1
|
Zhang H, Jiang Y, Jiao Q, Li L, Li G, Chen Y, Agathokleous E, Seth CS, He E, Wang Y, Li S, Liu S, Liu H. Elucidating the interaction and toxicity of cadmium and cerium on the growth of maize seedlings: Insights from morpho-physiological and biochemical analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118079. [PMID: 40118015 DOI: 10.1016/j.ecoenv.2025.118079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
The exploitation of rare earth elements (REEs) is often accompanied by heavy metal contamination. However, our understanding regarding the growth responses of plants to the co-existence of REEs and heavy metals (HMs), remains limited. In this study, cerium (Ce) and cadmium (Cd) were selected as representatives of REEs and HMs to investigate their interactive effects on maize growth through multiple model analyses. The results revealed that both Cd and Ce induce oxidative injuries by increasing reactive oxygen species (ROS) content in a dose-dependent manner. Ce can enhance chlorophyll content while reducing leaf yellowing induced by Cd. The addition of 10 and 100 mg· L-1 Ce significantly increased the Chla content in 50 μM Cd sets by 52.2 % and 50.2 % compared to Cd50Ce0 treatment, respectively. Evaluation of the physiological and biochemical effect level index (PBELI) showed that the primary interaction mode of Cd and Ce was antagonism. The co-existence of Cd (50 μM) and Ce (100 mg· L-1) poses a higher ecological risk than Ce alone. These results demonstrated that combined exposure to Cd and Ce exhibited diverse effects in mitigating the inhibition of maize growth, thereby improving our understanding of phytotoxicity resulting from metal mixtures in the environment.
Collapse
Affiliation(s)
- Huihong Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Lantao Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yinglong Chen
- The UWA Institute of Agriculture, & School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, PR China
| | | | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Shiying Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Haghir S, Yamada K, Kato M, Tsuge T, Wada T, Tominaga R, Ohashi Y, Aoyama T. The Arabidopsis basic-helix-loop-helix transcription factor LRL1 activates cell wall-related genes during root hair development. PLANT & CELL PHYSIOLOGY 2025; 66:384-399. [PMID: 39869366 DOI: 10.1093/pcp/pcaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Lotus japonicus-ROOT HAIR LESS1-LIKE-1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events, such as endomembrane and cell wall modification, the downstream network of LRL1 remains elusive. We found that a mutation of LRL1 causes a short-root hair phenotype and that this phenotype can be partially rescued by a transgene encoding a glucocorticoid receptor (GR) domain-fused LRL1, LRL1-GR, in the presence of glucocorticoids. Using this conditional rescue system, we identified 46 genes that are activated downstream of LRL1. Among these, the cell wall-related genes were significantly enriched and many of them were found to be immediately downstream of LRL1 without de novo protein synthesis in between. We further analyzed three representative genes, PROLINE-RICH PROTEIN1 (PRP1), PRP3, and XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDOLASE12 (XTH12). Reporter gene analyses showed that these genes are specifically transcribed in root hair cells including those in the root-hypocotyl junction, and that their proteins were localized to the cell wall of elongating root hairs, root hair bulges, and root hair bulge-expecting loci. A T-DNA insertion mutant of PRP3 showed a moderate short-root hair phenotype. Based on these results, LRL1 is likely to promote root hair development throughout the morphogenetic process by activating cell wall-related genes.
Collapse
Affiliation(s)
- Shahrzad Haghir
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Koh Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takuji Wada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Rumi Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi Hiroshima 739-5828, Japan
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Safdar M, Park S, Kim W, Kim D, Lee S, Kim YO, Kim J. Ultra-Tiny Scale Topographical Cues Direct Arabidopsis Root Growth and Development. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17476-17491. [PMID: 40045712 DOI: 10.1021/acsami.4c19726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Plant growth involves intricate processes, including cell division, expansion, and tissue organization, necessitating innovative technologies that emulate native cell-microenvironment interactions. Herein, we introduce ultra-tiny topographical cues (e.g., patterned micro/nanoscale substrates) that mimic micronanofiber structures found in the plant cell wall. We cultured Arabidopsis on unique cell wall-inspired ultra-tiny cues within specialized chambers that positively influenced various physiological aspects compared to a flat surface. Specifically, we observed bidirectional behavior, favoring maximum primary root growth and thickness on sparse features (e.g., 5 μm) and induced predominant anisotropic root alignment on dense features (e.g., 400-800 nm), with alignment decreasing monotonically as the feature size increased. Additionally, RNA sequencing revealed distinct molecular mechanisms underlying Arabidopsis root growth dynamics in response to these ultra-tiny cues, demonstrating modulation of specific genes involved in root development. Collectively, our findings highlight the potential of ultra-tiny cues to modulate gene expression and plant growth dynamics, offering innovative approaches to enhance agricultural productivity sustainably through feature-size-dependent interactions.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Urzúa Lehuedé T, Berdion Gabarain V, Ibeas MA, Salinas-Grenet H, Achá-Escobar R, Moyano TC, Ferrero L, Núñez-Lillo G, Pérez-Díaz J, Perotti MF, Miguel VN, Spies FP, Rosas MA, Kawamura A, Rodríguez-García DR, Kim AR, Nolan T, Moreno AA, Sugimoto K, Perrimon N, Sanguinet KA, Meneses C, Chan RL, Ariel F, Alvarez JM, Estevez JM. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. THE NEW PHYTOLOGIST 2025; 245:2645-2664. [PMID: 39891516 DOI: 10.1111/nph.20406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Root hair (RH) cells can elongate to several hundred times their initial size, and are an ideal model system for investigating cell size control. Their development is influenced by both endogenous and external signals, which are combined to form an integrative response. Surprisingly, a low-temperature condition of 10°C causes increased RH growth in Arabidopsis and in several monocots, even when the development of the rest of the plant is halted. Previously, we demonstrated a strong correlation between RH growth response and a significant decrease in nutrient availability in the growth medium under low-temperature conditions. However, the molecular basis responsible for receiving and transmitting signals related to the availability of nutrients in the soil, and their relation to plant development, remain largely unknown. We have discovered two antagonic gene regulatory networks (GRNs) controlling RH early transcriptome responses to low temperature. One GNR enhances RH growth and it is commanded by the transcription factors (TFs) ROOT HAIR DEFECTIVE 6 (RHD6), HAIR DEFECTIVE 6-LIKE 2 and 4 (RSL2-RSL4) and a member of the homeodomain leucine zipper (HD-Zip I) group I 16 (AtHB16). On the other hand, a second GRN was identified as a negative regulator of RH growth at low temperature and it is composed by the trihelix TF GT2-LIKE1 (GTL1) and the associated DF1, a previously unidentified MYB-like TF (AT2G01060) and several members of HD-Zip I group (AtHB3, AtHB13, AtHB20, AtHB23). Functional analysis of both GRNs highlights a complex regulation of RH growth response to low temperature, and more importantly, these discoveries enhance our comprehension of how plants synchronize RH growth in response to variations in temperature at the cellular level.
