1
|
Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:786-800. [PMID: 39777907 DOI: 10.1111/jipb.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research. In this scenario, significant progress has been made in the study of NLR-mediated antiviral immunity. This review comprehensively summarizes the progress made in plant antiviral NLR research over the past decades, with a focus on NLR recognition of viral pathogen effectors, NLR activation and regulation, downstream immune signaling, and the engineering of NLRs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Wang C, Zhu M, Hong H, Li J, Zuo C, Zhang Y, Shi Y, Liu S, Yu H, Yan Y, Chen J, Shangguan L, Zhi A, Chen R, Devendrakumar KT, Tao X. A viral effector blocks the turnover of a plant NLR receptor to trigger a robust immune response. EMBO J 2024; 43:3650-3676. [PMID: 39020150 PMCID: PMC11377725 DOI: 10.1038/s44318-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.
Collapse
Affiliation(s)
- Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chongkun Zuo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yu Zhang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yajie Shi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Suyu Liu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haohua Yu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lingna Shangguan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Aiping Zhi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Rongzhen Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Karen Thulasi Devendrakumar
- Department of Botany and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
4
|
Contreras MP, Pai H, Thompson R, Marchal C, Claeys J, Adachi H, Kamoun S. The nucleotide-binding domain of NRC-dependent disease resistance proteins is sufficient to activate downstream helper NLR oligomerization and immune signaling. THE NEW PHYTOLOGIST 2024; 243:345-361. [PMID: 38757730 DOI: 10.1111/nph.19818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins with pathogen sensor activities have evolved to initiate immune signaling by activating helper NLRs. However, the mechanisms underpinning helper NLR activation by sensor NLRs remain poorly understood. Although coiled coil (CC) type sensor NLRs such as the Potato virus X disease resistance protein Rx have been shown to activate the oligomerization of their downstream helpers NRC2, NRC3 and NRC4, the domains involved in sensor-helper signaling are not known. Here, we used Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana to show that the nucleotide-binding (NB) domain within the NB-ARC of Rx is necessary and sufficient for oligomerization and immune signaling of downstream helper NLRs. In addition, the NB domains of the disease resistance proteins Gpa2 (cyst nematode resistance), Rpi-amr1, Rpi-amr3 (oomycete resistance) and Sw-5b (virus resistance) are also sufficient to activate their respective downstream NRC helpers. Using transient expression in the lettuce (Lactuca sativa), we show that Rx (both as full length or as NB domain truncation) and its helper NRC2 form a minimal functional unit that can be transferred from solanaceous plants (lamiids) to Campanulid species. Our results challenge the prevailing paradigm that NLR proteins exclusively signal via their N-terminal domains and reveal a signaling activity for the NB domain of NRC-dependent sensor NLRs. We propose a model in which helper NLRs can perceive the status of the NB domain of their upstream sensors.
Collapse
Affiliation(s)
- Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rebecca Thompson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jules Claeys
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
5
|
Huang S, Wang C, Ding Z, Zhao Y, Dai J, Li J, Huang H, Wang T, Zhu M, Feng M, Ji Y, Zhang Z, Tao X. A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity. Nat Commun 2024; 15:3205. [PMID: 38615015 PMCID: PMC11016096 DOI: 10.1038/s41467-024-47364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.
Collapse
Affiliation(s)
- Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zixuan Ding
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yaqian Zhao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Dai
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haining Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Tongkai Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhongkai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021, China
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
6
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Shao W, Shi G, Chu H, Du W, Zhou Z, Wuriyanghan H. Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:668. [PMID: 38475513 DOI: 10.3390/plants13050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean (Glycine max) genome and identified the IDs that appeared in the soybean TNL-like proteins. Our results show that multiple IDs (36) are widely present in soybean TNL-like proteins. A total of 27 Gm-TNL-ID genes (soybean TNL-like gene encoding ID) were cloned and their antiviral activity towards the soybean mosaic virus (SMV)/tobacco mosaic virus (TMV) was verified. Two resistance (R) genes, SRA2 (SMV resistance gene contains AAA_22 domain) and SRZ4 (SMV resistance gene contains zf-RVT domain), were identified to possess broad-spectrum resistance characteristics towards six viruses including SMV, TMV, plum pox virus (PPV), cabbage leaf curl virus (CaLCuV), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV). The effects of Gm-TNL-IDX (the domain of the Gm-TNL-ID gene after the TN domain) on the antiviral activity of a R protein SRC7TN (we previously reported the TN domain of the soybean broad-spectrum resistance gene SRC7) were validated, and most of Gm-TNL-IDX inhibits antiviral activity mediated by SRC7TN, possibly through intramolecular interactions. Yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that seven Gm-TNL-IDX interacted with SMV-component proteins. Truncation analysis on a broad-spectrum antiviral protein SRZ4 indicated that SRZ4TIR is sufficient to mediate antiviral activity against SMV. Soybean cDNA library screening on SRZ4 identified 48 interacting proteins. In summary, our results indicate that the integration of IDs in soybean is widespread and frequent. The NLR-ID toolkit we provide is expected to be valuable for elucidating the functions of atypical NLR proteins in the plant immune system and lay the foundation for the development of engineering NLR for plant-disease control in the future.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gongfu Shi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Han Chu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjia Du
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
8
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
9
|
Ordaz NA, Nagalakshmi U, Boiteux LS, Atamian HS, Ullman DE, Dinesh-Kumar SP. The Sw-5b NLR Immune Receptor Induces Early Transcriptional Changes in Response to Thrips and Mechanical Modes of Inoculation of Tomato spotted wilt orthotospovirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:705-715. [PMID: 37432156 DOI: 10.1094/mpmi-03-23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Norma A Ordaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia-DF, Brazil
| | - Hagop S Atamian
- Biological Sciences program, Schmid College of Science & Technology, Chapman University, Orange, CA 92866, U.S.A
| | - Diane E Ullman
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
10
|
Hao Y, Pan Y, Chen W, Rashid MAR, Li M, Che N, Duan X, Zhao Y. Contribution of Duplicated Nucleotide-Binding Leucine-Rich Repeat (NLR) Genes to Wheat Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2794. [PMID: 37570947 PMCID: PMC10420896 DOI: 10.3390/plants12152794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.
