1
|
Sebastian‐Azcona J, Cappa EP, Da Ros L, Ratcliffe B, Chen C, Wei X, Liu Y, Mansfield SD, Hamann A, El‐Kassaby YA, Thomas BR. Short- and Long-Term Growth Response to Multiple Drought Episodes: Evidence of Genetic Adaptation in a Conifer Species. Ecol Evol 2025; 15:e71398. [PMID: 40370351 PMCID: PMC12076065 DOI: 10.1002/ece3.71398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Drought tolerance of tree species is a concern in the context of climate change, and tree ring analyses can be used to assess past growth response(s), to drought events. In the current study, we applied this approach to 1281 individuals with known pedigree in long-term genetic test plantations of lodgepole pine in western Canada. We assessed resistance, resilience, and recovery metrics, and analyzed their causal relationships with long-term growth and susceptibility to disease through structural equation modeling. We found that trees with low short-term resilience to drought events also experienced severe reductions in long-term growth. Narrow-sense heritability of drought tolerance metrics was low for short-term responses at specific sites, while a new long-term decline index for families showed moderate heritability (h ^ 2 of 0.15 to 0.30 ± 0.03). We also detected evidence of local adaptation, with trees from lower elevation showing better drought adaptation. We conclude that the selection of genotypes for drought tolerance is possible, and that other species or populations could be screened using this method. We also note that the new long-term decline index developed in this study shows a higher degree of genetic control than other metrices, and may therefore be of broader interest in dendrochronological research.
Collapse
Affiliation(s)
- Jaime Sebastian‐Azcona
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
- Irrigation and Crop Ecophysiology GroupInstituto de Recursos Naturales y Agrobiología de SevillaSevillaSpain
| | - Eduardo P. Cappa
- Instituto Nacional de Tecnología Agropecuaria (INTA)Instituto de Recursos Biológicos, Centro de Investigación en Recursos NaturalesBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Letitia Da Ros
- Department of Wood Science, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Charles Chen
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | - Xiaojing Wei
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | - Yang Liu
- Department of Forest and Conservation Sciences, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- QAAFI & ARC CoE for Plant Success in Nature and AgricultureUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Shawn D. Mansfield
- Department of Wood Science, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andreas Hamann
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Barb R. Thomas
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
3
|
Manzanedo RD, Chin ARO, Ettinger AK, Pederson N, Pradhan K, Guiterman CH, Su J, Baumgarten F, Hille Ris Lambers J. Moving ecological tree-ring big data forwards: Limitations, data integration, and multidisciplinarity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177244. [PMID: 39477106 DOI: 10.1016/j.scitotenv.2024.177244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
In recent years, tree-ring databases have emerged as a remarkable resource for ecological research, allowing us to address ecological questions at unprecedented temporal and spatial scales. However, concerns regarding big tree-ring data limitations and risks have also surfaced, leading to questions about their potential to be representative of long-term forest responses. Here, we highlight three paths of action to improve on tree-ring databases in ecology: 1) Implementing consistent bias analyses in large dendroecological databases and promoting community-driven data to address data limitations, 2) Encouraging the integration of tree-ring data with other ecological datasets, and 3) Promoting theory-driven, mechanistic dendroecological research. These issues are increasingly important for tackling pressing cross-disciplinary research questions. Finally, although we focus here on tree ring databases, these points apply broadly across many aggregative databases in ecology.
Collapse
Affiliation(s)
- Rubén D Manzanedo
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Alana R O Chin
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland; Dpt. of Biological Sciences, California State Polytechnic University - Humboldt, Arcata, USA
| | | | - Neil Pederson
- Harvard Forest, Harvard University, Petersham, MA, USA
| | - Kavya Pradhan
- Biology Dpt., University of Washington, Seattle, USA
| | | | - Jiajia Su
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Frederik Baumgarten
- Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Janneke Hille Ris Lambers
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland; Biology Dpt., University of Washington, Seattle, USA
| |
Collapse
|
4
|
Litovchenko DA, Popova AA, Shestibratov KA, Krutovsky KV. Climate Response and Radial Growth Dynamics of Pedunculate Oak ( Quercus robur L.) Plus Trees and Their Half-Sib Progeny in Periods of Severe Droughts in the Forest-Steppe Zone of Eastern Europe. PLANTS (BASEL, SWITZERLAND) 2024; 13:3213. [PMID: 39599422 PMCID: PMC11598455 DOI: 10.3390/plants13223213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The dendrochronological parameters of 97 pedunculate oak (Quercus robur L.) trees including 20 plus trees (142-year-old on average) and four half-sib families for four of them were analyzed considering also specifically years of the most severe droughts that were identified using average monthly air temperature and precipitation data. The tree-ring width (TRW) was mostly affected by air temperature that had the largest cross-dating indices (CDI), up to 78% maximum. However, the 32-year Brückner-Egeson-Lockyer cycle (a climatic cycle of approximately 30-40 years that correlates with sunspot activity) was more reflected in the TRW dynamics in plus trees than precipitation and air temperature. A high-frequency of abnormal TRW was clearly observed during drought periods and in the following 2-3 years. Tree radial-growth reduction due to drought stress varied significantly between families. The resistance to drought based on TRW was higher in the maternal plus oak trees than in progeny. Drought resulted in reduced growth during the subsequent year(s); hence, the minimum growth occurred after the actual climate event. Autumn-winter precipitation and weather conditions were of the greatest importance at the onset of active vegetation in April and May. The influence of air temperature on oak growth was the largest in March (r = 0.39, p < 0.05). The strongest positive correlation between precipitation and growth (with r up to 0.38) was observed in May 2023. Plus trees had a high adaptive potential due to the stability of radial growth during drought with high resistance (Rt = 1.29) and resilience (Rs = 1.09) indexes. The offspring of families 1 (Rt = 0.89, Rs = 0.89) and 2 (Rt = 1.04, Rs = 0.87) had similar resistance and resilience, but the recovery indices (Rc) for offspring in families 1, 2 and 3 exceeded the recovery values for plus trees. For offspring in families 3 and 4, the index values were lower. The revealed responses of wood growth of plus trees to climatic parameters estimated as resistance (Rt), resilience (Rs) and recovery (Rc) indexes and similar responses in their progeny can be used in breeding pedunculate oak for wood growth productivity and drought resistance.
Collapse
Affiliation(s)
- Daria A. Litovchenko
- Department of Forestry, Forest Taxation and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| | - Anna A. Popova
- Department of Forest Genetics, Biotechnology and Plant Physiology, G.F. Morozov Voronezh State University of Forestry and Technologies, Timiryazeva Str. 8, 394087 Voronezh, Russia;
| | - Konstantin A. Shestibratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, 142290 Pushchino, Russia
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| |
Collapse
|
5
|
Martinez Del Castillo E, Torbenson MCA, Reinig F, Tejedor E, de Luis M, Esper J. Contrasting Future Growth of Norway Spruce and Scots Pine Forests Under Warming Climate. GLOBAL CHANGE BIOLOGY 2024; 30:e17580. [PMID: 39548695 DOI: 10.1111/gcb.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
Forests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species-specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st-century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071-2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.
Collapse
Affiliation(s)
| | - Max C A Torbenson
- Department of Geography, Johannes Gutenberg University, Mainz, Germany
| | - Frederick Reinig
- Department of Geography, Johannes Gutenberg University, Mainz, Germany
| | - Ernesto Tejedor
- Department of Geology, National Museum of Natural Sciences-Spanish National Research Council (MNCN-CSIC), Madrid, Spain
| | - Martín de Luis
- Department of Geography and Regional Planning and Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| | - Jan Esper
- Department of Geography, Johannes Gutenberg University, Mainz, Germany
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Evans MEK, Dey SMN, Heilman KA, Tipton JR, DeRose RJ, Klesse S, Schultz EL, Shaw JD. Tree rings reveal the transient risk of extinction hidden inside climate envelope forecasts. Proc Natl Acad Sci U S A 2024; 121:e2315700121. [PMID: 38830099 PMCID: PMC11181036 DOI: 10.1073/pnas.2315700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/03/2024] [Indexed: 06/05/2024] Open
Abstract
Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.
