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Weeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| | - Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
30
|
Waite JM, Dardick C. The roles of the IGT gene family in plant architecture: past, present, and future. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101983. [PMID: 33422965 DOI: 10.1016/j.pbi.2020.101983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 05/03/2023]
Abstract
Genetic improvement of architectural traits offers tremendous opportunities to dramatically improve crop densities, productivity, and ultimately sustainability. Among these, the orientation, or gravitropic set point angle (GSA), of plant organs is critical to optimize crop profiles, light capture, and nutrient acquisition. Mutant GSA phenotypes have been studied in plants since the 1930's but only recently have the underlying genes been identified. Many of these genes have turned out to fall within the IGT (LAZY1/DRO1/TAC1) family, which initially was not previously recognized due to the lack of sequence conservation of homologous genes across species. Here we discuss recent progress on IGT family genes in various plant species over the past century, review possible functional mechanisms, and provide further analysis of their evolution in land plants and their past and future roles in crop domestication.
Collapse
Affiliation(s)
- Jessica Marie Waite
- USDA Tree Fruit Research Laboratory, 1104 N Western Avenue, Wenatchee, WA, USA
| | - Christopher Dardick
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA.
| |
Collapse
|
31
|
Jiao Z, Du H, Chen S, Huang W, Ge L. LAZY Gene Family in Plant Gravitropism. FRONTIERS IN PLANT SCIENCE 2021; 11:606241. [PMID: 33613583 PMCID: PMC7893674 DOI: 10.3389/fpls.2020.606241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 05/26/2023]
Abstract
Adapting to the omnipresent gravitational field was a fundamental basis driving the flourishing of terrestrial plants on the Earth. Plants have evolved a remarkable capability that not only allows them to live and develop within the Earth's gravity field, but it also enables them to use the gravity vector to guide the growth of roots and shoots, in a process known as gravitropism. Triggered by gravistimulation, plant gravitropism is a highly complex, multistep process that requires many organelles and players to function in an intricate coordinated way. Although this process has been studied for several 100 years, much remains unclear, particularly the early events that trigger the relocation of the auxin efflux carrier PIN-FORMED (PIN) proteins, which presumably leads to the asymmetrical redistribution of auxin. In the past decade, the LAZY gene family has been identified as a crucial player that ensures the proper redistribution of auxin and a normal tropic response for both roots and shoots upon gravistimulation. LAZY proteins appear to be participating in the early steps of gravity signaling, as the mutation of LAZY genes consistently leads to altered auxin redistribution in multiple plant species. The identification and characterization of the LAZY gene family have significantly advanced our understanding of plant gravitropism, and opened new frontiers of investigation into the novel molecular details of the early events of gravitropism. Here we review current knowledge of the LAZY gene family and the mechanism modulated by LAZY proteins for controlling both roots and shoots gravitropism. We also discuss the evolutionary significance and conservation of the LAZY gene family in plants.
Collapse
Affiliation(s)
- Zhicheng Jiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Huan Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Lauri PÉ. Tree architecture and functioning facing multispecies environments: We have gone only halfway in fruit-trees. AMERICAN JOURNAL OF BOTANY 2021; 108:3-7. [PMID: 33434301 DOI: 10.1002/ajb2.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Pierre-Éric Lauri
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
33
|
van Es SW. Baby don't cry, genetic regulation of the weeping phenotype in Prunus mume. PHYSIOLOGIA PLANTARUM 2020; 170:315-317. [PMID: 33460122 PMCID: PMC7702079 DOI: 10.1111/ppl.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Sam W. van Es
- Department of Plant PhysiologyUmeå UniversityUmeåSweden
| |
Collapse
|
34
|
Waite JM, Collum TD, Dardick C. AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. PLANT MOLECULAR BIOLOGY 2020; 103:197-210. [PMID: 32130643 PMCID: PMC7170825 DOI: 10.1007/s11103-020-00984-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
DEEPER ROOTING 1 (DRO1) contributes to the downward gravitropic growth trajectory of roots upstream of lateral auxin transport in monocots and dicots. Loss of DRO1 function leads to horizontally oriented lateral roots and altered gravitropic set point angle, while loss of all three DRO family members results in upward, vertical root growth. Here, we attempt to dissect the roles of AtDRO1 by analyzing expression, protein localization, auxin gradient formation, and auxin responsiveness in the atdro1 mutant. Current evidence suggests AtDRO1 is predominantly a membrane-localized protein. Here we show that VENUS-tagged AtDRO1 driven by the native AtDRO1 promoter complemented an atdro1 Arabidopsis mutant and the protein was localized in root tips and detectable in nuclei. atdro1 primary and lateral roots showed impairment in establishing an auxin gradient upon gravistimulation as visualized with DII-VENUS, a sensor for auxin signaling and proxy for relative auxin distribution. Additionally, PIN3 domain localization was not significantly altered upon gravistimulation in atdro1 primary and lateral roots. RNA-sequencing revealed differential expression of known root development-related genes in atdro1 mutants. atdro1 lateral roots were able to respond to exogenous auxin and AtDRO1 gene expression levels in root tips were unaffected by the addition of auxin. Collectively, the data suggest that nuclear localization may be important for AtDRO1 function and suggests a more nuanced role for DRO1 in regulating auxin-mediated changes in lateral branch angle. KEY MESSAGE: DEEPER ROOTING 1 (DRO1) when expressed from its native promoter is predominately localized in Arabidopsis root tips, detectable in nuclei, and impacts auxin gradient formation.