Collapse
Affiliation(s)
- Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Muhammad Abdul Rehman Rashid
- Department of Agricultural Sciences/Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Xu Duan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
11
|
Wu Q, Tong C, Chen Z, Huang S, Zhao X, Hong H, Li J, Feng M, Wang H, Xu M, Yan Y, Cui H, Shen D, Ai G, Xu Y, Li J, Zhang H, Huang C, Zhang Z, Dong S, Wang X, Zhu M, Dinesh-Kumar SP, Tao X. NLRs derepress MED10b- and MED7-mediated repression of jasmonate-dependent transcription to activate immunity. Proc Natl Acad Sci U S A 2023; 120:e2302226120. [PMID: 37399403 PMCID: PMC10334756 DOI: 10.1073/pnas.2302226120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.
Collapse
Affiliation(s)
- Qian Wu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Cong Tong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Zhengqiang Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xiaohui Zhao
- Salinity Agriculture Research Laboratory, Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng224002, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Huiyuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
- Institute of Biotechnology, Zhejiang University, Hangzhou310058, P. R. China
| | - Min Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Hongmin Cui
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Danyu Shen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yi Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Junming Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, P. R. China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai201403, P. R. China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming650021, P. R. China
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan650223, P. R. China
| | - Suomeng Dong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center College of Biological Sciences, University of California, Davis, CA95616
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| |
Collapse
|
12
|
Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction. TRENDS IN PLANT SCIENCE 2022; 27:1242-1252. [PMID: 35902346 DOI: 10.1016/j.tplants.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Viruses are acellular pathogens that cause severe infections in plants, resulting in worldwide crop losses every year. The lack of chemical agents to control viral diseases exacerbates the situation. Thus, to devise proper management strategies, it is important that the defense mechanisms of plants against viruses are understood. Resistance (R) genes regulate plant defense against invading pathogens by eliciting a hypersensitive response (HR). Compatible interaction between plant R gene and viral avirulence (Avr) protein activates the necrotic cell death response at the site of infection, resulting in the cessation of disease. Here, we review different aspects of R gene-mediated dominant resistance against plant viruses in dicotyledonous plants and possible ways for developing crops with better disease resistance.
Collapse
Affiliation(s)
- Susmita Sett
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
13
|
Kwiatkowski M, Wong A, Bi C, Gehring C, Jaworski K. Twin cyclic mononucleotide cyclase and phosphodiesterase domain architecture as a common feature in complex plant proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111493. [PMID: 36216295 DOI: 10.1016/j.plantsci.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported. Here we propose that in plants, multifunctional proteins in which the PDE motif has been identified, the presence of the additional CNC center is common. Searching the Arabidopsis thaliana proteome with a combined PDE-CNC motif allowed the creation of a database of proteins with both activities. One such example is methylenetetrahydrofolate dehydrogenase, in which we determined the activities of adenylate cyclase (AC) and PDE. Based on biochemical and mutagenesis analyses we assessed the impact of the AC and PDE catalytic centers on the dehydrogenase activity. This allowed us to propose additional regulatory mechanism that govern folate metabolism by cAMP. It is therefore conceivable that the combined CNC-PDE architecture is a common regulatory configuration, where control of the level of cyclic nucleotides (cNMP) influences other catalytic activities of the protein.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China.
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| |
Collapse
|
14
|
Li X, He Q, Liu Y, Xu X, Xie Q, Li Z, Lin C, Liu W, Chen D, Li X, Miao W. Ectopic Expression of HbRPW8-a from Hevea brasiliensis Improves Arabidopsis thaliana Resistance to Powdery Mildew Fungi (Erysiphe cichoracearum UCSC1). Int J Mol Sci 2022; 23:ijms232012588. [PMID: 36293447 PMCID: PMC9603905 DOI: 10.3390/ijms232012588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.