Collapse
Affiliation(s)
- Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Romina Achá-Escobar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
| | - Tomás C Moyano
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Lucia Ferrero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Gerardo Núñez-Lillo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota, 2260000, Chile
| | - Jorge Pérez-Díaz
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
| | - María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Miguel A Rosas
- Department of Crop and Soil Sciences and Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Diana R Rodríguez-García
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor Nolan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences and Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Claudio Meneses
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Santiago, 6904411, Chile
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Jose M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
- ANID - Millenium Science Initiative Program - Millenium Nucleus in Data Science for Plant Resilience (Phytolearning), Santiago, 8370186, Chile
| | - José M Estevez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
5
|
Zhu L, Zhu J, Zhou X, Lin Y, Hou L, Li H, Xiao G. The GhCEWT1-GhCEWT2-GhCes4D/GhCOBL4D module orchestrates plant cell elongation and cell wall thickness. Cell Rep 2025; 44:115129. [PMID: 39932186 DOI: 10.1016/j.celrep.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 12/10/2024] [Indexed: 05/02/2025] Open
Abstract
Cell elongation defines cell size and shape, whereas the cell wall supports and protects it. However, the mechanism regulating cell elongation and cell wall thickness remains unknown. Here, taking advantage of a model for both cell elongation and cell wall biogenesis, cotton fiber, we identified a basic-helix-loop-helix (bHLH) factor, GhCEWT1, that contributes to both fiber cell elongation and cell wall thickness. Loss of function of GhCEWT1 reduced the fiber length and cell wall thickness. GhCEWT1 induced transcription of GhCEWT2. We also identified two target genes of GhCEWT2, cellulose synthase 4D (GhCes4D) and COBRA-LIKE 4D (GhCOBL4D). GhCEWT2 enhanced the transcription of GhCes4D and GhCOBL4D. GhCOBL4D overexpression significantly enhanced cotton fiber cell length and cell wall thickness. Our results revealed a GhCEWT1-GhCEWT2-GhCes4D/GhCOBL4D cascade functioning in both fiber cell elongation and cell wall thickness. These findings provide a comprehensive understanding of plant cell elongation and cell wall formation, as well as a theoretical basis for boosting the biomass on Earth.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaojie Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yarou Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Liyong Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Wang Y, Liu X, Sun X, Mao X, Wang Z, Peng J, Yang Z, Ali F, Wang Z, Li F. The promotive and repressive effects of exogenous H 2O 2 on Arabidopsis seed germination and seedling establishment depend on application dose. PHYSIOLOGIA PLANTARUM 2025; 177:e70098. [PMID: 39905992 DOI: 10.1111/ppl.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Hydrogen peroxide (H2O2) displays significant and dual effects on seed germination and seedling development, depending on the application dosage. However, the definition of H2O2 thresholds and the mechanisms underlying the dual actions in Arabidopsis seed germination and seedling development are not yet clear. Here, we analyzed the Arabidopsis seed germination profiles in response to different concentrations of exogenous H2O2 and found that 2 mM functions as the key threshold, above this threshold, both seed germination and seedling establishment were gradually inhibited. By RNA-seq analysis and function verification, we identified pathways of abscisic acid (ABA) signalling, seed post-ripening, energy metabolism, ROS homeostasis, and cell wall loosening play positive roles in seed germination and seedling establishment downstream of the H2O2 signalling. Further physio-chemical approaches revealed that exogenous H2O2 affected the accumulation and distribution of O2 •- and H2O2 in embryonic tissues by regulating the tissue-specific expression of SDH2-3, RHD2, and PRXs. Collectively, we found that germination rate and aerial growth were positively correlated with endogenous H2O2 content and root length was positively correlated with O2 •- accumulation, demonstrating that different ROS signals played specific functions in different tissues and development processes. On the other hand, excessive H2O2 (10 mM) represses these two processes for radicle cell damage caused by oxidation stress. Finally, we put forward the mechanism model of the dual effects of exogenous H2O2 on seed germination and seedling establishment.
Collapse
Affiliation(s)
- Yakong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohong Liu
- Xinjiang Agricultural Development Group Co., Ltd, Xinjiang, China
| | - Xiangyang Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaonan Mao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoye Wang
- Xinjiang Agricultural Development Group Co., Ltd, Xinjiang, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
7
|
Ramachandran P, Ramirez A, Dinneny JR. Rooting for survival: how plants tackle a challenging environment through a diversity of root forms and functions. PLANT PHYSIOLOGY 2024; 197:kiae586. [PMID: 39657006 DOI: 10.1093/plphys/kiae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
The current climate crisis has global impacts and will affect the physiology of plants across every continent. Ensuring resilience of our agricultural and natural ecosystems to the environmental stresses imposed by climate change will require molecular insight into the adaptations employed by a diverse array of plants. However, most current studies continue to focus on a limited set of model species or crops. Root systems are particularly understudied even though their functions in water and nutrient uptake are likely pivotal for plant stress resilience and sustainable agriculture. In this review, we highlight anatomical adaptations in roots that enable plant survival in different ecological niches. We then present the current state of knowledge for the molecular underpinnings of these adaptations. Finally, we identify areas where future research using a biodiversity approach can fill knowledge gaps necessary for the development of climate-resilient crops of the future.
Collapse
Affiliation(s)
- Prashanth Ramachandran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Andrea Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Su J, Liu Y, Han F, Gao F, Gan F, Huang K, Li Z. ROS, an Important Plant Growth Regulator in Root Growth and Development: Functional Genes and Mechanism. BIOLOGY 2024; 13:1033. [PMID: 39765700 PMCID: PMC11673109 DOI: 10.3390/biology13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Roots are fundamental to the growth, development, and survival of plants. Beyond anchoring the plant, roots absorb water and nutrients, supporting the plant's ability to grow and function normally. Root systems, originating from the apical meristem, exhibit significant diversity depending on the plant species. ROS are byproducts of aerobic metabolism, present in both above- and below-ground plant tissues. While ROS were once considered merely harmful byproducts of oxygen metabolism, they are now recognized as critical signaling molecules that regulate plant growth and development. Under stress conditions, plants produce elevated levels of ROS, which can inhibit growth. However, moderate ROS levels act as signals that integrate various regulatory pathways, contributing to normal plant development. However, there is still a lack of comprehensive and systematic research on how ROS precisely regulate root growth and development. This review provides an overview of ROS production pathways and their regulatory mechanisms in plants, with a particular focus on their influence on root development.
Collapse
Affiliation(s)
- Jialin Su
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuxin Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyi Gan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Ibeas MA, Salinas-Grenet H, Johnson NR, Pérez-Díaz J, Vidal EA, Alvarez JM, Estevez JM. Filling the gaps on root hair development under salt stress and phosphate starvation using current evidence coupled with a meta-analysis approach. PLANT PHYSIOLOGY 2024; 196:2140-2149. [PMID: 38918899 DOI: 10.1093/plphys/kiae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between 2 contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these 2 stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.
Collapse
Affiliation(s)
- Miguel Angel Ibeas
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - Nathan R Johnson
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Jorge Pérez-Díaz
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Elena A Vidal
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - José Miguel Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - José M Estevez
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
10
|
Tsang I, Thomelin P, Ober ES, Rawsthorne S, Atkinson JA, Wells DM, Percival-Alwyn L, Leigh FJ, Cockram J. A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1490502. [PMID: 39539300 PMCID: PMC11557487 DOI: 10.3389/fpls.2024.1490502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Background Root hairs are single-celled projections on root surfaces, critical for water and nutrient uptake. Here, we describe the first short root hair mutant in wheat (Triticum aestivum L.), identified in a mutagenized population and termed here short root hair 1 (srh1). Results While the srh1 mutant can initiate root hair bulges, lack of subsequent extension results in very short root hairs. Due to its semi-dominant nature, heterozygous lines displayed intermediate root hair lengths compared to wild-type. Bulked segregant analysis in a BC1F3 segregating population genotyped via exome capture sequencing localized the genetic control of this mutant to a region on the long arm of chromosome 3A. Via RNA sequencing and bioinformatic analysis, we identified two promising candidate genes. The first was a respiratory burst oxidase homolog (RBOH) encoding gene TaNOX3-A, orthologous to RBOH genes controlling root hair elongation in rice (OsNOX3) and maize (ZmRTH5), that carries a missense mutation in a conserved region of the predicted protein. RBOHs are membrane bound proteins that produce reactive oxygen species (ROS) which trigger cell wall extensibility, allowing subsequent root hair elongation. Notably, reduced ROS levels were observed in srh1 root hair bulges compared to wild-type. The second candidate was the calreticulin-3 encoding gene TaCRT3-A, located within the wider srh1 interval and whose expression was significantly downregulated in srh1 root tissues. Conclusions The identification of a major effect gene controlling wheat root hair morphology provides an entry point for future optimization of root hair architecture best suited to future agricultural environments.