Collapse
Affiliation(s)
| | - Sharmila M. N. Dey
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Kelly A. Heilman
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ85721
| | - John R. Tipton
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM87545
| | - R. Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - Stefan Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, BirmensdorfCH-8903, Switzerland
| | - Emily L. Schultz
- Department of Biology, Colorado Mountain College, Breckenridge, CO80424
| | - John D. Shaw
- Riverdale Forestry Sciences Lab, Rocky Mountain Research Station, US Forest Service, Riverdale, UT84405
| |
Collapse
|
7
|
Erlichman A, Sandell L, Otto SP, Aitken SN, Ronce O. Planting long-lived trees in a warming climate: Theory shows the importance of stage-dependent climatic tolerance. Evol Appl 2024; 17:e13711. [PMID: 38894979 PMCID: PMC11183180 DOI: 10.1111/eva.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Abstract
Climate change poses a particular threat to long-lived trees, which may not adapt or migrate fast enough to keep up with rising temperatures. Assisted gene flow could facilitate adaptation of populations to future climates by using managed translocation of seeds from a warmer location (provenance) within the current range of a species. Finding the provenance that will perform best in terms of survival or growth is complicated by a trade-off. Because trees face a rapidly changing climate during their long lives, the alleles that confer optimal performance may vary across their lifespan. For instance, trees from warmer provenances could be well adapted as adults but suffer from colder temperatures while juvenile. Here we use a stage-structured model, using both analytical predictions and numerical simulations, to determine which provenance would maximize the survival of a cohort of long-lived trees in a changing climate. We parameterize our simulations using empirically estimated demographic transition matrices for 20 long-lived tree species. Unable to find reliable quantitative estimates of how climatic tolerance changes across stages in these same species, we varied this parameter to study its effect. Both our mathematical model and simulations predict that the best provenance depends strongly on how fast the climate changes and also how climatic tolerance varies across the lifespan of a tree. We thus call for increased empirical efforts to measure how climate tolerance changes over life in long-lived species, as our model suggests that it should strongly influence the best provenance for assisted gene flow.
Collapse
Affiliation(s)
- Adèle Erlichman
- ISEM, Univ Montpellier, CNRS, IRDMontpellierFrance
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Linnea Sandell
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Organismal BiologyUppsala UniversityUppsalaSweden
- Department of Urban and Rural DevelopmentSwedish University of AgricultureUppsalaSweden
| | - Sarah P. Otto
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sally N. Aitken
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ophélie Ronce
- ISEM, Univ Montpellier, CNRS, IRDMontpellierFrance
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
8
|
Xie C, Chen S, Liu D, Jim CY. Unveiling the complex networks of urban tree diversity research: A global perspective. Ecol Evol 2024; 14:e11630. [PMID: 38911495 PMCID: PMC11192645 DOI: 10.1002/ece3.11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Ecosystem services offered by urban forests must be proactively managed to remain diverse and sustainable. Recent research findings deserve a systematic synthesis to elucidate inherent knowledge structures and dynamics. This study focused on the urban tree diversity theme from 2000 to 2022. Web of Science Core Collection database provided bibliometric details on academic publications. The data-driven quantitative analysis explored research quantities, emphasis, trends, patterns, linkages, and impacts by countries, institutions, authors, journals, and citations. Publications and research topics have expanded continually, with accelerated growth in recent years. Research activities, outputs and interactions demonstrated conspicuous spatial clustering. A few countries, institutions and researchers generated a notable proportion of publications. Their scholarly contributions were visualized in knowledge graphs as complex networks of nodes and inter-node links. Keyword analysis generated a network to indicate research hotspots and frontiers to steer and prioritize future studies. Recent findings affirmed that cities can harbor substantial tree diversity due to enhanced habitat heterogeneity and successful species adaptation. Aligning tree traits with environmental conditions and management objectives can improve benefits. Urbanization can filter tree traits to shape community assemblages through stressors: habitat degradation, fragmentation and loss, in conjunction with pollution, climate change, and introduced species. Diversity preservation strategies include protecting remnant natural vegetation, connecting green spaces, and restoring complex canopy geometry and biomass structure. The emerging frontiers are marked by modeling future species distributions, leveraging technologies like remote sensing, linking ecology with human values, and committing to community-based stewardship. Management can be upgraded by interdisciplinary perspectives integrating ecological science and social engagement. The findings highlight the need for biodiversity enrichment anchored by native species, trait-matched assemblages, adaptive policies, and community participation to create livable-green cities. This review synthesizes key advances in urban tree ecology and biodiversity research to inform the planning and stewardship of resilient urban forests.
Collapse
Affiliation(s)
- Chunping Xie
- Tropical Biodiversity and Bioresource Utilization LaboratoryQiongtai Normal UniversityHaikouChina
| | - Shuifei Chen
- Nanjing Institute of Environmental SciencesMinistry of Ecology and EnvironmentNanjingChina
| | - Dawei Liu
- Key Laboratory of State Forest and Grassland Administration Wildlife Evidence TechnologyNanjing Police UniversityNanjingChina
| | - Chi Yung Jim
- Department of Social Sciences and Policy StudiesEducation University of Hong KongTai PoChina
| |
Collapse
|
9
|
Depardieu C, Lenz P, Marion J, Nadeau S, Girardin MP, Marchand W, Bégin C, Treydte K, Gessler A, Bousquet J, Savard MM, Isabel N. Contrasting physiological strategies explain heterogeneous responses to severe drought conditions within local populations of a widespread conifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171174. [PMID: 38402972 DOI: 10.1016/j.scitotenv.2024.171174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon‑oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.
| | - Patrick Lenz
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Joelle Marion
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Simon Nadeau
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Martin P Girardin
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - William Marchand
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Christian Bégin
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martine M Savard
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
10
|
Kormann JM, van der Maaten E, Liesebach M, Liepe KJ, van der Maaten-Theunissen M. High risk, high gain? Trade-offs between growth and resistance to extreme events differ in northern red oak ( Quercus rubra L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1374498. [PMID: 38645393 PMCID: PMC11026572 DOI: 10.3389/fpls.2024.1374498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Information about the resistance and adaptive potential of tree species and provenances is needed to select suitable planting material in times of rapidly changing climate conditions. In this study, we evaluate growth responses to climatic fluctuations and extreme events for 12 provenances of northern red oak (Quercus rubra L.) that were tested across three trial sites with distinct environmental conditions in Germany. Six provenances each were sourced from the natural distribution in North America and from introduced stands in Germany. We collected increment cores of 16 trees per provenance and site. Dendroecological methods were used to compare provenance performance and establish climate-growth relationships to identify the main growth limiting factors. To evaluate the provenance response to extreme drought and frost events, three site-specific drought years were selected according to the Standardized Precipitation Evapotranspiration Index (SPEI) and 2010 as a year with an extreme late frost event. Resistance indices for these years were calculated and assessed in relation to overall growth performance. We observed a high variation in growth and in the climate sensitivity between sites depending on the prevailing climatic conditions, as well as a high intra-specific variation. Overall, summer drought and low temperatures in the early growing season appear to constrain the growth of red oak. The resistance of provenances within sites and extreme years showed considerable rank changes and interaction effects. We did not find a trade-off between growth and resistance to late frost, namely, fast growing provenances had a high frost hardiness. Further, there was no evidence for a trade-off between growth and drought hardiness. Still, responses to drought or late frost differ between provenances, pointing to dissimilar adaptive strategies. Provenances from introduced (i.e. German) stands represent suitable seed sources, as they combine a higher growth and frost hardiness compared to their North American counterparts. Drought hardiness was slightly higher in the slow-growing provenances. The results provide a better understanding of the variable adaptive strategies between provenances and help to select suitable planting material for adaptive forest management.
Collapse
Affiliation(s)
- Jonathan M. Kormann
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
| | | | - Katharina J. Liepe
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | |
Collapse
|
11
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
12
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
13
|
Grubinger S, Coops NC, O'Neill GA. Picturing local adaptation: Spectral and structural traits from drone remote sensing reveal clinal responses to climate transfer in common-garden trials of interior spruce (Picea engelmannii × glauca). GLOBAL CHANGE BIOLOGY 2023; 29:4842-4860. [PMID: 37424219 DOI: 10.1111/gcb.16855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Common-garden trials of forest trees provide phenotype data used to assess growth and local adaptation; this information is foundational to tree breeding programs, genecology, and gene conservation. As jurisdictions consider assisted migration strategies to match populations to suitable climates, in situ progeny and provenance trials provide experimental evidence of adaptive responses to climate change. We used drone technology, multispectral imaging, and digital aerial photogrammetry to quantify spectral traits related to stress, photosynthesis, and carotenoids, and structural traits describing crown height, size, and complexity at six climatically disparate common-garden trials of interior spruce (Picea engelmannii × glauca) in western Canada. Through principal component analysis, we identified key components of climate related to temperature, moisture, and elevational gradients. Phenotypic clines in remotely sensed traits were analyzed as trait correlations with provenance climate transfer distances along principal components (PCs). We used traits showing clinal variation to model best linear unbiased predictions for tree height (R2 = .98-.99, root mean square error [RMSE] = 0.06-0.10 m) and diameter at breast height (DBH, R2 = .71-.97, RMSE = 2.57-3.80 mm) and generated multivariate climate transfer functions with the model predictions. Significant (p < .05) clines were present for spectral traits at all sites along all PCs. Spectral traits showed stronger clinal variation than structural traits along temperature and elevational gradients and along moisture gradients at wet, coastal sites, but not at dry, interior sites. Spectral traits may capture patterns of local adaptation to temperature and montane growing seasons which are distinct from moisture-limited patterns in stem growth. This work demonstrates that multispectral indices improve the assessment of local adaptation and that spectral and structural traits from drone remote sensing produce reliable proxies for ground-measured height and DBH. This phenotyping framework contributes to the analysis of common-garden trials towards a mechanistic understanding of local adaptation to climate.