Collapse
Affiliation(s)
- Xiaoli Li
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Qiguang He
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuhan Liu
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Xinze Xu
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Qingbiao Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhigang Li
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Wenbo Liu
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Daipeng Chen
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiao Li
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
15
|
Zhang L, Liu Y, Wang Q, Wang C, Lv S, Wang Y, Wang J, Wang Y, Yuan J, Zhang H, Kang Z, Ji W. An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5474-5489. [PMID: 35652375 DOI: 10.1093/jxb/erac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum) is a commercially important crop and its production is seriously threatened by the fungal pathogen Puccinia striiformis f. sp. tritici West (Pst). Resistance (R) genes are critical factors that facilitate plant immune responses. Here, we report a wheat R gene NB-ARC-LRR ortholog, TaYRG1, that is associated with distinct alternative splicing events in wheat infected by Pst. The native splice variant, TaYRG1.6, encodes internal-motif-deleted polypeptides with the same N- and C-termini as TaYRG1.1, resulting in gain of function. Transient expression of protein variants in Nicotiana benthamiana showed that the NB and ARC domains, and TaYRG1.6 (half LRR domain), stimulate robust elicitor-independent cell death based on a signal peptide, although the activity was negatively modulated by the CC and complete LRR domains. Furthermore, molecular genetic analyses indicated that TaYRG1.6 enhanced resistance to Pst in wheat. Moreover, we provide multiple lines of evidence that TaYRG1.6 interacts with a dynamin-related protein, TaDrp1. Proteome profiling suggested that the TaYRG1.6-TaDrp1-DNM complex in the membrane trafficking systems may trigger cell death by mobilizing lipid and kinase signaling in the endocytosis pathway. Our findings reveal a unique mechanism by which TaYRG1 activates cell death and enhances disease resistance by reconfiguring protein structure through alternative splicing.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Xu S, Zhang X, Xu K, Wang Z, Zhou X, Jiang L, Jiang T. Strawberry Vein Banding Virus Movement Protein P1 Interacts With Light-Harvesting Complex II Type 1 Like of Fragaria vesca to Promote Viral Infection. Front Microbiol 2022; 13:884044. [PMID: 35722273 PMCID: PMC9201980 DOI: 10.3389/fmicb.2022.884044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorophyll a/b-binding protein of light-harvesting complex II type 1 like (LHC II-1L) is an essential component of photosynthesis, which mainly maintains the stability of the electron transport chain. However, how the LHC II-1L protein of Fragaria vesca (FvLHC II-1L) affects viral infection remains unclear. In this study, we demonstrated that the movement protein P1 of strawberry vein banding virus (SVBV P1) interacted with FvLHC II-1L in vivo and in vitro by bimolecular fluorescence complementation and pull-down assays. SVBV P1 was co-localized with FvLHC II-1L at the edge of epidermal cells of Nicotiana benthamiana leaves, and FvLHC II-1L protein expression was upregulated in SVBV-infected F. vesca. We also found that FvLHC II-1L effectively promoted SVBV P1 to compensate for the intercellular movement of movement-deficient potato virus X (PVXΔP25) and the systemic movement of movement-deficient cucumber mosaic virus (CMVΔMP). Transient overexpression of FvLHC II-1L and inoculation of an infectious clone of SVBV showed that the course of SVBV infection in F. vesca was accelerated. Collectively, the results showed that SVBV P1 protein can interact with FvLHC II-1L protein, which in turn promotes F. vesca infection by SVBV.
Collapse
Affiliation(s)
- Shiqiang Xu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Kai Xu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China
| | - Lei Jiang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- *Correspondence: Tong Jiang, Lei Jiang,
| | - Tong Jiang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- *Correspondence: Tong Jiang, Lei Jiang,
| |
Collapse
|
17
|
Huang H, Zuo C, Zhao Y, Huang S, Wang T, Zhu M, Li J, Tao X. Determination of key residues in tospoviral NSm required for Sw-5b recognition, their potential ability to overcome resistance, and the effective resistance provided by improved Sw-5b mutants. MOLECULAR PLANT PATHOLOGY 2022; 23:622-633. [PMID: 34962031 PMCID: PMC8995064 DOI: 10.1111/mpp.13182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115-135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A , NSmW121A , NSmD122A , NSmR124A , and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A , NSmW121A , or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q , which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Chongkun Zuo
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
18
|
Helderman TA, Deurhof L, Bertran A, Richard MMS, Kormelink R, Prins M, Joosten MHAJ, van den Burg HA. Members of the ribosomal protein S6 (RPS6) family act as pro-viral factor for tomato spotted wilt orthotospovirus infectivity in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:431-446. [PMID: 34913556 PMCID: PMC8828452 DOI: 10.1111/mpp.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants' performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.