Collapse
Affiliation(s)
- Ian Tsang
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
- Department of Plant Science, University of Nottingham, Nottingham, United Kingdom
| | | | - Eric S. Ober
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
| | | | - Jonathan A. Atkinson
- Department of Plant Science, University of Nottingham, Nottingham, United Kingdom
| | - Darren M. Wells
- Department of Plant Science, University of Nottingham, Nottingham, United Kingdom
| | | | - Fiona J. Leigh
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
| | - James Cockram
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
| |
Collapse
|
11
|
Zhao XY, Wang HQ, Shi W, Zhang WW, Zhao FJ. The Respiratory Burst Oxidase Homologue OsRBOHE is crucial for root hair formation, drought resistance and tillering in rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39238330 DOI: 10.1111/pce.15114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Respiratory Burst Oxidase Homologues (RBOHs) are involved in plant growth, development, and stress adaptation. How OsRBOHs affect root hair formation and consequently nutrient acquisition and drought resistance in rice is not well understood. We knocked out six OsRBOH genes in rice that were expressed in roots and identified OsRBOHE as the only one affecting root hair formation. OsRBOHE was strongly expressed in the root epidermis, root hairs and tiller buds. OsRBOHE is localised at the plasma membrane. Knockout of OsRBOHE decreased reactive oxygen species generation in the root hairs and tiller buds, downregulated genes involved in cell wall biogenesis, and decreased root hair length and tillering by 90% and 30%, respectively. Knockout of OsRBOHE decreased phosphorus acquisition only in low available P soil under aerobic conditions, but not in high P soil or under flooded conditions when P was likely not limited by diffusion. Knockout of OsRBOHE markedly decreased drought resistance of rice plants through the effect on root hair formation and the associated rhizosheath. Taken together, OsRBOHE is crucial for root hair formation and tillering and consequently on drought resistance in rice. The contribution of root hairs to P acquisition in rice is limited to aerobic soil.
Collapse
Affiliation(s)
- Xing-Yu Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilisation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Han-Qing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilisation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Shi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilisation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen-Wen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilisation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilisation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Li X, Yang J, Zhang Q, Zhang L, Cheng F, Xu W. Phosphorus-Use-Efficiency Gene Identification in Fabaceae and RSL2 Expansion in Lupinus albus Is Associated with Low-Phosphorus Adaptation. Genes (Basel) 2024; 15:1049. [PMID: 39202409 PMCID: PMC11353381 DOI: 10.3390/genes15081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Phosphorus is critical for plant growth but often becomes less accessible due to its precipitation with cations in soil. Fabaceae, a diverse plant family, exhibits robust adaptability and includes species like Lupinus albus, known for its efficient phosphorus utilization via cluster roots. Here, we systematically identified phosphorus-utilization-efficiency (PUE) gene families across 35 Fabaceae species, highlighting significant gene amplification in PUE pathways in Fabaceae. Different PUE pathways exhibited variable amplification, evolution, and retention patterns among various Fabaceae crops. Additionally, the number of homologous genes of the root hair development gene RSL2 in L. albus was far more than that in other Fabaceae species. Multiple copies of the RSL2 gene were amplified and retained in L. albus after whole genome triplication. The gene structure and motifs specifically retained in L. albus were different from homologous genes in other plants. Combining transcriptome analysis under low-phosphorus treatment, it was found that most of the homologous genes of RSL2 in L. albus showed high expression in the cluster roots, suggesting that the RSL2 gene family plays an important role in the adaptation process of L. albus to low-phosphorus environments and the formation of cluster roots.
Collapse
Affiliation(s)
- Xing Li
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Jinyong Yang
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
| |
Collapse
|
13
|
Singh VP, Jaiswal S, Wang Y, Feng S, Tripathi DK, Singh S, Gupta R, Xue D, Xu S, Chen ZH. Evolution of reactive oxygen species cellular targets for plant development. TRENDS IN PLANT SCIENCE 2024; 29:865-877. [PMID: 38519324 DOI: 10.1016/j.tplants.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shouli Feng
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018, China
| | - Shengchun Xu
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
14
|
Lopez LE, Chuah YS, Encina F, Carignani Sardoy M, Berdion Gabarain V, Mutwil M, Estevez JM. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4171-4179. [PMID: 37875460 DOI: 10.1093/jxb/erad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Root hairs have become an important model system for studying plant growth, and in particular how plants modulate their growth in response to cell-intrinsic and environmental stimuli. In this review, we discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis root hairs in the interface between responses to environmental cues (e.g. nutrients such as nitrates and phosphate, and microorganisms) and hormonal stimuli (e.g. auxin). Growth of root hairs is under the control of several transcription factors that are also under strong regulation at different levels. We highlight recent new discoveries along these transcriptional pathways that might have the potential to increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We use the text-mining capacities of the PlantConnectome database to generate an up-to-date view of root hairs growth within these complex biological contexts.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Yu Song Chuah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Felipe Encina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| |
Collapse
|
15
|
Jia T, Wang H, Cui S, Li Z, Shen Y, Li H, Xiao G. Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis. PLANT COMMUNICATIONS 2024; 5:100887. [PMID: 38532644 PMCID: PMC11287173 DOI: 10.1016/j.xplc.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
BEL1-LIKE HOMEODOMAIN (BLH) proteins are known to function in various plant developmental processes. However, the role of BLHs in regulating plant cell elongation is still unknown. Here, we identify a BLH gene, GhBLH1, that positively regulates fiber cell elongation. Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter. Knockout of GhFAD7A-1 in cotton significantly reduces fiber length, whereas overexpression of GhFAD7A-1 results in longer fibers. The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer, which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1. Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length, whereas knockout of GhKNOX6 results in longer cotton fibers. An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation. Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation.
Collapse
Affiliation(s)
- Tingting Jia
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyan Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zihan Li
- Geosystems Research Institute, Mississippi State University, Starkville, MS 39762, USA
| | - Yongcui Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hongbin Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
16
|
Hu D, Cui R, Wang K, Yang Y, Wang R, Zhu H, He M, Fan Y, Wang L, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lü H, Zhang D, Wang J, Kong F, Yu D, Zhang H, Zhang D. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean. THE PLANT CELL 2024; 36:2176-2200. [PMID: 38345432 PMCID: PMC11132883 DOI: 10.1093/plcell/koae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.
Collapse
Affiliation(s)
- Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengshi He
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Le Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shanshan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiyan Lü
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Zhang
- State Key Laboratory of Agricultural Microbiology, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshe Wang
- Zhengzhou National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengyou Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Liang Y, Wang J, Wang Z, Hu D, Jiang Y, Han Y, Wang Y. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14249. [PMID: 38472657 DOI: 10.1111/ppl.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The potential of fulvic acid (FA) to improve plant growth has been acknowledged, but its effect on plant growth and nutrient uptake under nutrient stress remains unclear. This study investigated the effects of different FA application rates on maize growth and nitrogen utilization under low nitrogen stress. The results showed that under low nitrogen stress, FA significantly stimulated maize growth, particularly root development, biomass, and nitrogen content. The enhanced activity levels of key enzymes in nitrogen metabolism were observed, along with differential gene expression in maize, which enriched nitrogen metabolism, amino acid metabolism and plant hormone metabolism. The application of FA regulated the hormones' level, reduced abscisic acid content in leaves and Me-JA content in roots, and increased auxin and zeatin ribose content in leaves. This study concludes that, by promoting root development, nitrogen metabolism, and hormone metabolism, an appropriate concentration of FA can enhance plant tolerance to low nitrogen conditions and improve nitrogen use efficiency.