Collapse
Affiliation(s)
- Jessica M Waite
- Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA, 98801, USA
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Tamara D Collum
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA.
| |
Collapse
|
35
|
Opposing influences of TAC1 and LAZY1 on Lateral Shoot Orientation in Arabidopsis. Sci Rep 2020; 10:6051. [PMID: 32269265 PMCID: PMC7142156 DOI: 10.1038/s41598-020-62962-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
TAC1 and LAZY1 are members of a gene family that regulates lateral shoot orientation in plants. TAC1 promotes outward orientations in response to light, while LAZY1 promotes upward shoot orientations in response to gravity via altered auxin transport. We performed genetic, molecular, and biochemical assays to investigate possible interactions between these genes. In Arabidopsis they were expressed in similar tissues and double mutants revealed the wide-angled lazy1 branch phenotype, indicating it is epistatic to the tac1 shoot phenotype. Surprisingly, the lack of TAC1 did not influence gravitropic shoot curvature responses. Combined, these results suggest TAC1 might negatively regulate LAZY1 to promote outward shoot orientations. However, additional results revealed that TAC1- and LAZY1 influence on shoot orientation is more complex than a simple direct negative regulatory pathway. Transcriptomes of Arabidopsis tac1 and lazy1 mutants compared to wild type under normal and gravistimulated conditions revealed few overlapping differentially expressed genes. Overexpression of each gene did not result in major branch angle differences. Shoot tip hormone levels were similar between tac1, lazy1, and Col, apart from exceptionally elevated levels of salicylic acid in lazy1. The data presented here provide a foundation for future study of TAC1 and LAZY1 regulation of shoot architecture.
Collapse
|
36
|
Li S, Zheng T, Zhuo X, Li Z, Li L, Li P, Qiu L, Pan H, Wang J, Cheng T, Zhang Q. Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle. HORTICULTURE RESEARCH 2020; 7:54. [PMID: 32257240 PMCID: PMC7109059 DOI: 10.1038/s41438-020-0279-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Plant architecture includes vital traits that influence and benefit crops, and economically important trees. Different plant architectures provide natural beauty. Weeping ornamental plants are aesthetically appealing to people. The regulatory mechanism controlling the weeping trait is poorly understood in crape myrtle. To investigate the weeping trait mechanism, transcriptional profiling of different organs in weeping and upright crape myrtle was performed based on phenotype. Phenotypic and histological analyses demonstrated that endodermal cells were absent, and that new shoot phenotypes could be rescued by the GA3 treatment of weeping plants. The transcriptional analysis and coexpression network analysis (WGCNA) of differentially expressed genes indicated that GA synthesis and signal transduction pathways play a role in weeping traits. When the expression level of a negative element of GA signaling, LfiGRAS1, was reduced by virus-induced gene silencing (VIGS), new branches grew in infected plants in a negatively geotropic manner. An integrated analysis implied that GA had a strong influence on weeping crape myrtle by interacting with other factors. This study helps to elucidate the mechanism governing the weeping trait and can improve the efficiency of breeding in Lagerstroemia.