Collapse
Affiliation(s)
- Tieme A. Helderman
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Laurens Deurhof
- Laboratory of PhytopathologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - André Bertran
- Laboratory of VirologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - Manon M. S. Richard
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Richard Kormelink
- Laboratory of VirologyDepartment of Plant SciencesWageningen UniversityWageningenNetherlands
| | - Marcel Prins
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
- KeyGene N.V.WageningenNetherlands
| | | | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
19
|
Huang H, Huang S, Li J, Wang H, Zhao Y, Feng M, Dai J, Wang T, Zhu M, Tao X. Stepwise artificial evolution of an Sw-5b immune receptor extends its resistance spectrum against resistance-breaking isolates of Tomato spotted wilt virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2164-2176. [PMID: 34036713 PMCID: PMC8541788 DOI: 10.1111/pbi.13641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 05/20/2023]
Abstract
Plants use intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) to recognize pathogen-encoded effectors and initiate immune responses. Tomato spotted wilt virus (TSWV), which has been found to infect >1000 plant species, is among the most destructive plant viruses worldwide. The Sw-5b is the most effective and widely used resistance gene in tomato breeding to control TSWV. However, broad application of tomato cultivars carrying Sw-5b has resulted in an emergence of resistance-breaking (RB) TSWV. Therefore, new effective genes are urgently needed to prevent further RB TSWV outbreaks. In this study, we conducted artificial evolution to select Sw-5b mutants that could extend the resistance spectrum against TSWV RB isolates. Unlike regular NLRs, Sw-5b detects viral elicitor NSm using both the N-terminal Solanaceae-specific domain (SD) and the C-terminal LRR domain in a two-step recognition process. Our attempts to select gain-of-function mutants by random mutagenesis involving either the SD or the LRR of Sw-5b failed; therefore, we adopted a stepwise strategy, first introducing a NSmRB -responsive mutation at the R927 residue in the LRR, followed by random mutagenesis involving the Sw-5b SD domain. Using this strategy, we obtained Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q mutants, which are effective against TSWV RB carrying the NSmC118Y or NSmT120N mutation, and against other American-type tospoviruses. Thus, we were able to extend the resistance spectrum of Sw-5b; the selected Sw-5b mutants will provide new gene resources to control RB TSWV.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Huiyuan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Mingfeng Feng
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jing Dai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
20
|
Qi S, Zhang S, Islam MM, El-Sappah AH, Zhang F, Liang Y. Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato ( Solanum lycopersicum). Int J Mol Sci 2021; 22:ijms222010978. [PMID: 34681638 PMCID: PMC8538096 DOI: 10.3390/ijms222010978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is one of the most destructive diseases affecting tomato (Solanum lycopersicum) cultivation and production worldwide. As defenses against TSWV, natural resistance genes have been identified in tomato, including Sw-1a, Sw-1b, sw-2, sw-3, sw-4, Sw-5, Sw-6, and Sw-7. However, only Sw-5 exhibits a high level of resistance to the TSWV. Thus, it has been cloned and widely used in the breeding of tomato with resistance to the disease. Due to the global spread of TSWV, resistance induced by Sw-5 decreases over time and can be overcome or broken by a high concentration of TSWV. How to utilize other resistance genes and identify novel resistance resources are key approaches for breeding tomato with resistance to TSWV. In this review, the characteristics of natural resistance genes, natural resistance resources, molecular markers for assisted selection, and methods for evaluating resistance to TSWV are summarized. The aim is to provide a theoretical basis for identifying, utilizing resistance genes, and developing tomato varieties that are resistant to TSWV.
Collapse
Affiliation(s)
- Shiming Qi
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Shijie Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Md. Monirul Islam
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Ahmed H. El-Sappah
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-8708-2613
| |
Collapse
|
21
|
Zhao X, Chen Z, Wu Q, Cai Y, Zhang Y, Zhao R, Yan J, Qian X, Li J, Zhu M, Hong L, Xing J, Khan NU, Ji Y, Wu P, Huang C, Ding XS, Zhang H, Tao X. The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6581-6595. [PMID: 34115862 DOI: 10.1093/jxb/erab279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Plant and animal intracellular nucleotide-binding and leucine-rich repeat (NLR) receptors play important roles in sensing pathogens and activating defense signaling. However, the molecular mechanisms underlying the activation of host defense signaling by NLR proteins remain largely unknown. Many studies have determined that the coil-coil (CC) or Toll and interleukin-1 receptor/resistance protein (TIR) domain of NLR proteins and their dimerization/oligomerization are critical for activating downstream defense signaling. In this study, we demonstrated that, in tomato, the nucleotide-binding (NB) domain Sw-5b NLR alone can activate downstream defense signaling, leading to elicitor-independent cell death. Sw-5b NB domains can self-associate, and this self-association is crucial for activating cell death signaling. The self-association was strongly compromised after the introduction of a K568R mutation into the P-loop of the NB domain. Consequently, the NBK568R mutant induced cell death very weakly. The NBCΔ20 mutant lacking the C-terminal 20 amino acids can self-associate but cannot activate cell death signaling. The NBCΔ20 mutant also interfered with wild-type NB domain self-association, leading to compromised cell death induction. By contrast, the NBK568R mutant did not interfere with wild-type NB domain self-association and its ability to induce cell death. Structural modeling of Sw-5b suggests that NB domains associate with one another and likely participate in oligomerization. As Sw-5b-triggered cell death is dependent on helper NLR proteins, we propose that the Sw-5b NB domain acts as a nucleation point for the assembly of an oligomeric resistosome, probably by recruiting downstream helper partners, to trigger defense signaling.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Zhengqiang Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qian Wu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yazhen Cai
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruizhen Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiaoling Yan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jia Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Nasr Ullah Khan
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peijun Wu