Collapse
Affiliation(s)
- Yuanyuan Liang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Junbo Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Zeping Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Desheng Hu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Yanlai Han
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Cui MQ, Xu C, Wang T, Zhao LH, Wang YX, Li GX, Yan JY, Xu JM, Liu R, Wang ZY, Harberd NP, Zheng SJ, Ding ZJ. An LRH-RSL4 feedback regulatory loop controls the determinate growth of root hairs in Arabidopsis. Curr Biol 2024; 34:313-326.e7. [PMID: 38101405 DOI: 10.1016/j.cub.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Root hairs are tubular-shaped outgrowths of epidermal cells essential for plants acquiring water and nutrients from the soil. Despite their importance, the growth of root hairs is finite. How this determinate growth is precisely regulated remains largely unknown. Here we identify LONG ROOT HAIR (LRH), a GYF domain-containing protein, as a unique repressor of root hair growth. We show that LRH inhibits the association of eukaryotic translation initiation factor 4Es (eIF4Es) with the mRNA of ROOT HAIR DEFECTIVE6-LIKE4 (RSL4) that encodes the master regulator of root hair growth, repressing RSL4 translation and thus root hair elongation. RSL4 in turn directly transactivates LRH expression to maintain a proper LRH gradient in the trichoblasts. Our findings reveal a previously uncharacterized LRH-RSL4 feedback regulatory loop that limits root hair growth, shedding new light on the mechanism underlying the determinate growth of root hairs.
Collapse
Affiliation(s)
- Meng Qi Cui
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 5100642, China
| | - Chen Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Hua Zhao
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Yu Xuan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou 310058, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi Ye Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 5100642, China; Institute of Ecological Civilization, Zhejiang University, Hangzhou 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Huang L, Xu N, Wu J, Yang S, An L, Zhou Z, Wong CE, Wu M, Yu H, Gan Y. GLABROUS INFLORESCENCE STEMS3 binds to and activates RHD2 and RHD4 genes to promote root hair elongation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:92-106. [PMID: 37738394 DOI: 10.1111/tpj.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Root hairs are crucial in the uptake of essential nutrients and water in plants. This study showed that a zinc finger protein, GIS3 is involved in root hair growth in Arabidopsis. The loss-of-function gis3 and GIS3 RNAi transgenic line exhibited a significant reduction in root hairs compared to the wild type. The application of 1-aminocyclopropane-1-carboxylic acid (ACC), an exogenous ethylene precursor, and 6-benzyl amino purine (BA), a synthetic cytokinin, significantly restored the percentage of hair cells in the epidermis in gis3 and induced GIS3 expression in the wild type. More importantly, molecular and genetic studies revealed that GIS3 acts upstream of ROOT HAIR DEFECTIVE 2 (RHD2) and RHD4 by binding to their promoters. Furthermore, exogenous ACC and BA application significantly induced the expression of RHD2 and RHD4, while root hair phenotype of rhd2-1, rhd4-1, and rhd4-3 was insensitive to ACC and BA treatment. We can therefore conclude that GIS3 modulates root hair development by directly regulating RHD2 and RHD4 expression through ethylene and cytokinin signals in Arabidopsis.
Collapse
Affiliation(s)
- Linli Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Nuo Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Junyu Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuaiqi Yang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lijun An
- College of Life Sciences, Northwest A&F University, Shanxi, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chui Eng Wong
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Mingjie Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Yinbo Gan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Ahmad N, Ibrahim S, Kuang L, Ze T, Wang X, Wang H, Dun X. Integrating genome-wide association study with transcriptomic data to predict candidate genes influencing Brassica napus root and biomass-related traits under low phosphorus conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:149. [PMID: 37789456 PMCID: PMC10548562 DOI: 10.1186/s13068-023-02403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an essential source of edible oil and livestock feed, as well as a promising source of biofuel. Breeding crops with an ideal root system architecture (RSA) for high phosphorus use efficiency (PUE) is an effective way to reduce the use of phosphate fertilizers. However, the genetic mechanisms that underpin PUE in rapeseed remain elusive. To address this, we conducted a genome-wide association study (GWAS) in 327 rapeseed accessions to elucidate the genetic variability of 13 root and biomass traits under low phosphorus (LP; 0.01 mM P +). Furthermore, RNA-sequencing was performed in root among high/low phosphorus efficient groups (HP1/LP1) and high/low phosphorus stress tolerance groups (HP2/LP2) at two-time points under control and P-stress conditions. RESULTS Significant variations were observed in all measured traits, with heritabilities ranging from 0.47 to 0.72, and significant correlations were found between most of the traits. There were 39 significant trait-SNP associations and 31 suggestive associations, which integrated into 11 valid quantitative trait loci (QTL) clusters, explaining 4.24-24.43% of the phenotypic variance observed. In total, RNA-seq identified 692, 1076, 648, and 934 differentially expressed genes (DEGs) specific to HP1/LP1 and HP2/LP2 under P-stress and control conditions, respectively, while 761 and 860 DEGs common for HP1/LP1 and HP2/LP2 under both conditions. An integrated approach of GWAS, weighted co-expression network, and differential expression analysis identified 12 genes associated with root growth and development under LP stress. In this study, six genes (BnaA04g23490D, BnaA09g08440D, BnaA09g04320D, BnaA09g04350D, BnaA09g04930D, BnaA09g09290D) that showed differential expression were identified as promising candidate genes for the target traits. CONCLUSION 11 QTL clusters and 12 candidate genes associated with root and development under LP stress were identified in this study. Our study's phenotypic and genetic information may be exploited for genetic improvement of root traits to increase PUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano, 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Tian Ze
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430062, China.
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
21
|
Zhu L, Wang H, Zhu J, Wang X, Jiang B, Hou L, Xiao G. A conserved brassinosteroid-mediated BES1-CERP-EXPA3 signaling cascade controls plant cell elongation. Cell Rep 2023; 42:112301. [PMID: 36952343 DOI: 10.1016/j.celrep.2023.112301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/05/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Continuous plant growth is achieved by cell division and cell elongation. Brassinosteroids control cell elongation and differentiation throughout plant life. However, signaling cascades underlying BR-mediated cell elongation are unknown. In this study, we introduce cotton fiber, one of the most representative single-celled tissues, to decipher cell-specific BR signaling. We find that gain of function of GhBES1, a key transcriptional activator in BR signaling, enhances fiber elongation. The chromatin immunoprecipitation sequencing analysis identifies a cell-elongation-related protein, GhCERP, whose transcription is directly activated by GhBES1. GhCERP, a downstream target of GhBES1, transmits the GhBES1-mediated BR signaling to its target gene, GhEXPA3-1. Ultimately, GhEXPA3-1 promotes fiber cell elongation. In addition, inter-species functional analysis of the BR-mediated BES1-CERP-EXPA3 signaling cascade also promotes Arabidopsis root and hypocotyl growth. We propose that the BES1-CERP-EXPA3 module may be a broad-spectrum pathway that is universally exploited by diverse plant species to regulate BR-promoted cell elongation.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jiaojie Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaosi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Liyong Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
22
|
Zhang L, He C, Lai Y, Wang Y, Kang L, Liu A, Lan C, Su H, Gao Y, Li Z, Yang F, Li Q, Mao H, Chen D, Chen W, Kaufmann K, Yan W. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biol 2023; 24:65. [PMID: 37016448 PMCID: PMC10074895 DOI: 10.1186/s13059-023-02908-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Homoeologs are defined as homologous genes resulting from allopolyploidy. Bread wheat, Triticum aestivum, is an allohexaploid species with many homoeologs. Homoeolog expression bias, referring to the relative contribution of homoeologs to the transcriptome, is critical for determining the traits that influence wheat growth and development. Asymmetric transcription of homoeologs has been so far investigated in a tissue or organ-specific manner, which could be misleading due to a mixture of cell types. RESULTS Here, we perform single nuclei RNA sequencing and ATAC sequencing of wheat root to study the asymmetric gene transcription, reconstruct cell differentiation trajectories and cell-type-specific gene regulatory networks. We identify 22 cell types. We then reconstruct cell differentiation trajectories that suggest different origins between epidermis/cortex and endodermis, distinguishing bread wheat from Arabidopsis. We show that the ratio of asymmetrically transcribed triads varies greatly when analyzing at the single-cell level. Hub transcription factors determining cell type identity are also identified. In particular, we demonstrate that TaSPL14 participates in vasculature development by regulating the expression of BAM1. Combining single-cell transcription and chromatin accessibility data, we construct the pseudo-time regulatory network driving root hair differentiation. We find MYB3R4, REF6, HDG1, and GATAs as key regulators in this process. CONCLUSIONS Our findings reveal the transcriptional landscape of root organization and asymmetric gene transcription at single-cell resolution in polyploid wheat.