Collapse
Affiliation(s)
- Samuel Grubinger
- Faculty of Forestry, Integrated Remote Sensing Studio, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas C Coops
- Faculty of Forestry, Integrated Remote Sensing Studio, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory A O'Neill
- BC Ministry of Forests, Kalamalka Forestry Centre, Vernon, British Columbia, Canada
| |
Collapse
|
14
|
Méndez-Cea B, García-García I, Sánchez-Salguero R, Lechuga V, Gallego FJ, Linares JC. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. PLANTS (BASEL, SWITZERLAND) 2023; 12:873. [PMID: 36840220 PMCID: PMC9959318 DOI: 10.3390/plants12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The frequency and intensity of drought events are increasing worldwide, challenging the adaptive capacity of several tree species. Here, we evaluate tree growth patterns and climate sensitivity to precipitation, temperature, and drought in the relict Moroccan fir Abies marocana. We selected two study sites, formerly stated as harboring contrasting A. marocana taxa (A. marocana and A. tazaotana, respectively). For each tree, dendrochronological methods were applied to quantify growth patterns and climate-growth sensitivity. Further, ddRAD-seq was performed on the same trees and close saplings to obtain single nucleotide polymorphisms (SNPs) and related genotype-phenotype associations. Genetic differentiation between the two studied remnant populations of A. marocana was weak. Growth patterns and climate-growth relationships were almost similar at the two sites studied, supporting a negative effect of warming. Growth trends and tree size showed associations with SNPs, although there were no relationships with phenotypes related to climatic sensitivity. We found significant differences in the SNPs subjected to selection in the saplings compared to the old trees, suggesting that relict tree populations might be subjected to genetic differentiation and local adaptation to climate dryness. Our results illustrate the potential of tree rings and genome-wide analysis to improve our understanding of the adaptive capacity of drought-sensitive forests to cope with ongoing climate change.
Collapse
Affiliation(s)
- Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Víctor Lechuga
- Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente (CEACTEMA), Universidad de Jaén, 23071 Jaén, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan C. Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
15
|
Feng S, Wan W, Li Y, Wang D, Ren G, Ma T, Ru D. Transcriptome-based analyses of adaptive divergence between two closely related spruce species on the Qinghai-Tibet plateau and adjacent regions. Mol Ecol 2023; 32:476-491. [PMID: 36320185 DOI: 10.1111/mec.16758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Speciation among populations connected by gene flow is driven by adaptation to different environments, but underlying gene-environment associations remain largely unknown. Here, 162 individuals from 32 populations were sampled to obtain 191,648 independent single nucleotide polymorphisms (SNPs) across the genomes of two closely related spruce species, Picea asperata and Picea crassifolia, which occur on the Qinghai-Tibet Plateau and in surrounding regions. Using the SNP data set, genotype-environment associations and demographic modelling were used to examine local adaptation and genetic divergence between these two species. While morphologically similar, the two Picea species were genetically differentiated in multiple analyses. These species diverged despite continuous gene flow, and their initial divergence was dated back to the late Quaternary. The effective population sizes of both species have expanded since their divergence, as confirmed by niche distribution simulations. A total of 6365 genes were associated with the tested environmental variables; of these, 41 were positively selected in P. asperata and were mainly associated with temperature, while 83 were positively selected in P. crassifolia and were primarily associated with precipitation. These results deepen our understanding of the adaptive divergence and demographic histories of these two spruce species and highlight the importance of genomic data in deciphering the environmental selection underlying Quaternary interspecific divergence.
Collapse
Affiliation(s)
- Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Wan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - DongLei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
17
|
Krutovsky KV. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Zacharias M, Pampuch T, Dauphin B, Opgenoorth L, Roland C, Schnittler M, Wilmking M, Bog M, Heer K. Genetic basis of growth reaction to drought stress differs in contrasting high-latitude treeline ecotones of a widespread conifer. Mol Ecol 2022; 31:5165-5181. [PMID: 35951000 DOI: 10.1111/mec.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Climate change is increasing the frequency and intensity of drought events in many boreal forests. Trees are sessile organisms with a long generation time, which makes them vulnerable to fast climate change and hinders fast adaptations. Therefore, it is important to know how forests cope with drought stress and to explore the genetic basis of these reactions. We investigated three natural populations of white spruce (Picea glauca) in Alaska, located at one drought-limited and two cold-limited treelines with a paired plot design of one forest and one treeline plot. We obtained individual increment cores from 458 trees and climate data to assess dendrophenotypes, in particular the growth reaction to drought stress. To explore the genetic basis of these dendrophenotypes, we genotyped the individual trees at 3000 single nucleotide polymorphisms in candidate genes and performed genotype-phenotype association analysis using linear mixed models and Bayesian sparse linear mixed models. Growth reaction to drought stress differed in contrasting treeline populations. Therefore, the populations are likely to be unevenly affected by climate change. We identified 40 genes associated with dendrophenotypic traits that differed among the treeline populations. Most genes were identified in the drought-limited site, indicating comparatively strong selection pressure of drought-tolerant phenotypes. Contrasting patterns of drought-associated genes among sampled sites and in comparison to Canadian populations in a previous study suggest that drought adaptation acts on a local scale. Our results highlight genes that are associated with wood traits which in turn are critical for the establishment and persistence of future forests under climate change.
Collapse
Affiliation(s)
- Melanie Zacharias
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Timo Pampuch
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | | | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany
| | - Carl Roland
- Denali National Park and Preserve, Fairbanks, Alaska, USA
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Katrin Heer
- Forest Genetics, Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Lombardi E, Shestakova TA, Santini F, Resco de Dios V, Voltas J. Harnessing tree-ring phenotypes to disentangle gene by environment interactions and their climate dependencies in a circum-Mediterranean pine. ANNALS OF BOTANY 2022; 130:509-523. [PMID: 35797146 PMCID: PMC9510947 DOI: 10.1093/aob/mcac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. We linked dendrochronology and genomics [single nucleotide polymorphisms (SNPs)] for a widespread conifer (Pinus halepensis Mill.) to characterize intraspecific growth differences elicited by climate. METHODS The analysis comprised 20-year tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We tested for genotype by environment interactions (G × E) of indexed ring width (RWI) and early- to latewood ratios (ELI) using factorial regression, which describes G × E as differential gene sensitivity to climate. KEY RESULTS The species' annual growth was positively influenced by winter temperature and spring moisture and negatively influenced by previous autumn precipitation and warm springs. Four and five climate factors explained 10 % (RWI) and 16 % (ELI) of population-specific interannual variability, respectively, with populations from drought-prone areas and with uneven precipitation experiencing larger growth reductions during dry vegetative periods. Furthermore, four and two SNPs explained 14 % (RWI) and 10 % (ELI) of interannual variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: one identified from transcriptome sequencing of P. halepensis and another involved in response regulation to environmental stressors. CONCLUSIONS We highlight how tree-ring phenotypes, obtained from a common garden experiment, combined with a candidate-gene approach allow the quantification of genetic and environmental effects determining adaptation for a conifer with a large and complex genome.
Collapse
Affiliation(s)
| | | | - Filippo Santini
- Joint Research Unit CTFC – AGROTECNIO – CERCA, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
- Departament of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
| | - Víctor Resco de Dios
- Joint Research Unit CTFC – AGROTECNIO – CERCA, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
- Departament of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC – AGROTECNIO – CERCA, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
- Departament of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
| |
Collapse
|
20
|
Cold-season freeze frequency is a pervasive driver of subcontinental forest growth. Proc Natl Acad Sci U S A 2022; 119:e2117464119. [PMID: 35476522 PMCID: PMC9170167 DOI: 10.1073/pnas.2117464119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SignificanceThe reduction of freeze exposure with winter warming has consequences for carbon sequestration by northern forests. Quantifying the impact of these changes on tree growth is, however, challenging because of among- and within-tree species variability in freeze tolerance and phenological cues. Here, we provide a comprehensive assessment of tree growth response to the cold-season frequency of freeze days using an extensive tree-ring dataset covering Canada's forests. Our study shows that tree growth responses to freeze exposure vary in direction and magnitude by clade and species but also with leaf-out strategy, tree age and size, and environmental factors. Such quantification can help predict terrestrial carbon dynamics under climate change.