- Financial Department, Nanjing Agricultural University, Nanjing, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Chen H, Qian X, Chen X, Yang T, Feng M, Chen J, Cheng R, Hong H, Zheng Y, Mei Y, Shen D, Xu Y, Zhu M, Ding XS, Tao X. Cytoplasmic and nuclear Sw-5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. THE NEW PHYTOLOGIST 2021; 231:2262-2281. [PMID: 34096619 DOI: 10.1111/nph.17535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play critical roles in mediating host immunity to pathogen attack. We use tomato Sw-5b::tospovirus as a model system to study the specific role of the compartmentalized plant NLR in dictating host defenses against the virus at different infection steps. We demonstrated here that tomato NLR Sw-5b distributes to the cytoplasm and nucleus, respectively, to play different roles in inducing host resistances against tomato spotted wilt orthotospovirus (TSWV) infection. The cytoplasmic-enriched Sw-5b induces a strong cell death response to inhibit TSWV replication. This host response is, however, insufficient to block viral intercellular and long-distance movement. The nuclear-enriched Sw-5b triggers a host defense that weakly inhibits viral replication but strongly impedes virus intercellular and systemic movement. Furthermore, the cytoplasmic and nuclear Sw-5b act synergistically to dictate a full host defense of TSWV infection. We further demonstrated that the extended N-terminal Solanaceae domain (SD) of Sw-5b plays critical roles in cytoplasm/nucleus partitioning. Sw-5b NLR controls its cytoplasm localization. Strikingly, the SD but not coil-coil domain is crucial for Sw-5b receptor to import into the nucleus to trigger the immunity. The SD was found to interact with importins. Silencing both importin α and β expression disrupted Sw-5b nucleus import and host immunity against TSWV systemic infection. Collectively, our findings suggest that Sw-5b bifurcates disease resistances by cytoplasm/nucleus partitioning to block different infection steps of TSWV. The findings also identified a new regulatory role of extra domain of a plant NLR in mediating host innate immunity.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu, 223001, China
| | - Xiaojiao Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Tongqing Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruixiang Cheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Hong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hanghzou, 310029, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Characterization of the Roles of SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 in Sw-5b-Mediated Resistance to Tomato Spotted Wilt Virus. Viruses 2021; 13:v13081447. [PMID: 34452313 PMCID: PMC8402918 DOI: 10.3390/v13081447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/23/2023] Open
Abstract
The tomato Sw-5b gene confers resistance to tomato spotted wilt virus (TSWV) and encodes a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal Solanaceae-specific domain (SD). Although our understanding of how Sw-5b recognizes the viral NSm elicitor has increased significantly, the process by which Sw-5b activates downstream defense signaling remains to be elucidated. In this study, we used a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate the roles of the SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in the Sw-5b-mediated signaling pathway. We found that chaperone SGT1 was required for Sw-5b function, but co-chaperone RAR1 was not. Sw-5b-mediated immune signaling was independent of both EDS1 and NDR1. Silencing NPR1, which is a central component in SA signaling, did not result in TSWV systemic infection in Sw-5b-transgenic N. benthamiana plants. Helper NLR NRCs (NLRs required for cell death) were required for Sw-5b-mediated systemic resistance to TSWV infection. Suppression of NRC2/3/4 compromised the Sw-5b resistance. However, the helper NLRs ADR1 and NRG1 may not participate in the Sw-5b signaling pathway. Silencing ADR1, NRG1, or both genes did not affect Sw-5b-mediated resistance to TSWV. Our findings provide new insight into the requirement for conserved key components in Sw-5b-mediated signaling pathways.
Collapse
|
24
|
Huang C. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses 2021; 13:v13040688. [PMID: 33923435 PMCID: PMC8073968 DOI: 10.3390/v13040688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
In the plant immune system, according to the 'gene-for-gene' model, a resistance (R) gene product in the plant specifically surveils a corresponding effector protein functioning as an avirulence (Avr) gene product. This system differs from other plant-pathogen interaction systems, in which plant R genes recognize a single type of gene or gene family because almost all virus genes with distinct structures and functions can also interact with R genes as Avr determinants. Thus, research conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens. In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in triggering plant resistance, and we also summarize current progress in understanding plant resistance against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R gene identification and screening of segregating populations during breeding processes.
Collapse
Affiliation(s)
- Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
25
|
Wang J, Han M, Liu Y. Diversity, structure and function of the coiled-coil domains of plant NLR immune receptors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:283-296. [PMID: 33205883 DOI: 10.1111/jipb.13032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Plant nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen avirulence effectors and activate defense responses. Nucleotide-binding, leucine-rich repeat receptors are classified into coiled-coil (CC)-containing and Toll/interleukin-1 receptor (TIR)-containing NLRs. Recent advances suggest that NLR CC domains often function in signaling activation, especially for induction of cell death. In this review, we outline our current understanding of NLR CC domains, including their diversity/classification and structure, their roles in cell death induction, disease resistance, and interaction with other proteins. Furthermore, we provide possible directions for future work.
Collapse
Affiliation(s)
- Junzhu Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
26
|
Li J, Xin J, Zhao X, Zhao Y, Wang T, Xing W, Tao X. Expression, purification and crystallization of the N-terminal Solanaceae domain of the Sw-5b NLR immune receptor. Acta Crystallogr F Struct Biol Commun 2021; 77:8-12. [PMID: 33439150 PMCID: PMC7805550 DOI: 10.1107/s2053230x20016398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 11/10/2022] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat receptors (NLRs) play crucial roles in recognizing pathogen effectors and activating plant immunity. The tomato NLR Sw-5b is a coiled-coil NLR (CC-NLR) immune receptor that confers resistance against tospoviruses, which cause serious economic losses in agronomic crops worldwide. Compared with other CC-NLRs, Sw-5b possesses an extended N-terminal Solanaceae domain (SD). The SD of Sw-5b is critical for recognition of the tospovirus viral movement protein NSm. An SD is also frequently detected in many NLRs from Solanaceae plants. However, no sequences homologous to the SD have been detected in animals or in plants other than Solanaceae. The properties of the SD protein are largely unknown, and thus 3D structural information is vital in order to better understand its role in pathogen perception and the activation of immune receptors. Here, the expression, purification and crystallization of Sw-5b SD (amino acids 1-245) are reported. Native and selenomethionine-substituted crystals of the SD protein belonged to space group P3112, with unit-cell parameters a = 81.53, b = 81.53, c = 98.44 Å and a = 81.63, b = 81.63, c = 98.80 Å, respectively. This is the first report of a structural study of the noncanonical SD domain of the NLR proteins from Solanaceae plants.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jian Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Xinyan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Yaqian Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tongkai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Weiman Xing
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 201204, People’s Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
27
|
Chakraborty J, Ghosh P. Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. PLANTA 2020; 252:101. [PMID: 33180185 DOI: 10.1007/s00425-020-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.