Collapse
Affiliation(s)
- Lihua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuting Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yating Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuwen Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zeqing Li
- Wuhan Igenebook Biotechnology Co., Ltd, Wuhan, 430014 China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität Zu Berlin, 10115 Berlin, Germany
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
23
|
Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, Peralta JM, Lehuedé TU, Ibeas MA, Ricardi MM, Zhu S, Shen Y, Schepetilnikov M, Ryabova LA, Alvarez JM, Gutierrez RA, Grossmann G, Šamaj J, Yu F, Estevez JM. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:169-185. [PMID: 36716782 DOI: 10.1111/nph.18723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
- Laborarory of Species Interaction and Biological Invasion, School of Life Science, Hebei University, Baoding, 071002, China
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| | - Rodrigo A Gutierrez
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
- Millennium Institute Center for Genome Regulation, 6904411, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| |
Collapse
|
24
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
25
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
26
|
Hanlon MT, Vejchasarn P, Fonta JE, Schneider HM, McCouch SR, Brown KM. Genome wide association analysis of root hair traits in rice reveals novel genomic regions controlling epidermal cell differentiation. BMC PLANT BIOLOGY 2023; 23:6. [PMID: 36597029 PMCID: PMC9811729 DOI: 10.1186/s12870-022-04026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus, indica, temperate japonica, and tropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets. RESULTS We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice and Arabidopsis. CONCLUSIONS Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.
Collapse
Affiliation(s)
- Meredith T Hanlon
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Phanchita Vejchasarn
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Rice Department, Ministry of Agriculture, Ubon Ratchathani Rice Research Center, Ubon Ratchathani, 34000, Thailand
| | - Jenna E Fonta
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, the Netherlands
| | - Susan R McCouch
- Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY, 14853-1901, USA
- Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Xue C, Li W, Shen R, Lan P. Impacts of iron on phosphate starvation-induced root hair growth in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:215-238. [PMID: 36174546 DOI: 10.1111/pce.14451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, phosphate starvation (-Pi)-induced responses of primary root and lateral root growth are documented to be correlated with ambient iron (Fe) status. However, whether and how Fe participates in -Pi-induced root hair growth (RHG) remains unclear. Here, responses of RHG to different Fe concentrations under Pi sufficiency/deficiency were verified. Generally, distinct dosage effects of Fe on RHG appeared at both Pi levels, due to the generation of reactive oxygen species. Following analyses using auxin mutants and the phr1 mutant revealed that auxin and the central regulator PHR1 are required for Fe-triggered RHG under -Pi. A further proteomic study indicated that processes of vesicle trafficking and auxin synthesis and transport were affected by Fe under -Pi, which were subsequently validated by using a vesicle trafficking inhibitor, brefeldin A, and an auxin reporter, R2D2. Moreover, vesicle trafficking-mediated recycling of PIN2, an auxin efflux transporter, was notably affected by Fe under -Pi. Correspondingly, root hairs of pin2 mutant displayed attenuated responses to Fe under -Pi. Together, we propose that Fe affects auxin signalling probably by modulating vesicle trafficking, chiefly the PIN2 recycling, which might work jointly with PHR1 on modulating -Pi-induced RHG.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| |
Collapse
|
28
|
Kohli PS, Pazhamala LT, Mani B, Thakur JK, Giri J. Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum. FRONTIERS IN PLANT SCIENCE 2022; 13:983969. [PMID: 36267945 PMCID: PMC9577374 DOI: 10.3389/fpls.2022.983969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Root hairs (RH) are a single-cell extension of root epidermal cells. In low phosphorus (LP) availability, RH length and density increase thus expanding the total root surface area for phosphate (Pi) acquisition. However, details on genes involved in RH development and response to LP are missing in an agronomically important leguminous crop, chickpea. To elucidate this response in chickpea, we performed tissue-specific RNA-sequencing and analyzed the transcriptome modulation for RH and root without RH (Root-RH) under LP. Root hair initiation and cellular differentiation genes like RSL TFs and ROPGEFs are upregulated in Root-RH, explaining denser, and ectopic RH in LP. In RH, genes involved in tip growth processes and phytohormonal biosynthesis like cell wall synthesis and loosening (cellulose synthase A catalytic subunit, CaEXPA2, CaGRP2, and CaXTH2), cytoskeleton/vesicle transport, and ethylene biosynthesis are upregulated. Besides RH development, genes involved in LP responses like lipid and/or pectin P remobilization and acid phosphatases are induced in these tissues summarizing a complete molecular response to LP. Further, RH displayed preferential enrichment of processes involved in symbiotic interactions, which provide an additional benefit during LP. In conclusion, RH shows a multi-faceted response that starts with molecular changes for epidermal cell differentiation and RH initiation in Root-RH and later induction of tip growth and various LP responses in elongated RH.
Collapse
Affiliation(s)
| | | | - Balaji Mani
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- International Center of Genetic Engineering and Biotechnology, New Delhi, India
| | - Jitender Giri
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
29
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
30
|
Maqbool S, Saeed F, Raza A, Rasheed A, He Z. Association of Root Hair Length and Density with Yield-Related Traits and Expression Patterns of TaRSL4 Underpinning Root Hair Length in Spring Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2235. [PMID: 36079617 PMCID: PMC9460385 DOI: 10.3390/plants11172235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Root hairs play an important role in absorbing water and nutrients in crop plants. Here we optimized high-throughput root hair length (RHL) and root hair density (RHD) phenotyping in wheat using a portable Dinolite™ microscope. A collection of 24 century wide spring wheat cultivars released between 1911 and 2016 were phenotyped for RHL and RHD. The results revealed significant variations for both traits with five and six-fold variation for RHL and RHD, respectively. RHL ranged from 1.01 mm to 1.77 mm with an average of 1.39 mm, and RHD ranged from 17.08 mm-2 to 20.8 mm-2 with an average of 19.6 mm-2. Agronomic and physiological traits collected from five different environments and their best linear unbiased predictions (BLUPs) were correlated with RHL and RHD, and results revealed that relative-water contents (RWC), biomass and grain per spike (GpS) were positively correlated with RHL in both water-limited and well-watered conditions. While RHD was negatively correlated with grain yield (GY) in four environments and their BLUPs. Both RHL and RHD had positive correlation indicating the possibility of simultaneous selection of both phenotypes during wheat breeding. The expression pattern of TaRSL4 gene involved in regulation of root hair length was determined in all 24 wheat cultivars based on RNA-seq data, which indicated the differentially higher expression of the A- and D- homeologues of the gene in roots, while B-homeologue was consistently expressed in both leaf and roots. The results were validated by qRT-PCR and the expression of TaRSL4 was consistently high in rainfed cultivars such as Chakwal-50, Rawal-87, and Margallah-99. Overall, the new phenotyping method for RHL and RHD along with correlations with morphological and physiological traits in spring wheat cultivars improved our understanding for selection of these phenotypes in wheat breeding.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fatima Saeed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Raza
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China Office, 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China Office, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
31
|
Shibata M, Favero DS, Takebayashi R, Takebayashi A, Kawamura A, Rymen B, Hosokawa Y, Sugimoto K. Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in an excess nutrient condition. THE NEW PHYTOLOGIST 2022; 235:1426-1441. [PMID: 35713645 PMCID: PMC9544051 DOI: 10.1111/nph.18255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Root hair growth is tuned in response to the environment surrounding plants. While most previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are downregulated in this condition. However, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.