Collapse
Affiliation(s)
- Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Zhuojiao Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Like Qiu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
37
|
Pancaldi F, Trindade LM. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:227. [PMID: 32194604 PMCID: PMC7062921 DOI: 10.3389/fpls.2020.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable economic returns to farmers and cost-effective biomass conversion into bio-based products, claiming genetic improvement. However, this is constrained by the lack of genetic resources for most of these crops. Here we first review the advantages of cultivating novel perennial biomass crops on MALs, highlighting management practices to enhance the environmental and economic sustainability of these agro-systems. Subsequently, we discuss the preeminent breeding targets to improve the yield and quality of the biomass obtainable from these crops, as well as the stability of biomass production under MALs conditions. These targets include crop architecture and phenology, efficiency in the use of resources, lignocellulose composition in relation to bio-based applications, and tolerance to abiotic stresses. For each target trait, we outline optimal ideotypes, discuss the available breeding resources in the context of (orphan) biomass crops, and provide meaningful examples of genetic improvement. Finally, we discuss the available tools to breed novel perennial biomass crops. These comprise conventional breeding methods (recurrent selection and hybridization), molecular techniques to dissect the genetics of complex traits, speed up selection, and perform transgenic modification (genetic mapping, QTL and GWAS analysis, marker-assisted selection, genomic selection, transformation protocols), and novel high-throughput phenotyping platforms. Furthermore, novel tools to transfer genetic knowledge from model to orphan crops (i.e., universal markers) are also conceptualized, with the belief that their development will enhance the efficiency of plant breeding in orphan biomass crops, enabling a sustainable use of MALs for biomass provision.
Collapse
Affiliation(s)
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
38
|
Rukmangada MS, Sumathy R, Naik VG. Functional annotation of mulberry (Morus spp.) transcriptome, differential expression of genes related to growth and identification of putative genic SSRs, SNPs and InDels. Mol Biol Rep 2019; 46:6421-6434. [PMID: 31583573 DOI: 10.1007/s11033-019-05089-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/22/2019] [Indexed: 11/30/2022]
Abstract
Growth is a complex trait associated with mulberry leaf yield and controlled by several genes. In this study, we have explored the molecular basis underlying growth using Transcriptome profiling of contrasting genotypes. A total of 66.6 Mbp of primary transcriptomes from high growth (HGG)-Jalalgarah-3 and M. laevigata (H) and, low growth genotypes (LGG)-Harmutty and Vadagaraparai-2; resulting in 24210, 27998, 28085 and 28764 final transcripts respectively. Out of the 34096 pooled transcripts, 20249 transcripts matched with at least one sequence of the non-redundant database. Functional annotation resulted in the categorization of 18970 transcripts into 3 gene ontology (GO) terms and 7440 were assigned to 23 Kyoto encyclopaedia of genes and genomes (KEGG) pathway. Based on the differentially expressed genes and gene enrichment analysis, over expression of photosynthetic related transcripts in HGG and defence related transcripts in LGG were noted. Simple sequence repeats were mined from unique transcripts and the most abundant motifs were tri- (1883) followed by di- (1710), tetra- (192), penta- (68) and hexa- (40) repeats. Further, a total of 390897 high quality SNPs and 8081 InDels were identified by mapping onto Morus notabilis reference genome. The study provides an insight into the expression of genes involved in growth and further research on utilization in gentic improvement of the crop.
Collapse
Affiliation(s)
- M S Rukmangada
- Molecular Biology Laboratory - 1, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570008, Karnataka, India.,Bioinformatics Centre, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570008, Karnataka, India
| | - R Sumathy
- Bioinformatics Centre, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570008, Karnataka, India
| | - Vorkady Girish Naik
- Regional Sericultural Research Station, Central Silk Board, Ministry of Textiles - Govt. of India, Chamarajanagara, 571313, Karnataka, India.