Collapse
Affiliation(s)
| | - Prithwi Ghosh
- Department of Botany, Narajole Raj College, Narajole, Paschim Medinipur, 721211, West Bengal, India
| |
Collapse
|
28
|
Seong K, Seo E, Witek K, Li M, Staskawicz B. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. THE NEW PHYTOLOGIST 2020; 227:1530-1543. [PMID: 32344448 DOI: 10.1111/nph.16628] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species. We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family. In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution. Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Eunyoung Seo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Meng Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| |
Collapse
|
29
|
A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance. Commun Biol 2020; 3:404. [PMID: 32732974 PMCID: PMC7393091 DOI: 10.1038/s42003-020-01130-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Plants rely on innate immunity to perceive and ward off microbes and pests, and are able to overcome the majority of invading microorganisms. Even so, specialized pathogens overcome plant defenses, posing a persistent threat to crop and food security worldwide, raising the need for agricultural products with broad, efficient resistance. Here we report a specific mutation in a tomato (S. lycopersicum) helper nucleotide-binding domain leucine-rich repeat H-NLR, SlNRC4a, which results in gain of function constitutive basal defense activation, in absence of PRR activation. Knockout of the entire NRC4 clade in tomato was reported to compromise Rpi-blb2 mediated immunity. The SlNRC4a mutant reported here possesses enhanced immunity and disease resistance to a broad-spectrum of pathogenic fungi, bacteria and pests, while lacking auto-activated HR or negative effects on plant growth and crop yield, providing promising prospects for agricultural adaptation in the war against plant pathogens that decrease productivity. Lorena Pizarro, Meirav Leibman-Markus et al. explore the genetic mechanisms for plant innate immunity. They functionally characterize a gain of function mutation in SlNRC4a in tomato. They characterize the structure of the mutant protein and functionally demonstrate that it confers broad-spectrum resistance without triggering a hypersensitive response or negatively impacting plant growth and crop yield.
Collapse
|
30
|
Wang H, Zou S, Li Y, Lin F, Tang D. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat Commun 2020; 11:1353. [PMID: 32170056 PMCID: PMC7070047 DOI: 10.1038/s41467-020-15139-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Perception of pathogenic effectors in plants often relies on nucleotide-binding domain (NBS) and leucine-rich-repeat-containing (NLR) proteins. Some NLRs contain additional domains that function as integrated decoys for pathogen effector targets and activation of immune signalling. Wheat stripe rust is one of the most devastating diseases of crop plants. Here, we report the cloning of YrU1, a stripe rust resistance gene from the diploid wheat Triticum urartu, the progenitor of the A genome of hexaploid wheat. YrU1 encodes a coiled-coil-NBS-leucine-rich repeat protein with N-terminal ankyrin-repeat and C-terminal WRKY domains, representing a unique NLR structure in plants. Database searches identify similar architecture only in wheat relatives. Transient expression of YrU1 in Nicotiana benthamiana does not induce cell death in the absence of pathogens. The ankyrin-repeat and coiled-coil domains of YrU1 self-associate, suggesting that homodimerisation is critical for YrU1 function. The identification and cloning of this disease resistance gene sheds light on NLR protein function and may facilitate breeding to control the devastating wheat stripe rust disease.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shenghao Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanyun Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
31
|
Meier N, Hatch C, Nagalakshmi U, Dinesh‐Kumar SP. Perspectives on intracellular perception of plant viruses. MOLECULAR PLANT PATHOLOGY 2019; 20:1185-1190. [PMID: 31282091 PMCID: PMC6715608 DOI: 10.1111/mpp.12839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The intracellular nucleotide-binding domain leucine-rich repeat (NLR) class of immune receptors plays an important role in plant viral defence. Plant NLRs recognize viruses through direct or indirect association of viral proteins, triggering a downstream defence response to prevent viral proliferation and movement within the plant. This review focuses on current knowledge of intracellular perception of viral pathogens, activation of NLRs and the downstream signalling components involved in plant viral defence.