Collapse
Affiliation(s)
| | - David S. Favero
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Ryu Takebayashi
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Ayako Kawamura
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- KU Leuven Plant Institute (LPI)KU LeuvenKasteelpark Arenberg 31LeuvenB‐3001Belgium
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesUniversity of TokyoTokyo119‐0033Japan
| |
Collapse
|
32
|
Jin Z, Li T, Zhou Y, Huang Y, Ning C, Xu J, Hicks G, Raikhel N, Xiang Y, Li R. Small molecule RHP1 promotes root hair tip growth by acting upstream of the RHD6-RSL4-dependent transcriptional pathway and ROP signaling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1636-1650. [PMID: 35388535 DOI: 10.1111/tpj.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Root hairs are single-cell projections in the root epidermis. The presence of root hairs greatly expands the root surface, which facilitates soil anchorage and the absorption of water and nutrients. Root hairs are also the ideal system to study the mechanism of polar growth. Previous research has identified many important factors that control different stages of root hair development. Using a chemical genetics screen, in this study we report the identification of a steroid molecule, RHP1, which promotes root hair growth at nanomolar concentrations without obvious change of other developmental processes. We further demonstrate that RHP1 specifically affects tip growth with no significant influence on cell fate or planar polarity. We also show that RHP1 promotes root hair tip growth via acting upstream of the RHD6-RSL4-dependent transcriptional pathway and ROP GTPase-guided local signaling. Finally, we demonstrate that RHP1 exhibits a wide range of effects on different plant species in both monocots and dicots. This study of RHP1 will not only help to dissect the mechanism of root hair tip growth, but also provide a new tool to modify root hair growth in different plant species.
Collapse
Affiliation(s)
- Zhongcai Jin
- Harbin institute of Technology, Heilongjiang, 150001, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuelong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuanzhi Huang
- Harbin institute of Technology, Heilongjiang, 150001, China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Glenn Hicks
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Natasha Raikhel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
33
|
Ying S, Scheible W. A novel calmodulin-interacting Domain of Unknown Function 506 protein represses root hair elongation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:1796-1812. [PMID: 35312071 PMCID: PMC9314033 DOI: 10.1111/pce.14316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Domain of Unknown Function 506 proteins are ubiquitous in plants. The phosphorus (P) stress-inducible REPRESSOR OF EXCESSIVE ROOT HAIR GROWTH1 (AtRXR1) gene encodes the first characterized DUF506. AtRXR1 inhibits root hair elongation by interacting with RabD2c GTPase. However, functions of other P-responsive DUF506 genes are still missing. Here, we selected two additional P-inducible DUF506 genes for further investigation. The expression of both genes was induced by auxin. Under P-stress, At3g07350 gene expressed ubiquitously in seedlings, whereas At1g62420 (AtRXR3) expression was strongest in roots. AtRXR3 overexpressors and knockouts had shorter and longer root hairs, respectively. A functional AtRXR3-green fluorescent protein fusion localized to root epidermal cells. Chromatin immunoprecipitation and quantitative reverse-transcriptase-polymerase chain reaction revealed that AtRXR3 was transcriptionally activated by RSL4. Bimolecular fluorescence complementation and calmodulin (CaM)-binding assays showed that AtRXR3 interacted with CaM in the presence of Ca2+ . Moreover, cytosolic Ca2+ ([Ca2+ ]cyt ) oscillations in root hairs of rxr3 mutants exhibited elevated frequencies and dampened amplitudes compared to those of wild type. Thus, AtRXR3 is another DUF506 protein that attenuates P-limitation-induced root hair growth through mechanisms that involve RSL4 and interaction with CaM to modulate tip-focused [Ca2+ ]cyt oscillations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | |
Collapse
|
34
|
Eljebbawi A, Savelli B, Libourel C, Estevez JM, Dunand C. Class III Peroxidases in Response to Multiple Abiotic Stresses in Arabidopsis thaliana Pyrenean Populations. Int J Mol Sci 2022; 23:ijms23073960. [PMID: 35409333 PMCID: PMC8999671 DOI: 10.3390/ijms23073960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Class III peroxidases constitute a plant-specific multigene family, where 73 genes have been identified in Arabidopsis thaliana. These genes are members of the reactive oxygen species (ROS) regulatory network in the whole plant, but more importantly, at the root level. In response to abiotic stresses such as cold, heat, and salinity, their expression is significantly modified. To learn more about their transcriptional regulation, an integrative phenotypic, genomic, and transcriptomic study was executed on the roots of A. thaliana Pyrenean populations. Initially, the root phenotyping highlighted 3 Pyrenean populations to be tolerant to cold (Eaux), heat (Herr), and salt (Grip) stresses. Then, the RNA-seq analyses on these three populations, in addition to Col-0, displayed variations in CIII Prxs expression under stressful treatments and between different genotypes. Consequently, several CIII Prxs were particularly upregulated in the tolerant populations, suggesting novel and specific roles of these genes in plant tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina;
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago CP 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago CP 8370146, Chile
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
- Correspondence:
| |
Collapse
|
35
|
Ma X, Zhao X, Zhang H, Zhang Y, Sun S, Li Y, Long Z, Liu Y, Zhang X, Li R, Tan L, Jiang L, Zhu JK, Li L. MAG2 and MAL Regulate Vesicle Trafficking and Auxin Homeostasis With Functional Redundancy. FRONTIERS IN PLANT SCIENCE 2022; 13:849532. [PMID: 35371137 PMCID: PMC8966843 DOI: 10.3389/fpls.2022.849532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Auxin is a central phytohormone and controls almost all aspects of plant development and stress response. Auxin homeostasis is coordinately regulated by biosynthesis, catabolism, transport, conjugation, and deposition. Endoplasmic reticulum (ER)-localized MAIGO2 (MAG2) complex mediates tethering of arriving vesicles to the ER membrane, and it is crucial for ER export trafficking. Despite important regulatory roles of MAG2 in vesicle trafficking, the mag2 mutant had mild developmental abnormalities. MAG2 has one homolog protein, MAG2-Like (MAL), and the mal-1 mutant also had slight developmental phenotypes. In order to investigate MAG2 and MAL regulatory function in plant development, we generated the mag2-1 mal-1 double mutant. As expected, the double mutant exhibited serious developmental defects and more alteration in stress response compared with single mutants and wild type. Proteomic analysis revealed that signaling, metabolism, and stress response in mag2-1 mal-1 were affected, especially membrane trafficking and auxin biosynthesis, signaling, and transport. Biochemical and cell biological analysis indicated that the mag2-1 mal-1 double mutant had more serious defects in vesicle transport than the mag2-1 and mal-1 single mutants. The auxin distribution and abundance of auxin transporters were altered significantly in the mag2-1 and mal-1 single mutants and mag2-1 mal-1 double mutant. Our findings suggest that MAG2 and MAL regulate plant development and auxin homeostasis by controlling membrane trafficking, with functional redundancy.
Collapse
Affiliation(s)
- Xiaohui Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhengbiao Long
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaomeng Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Rongxia Li
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
36
|
Kohli PS, Maurya K, Thakur JK, Bhosale R, Giri J. Significance of root hairs in developing stress-resilient plants for sustainable crop production. PLANT, CELL & ENVIRONMENT 2022; 45:677-694. [PMID: 34854103 DOI: 10.1111/pce.14237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.