Collapse
|
21
|
Cappa EP, Klutsch JG, Sebastian-Azcona J, Ratcliffe B, Wei X, Da Ros L, Liu Y, Chen C, Benowicz A, Sadoway S, Mansfield SD, Erbilgin N, Thomas BR, El-Kassaby YA. Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program. PLoS One 2022; 17:e0264549. [PMID: 35298481 PMCID: PMC8929621 DOI: 10.1371/journal.pone.0264549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.
Collapse
Affiliation(s)
- Eduardo P. Cappa
- Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jennifer G. Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaojing Wei
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Letitia Da Ros
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yang Liu
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Andy Benowicz
- Forest Stewardship and Trade Branch, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Shane Sadoway
- Blue Ridge Lumber Inc., West Fraser Mills Ltd, Blue Ridge, Alberta, Canada
| | - Shawn D. Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Barb R. Thomas
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Laverdière J, Lenz P, Nadeau S, Depardieu C, Isabel N, Perron M, Beaulieu J, Bousquet J. Breeding for adaptation to climate change: genomic selection for drought response in a white spruce multi-site polycross test. Evol Appl 2022; 15:383-402. [PMID: 35386396 PMCID: PMC8965362 DOI: 10.1111/eva.13348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
With climate change, increasingly intense and frequent drought episodes will be affecting water availability for boreal tree species, prompting tree breeders and forest managers to consider adaptation to drought stress as a priority in their reforestation efforts. We used a 19-year-old polycross progeny test of the model conifer white spruce (Picea glauca) replicated on two sites affected by distinct drought episodes at different ages to estimate the genetic control and the potential for improvement of drought response in addition to conventional cumulative growth and wood quality traits. Drought response components were measured from dendrochronological signatures matching drought episodes in wood ring increment cores. We found that trees with more vigorous growth during their lifespan resisted better during the current year of a drought episode when the drought had more severe effects. Phenotypic data were also analyzed using genomic prediction (GBLUP) relying on the genomic relationship matrix of multi-locus gene SNP marker information, and conventional analysis (ABLUP) based on validated pedigree information. The accuracy of predicted breeding values for drought response components was marginally lower than that for conventional traits and comparable between GBLUP and ABLUP. Genetic correlations were generally low and nonsignificant between drought response components and conventional traits, except for resistance which was positively correlated to tree height. Heritability estimates for the components of drought response were slightly lower than for conventional traits, but similar single-trait genetic gains could be obtained. Multi-trait genomic selection simulations indicated that it was possible to improve simultaneously for all traits on both sites while sacrificing little on gain in tree height. In a context of rapid climate change, our results suggest that with careful phenotypic assessment, drought response may be considered in multi-trait improvement of white spruce, with accelerated screening of large numbers of candidates and selection at young age with genomic selection.
Collapse
Affiliation(s)
- Jean‐Philippe Laverdière
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CentreQuébecQCCanada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CentreQuébecQCCanada
| | - Claire Depardieu
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Nathalie Isabel
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Martin Perron
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Direction de la Recherche ForestièreMinistère des Forêts, de la Faune et des Parc du QuébecQuébecQCCanada
| | - Jean Beaulieu
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| |
Collapse
|
23
|
Evans MEK, DeRose RJ, Klesse S, Girardin MP, Heilman KA, Alexander MR, Arsenault A, Babst F, Bouchard M, Cahoon SMP, Campbell EM, Dietze M, Duchesne L, Frank DC, Giebink CL, Gómez-Guerrero A, García GG, Hogg EH, Metsaranta J, Ols C, Rayback SA, Reid A, Ricker M, Schaberg PG, Shaw JD, Sullivan PF, GaytÁn SAV. Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide Drawdown of Atmospheric CO2. Bioscience 2021; 72:233-246. [PMID: 35241971 PMCID: PMC8888126 DOI: 10.1093/biosci/biab119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and—ultimately—the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.
Collapse
Affiliation(s)
- Margaret E K Evans
- Assistant professor, University of Arizona, Tucson, Arizona, United States
| | - R Justin DeRose
- Quinney College of Natural Resources, Utah State University, Logan, Utah, United States
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow, and Landscape Research, Zürich, Switzerland
| | - Martin P Girardin
- Canadian Forest Service, Laurentian Forestry Centre, Québec, Québec, Canada
| | - Kelly A Heilman
- Postdoctoral researcher, University of Arizona, Tucson, Arizona, United States
| | | | - André Arsenault
- Canadian Forest Service, Atlantic Forestry Centre, Natural Resources Canada, Corner Brook, Labrador, Canada
| | - Flurin Babst
- School of Natural Resources, Environment at University of Arizona, Tucson, Arizona, United States
| | - Mathieu Bouchard
- Department of Wood Science and Forestry, Laval University, Québec, Québec, Canada
| | - Sean M P Cahoon
- USDA Forest Service, Pacific Northwest Research Station, Anchorage, Alaska, United States
| | - Elizabeth M Campbell
- Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Michael Dietze
- Department of Earth and Environment, Boston University, Boston, Massachusetts, United States
| | - Louis Duchesne
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune, et des Parcs du Québec, Quebec, Québec, Canada
| | - David C Frank
- Professor and the director, University of Arizona, Tucson, Arizona, United States
| | - Courtney L Giebink
- Graduate student, Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, United States
| | | | - Genaro Gutiérrez García
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Edward H Hogg
- Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Juha Metsaranta
- Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Clémentine Ols
- Institut National de l'Information Géographique et Forestière, Nancy, France
| | - Shelly A Rayback
- Department of Geography, University of Vermont, Burlington, Vermont, United States
| | - Anya Reid
- British Columbia Ministry of Forests, Victoria, British Columbia, Canada
| | - Martin Ricker
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Paul G Schaberg
- USDA Forest Service, Northern Research Station, Burlington, Vermont, United States
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, Utah, United States
| | | | | |
Collapse
|
24
|
Xiao L, Du Q, Fang Y, Quan M, Lu W, Wang D, Si J, El-Kassaby YA, Zhang D. Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in Populus. TREE PHYSIOLOGY 2021; 41:2198-2215. [PMID: 33987676 DOI: 10.1093/treephys/tpab068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is a vital hormone for adaptive responses to biotic and abiotic stresses, which facilitates growth-immunity trade-offs in plants. However, the genetic regulatory networks underlying the metabolic pathway of SA biosynthesis in perennial species remain unclear. Here, we integrated genome-wide association study (GWAS) with metabolite and expression profiling methodologies to dissect the genetic architecture of SA biosynthesis in Populus. First, we quantified nine intermediate metabolites of SA biosynthesis in 300 unrelated Populus tomentosa Carr. individuals. Then, we used a systematic genetic strategy to identify candidate genes for constructing the genetic regulatory network of SA biosynthesis. We focused on WRKY70, an efficient transcription factor, as the key causal gene in the regulatory network, and combined the novel genes coordinating the accumulation of SA. Finally, we identified eight GWAS signals and eight expression quantitative trait loci situated in a selective sweep, and showed the presence of large allele frequency differences among the three geographic populations, revealing that candidate genes subject to selection were involved in SA biosynthesis. This study provides an integrated strategy for dissecting the genetic architecture of the metabolic pathway of SA biosynthesis in Populus, thereby enhancing our understanding of genetic regulation of SA biosynthesis in trees, and accelerating marker-assisted breeding efforts toward high-resistance elite varieties of Populus.
Collapse
Affiliation(s)
- Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
25
|
Royer‐Tardif S, Boisvert‐Marsh L, Godbout J, Isabel N, Aubin I. Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecol Evol 2021; 11:13081-13100. [PMID: 34646454 PMCID: PMC8495821 DOI: 10.1002/ece3.8024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 01/09/2023] Open
Abstract
Adaptive capacity, one of the three determinants of vulnerability to climate change, is defined as the capacity of species to persist in their current location by coping with novel environmental conditions through acclimation and/or evolution. Although studies have identified indicators of adaptive capacity, few have assessed this capacity in a quantitative way that is comparable across tree species. Yet, such multispecies assessments are needed by forest management and conservation programs to refine vulnerability assessments and to guide the choice of adaptation measures. In this paper, we propose a framework to quantitatively evaluate five key components of tree adaptive capacity to climate change: individual adaptation through phenotypic plasticity, population phenotypic diversity as influenced by genetic diversity, genetic exchange within populations, genetic exchange between populations, and genetic exchange between species. For each component, we define the main mechanisms that underlie adaptive capacity and present associated metrics that can be used as indices. To illustrate the use of this framework, we evaluate the relative adaptive capacity of 26 northeastern North American tree species using values reported in the literature. Our results show adaptive capacity to be highly variable among species and between components of adaptive capacity, such that no one species ranks consistently across all components. On average, the conifer Picea glauca and the broadleaves Acer rubrum and A. saccharinum show the greatest adaptive capacity among the 26 species we documented, whereas the conifers Picea rubens and Thuja occidentalis, and the broadleaf Ostrya virginiana possess the lowest. We discuss limitations that arise when comparing adaptive capacity among species, including poor data availability and comparability issues in metrics derived from different methods or studies. The breadth of data required for such an assessment exemplifies the multidisciplinary nature of adaptive capacity and the necessity of continued cross-collaboration to better anticipate the impacts of a changing climate.