| |
Collapse
|
39
|
Screening of Applicable SSR Molecular Markers Linked to Creeping Trait in Crape Myrtle. FORESTS 2019. [DOI: 10.3390/f10050429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Creeping plants have unique ornamental value because they have more branches and flowers and the creeping trait is rare in crape myrtle (Lagerstroemia indica L.). In this study, the first filial generation (F1) population was derived from Lagerstroemia fauriei Koehne (standard) and L. indica “Creole” (creeping) and the backcross1 (BC1) population was derived from the backcross of F1 individual S82 (creeping) and L. fauriei. The segregation of the creeping trait was analyzed for 174 seedlings of the BC1 population to examine the linkage relationship between simple sequence repeat (SSR) molecular markers and the creeping trait. Creeping genes were screened using bulked segregant analysis combined with 322 SSR primers, which were detected with good polymorphism. The results show that two SSR markers (S364 and LYS12) were detected, with genetic distances of 23.49 centimorgan (cM) and 25.86 cM from the loci controlling the plant opening angle trait and the branching angle trait, respectively. The accuracy rate for phenotypic verification using S364 and LYS12 was 76.51% and 74.14%, respectively. Our results provide basic information for the molecular marker-assisted selective breeding and cloning of the creeping gene to improve architecture diversity in the breeding of crape myrtle.
Collapse
|
40
|
Wang L, Xu K, Li Y, Cai W, Zhao Y, Yu B, Zhu Y. Genome-Wide Identification of the Aux/IAA Family Genes (MdIAA) and Functional Analysis of MdIAA18 for Apple Tree Ideotype. Biochem Genet 2019; 57:709-733. [PMID: 30997626 DOI: 10.1007/s10528-019-09919-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
The Aux/IAA (auxin/indole-3-acetic acid) gene family is one of the early auxin-responsive gene families, which play a central role in auxin response. Few reports are involved in Aux/IAA genes in fruit trees, especially in apple (Malus × domestica Borkh.). A total of 33 MdIAA members were identified, of which 27 members contained four conserved domains, whereas the others lost one or two conserved domains. Several cis-elements in promoters of MdIAAs were predicted responsive to hormones and abiotic stress. Tissue-specific expression patterns of MdIAAs in different apple tree ideotypes were investigated by quantitative real-time PCR. A large number of MdIAAs were highly expressed in leaf buds and reproductive organs, and MdIAAs clustered in same group showed similar expression profiles. Overexpression of MdIAA18 in Arabidopsis resulted in compact phenotype. These results indicated that MdIAA genes may be involved in vegetative and reproductive growth of apple. Taken together, the results provide useful clues to reveal the function of MdIAAs in apple and control apple tree architecture by manipulation of MdIAAs.
Collapse
Affiliation(s)
- Limin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Ke Xu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongzhou Li
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Wenbo Cai
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yanan Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Boyang Yu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
41
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
42
|
Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One 2019; 14:e0214145. [PMID: 30947257 PMCID: PMC6448822 DOI: 10.1371/journal.pone.0214145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Root growth angle (RGA) in response to gravity controlled by auxin is a pertinent target trait for obtainment of higher yield in cereals. But molecular basis of this root architecture trait remain obscure in wheat and barley. We selected four cultivars two each for wheat and barley to unveil the molecular genetic mechanism of Deeper Rooting 1-like gene which controls RGA in rice leading to higher yield under drought imposition. Morphological analyses revealed a deeper and vertically oriented root growth in “NARC 2009” variety of wheat than “Galaxy” and two other barley cultivars “Scarlet” and “ISR42-8”. Three new homoeologs designated as TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like corresponding to A, B and D genomes of wheat could be isolated from “NARC 2009”. Due to frameshift and intronization/exonization events the gene structures of these paralogs exhibit variations in size. DRO1-like genes with five distinct domains prevail in diverse plant phyla from mosses to angiosperms but in lower plants their differentiation from LAZY, NGR and TAC1 (root and shoot angle genes) is enigmatic. Instead of IGT as denominator motif of this family, a new C-terminus motif WxxTD in the V-domain is proposed as family specific motif. The EAR-like motif IVLEM at the C-terminus of the TaADRO1-like and TaDDRO1-like that diverged to KLHTLIPNK in TaBDRO1-like and HvDRO1-like is the hallmark of these proteins. Split-YFP and yeast two hybrid assays complemented the interaction of TaDRO1-like with TOPLESS—a repressor of auxin regulated root promoting genes in plants—through IVLEM/KLHTLIPNK motif. Quantitative RT-PCR revealed abundance of DRO1-like RNA in root tips and spikelets while transcript signals were barely detectable in shoot and leaf tissues. Interestingly, wheat exhibited stronger expression of TaBDRO1-like than barley (HvDRO1-like), but TaBDRO1-like was the least expressing among three paralogs. The underlying cause of this expression divergence seems to be the presence of AuxRE motif TGTCTC and core TGTC with a coupling AuxRE-like motif ATTTTCTT proximal to the transcriptional start site in TaBDRO1-like and HvDRO1-like promoters. This is evident from binding of ARF1 to TGTCTC and TGTC motifs of TaBDRO1-like as revealed by yeast one-hybrid assay. Thus, evolution of DRO1-like wheat homoeologs might incorporate the C-terminus mutations as well as gain and loss of AuxREs and other cis-regulatory elements during expression divergence. Since root architecture is an important target trait for wheat crop improvement, therefore DRO1-like genes have potential applications in plant breeding for enhancement of plant productivity by the use of modern genome editing approaches.