Collapse
Affiliation(s)
- Nathan Meier
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Cameron Hatch
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
32
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
33
|
Li J, Huang H, Zhu M, Huang S, Zhang W, Dinesh-Kumar SP, Tao X. A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral Effector Perception. MOLECULAR PLANT 2019; 12:248-262. [PMID: 30639751 DOI: 10.1016/j.molp.2019.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw-5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NB-ARC-LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm21 levels are high. Interestingly, Sw-5b SD could significantly enhance the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm21. Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recognition mechanism to enhance viral effector perception.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Haining Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenhua Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
34
|
Chakraborty J, Priya P, Dastidar SG, Das S. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:111-133. [PMID: 30348309 DOI: 10.1016/j.plantsci.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Fusarium wilt is one of the most serious diseases affecting chickpea (Cicer arietinum L.). Here, we identified a putative Resistance Gene Analog (CaRGA) from chickpea, encoding a coiled-coil (CC) nucleotide-binding oligomerization domain (NB-ARC) containing leucine-rich repeat (LRR) protein (CC-NLR protein) that confers resistance against Fusarium oxysporum f. sp. ciceri race1 (Foc1). Over-expression and silencing of CaRGA in chickpea resulted in enhanced resistance and hyper-susceptibility, respectively against Foc1. Furthermore, defense response to Foc1 depends on CC-NLR interaction with WRKY64 transcription factor. CaRGA mediated wilt resistance largely compromised when WRKY64 was silenced. We also determined in planta intramolecular interactions and self-association of chickpea CC-NLR protein. The study shows CC domain suppressing auto-activation of the full-length CC-NLR protein in the absence of pathogen through self-inhibitory intramolecular interaction with NB-ARC domain, which is attenuated by self-interactions to LRR domain. Chickpea CC-NLR protein forms homocomplexes and then interacts with WRKY64. CC-NLR protein further phosphorylates WRKY64 thereby, ubiquitination and proteasome mediated degradation are protected. Phosphorylated WRKY64 with increased stability binds to EDS1 promoter and stimulates its transcription that induces in planta ectopic cell-death. The detailed analysis of CC-NLR and WRKY interactions provide a better understanding of the immune regulation by NLR proteins under biotic stresses.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Prerna Priya
- Centre of Excellence in Bioinformatics, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Shubhra Ghosh Dastidar
- Centre of Excellence in Bioinformatics, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| |
Collapse
|
35
|
Kim SB, Lee HY, Choi EH, Park E, Kim JH, Moon KB, Kim HS, Choi D. The Coiled-Coil and Leucine-Rich Repeat Domain of the Potyvirus Resistance Protein Pvr4 Has a Distinct Role in Signaling and Pathogen Recognition. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:906-913. [PMID: 29663867 DOI: 10.1094/mpmi-12-17-0313-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The pepper Pvr4 protein encoding coiled-coil (CC) nucleotide-binding (NB) leucine-rich repeat (LRR) (NLR) confer hypersensitive response (HR) to potyviruses, including Pepper mottle virus (PepMoV), by recognizing the viral avirulence protein NIb. To figure out the Pvr4-mediated HR mechanism, we analyzed signaling component genes and structure-function relationships of Pvr4, using chimeras and deletion mutants in Nicotiana benthamiana. Molecular chaperone components including HSP90, SGT1, and RAR1 were required, while plant hormones and mitogen-activated protein kinase signaling components had little effect on Pvr4-NIb-mediated HR cell death. Domain swap analyses indicated that the LRR domain of Pvr4 determines recognition of PepMoV-NIb. Our deletion analysis further revealed that the CC domain or CC-NBARC domain alone can trigger autoactive cell death in N. benthamiana. However, the fragments having only an LRR domain could suppress CC-NBARC domain-induced cell death in trans. Further, C-terminal truncation analysis of Pvr4 revealed that a minimum three of five LRR exons showing high similarity was essential for Pvr4 function. The LRR domain may maintain Pvr4 in an inactive state in the absence of NIb. These results provide further insight into the structure and function of NLR protein signaling in plants.
Collapse
Affiliation(s)
- Saet-Byul Kim
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Hye-Young Lee
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Eun-Hye Choi
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Eunsook Park
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Ji-Hyun Kim
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Ki-Beom Moon
- 2 Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Hyun-Soon Kim
- 2 Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Doil Choi
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| |
Collapse
|
36
|
Chakraborty J, Jain A, Mukherjee D, Ghosh S, Das S. Functional diversification of structurally alike NLR proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:85-93. [PMID: 29606220 DOI: 10.1016/j.plantsci.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
In due course of evolution many pathogens alter their effector molecules to modulate the host plants' metabolism and immune responses triggered upon proper recognition by the intracellular nucleotide-binding oligomerization domain containing leucine-rich repeat (NLR) proteins. Likewise, host plants have also evolved with diversified NLR proteins as a survival strategy to win the battle against pathogen invasion. NLR protein indeed detects pathogen derived effector proteins leading to the activation of defense responses associated with programmed cell death (PCD). In this interactive process, genome structure and plasticity play pivotal role in the development of innate immunity. Despite being quite conserved with similar biological functions in all eukaryotes, the intracellular NLR immune receptor proteins happen to be structurally distinct. Recent studies have made progress in identifying transcriptional regulatory complexes activated by NLR proteins. In this review, we attempt to decipher the intracellular NLR proteins mediated surveillance across the evolutionarily diverse taxa, highlighting some of the recent updates on NLR protein compartmentalization, molecular interactions before and after activation along with insights into the finer role of these receptor proteins to combat invading pathogens upon their recognition. Latest information on NLR sensors, helpers and NLR proteins with integrated domains in the context of plant pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Akansha Jain
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Dibya Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Suchismita Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| |
Collapse
|
37
|
Jiang R, Li J, Tian Z, Du J, Armstrong M, Baker K, Tze-Yin Lim J, Vossen JH, He H, Portal L, Zhou J, Bonierbale M, Hein I, Lindqvist-Kreuze H, Xie C. Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1545-1555. [PMID: 29385612 PMCID: PMC5889011 DOI: 10.1093/jxb/ery021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 05/24/2023]
Abstract
Following the often short-lived protection that major nucleotide binding, leucine-rich-repeat (NB-LRR) resistance genes offer against the potato pathogen Phytophthora infestans, field resistance was thought to provide a more durable alternative to prevent late blight disease. We previously identified the QTL dPI09c on potato chromosome 9 as a more durable field resistance source against late blight. Here, the resistance QTL was fine-mapped to a 186 kb region. The interval corresponds to a larger, 389 kb, genomic region in the potato reference genome of Solanum tuberosum Group Phureja doubled monoploid clone DM1-3 (DM) and from which functional NB-LRRs R8, R9a, Rpi-moc1, and Rpi_vnt1 have arisen independently in wild species. dRenSeq analysis of parental clones alongside resistant and susceptible bulks of the segregating population B3C1HP showed full sequence representation of R8. This was independently validated using long-range PCR and screening of a bespoke bacterial artificial chromosome library. The latter enabled a comparative analysis of the sequence variation in this locus in diverse Solanaceae. We reveal for the first time that broad spectrum and durable field resistance against P. infestans is conferred by the NB-LRR gene R8, which is thought to provide narrow spectrum race-specific resistance.