Collapse
Affiliation(s)
- Samuel Royer‐Tardif
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre d'enseignement et de recherche en foresterie de Sainte‐Foy inc. (CERFO)QuébecQCCanada
| | - Laura Boisvert‐Marsh
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
| | - Julie Godbout
- Ministère des Forêts de la Faune et des Parcs du QuébecDirection de la recherche forestièreQuébecQCCanada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Isabelle Aubin
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
26
|
Depardieu C, Gérardi S, Nadeau S, Parent GJ, Mackay J, Lenz P, Lamothe M, Girardin MP, Bousquet J, Isabel N. Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Mol Ecol 2021; 30:3898-3917. [PMID: 33586257 PMCID: PMC8451828 DOI: 10.1111/mec.15846] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
As boreal forests face significant threats from climate change, understanding evolutionary trajectories of coniferous species has become fundamental to adapting management and conservation to a drying climate. We examined the genomic architecture underlying adaptive variation related to drought tolerance in 43 populations of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by combining genotype-environment associations, genotype-phenotype associations, and transcriptomics. Adaptive genetic variation was identified by correlating allele frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes with temperature, precipitation and aridity gradients, and testing for significant associations between genotypes and 11 dendrometric and drought-related traits (i.e., anatomical, growth response and climate-sensitivity traits) using a polygenic model. We identified a set of 285 genes significantly associated with a climatic factor or a phenotypic trait, including 110 that were differentially expressed in response to drought under greenhouse-controlled conditions. The interlinked phenotype-genotype-environment network revealed eight high-confidence genes involved in white spruce adaptation to drought, of which four were drought-responsive in the expression analysis. Our findings represent a significant step toward the characterization of the genomic basis of drought tolerance and adaptation to climate in conifers, which is essential to enable the establishment of resilient forests in view of new climate conditions.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
| | - Sébastien Gérardi
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CenterQuébecQCCanada
| | - Geneviève J. Parent
- Laboratory of GenomicsMaurice‐Lamontagne Institute, Fisheries and Oceans CanadaMont‐JoliQCCanada
| | - John Mackay
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CenterQuébecQCCanada
| | - Manuel Lamothe
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
| | - Nathalie Isabel
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
| |
Collapse
|
27
|
Comparison of the Radial Growth Response of Picea crassifolia to Climate Change in Different Regions of the Central and Eastern Qilian Mountains. FORESTS 2021. [DOI: 10.3390/f12081015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.
Collapse
|
28
|
Martínez-Sancho E, Rellstab C, Guillaume F, Bigler C, Fonti P, Wohlgemuth T, Vitasse Y. Post-glacial re-colonization and natural selection have shaped growth responses of silver fir across Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146393. [PMID: 34030256 DOI: 10.1016/j.scitotenv.2021.146393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/22/2023]
Abstract
Warmer climate and more frequent extreme droughts will pose major threats to forest ecosystems. Past demography processes due to post-glacial recolonization and adaptation to local environmental conditions are among the main contributors to genetic differentiation processes among provenances. Assessing the intra-specific variability of tree growth responses to such changes is crucial to explore a species' potential to cope with climate warming. We combined growth-related traits derived from tree-ring width series with neutral genetic information of 18 European provenances of silver fir (Abies alba Mill.) growing in two common garden experiments in Switzerland. Analyses based on neutral single nucleotide polymorphisms revealed that the studied provenances grouped into three longitudinal clusters. These three genetic clusters showed differences in growth traits (height and DBH), with the provenances from the eastern cluster exhibiting the highest growth. The Pyrenees cluster showed significantly lower recovery and resilience to the extreme drought of 2003 as well as lower values of growth autocorrelation. QST-FST and correlation analyses with climate of provenance origin suggest that the differences among provenances found in some traits result from natural selection. Our study suggests that the last post-glacial re-colonization and natural selection are the major drivers explaining the intra-specific variability in growth of silver fir across Europe. These findings highlight the importance of combining dendroecology and genetic analyses on fitness-related traits to assess the potential of a species to cope with global environmental change and provide insights to support assisted gene flow to ensure the persistence of the species in European forests.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Christian Rellstab
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
29
|
Opgenoorth L, Rellstab C. Tackling the challenges of evolutionary forest research with multidata approaches. Mol Ecol 2021; 30:3893-3895. [PMID: 34152056 DOI: 10.1111/mec.16031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
Many forest tree species have characteristics that make the study of their evolutionary ecology complex. For example, they are long-lived and thus have long generation times, and their often large, complex genomes have hampered establishing genomic resources. One way to tackle this challenge is to access multiple complementary data sources and analytical approaches when attempting to infer patterns of adaptive evolution. In the cover article of this issue of Molecular Ecology, Depardieu et al. (2021) combine large amounts of environmental, genomic, dendrochronological, and gene expression data in a common garden to explore the polygenic basis of drought resistance in white spruce (Picea glauca), a long-lived conifer. They identify candidate genes involved in growth and resistance to extreme drought events and show how multiple data sets may deliver complementary evidence to circumvent the manifold challenges of the research field.
Collapse
Affiliation(s)
- Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany.,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
30
|
George J, Schueler S, Grabner M, Karanitsch‐Ackerl S, Mayer K, Stierschneider M, Weissenbacher L, van Loo M. Looking for the needle in a downsized haystack: Whole-exome sequencing unravels genomic signals of climatic adaptation in Douglas-fir ( Pseudotsuga menziesii). Ecol Evol 2021; 11:8238-8253. [PMID: 34188883 PMCID: PMC8216971 DOI: 10.1002/ece3.7654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Abstract
Conifers often occur along steep gradients of diverse climates throughout their natural ranges, which is expected to result in spatially varying selection to local climate conditions. However, signals of climatic adaptation can often be confounded, because unraveled clines covary with signals caused by neutral evolutionary processes such as gene flow and genetic drift. Consequently, our understanding of how selection and gene flow have shaped phenotypic and genotypic differentiation in trees is still limited.A 40-year-old common garden experiment comprising 16 Douglas-fir (Pseudotsuga menziesii) provenances from a north-to-south gradient of approx. 1,000 km was analyzed, and genomic information was obtained from exome capture, which resulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. We used a restrictive and conservative filtering approach, which permitted us to include only SNPs and individuals in environmental association analysis (EAA) that were free of potentially confounding effects (LD, relatedness among trees, heterozygosity deficiency, and deviations from Hardy-Weinberg proportions). We used four conceptually different genome scan methods based on FST outlier detection and gene-environment association in order to disentangle truly adaptive SNPs from neutral SNPs.We found that a relatively small proportion of the exome showed a truly adaptive signal (0.01%-0.17%) when population substructuring and multiple testing was accounted for. Nevertheless, the unraveled SNP candidates showed significant relationships with climate at provenance origins, which strongly suggests that they have featured adaptation in Douglas-fir along a climatic gradient. Two SNPs were independently found by three of the employed algorithms, and one of them is in close proximity to an annotated gene involved in circadian clock control and photoperiodism as was similarly found in Populus balsamifera. Synthesis. We conclude that despite neutral evolutionary processes, phenotypic and genomic signals of adaptation to climate are responsible for differentiation, which in particular explain disparity between the well-known coastal and interior varieties of Douglas-fir.