Collapse
|
43
|
Hill JL, Hollender CA. Branching out: new insights into the genetic regulation of shoot architecture in trees. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:73-80. [PMID: 30339931 DOI: 10.1016/j.pbi.2018.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 05/03/2023]
Abstract
Directional growth in all plants involves both phototropic and gravitropic responses. Accordingly, mechanisms controlling shoot architecture throughout the plant kingdom are likely similar. However, as forms vary between species due in part to gene copy number and functional divergence, some aspects of how plants predetermine and regulate architecture can differ. This is especially true when comparing annual herbaceous species (e.g. model plants) to woody perennials such as trees. In the past decade, inexpensive genomic sequencing and technological advances enabled gene discovery and functional analyses in trees. This led to the identification of genes associated with tree shoot architecture control. Here, we present recent discoveries on the regulation of shoot architectures for which causative genes have been identified, including dwarf, weeping, columnar, and pillar growth habits. We also discuss potential applications of these findings.
Collapse
Affiliation(s)
- Joseph L Hill
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
44
|
Kotini MP, Mäe MA, Belting HG, Betsholtz C, Affolter M. Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour. Vascul Pharmacol 2019; 112:8-16. [DOI: 10.1016/j.vph.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 01/25/2023]
|
45
|
Hu F, Chen Z, Zhao J, Wang X, Su W, Qin Y, Hu G. Differential gene expression between the vigorous and dwarf litchi cultivars based on RNA-Seq transcriptome analysis. PLoS One 2018; 13:e0208771. [PMID: 30540829 PMCID: PMC6291152 DOI: 10.1371/journal.pone.0208771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
Litchi (Litchi chinesis Sonn.) is the most economically significant member of Sapindaceae family, especially in sub-tropical regions. However, its tall tree body often brings many inconveniences to production management. In order to modify the tree size or growth for productivity optimization and simplifying management, it is urgent to reveal the dwarf mechanism of litchi for dwarfing rootstocks or cultivar breeding. However, to date, the mechanisms on litchi dwarfism is still poor known. In the present study, transcriptome profiling were performed on L. chinensis cv. 'Feizixiao' (FZX, vigorous cultivar) and 'Ziniangxi' (ZNX, dwarf cultivar). A total of 55,810 unigenes were obtained, and 9,190 unigenes were differentially expressed between vigorous and dwarf litchi samples. Gene functional enrichment analysis indicated that the differentially expressed unigenes (DEGs) were related to phytohormone metabolism and signal transduction, and energy metabolism pathways. In particular, GA2ox were only up-regulated in ZNX samples, indicating GA might play an important role in regulating huge difference between vigorous and dwarf litchi cultivars. In addition, the 35S::LcGA2ox transgenic tobacco plants were dwarf and had smaller leaves or branches than wild type plants. Our study provided a series of candidate genes to reveal the mechanism of litchi dwarf.