Collapse
Affiliation(s)
| | - Kanika Maurya
- National Institute of Plant Genome Research, New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre of Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
37
|
Song Y, Li S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui N. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:201-216. [PMID: 34633473 DOI: 10.1007/s00122-021-03960-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/29/2021] [Indexed: 05/23/2023]
Abstract
bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
38
|
Seo DH, Jeong H, Choi YD, Jang G. Auxin controls the division of root endodermal cells. PLANT PHYSIOLOGY 2021; 187:1577-1586. [PMID: 34618030 PMCID: PMC8566267 DOI: 10.1093/plphys/kiab341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 06/02/2023]
Abstract
The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1. Endodermis-specific activation of auxin responses by expression of truncated AUXIN-RESPONSIVE FACTOR5 (ΔARF5) in root endodermal cells under the control of the ENDODERMIS7 promoter (EN7::ΔARF5) also induced endodermal cell division. We used an auxin transport inhibitor to cause accumulation of auxin in endodermal cells, which induced endodermal cell division. In addition, knockout of P-GLYCOPROTEIN1 (PGP1) and PGP19, which mediate centripetal auxin flow, promoted the division of endodermal cells. Together, these findings reveal a tight link between the endodermal auxin response and endodermal cell division, suggesting that auxin is a key regulator controlling the division of root endodermal cells, and that PGP1 and PGP19 are involved in regulating endodermal cell division.
Collapse
Affiliation(s)
- Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Haewon Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yang Do Choi
- The National Academy of Sciences, Seoul 06579, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
39
|
Xue C, Li W, Shen R, Lan P. PERK13 modulates phosphate deficiency-induced root hair elongation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111060. [PMID: 34620427 DOI: 10.1016/j.plantsci.2021.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Phosphate starvation (-Pi)-induced root hair is crucial for enhancing plants' Pi absorption. Proline-rich extensin-like receptor kinase 13 (PERK13) is transcriptionally induced by -Pi and co-expressed with genes associated with root hair growth. However, how PERK13 participates in -Pi-induced root hair growth remains unclear. Here, we found that PERK13 was transcriptionally responsive to Pi, nitrogen, and iron deficiencies. Loss of PERK13 function (perk13) enhanced root hair growth under Pi/nitrogen limitation. Similar phenotype was also observed in transgenic lines overexpressing PERK13 (PERK13ox). Under -Pi, both perk13 and PERK13ox showed prolonged root hair elongation and increased reactive oxygen species (ROS). Deletion analysis showed, in PERK13ox, the extracellular domain was indispensable for PERK13 in -Pi-induced root hair growth. Different transcription profiles were observed under -Pi between perk13 and PERK13ox with the jasmonate zim-domain genes being repressed in perk13 and genes involved in cell wall remodeling being increased in PERK13ox. Taken together, we demonstrated that PERK13 participates in -Pi-induced root hair growth probably via regulating root hair elongation and the generation of ROS. Our study also suggested PERK13 probably being a vital hub coupling the environmental cues and root hair growth, and might play dual roles in -Pi-induced root hair growth via different processes.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Solis-Miranda J, Quinto C. The CrRLK1L subfamily: One of the keys to versatility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:88-102. [PMID: 34091211 DOI: 10.1016/j.plaphy.2021.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Catharanthus roseous kinase 1L receptors (CrRLK1Ls) are a subfamily of membrane receptors unique to plant cells that perceive internal and external signals, integrate metabolic, physiological, and molecular processes, and regulate plant development. Recent genomic studies have suggested that this receptor subfamily arose during the emergence of terrestrial plants and has since diversified, preserving its essential functions. Participation of some of these CrRLK1Ls in different processes is presented and discussed herein, as well as the increasing number of interactors necessary for their function. At least five different responses have been detected after activating these receptors, such as physiological changes, formation or disassembly of protein complexes, metabolic responses, modification of gene expression, and modulation of phytohormone activity. To date, a common response mechanism for all processes involving CrRLK1Ls has not been described. In this review, the information available on the different functions of CrRLK1Ls was compiled. Additionally, the physiological and/or molecular mechanisms involved in the signaling processes triggered by these receptors are also discussed. In this review, we propose a possible common signaling mechanism for all processes regulated by CrRLK1Ls and pose questions to be answered in the future.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
41
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
42
|
Moison M, Pacheco JM, Lucero L, Fonouni-Farde C, Rodríguez-Melo J, Mansilla N, Christ A, Bazin J, Benhamed M, Ibañez F, Crespi M, Estevez JM, Ariel F. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. MOLECULAR PLANT 2021; 14:937-948. [PMID: 33689931 DOI: 10.1016/j.molp.2021.03.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 05/25/2023]
Abstract
Plant long noncoding RNAs (lncRNAs) have emerged as important regulators of chromatin dynamics, impacting on transcriptional programs leading to different developmental outputs. The lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO) directly recognizes multiple independent loci across the Arabidopsis genome and modulates their three-dimensional chromatin conformation, leading to transcriptional shifts. Here, we show that APOLO recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) and controls RHD6 transcriptional activity, leading to cold-enhanced RH elongation through the consequent activation of the transcription factor gene RHD6-like RSL4. Furthermore, we demonstrate that APOLO interacts with the transcription factor WRKY42 and modulates its binding to the RHD6 promoter. WRKY42 is required for the activation of RHD6 by low temperatures and WRKY42 deregulation impairs cold-induced RH expansion. Collectively, our results indicate that a novel ribonucleoprotein complex with APOLO and WRKY42 forms a regulatory hub to activate RHD6 by shaping its epigenetic environment and integrate signals governing RH growth and development.
Collapse
Affiliation(s)
- Michaël Moison
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Johan Rodríguez-Melo
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - Fernando Ibañez
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB/FHUC, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina.
| |
Collapse
|
43
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
44
|
Zhao P, Liu Y, Kong W, Ji J, Cai T, Guo Z. Genome-Wide Identification and Characterization of Calcium-Dependent Protein Kinase ( CDPK) and CDPK-Related Kinase ( CRK) Gene Families in Medicago truncatula. Int J Mol Sci 2021; 22:1044. [PMID: 33494310 PMCID: PMC7864493 DOI: 10.3390/ijms22031044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.Z.); (Y.L.); (W.K.); (J.J.); (T.C.)
| |
Collapse
|
45
|
Fu W, Pan Y, Shi Y, Chen J, Gong D, Li Y, Hao G, Han D. Root Morphogenesis of Arabidopsis thaliana Tuned by Plant Growth-Promoting Streptomyces Isolated From Root-Associated Soil of Artemisia annua. FRONTIERS IN PLANT SCIENCE 2021; 12:802737. [PMID: 35082816 PMCID: PMC8786036 DOI: 10.3389/fpls.2021.802737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 05/15/2023]
Abstract
In this study, the capacity to tune root morphogenesis by a plant growth-promoting rhizobacterium, Streptomyces lincolnensis L4, was investigated from various aspects including microbial physiology, root development, and root endophytic microbial community. Strain L4 was isolated from the root-associated soil of 7-year plantation of Artemisia annua. Aiming at revealing the promotion mechanism of Streptomyces on root growth and development, this study first evaluated the growth promotion characters of S. lincolnensis L4, followed by investigation in the effect of L4 inoculation on root morphology, endophytic microbiota of root system, and expression of genes involved in root development in Arabidopsis thaliana. Streptomyces lincolnensis L4 is able to hydrolyze organic and inorganic phosphorus, fix nitrogen, and produce IAA, ACC deaminase, and siderophore, which shaped specific structure of endophytic bacterial community with dominant Streptomyces in roots and promoted the development of roots. From the observation of root development characteristics, root length, root diameter, and the number of root hairs were increased by inoculation of strain L4, which were verified by the differential expression of root development-related genes in A. thaliana. Genomic traits of S. lincolnensis L4 which further revealed its capacity for plant growth promotion in which genes involved in phosphorus solubilization, ACC deamination, iron transportation, and IAA production were identified. This root growth-promoting strain has the potential to develop green method for regulating plant development. These findings provide us ecological knowledge of microenvironment around root system and a new approach for regulating root development.