Collapse
Affiliation(s)
- Jan‐Peter George
- Faculty of Science & TechnologyTartu ObservatoryUniversity of TartuTartuEstonia
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| | - Silvio Schueler
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsViennaAustria
| | - Michael Grabner
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Sandra Karanitsch‐Ackerl
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Konrad Mayer
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | | | - Lambert Weissenbacher
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| |
Collapse
|
31
|
Campbell EM, Magnussen S, Antos JA, Parish R. Size‐, species‐, and site‐specific tree growth responses to climate variability in old‐growth subalpine forests. Ecosphere 2021. [DOI: 10.1002/ecs2.3529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elizabeth M. Campbell
- Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 West Burnside Road Victoria British ColumbiaV8Z 1M5Canada
| | - Steen Magnussen
- Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 West Burnside Road Victoria British ColumbiaV8Z 1M5Canada
| | - Joseph A. Antos
- Department of Biology University of Victoria P.O. Box 3020, STN CSC Victoria British ColumbiaV8W 3N5Canada
| | - Roberta Parish
- Azura Formetrics Ltd. 1540 Ash Road Victoria British ColumbiaV8N 2S8Canada
| |
Collapse
|
32
|
Babst F, Friend AD, Karamihalaki M, Wei J, von Arx G, Papale D, Peters RL. Modeling Ambitions Outpace Observations of Forest Carbon Allocation. TRENDS IN PLANT SCIENCE 2021; 26:210-219. [PMID: 33168468 DOI: 10.1016/j.tplants.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
There have been vociferous calls for 'tree-centered' vegetation models to refine predictions of forest carbon (C) cycling. Unfortunately, our global survey at flux-tower sites indicates insufficient empirical data support for this much-needed model development. We urge for a new generation of studies across large environmental gradients that strategically pair long-term ecosystem monitoring with manipulative experiments on mature trees. For this, we outline a versatile experimental framework to build cross-scale data archives of C uptake and allocation to structural, non-structural, and respiratory sinks. Community-wide efforts and discussions are needed to implement this framework, especially in hitherto underrepresented tropical forests. Global coordination and realistic priorities for data collection will thereby be key to achieve and maintain adequate empirical support for tree-centered vegetation modeling.
Collapse
Affiliation(s)
- Flurin Babst
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Maria Karamihalaki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jingshu Wei
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Georg von Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Dario Papale
- DIBAF, University of Tuscia, Largo dell'Universita, 01100 Viterbo, Italy
| | - Richard L Peters
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Laboratory of Plant Ecology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
33
|
Girardin MP, Isabel N, Guo XJ, Lamothe M, Duchesne I, Lenz P. Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting. Nat Commun 2021; 12:1169. [PMID: 33608515 PMCID: PMC7895975 DOI: 10.1038/s41467-021-21222-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023] Open
Abstract
Assisted gene flow between populations has been proposed as an adaptive forest management strategy that could contribute to the sequestration of carbon. Here we provide an assessment of the mitigation potential of assisted gene flow in 46 populations of the widespread boreal conifer Picea mariana, grown in two 42-year-old common garden experiments and established in contrasting Canadian boreal regions. We use a dendroecological approach taking into account phylogeographic structure to retrospectively analyse population phenotypic variability in annual aboveground net primary productivity (NPP). We compare population NPP phenotypes to detect signals of adaptive variation and/or the presence of phenotypic clines across tree lifespans, and assess genotype-by-environment interactions by evaluating climate and NPP relationships. Our results show a positive effect of assisted gene flow for a period of approximately 15 years following planting, after which there was little to no effect. Although not long lasting, well-informed assisted gene flow could accelerate the transition from carbon source to carbon sink after disturbance.
Collapse
Affiliation(s)
- Martin P. Girardin
- grid.146611.50000 0001 0775 5922Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC Canada ,grid.38678.320000 0001 2181 0211Centre d’étude de la forêt, Université du Québec à Montréal, Montréal, QC Canada
| | - Nathalie Isabel
- grid.146611.50000 0001 0775 5922Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Canada Research Chair in Forest Genomics, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC Canada
| | - Xiao Jing Guo
- grid.146611.50000 0001 0775 5922Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC Canada
| | - Manuel Lamothe
- grid.146611.50000 0001 0775 5922Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC Canada
| | - Isabelle Duchesne
- grid.202033.00000 0001 2295 5236Natural Resources Canada, Canadian Wood Fibre Centre, Québec, QC Canada
| | - Patrick Lenz
- grid.23856.3a0000 0004 1936 8390Canada Research Chair in Forest Genomics, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC Canada ,grid.202033.00000 0001 2295 5236Natural Resources Canada, Canadian Wood Fibre Centre, Québec, QC Canada
| |
Collapse
|
34
|
Ols C, Hervé JC, Bontemps JD. Recent growth trends of conifers across Western Europe are controlled by thermal and water constraints and favored by forest heterogeneity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140453. [PMID: 32623162 DOI: 10.1016/j.scitotenv.2020.140453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Tree growing conditions are changing rapidly in the face of climate change. Capturing tree-growth response to such changes across environmental contexts and tree species calls for a continuous forest monitoring over space. Based on >10,000 tree-ring measurements sampled across the systematic grid of the continuous French national forest inventory (NFI) over the 2006-2016 period, we evaluated the radial growth trends of eight conifer tree species prevalent in European forests across their native and introduced ranges and various bioclimatic contexts (n = 16 forest systems). For each forest system, radial increments were filtered out from tree, plot, soil and climatic normal influences to isolate environment-driven growth signals and quantify residual time-series. Associated growth trends across forest systems were then confronted against environmental variables (e.g. short-term averages and trends in seasonal climate). Trends for a given species were systematically more positive in cooler contexts (higher elevations or northern distribution margins) than in warmer contexts (plains). Decreases and increases in precipitation regimes were found to be associated with negative and positive tree growth trends, respectively. Remarkably, positive growth trends were mainly observed for native forest systems (7/9) and negative trends for introduced systems (5/7). Native forests showed a more heterogeneous forest structure as compared to introduced forests that, in line with observed positive dependence of tree growth trends onto both water availability and forest heterogeneity, appears to modulate the competitive pressure on water resource with ongoing summer maximum temperature increase. Over a short annually-resolved study period, we were able to capture tree growth responses coherent with climate change across diverse forest ecosystems. With ongoing accumulation of data, the continuous French NFI hence arises as powerful support to monitoring climate change effects on forests.
Collapse
Affiliation(s)
- Clémentine Ols
- Institut National de l'Information Géographique et Forestière, Laboratoire d'Inventaire Forestier, 14 rue Girardet, 54000 Nancy, France.
| | - Jean-Christophe Hervé
- Institut National de l'Information Géographique et Forestière, Laboratoire d'Inventaire Forestier, 14 rue Girardet, 54000 Nancy, France
| | - Jean-Daniel Bontemps
- Institut National de l'Information Géographique et Forestière, Laboratoire d'Inventaire Forestier, 14 rue Girardet, 54000 Nancy, France.
| |
Collapse
|
35
|
Vázquez-González C, Zas R, Erbilgin N, Ferrenberg S, Rozas V, Sampedro L. Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. TREE PHYSIOLOGY 2020; 40:1313-1326. [PMID: 32478382 DOI: 10.1093/treephys/tpaa064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/26/2020] [Indexed: 05/20/2023]
Abstract
Conifers have evolved different chemical and anatomical defences against a wide range of antagonists. Resin ducts produce, store and translocate oleoresin, a complex terpenoid mixture that acts as both a physical and a chemical defence. Although resin duct characteristics (e.g., number, density, area) have been positively related to biotic resistance in several conifer species, the literature reporting this association remains inconclusive. Axial resin ducts recorded in annual growth rings are an archive of annual defensive investment in trees. This whole-life record of defence investment can be analysed using standard dendrochronological procedures, which allows us to assess interannual variability and the effect of understudied drivers of phenotypic variation on resin-based defences. Understanding the sources of phenotypic variation in defences, such as genetic differentiation and environmental plasticity, is essential for assessing the adaptive potential of forest tree populations to resist pests under climate change. Here, we reviewed the evidence supporting the importance of resin ducts in conifer resistance, and summarized current knowledge about the sources of variation in resin duct production. We propose a standardized methodology to measure resin duct production by means of dendrochronological procedures. This approach will illuminate the roles of resin ducts in tree defence across species, while helping to fill pivotal knowledge gaps in plant defence theory, and leading to a robust understanding of the patterns of variation in resin-based defences throughout the tree's lifespan.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, T6G 2H1 Alberta, Canada
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, 1305 Frenger St., Las Cruces, 88001, NM, USA
| | - Vicente Rozas
- iuFOR-EiFAB, Campus Duques de Soria, Universidad de Valladolid, Soria 42004, Spain
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Sampedro
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| |
Collapse
|
36
|
Depardieu C, Girardin MP, Nadeau S, Lenz P, Bousquet J, Isabel N. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. THE NEW PHYTOLOGIST 2020; 227:427-439. [PMID: 32173867 PMCID: PMC7317761 DOI: 10.1111/nph.16551] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/29/2020] [Indexed: 05/03/2023]
Abstract
Drought intensity and frequency are increasing under global warming, with soil water availability now being a major factor limiting tree growth in circumboreal forests. Still, the adaptive capacity of trees in the face of future climatic regimes remains poorly documented. Using 1481 annually resolved tree-ring series from 29-yr-old trees, we evaluated the drought sensitivity of 43 white spruce (Picea glauca (Moench) Voss) populations established in a common garden experiment. We show that genetic variation among populations in response to drought plays a significant role in growth resilience. Local genetic adaptation allowed populations from drier geographical origins to grow better, as indicated by higher resilience to extreme drought events, compared with populations from more humid geographical origins. The substantial genetic variation found for growth resilience highlights the possibility of selecting for drought resilience in boreal conifers. As a major research outcome, we showed that adaptive genetic variation in response to changing local conditions can shape drought vulnerability at the intraspecific level. Our findings have wide implications for forest ecosystem management and conservation.