Collapse
Affiliation(s)
- Rui Jiang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingcai Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | - Juan Du
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Miles Armstrong
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Katie Baker
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Joanne Tze-Yin Lim
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, AJ Wageningen, The Netherlands
| | - Huan He
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | | | - Jun Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
38
|
de Oliveira AS, Boiteux LS, Kormelink R, Resende RO. The Sw-5 Gene Cluster: Tomato Breeding and Research Toward Orthotospovirus Disease Control. FRONTIERS IN PLANT SCIENCE 2018; 9:1055. [PMID: 30073012 PMCID: PMC6060272 DOI: 10.3389/fpls.2018.01055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 05/19/2023]
Abstract
The Sw-5 gene cluster encodes protein receptors that are potentially able to recognize microbial products and activate signaling pathways that lead to plant cell immunity. Although there are several Sw-5 homologs in the tomato genome, only one of them, named Sw-5b, has been extensively studied due to its functionality against a wide range of (thrips-transmitted) orthotospoviruses. The Sw-5b gene is a dominant resistance gene originally from a wild Peruvian tomato that has been used in tomato breeding programs aiming to develop cultivars with resistance to these viruses. Here, we provide an overview starting from the first reports of Sw-5 resistance, positional cloning and the sequencing of the Sw-5 gene cluster from resistant tomatoes and the validation of Sw-5b as the functional protein that triggers resistance against orthotospoviruses. Moreover, molecular details of this plant-virus interaction are also described, especially concerning the roles of Sw-5b domains in the sensing of orthotospoviruses and in the signaling cascade leading to resistance and hypersensitive response.
Collapse
Affiliation(s)
- Athos S. de Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- *Correspondence: Athos S. de Oliveira,
| | - Leonardo S. Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Vegetables, Brasília, Brazil
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Center, Wageningen, Netherlands
| | - Renato O. Resende
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
39
|
Leastro MO, De Oliveira AS, Pallás V, Sánchez-Navarro JA, Kormelink R, Resende RO. The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b-mediated resistance dissociated of their cell-to-cell movement function. Virus Res 2017; 240:25-34. [PMID: 28754561 DOI: 10.1016/j.virusres.2017.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
The cell-to-cell movement protein (NSM) of tomato spotted wilt virus (TSWV) has been recently identified as the effector of the single dominant Sw-5b resistance gene from tomato (Solanum lycopersicum L.). Although most TSWV isolates shows a resistance-inducing (RI) phenotype, regular reports have appeared on the emergence of resistance-breaking (RB) isolates in tomato fields, and suggested a strong association with two point mutations (C118Y and T120N) in the NSM protein. In this study the Sw-5b gene has been demonstrated to confer not only resistance against TSWV but to members of five additional, phylogenetically-related classified within the so-called "American" evolutionary clade, i.e., Alstroemeria necrotic streak virus (ANSV), chrysanthemum stem necrosis virus (CSNV), groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV) and tomato chlorotic spot virus (TCSV). Remarkably, bean necrotic mosaic virus (BeNMV), a recently discovered tospovirus classified in a distinct American subclade and circulating on the American continent, did not trigger a Sw-5b-mediated hypersensitive (HR) response. Introduction of point mutations C118Y and T120N into the NSM protein of TSWV, TCSV and CSNV abrogated the ability to trigger Sw-5b-mediated HR in both transgenic-N. benthamiana and tomato isolines harboring the Sw-5b gene whereas it had no effect on BeNMV NSM. Truncated versions of TSWV NSM lacking motifs associated with tubule formation, cell-to-cell or systemic viral movement were made and tested for triggering of resistance. HR was still observed with truncated NSM proteins lacking 50 amino acids (out of 301) from either the amino- or carboxy-terminal end. These data altogether indicate the importance of amino acid residues C118 and T120 in Sw-5b-mediated HR only for the NSM proteins from one cluster of tospoviruses within the American clade, and that the ability to support viral cell-to-cell movement is not required for effector functionality.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil; Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Athos Silva De Oliveira
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil; Laboratory of Virology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Renato Oliveira Resende
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil.
| |
Collapse
|