Collapse
Affiliation(s)
- Wenbo Fu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanshuo Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daozhi Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangfei Hao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
- *Correspondence: Guangfei Hao,
| | - Dongfei Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Dongfei Han,
| |
Collapse
|
46
|
Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H. Calcium-Dependent Protein Kinase GhCDPK28 Was Dentified and Involved in Verticillium Wilt Resistance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:772649. [PMID: 34975954 PMCID: PMC8715758 DOI: 10.3389/fpls.2021.772649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
Verticillium dahliae is a soil-borne fungus that causes vascular wilt through the roots of plants. Verticillium wilt caused by V. dahliae is one of the main diseases in cotton producing areas of the world, resulting in huge economic losses. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. Calcium-dependent protein kinases (CDPKs) play a pivotal role in plant innate immunity, including regulation of oxidative burst, gene expression as well as hormone signal transduction. However, the function of cotton CDPKs in response to V. dahliae stress remains unexplored. In this study, 96, 44 and 57 CDPKs were identified from Gossypium hirsutum, Gossypium raimondii and Gossypium arboretum, respectively. Phylogenetic analysis showed that these CDPKs could be divided into four branches. All GhCDPKs of the same clade are generally similar in gene structure and conserved domain arrangement. Cis-acting elements related to hormones, stress response, cell cycle and development were predicted in the promoter region. The expression of GhCDPKs could be regulated by various stresses. Gh_D11G188500.1 and Gh_A11G186100.1 was up-regulated under Vd0738 and Vd991 stress. Further phosphoproteomics analysis showed that Gh_A11G186100.1 (named as GhCDPK28-6) was phosphorylated under the stress of V. dahliae. Knockdown of GhCDPK28-6 expression, the content of reactive oxygen species was increased, a series of defense responses were enhanced, and the sensitivity of cotton to V. dahliae was reduced. Moreover, overexpression of GhCDPK28-6 in Arabidopsis thaliana weakened the resistance of plants to this pathogen. Subcellular localization revealed that GhCDPK28-6 was localized in the cell membrane. We also found that GhPBL9 and GhRPL12C may interact with GhCDPK28-6. These results indicate that GhCDPK28-6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
Affiliation(s)
- Yajie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jinglong Zhou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Hongjie Feng,
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Heqin Zhu,
| |
Collapse
|
47
|
Gupta N, Gupta M, Akhatar J, Goyal A, Kaur R, Sharma S, Goyal P, Mukta A, Kaur N, Mittal M, Singh MP, Bharti B, Sardana VK, Banga SS. Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. PLANT MOLECULAR BIOLOGY 2021; 105:161-175. [PMID: 32997301 DOI: 10.1007/s11103-020-01076-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Genome wide association studies allowed prediction of 17 candidate genes for association with nitrogen use efficiency. Novel information obtained may provide better understanding of genomic controls underlying germplasm variations for this trait in Indian mustard. Nitrogen use efficiency (NUE) of Indian mustard (Brassica juncea (L.) Czern & Coss.) is low and most breeding efforts to combine NUE with crop performance have not succeeded. Underlying genetics also remain unexplored. We tested 92 SNP-genotyped inbred lines for yield component traits, N uptake efficiency (NUPEFF), nitrogen utilization efficiency (NUTEFF), nitrogen harvest index (NHI) and NUE for two years at two nitrogen doses (No without added N and N100 added @100 kg/ha). Genotypes IC-2489-88, M-633, MCP-632, HUJM 1080, GR-325 and DJ-65 recorded high NUE at low N. These also showed improved crop performance under high N. One determinate mustard genotype DJ-113 DT-3 revealed maximum NUTEFF. Genome wide association studies (GWAS) facilitated recognition of 17 quantitative trait loci (QTLs). Environment specificity was high. B-genome chromosomes (B02, B03, B05, B07 and B08) harbored many useful loci. We also used regional association mapping (RAM) to supplement results from GWAS. Annotation of the genomic regions around peak SNPs helped to predict several gene candidates for root architecture, N uptake, assimilation and remobilization. CAT9 (At1g05940) was consistently envisaged for both NUE and NUPEFF. Major N transporter genes, NRT1.8 and NRT3.1 were predicted for explaining variation for NUTEFF and NUPEFF, respectively. Most significant amino acid transporter gene, AAP1 appeared associated with NUE under limited N conditions. All these candidates were predicted in the regions of high linkage disequilibrium. Sequence information of the predicted candidate genes will permit development of molecular markers to aid breeding for high NUE.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Prinka Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Archana Mukta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Mohini Prabha Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - V K Sardana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India.
| |
Collapse
|
48
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
49
|
Kohli PS, Kumar Verma P, Verma R, Parida SK, Thakur JK, Giri J. Genome-wide association study for phosphate deficiency responsive root hair elongation in chickpea. Funct Integr Genomics 2020; 20:775-786. [PMID: 32892252 DOI: 10.1007/s10142-020-00749-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/17/2020] [Accepted: 08/16/2020] [Indexed: 01/23/2023]
Abstract
Root hairs (RHs) are single-celled elongated epidermal cells and play a vital role in nutrient absorption, particularly for immobile minerals like phosphorus (P). As an adaptive response to P deficiency, an increase in RH length enhances root-soil contact and absorptive area for P absorption. Genetic variations have been reported for RH length and its response to P deficiency in plants. However, only a few association studies have been conducted to identify genes and genetic loci associated with RH length. Here, we screened desi chickpea accessions for RH length and its plasticity under P deficiency. Further, the genome-wide association study (GWAS) was conducted to identify the genetic loci associated with RH length in P deficient and sufficient conditions. Although high variability was observed in terms of RH length in diverse genotypes, majority of the accessions showed typical response of increase in RH length in low P. Genome-wide association mapping identified many SNPs with significant associations with RH length in P-sufficient and P-deficient conditions. A few candidate genes for RH length in P deficient (SIZ1-like and HAD superfamily protein) and sufficient (RSL2-like and SMAP1-like) conditions were identified which have known roles in RH development and P deficiency response or both. Highly associated loci and candidate genes identified in this study would be useful for genomic-assisted breeding to develop P-efficient chickpea.
Collapse
Affiliation(s)
- Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pankaj Kumar Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rita Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
50
|
Zhu S, Martínez Pacheco J, Estevez JM, Yu F. Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. THE NEW PHYTOLOGIST 2020; 227:45-49. [PMID: 32083740 DOI: 10.1111/nph.16497] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/07/2020] [Indexed: 05/25/2023]
Abstract
Root hair (RH) size has vital physiological implications, since it influences the surface area of the root and thus the ability of the plant to absorb water and nutrients from the soil. Arabidopsis ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4), a bHLH transcription factor, controls the expression of hundreds of RH genes, and RSL4 expression itself can trigger ectopic RH growth. Recent studies reveal an autocrine mechanism governing plant RH cell growth in which the extracellular peptide RAPID ALKALINIZATION FACTOR 1 (RALF1) and receptor FERONIA (FER) act as a central hub between the cell surface and downstream signaling events. RALF1-FER promotes the phosphorylation of eIF4E1. Then, phosphorylated eIF4E1 further regulates the synthesis of RH proteins, including RSL4, to promote RH growth. High levels of RSL4 exert a negative feedback on RALF1 expression via directly binding to the RALF1 gene promoter, slowing RH growth and determining final RH cell size.
Collapse
Affiliation(s)
- Sirui Zhu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago, 8370186, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, 8331150, Chile
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| |
Collapse
|