Collapse
Affiliation(s)
- Claire Depardieu
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| |
Collapse
|
37
|
Bert D, Lebourgeois F, Ponton S, Musch B, Ducousso A. Which oak provenances for the 22nd century in Western Europe? Dendroclimatology in common gardens. PLoS One 2020; 15:e0234583. [PMID: 32520978 PMCID: PMC7286526 DOI: 10.1371/journal.pone.0234583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023] Open
Abstract
The current distribution area of the two sympatric oaks Quercus petraea and Q. robur covers most of temperate Western Europe. Depending on their geographic location, populations of these trees are exposed to different climate constraints, to which they are adapted. Comparing the performances of trees from contrasting populations provides the insight into their expected resilience to future climate change required for forest management. In this study, the descendants of 24 Q. petraea and two Q. robur provenances selected from sites throughout Europe were grown for 20 years in three common gardens with contrasting climates. The 2420 sampled trees allowed the assessments of the relationship between radial growth and climate. An analysis of 15-year chronologies of ring widths, with different combinations of climate variables, revealed different response patterns between provenances and between common gardens. As expected, provenances originating from sites with wet summers displayed the strongest responses to summer drought, particularly in the driest common garden. All provenances displayed positive significant relationships between the temperature of the previous winter and radial growth when grown in the common garden experiencing the mildest winter temperatures. Only eastern provenances from continental cold climates also clearly expressed this limitation of growth by cold winter temperatures in the other two common gardens. However, ecological distance, calculated on the basis of differences in climate between the site of origin and the common garden, was not clearly related to the radial growth responses of the provenances. This suggests that the gradient of genetic variability among the selected provenances was not strictly structured according to climate gradients. Based on these results, we provide guidelines for forest managers for the assisted migration of Quercus petraea and Q. robur provenances.
Collapse
Affiliation(s)
- Didier Bert
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| | | | - Stéphane Ponton
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | | | | |
Collapse
|
38
|
Avanzi C, Heer K, Büntgen U, Labriola M, Leonardi S, Opgenoorth L, Piermattei A, Urbinati C, Vendramin GG, Piotti A. Individual reproductive success in Norway spruce natural populations depends on growth rate, age and sensitivity to temperature. Heredity (Edinb) 2020; 124:685-698. [PMID: 32203247 PMCID: PMC7239854 DOI: 10.1038/s41437-020-0305-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
Quantifying the individual reproductive success and understanding its determinants is a central issue in evolutionary research for the major consequences that the transmission of genetic variation from parents to offspring has on the adaptive potential of populations. Here, we propose to distil the myriad of information embedded in tree-ring time series into a set of tree-ring-based phenotypic traits to be investigated as potential drivers of reproductive success in forest trees. By using a cross-disciplinary approach that combines parentage analysis and a thorough dendrophenotypic characterisation of putative parents, we assessed sex-specific relationships between such dendrophenotypic traits (i.e., age, growth rate and parameters describing sensitivity to climate and to extreme climatic events) and reproductive success in Norway spruce. We applied a full probability method for reconstructing parent-offspring relationships between 604 seedlings and 518 adult trees sampled within five populations from southern and central Europe. We found that individual female and male reproductive success was positively associated with tree growth rate and age. Female reproductive success was also positively influenced by the correlation between growth and the mean temperature of the previous vegetative season. Overall, our results showed that Norway spruce individuals with the highest fitness are those who are able to keep high-growth rates despite potential growth limitations caused by reproductive costs and climatic limiting conditions. Identifying such functional links between the individual ecophysiological behaviour and its evolutionary gain would increase our understanding on how natural selection shapes the genetic composition of forest tree populations over time.
Collapse
Affiliation(s)
- Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy.
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN, Cambridge, UK
- Swiss Federal Research Institute, WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Czech Globe, Global Change Research Institute CAS and Masaryk University, Kotlárská 2, 61137, Brno, Czech Republic
| | - Mariaceleste Labriola
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Lars Opgenoorth
- Swiss Federal Research Institute, WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Ecology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN, Cambridge, UK
| | - Carlo Urbinati
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Giovanni Giuseppe Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
39
|
Christophe Plomion. THE NEW PHYTOLOGIST 2020; 226:984-986. [PMID: 32301516 DOI: 10.1111/nph.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
40
|
Waldvogel A, Feldmeyer B, Rolshausen G, Exposito‐Alonso M, Rellstab C, Kofler R, Mock T, Schmid K, Schmitt I, Bataillon T, Savolainen O, Bergland A, Flatt T, Guillaume F, Pfenninger M. Evolutionary genomics can improve prediction of species' responses to climate change. Evol Lett 2020; 4:4-18. [PMID: 32055407 PMCID: PMC7006467 DOI: 10.1002/evl3.154] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
Global climate change (GCC) increasingly threatens biodiversity through the loss of species, and the transformation of entire ecosystems. Many species are challenged by the pace of GCC because they might not be able to respond fast enough to changing biotic and abiotic conditions. Species can respond either by shifting their range, or by persisting in their local habitat. If populations persist, they can tolerate climatic changes through phenotypic plasticity, or genetically adapt to changing conditions depending on their genetic variability and census population size to allow for de novo mutations. Otherwise, populations will experience demographic collapses and species may go extinct. Current approaches to predicting species responses to GCC begin to combine ecological and evolutionary information for species distribution modelling. Including an evolutionary dimension will substantially improve species distribution projections which have not accounted for key processes such as dispersal, adaptive genetic change, demography, or species interactions. However, eco-evolutionary models require new data and methods for the estimation of a species' adaptive potential, which have so far only been available for a small number of model species. To represent global biodiversity, we need to devise large-scale data collection strategies to define the ecology and evolutionary potential of a broad range of species, especially of keystone species of ecosystems. We also need standardized and replicable modelling approaches that integrate these new data to account for eco-evolutionary processes when predicting the impact of GCC on species' survival. Here, we discuss different genomic approaches that can be used to investigate and predict species responses to GCC. This can serve as guidance for researchers looking for the appropriate experimental setup for their particular system. We furthermore highlight future directions for moving forward in the field and allocating available resources more effectively, to implement mitigation measures before species go extinct and ecosystems lose important functions.
Collapse
Affiliation(s)
- Ann‐Marie Waldvogel
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | | | | | - Robert Kofler
- Institute of Population GeneticsVetmeduni ViennaAustria
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute of Ecology, Evolution and DiversityGoethe‐UniversityFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | | | | | - Alan Bergland
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Frederic Guillaume
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Institute for Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
41
|
Climate sensitivity of Cryptomeria japonica in two contrasting environments: Perspectives from QTL mapping. PLoS One 2020; 15:e0228278. [PMID: 31990959 PMCID: PMC6986750 DOI: 10.1371/journal.pone.0228278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/12/2020] [Indexed: 11/30/2022] Open
Abstract
Long-lived forest tree species experience a wide range of environmental conditions throughout their lifespan. Evaluation of the underlying growth and development mechanisms of these species is essential to predict tree growth under climate change. This study investigated climate sensitivity to temperature, precipitation, dry periods, and the associated genomic regions in Cryptomeria japonica, Japan’s most commercially important tree. We used tree rings and common garden experiments with three clonal replicates planted in two contrasting environments in Kyushu (Kumamoto site) and Honshu (Chiba site), Japan. Tree growth showed a significant negative correlation with the dry period (>4 days) in March of the year of tree-ring formation at the Chiba site. In contrast, temperature and precipitation had little influence on tree growth. Quantitative trait locus (QTL) analysis was performed to investigate climate sensitivity to dry periods at the Chiba site, revealing 13 significant QTLs. One QTL showed a substantially large contribution to the overall climate sensitivity, accounting for 12.4% of the total phenotypic variation. The phenotypic variance explained (PVE) by other QTLs ranged from 0.9% to 2.9%, and the total PVE by all QTLs was 35.6%. These findings indicate that the tree population at the Chiba site could be vulnerable to drought in early spring and that the QTL showing the greatest impact on climate sensitivity may be closely related to genes associated with tolerance or adaptation to drought stress. The QTLs identified in this study could be useful for molecular breeding, forest management, and predicting the growth of C. japonica under a changing climate.