Collapse
Affiliation(s)
- Fuchu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) in Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province/Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Science, Haikou, China
| | - Zhe Chen
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province/Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Science, Haikou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) in Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xianghe Wang
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province/Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Science, Haikou, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) in Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) in Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) in Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Busov VB. Manipulation of Growth and Architectural Characteristics in Trees for Increased Woody Biomass Production. FRONTIERS IN PLANT SCIENCE 2018; 9:1505. [PMID: 30459780 PMCID: PMC6232754 DOI: 10.3389/fpls.2018.01505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Growth and architectural traits in trees are economically and environmentally important and thus of considerable importance to the improvement of forest and fruit trees. These traits are complex and result from the operation of a number of molecular mechanisms. This review will focus on the regulation of crown architecture, secondary woody growth and adventitious rooting. These traits and processes have significant impact on deployment, management, and productivity of tree crops. The majority of the described work comes from experiments in model plants, poplar, apple, peach, and plum because these species allow functional analysis of the involved genes and have significant genomics resources. However, these studies convincingly show conserved mechanisms for elaboration of specific growth and architectural traits. The conservation of these mechanisms suggest that they can be used as a blueprint for the improvement of these traits and processes in phylogenetically diverse tree crops. We will specifically consider the involvement of flowering time, transcription factors and hormone-associated genes. The review will also discuss the impact of recent technological advances as well as the challenges to the dissection of these traits in trees.
Collapse
|
47
|
Waite JM, Dardick C. TILLER ANGLE CONTROL 1 modulates plant architecture in response to photosynthetic signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4935-4944. [PMID: 30099502 DOI: 10.1093/jxb/ery253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/02/2018] [Indexed: 05/11/2023]
Abstract
Light serves as an important environmental cue in regulating plant architecture. Previous work had demonstrated that both photoreceptor-mediated signaling and photosynthesis play a role in determining the orientation of plant organs. TILLER ANGLE CONTROL 1 (TAC1) was recently shown to function in setting the orientation of lateral branches in diverse plant species, but the degree to which it plays a role in light-mediated phenotypes is unknown. Here, we demonstrated that TAC1 expression was light dependent, as expression was lost under continuous dark or far-red growth conditions, but did not drop to these low levels during a diurnal time course. Loss of TAC1 in the dark was gradual, and experiments with photoreceptor mutants indicated this was not dependent upon red/far-red or blue light signaling, but partially required the signaling integrator CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1). Overexpression of TAC1 partially prevented the narrowing of branch angles in the dark or under far-red light. Treatment with the carotenoid biosynthesis inhibitor norflurazon or the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) led to loss of TAC1 expression similar to dark or far-red conditions, but expression increased in response to the PSI inhibitor paraquat. Treatment of adult plants with norflurazon resulted in upward growth angle of branch tips. Our results indicate that TAC1 plays an important role in modulating plant architecture in response to photosynthetic signals.
Collapse
Affiliation(s)
- Jessica M Waite
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Chris Dardick
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, Kearneysville, WV, USA
| |
Collapse
|
48
|
Hollender CA, Pascal T, Tabb A, Hadiarto T, Srinivasan C, Wang W, Liu Z, Scorza R, Dardick C. Loss of a highly conserved sterile alpha motif domain gene ( WEEP) results in pendulous branch growth in peach trees. Proc Natl Acad Sci U S A 2018; 115:E4690-E4699. [PMID: 29712856 PMCID: PMC5960274 DOI: 10.1073/pnas.1704515115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant shoots typically grow upward in opposition to the pull of gravity. However, exceptions exist throughout the plant kingdom. Most conspicuous are trees with weeping or pendulous branches. While such trees have long been cultivated and appreciated for their ornamental value, the molecular basis behind the weeping habit is not known. Here, we characterized a weeping tree phenotype in Prunus persica (peach) and identified the underlying genetic mutation using a genomic sequencing approach. Weeping peach tree shoots exhibited a downward elliptical growth pattern and did not exhibit an upward bending in response to 90° reorientation. The causative allele was found to be an uncharacterized gene, Ppa013325, having a 1.8-Kb deletion spanning the 5' end. This gene, dubbed WEEP, was predominantly expressed in phloem tissues and encodes a highly conserved 129-amino acid protein containing a sterile alpha motif (SAM) domain. Silencing WEEP in the related tree species Prunus domestica (plum) resulted in more outward, downward, and wandering shoot orientations compared to standard trees, supporting a role for WEEP in directing lateral shoot growth in trees. This previously unknown regulator of branch orientation, which may also be a regulator of gravity perception or response, provides insights into our understanding of how tree branches grow in opposition to gravity and could serve as a critical target for manipulating tree architecture for improved tree shape in agricultural and horticulture applications.
Collapse
Affiliation(s)
- Courtney A Hollender
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
- Department of Horticulture, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824
| | - Thierry Pascal
- Unité Génétique et Amélioration de Fruits et Légumes, Institut National de la Recherche Agronomique, 84140 Montfavet, France
| | - Amy Tabb
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Toto Hadiarto
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (BB Biogen), Bogor, Indonesia
| | - Chinnathambi Srinivasan
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Wanpeng Wang
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Ralph Scorza
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Chris Dardick
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430;
| |
Collapse
|
49
|
Hollender CA, Waite JM, Tabb A, Raines D, Chinnithambi S, Dardick C. Alteration of TAC1 expression in Prunus species leads to pleiotropic shoot phenotypes. HORTICULTURE RESEARCH 2018; 5:26. [PMID: 29736251 PMCID: PMC5928093 DOI: 10.1038/s41438-018-0034-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/20/2017] [Accepted: 03/08/2018] [Indexed: 05/11/2023]
Abstract
Prunus persica (peach) trees carrying the "Pillar" or "Broomy" trait (br) have vertically oriented branches caused by loss-of-function mutations in a gene called TILLER ANGLE CONTROL 1 (TAC1). TAC1 encodes a protein in the IGT gene family that includes LAZY1 and DEEPER ROOTING 1 (DRO1), which regulate lateral branch and root orientations, respectively. Here we found that some of the native TAC1 alleles in the hexaploid plum species Prunus domestica, which has a naturally more upright stature, contained a variable length trinucleotide repeat within the same exon 3 region previously found to be disrupted in pillar peach trees. RNAi silencing of TAC1 in plum resulted in trees with severely vertical branch orientations similar to those in pillar peaches but with an even narrower profile. In contrast, PpeTAC1 overexpression in plum led to trees with wider branch angles and more horizontal branch orientations. Pillar peach trees and transgenic plum lines exhibited pleiotropic phenotypes, including differences in trunk and branch diameter, stem growth, and twisting branch phenotypes. Expression profiling of pillar peach trees revealed differential expression of numerous genes associated with biotic and abiotic stress, hormone responses, plastids, reactive oxygen, secondary, and cell wall metabolism. Collectively, the data provide important clues for understanding TAC1 function and show that alteration of TAC1 expression may have broad applicability to agricultural and ornamental tree industries.
Collapse
Affiliation(s)
- Courtney A. Hollender
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
- Present Address: Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Jessica M. Waite
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| | - Amy Tabb
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| | - Doug Raines
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| | | | - Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| |
Collapse
|
50
|
Liu J, Zeng Y, Yan P, He C, Zhang J. Transcriptional and Hormonal Regulation of Weeping Trait in Salix matsudana. Genes (Basel) 2017; 8:genes8120359. [PMID: 29189719 PMCID: PMC5748677 DOI: 10.3390/genes8120359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022] Open
Abstract
Salix matsudana is a large and rapidly-growing tree, with erect or spreading branchlets (upright willow). However, S. matsudana var. pseudomatsudana is one of the varietas, with pendulous branchlets (weeping willow). It has high ornamental value for its graceful pendulous branches. In order to study the molecular basis for this weeping trait, leaves and stems collected at different developmental stages were analyzed using RNA-seq coupled with digital gene expression. Although weeping trees are used worldwide as landscape plants, little is known about the genes that control weeping. Our growth results indicated that branches in weeping willow developed and elongated throughout all developmental stages, but branches in upright willow grew rapidly in the initial stages and then grew slowly and began shoot branching in the middle stages. A total of 613 hormone-related genes were differentially expressed in willow development. Among these, genes associated with auxin and gibberellin (GA) were highly likely to be responsible for the weeping trait, and genes associated with auxin and ethylene probably play crucial roles in shoot elongation. The genes with differential expression patterns were used to construct a network that regulated stem development, and auxin-related genes were identified as hub genes in the network in the weeping willow. Our results suggest an important role of gibberellin and auxin in regulating the weeping trait in Salix matsudana. This is the first report on the molecular aspects of hormonal effects on weeping trait in willow using transcriptomics and helps in dissecting the molecular mechanisms by which the weeping trait is controlled.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Pengcheng Yan
- Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing Computing Center, Beijing 100094, China.
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|