Collapse
|
42
|
Martínez-Sancho E, Slámová L, Morganti S, Grefen C, Carvalho B, Dauphin B, Rellstab C, Gugerli F, Opgenoorth L, Heer K, Knutzen F, von Arx G, Valladares F, Cavers S, Fady B, Alía R, Aravanopoulos F, Avanzi C, Bagnoli F, Barbas E, Bastien C, Benavides R, Bernier F, Bodineau G, Bastias CC, Charpentier JP, Climent JM, Corréard M, Courdier F, Danusevicius D, Farsakoglou AM, Del Barrio JMG, Gilg O, González-Martínez SC, Gray A, Hartleitner C, Hurel A, Jouineau A, Kärkkäinen K, Kujala ST, Labriola M, Lascoux M, Lefebvre M, Lejeune V, Le-Provost G, Liesebach M, Malliarou E, Mariotte N, Matesanz S, Michotey C, Milesi P, Myking T, Notivol E, Pakull B, Piotti A, Plomion C, Pringarbe M, Pyhäjärvi T, Raffin A, Ramírez-Valiente JA, Ramskogler K, Robledo-Arnuncio JJ, Savolainen O, Schueler S, Semerikov V, Spanu I, Thévenet J, Mette Tollefsrud M, Turion N, Veisse D, Vendramin GG, Villar M, Westin J, Fonti P. The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Sci Data 2020; 7:1. [PMID: 31896794 PMCID: PMC6940356 DOI: 10.1038/s41597-019-0340-y] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/21/2019] [Indexed: 11/12/2022] Open
Abstract
The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Lenka Slámová
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Sandro Morganti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Claudio Grefen
- Philipps-Universität Marburg, Department of Biology, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Barbara Carvalho
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN-CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Benjamin Dauphin
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Christian Rellstab
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Felix Gugerli
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Lars Opgenoorth
- Philipps-Universität Marburg, Department of Biology, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Katrin Heer
- Philipps-Universität Marburg, Department of Biology, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Florian Knutzen
- Bavarian Office for Forest Seeding and Planting - ASP, Forstamtsplatz 1, 83317, Teisendorf, Germany
| | - Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Fernando Valladares
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN-CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Stephen Cavers
- Centre for Ecology and Hydrology NERC, EH26 0QB, Edinburgh, United Kingdom
| | - Bruno Fady
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Ricardo Alía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación Forestal (INIA-CIFOR), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics and Tree Breeding, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Camilla Avanzi
- Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesca Bagnoli
- Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Evangelos Barbas
- Laboratory of Forest Genetics and Tree Breeding, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Catherine Bastien
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | - Raquel Benavides
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN-CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Frédéric Bernier
- Institut National de la Recherche Agronomique (INRA), route d'Arcachon 69, 33610, Cestas, France
| | - Guillaume Bodineau
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | - Cristina C Bastias
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN-CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Jean-Paul Charpentier
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | - José M Climent
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación Forestal (INIA-CIFOR), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Marianne Corréard
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Florence Courdier
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | | | - Anna-Maria Farsakoglou
- Laboratory of Forest Genetics and Tree Breeding, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - José M García Del Barrio
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación Forestal (INIA-CIFOR), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Olivier Gilg
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | | | - Alan Gray
- Centre for Ecology and Hydrology NERC, EH26 0QB, Edinburgh, United Kingdom
| | | | - Agathe Hurel
- Institut National de la Recherche Agronomique (INRA), route d'Arcachon 69, 33610, Cestas, France
| | - Arnaud Jouineau
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Katri Kärkkäinen
- Natural Resources Institute Finland, University of Oulu, Paavo Havaksen tie 3, 90014, Oulu, Finland
| | - Sonja T Kujala
- Natural Resources Institute Finland, University of Oulu, Paavo Havaksen tie 3, 90014, Oulu, Finland
| | - Mariaceleste Labriola
- Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Martin Lascoux
- Department of Ecology & Genetics, EBC, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Marlène Lefebvre
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | - Vincent Lejeune
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | - Grégoire Le-Provost
- Institut National de la Recherche Agronomique (INRA), route d'Arcachon 69, 33610, Cestas, France
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, 22927, Grosshansdorf, Germany
| | - Ermioni Malliarou
- Laboratory of Forest Genetics and Tree Breeding, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nicolas Mariotte
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933, Móstoles, Spain
| | - Célia Michotey
- Université Paris-Saclay, INRAE, URGI, 78026, Versailles, France
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Center, Science for Life Laboratory, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| | - Tor Myking
- Division of Forestry and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431, Ås, Norway
| | - Eduardo Notivol
- Centro de Investigación y Tecnología Agroalimentaria de Aragón - Unidad de Recursos Forestales (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Birte Pakull
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, 22927, Grosshansdorf, Germany
| | - Andrea Piotti
- Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Christophe Plomion
- Institut National de la Recherche Agronomique (INRA), route d'Arcachon 69, 33610, Cestas, France
| | - Mehdi Pringarbe
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Tanja Pyhäjärvi
- University of Oulu, Pentti Kaiteran katu 1, 90014, Oulu, Finland
| | - Annie Raffin
- Institut National de la Recherche Agronomique (INRA), route d'Arcachon 69, 33610, Cestas, France
| | - José A Ramírez-Valiente
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación Forestal (INIA-CIFOR), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | | | - Juan J Robledo-Arnuncio
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación Forestal (INIA-CIFOR), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Outi Savolainen
- University of Oulu, Pentti Kaiteran katu 1, 90014, Oulu, Finland
| | - Silvio Schueler
- Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, 1131, Wien, Austria
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural branch of RAS, 8 Marta St. 202, 620144, Ekaterinburg, Russia
| | - Ilaria Spanu
- Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Jean Thévenet
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Mari Mette Tollefsrud
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933, Móstoles, Spain
| | - Norbert Turion
- Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon, France
| | - Dominique Veisse
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | - Giovanni Giuseppe Vendramin
- Institute of Biosciences and BioResources, National Research Council (CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Marc Villar
- Institut National de la Recherche Agronomique (INRA), Avenue de la Pomme de pin 2163, 45075, Orléans, France
| | | | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
43
|
Godbout J, Gros-Louis M, Lamothe M, Isabel N. Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides. Evol Appl 2020; 13:176-194. [PMID: 31892951 PMCID: PMC6935597 DOI: 10.1111/eva.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.
Collapse
Affiliation(s)
- Julie Godbout
- Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestièreQuébecQCCanada
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | | | - Manuel Lamothe
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | - Nathalie Isabel
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| |
Collapse
|
44
|
Lenz PRN, Nadeau S, Mottet M, Perron M, Isabel N, Beaulieu J, Bousquet J. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol Appl 2020; 13:76-94. [PMID: 31892945 PMCID: PMC6935592 DOI: 10.1111/eva.12823] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Plantation-grown trees have to cope with an increasing pressure of pest and disease in the context of climate change, and breeding approaches using genomics may offer efficient and flexible tools to face this pressure. In the present study, we targeted genetic improvement of resistance of an introduced conifer species in Canada, Norway spruce (Picea abies (L.) Karst.), to the native white pine weevil (Pissodes strobi Peck). We developed single- and multi-trait genomic selection (GS) models and selection indices considering the relationships between weevil resistance, intrinsic wood quality, and growth traits. Weevil resistance, acoustic velocity as a proxy for mechanical wood stiffness, and average wood density showed moderate-to-high heritability and low genotype-by-environment interactions. Weevil resistance was genetically positively correlated with tree height, height-to-diameter at breast height (DBH) ratio, and acoustic velocity. The accuracy of the different GS models tested (GBLUP, threshold GBLUP, Bayesian ridge regression, BayesCπ) was high and did not differ among each other. Multi-trait models performed similarly as single-trait models when all trees were phenotyped. However, when weevil attack data were not available for all trees, weevil resistance was more accurately predicted by integrating genetically correlated growth traits into multi-trait GS models. A GS index that corresponded to the breeders' priorities achieved near maximum gains for weevil resistance, acoustic velocity, and height growth, but a small decrease for DBH. The results of this study indicate that it is possible to breed for high-quality, weevil-resistant Norway spruce reforestation stock with high accuracy achieved from single-trait or multi-trait GS.
Collapse
Affiliation(s)
- Patrick R. N. Lenz
- Canadian Wood Fibre CentreNatural Resources CanadaQuébecQuébecCanada
- Canada Research Chair in Forest GenomicsInstitute of Integrative Biology and Systems, Centre for Forest ResearchUniversité LavalQuébecQuébecCanada
| | - Simon Nadeau
- Canadian Wood Fibre CentreNatural Resources CanadaQuébecQuébecCanada
| | - Marie‐Josée Mottet
- Ministère des Forêts, de la Faune et des ParcsGouvernement du Québec, Direction de la recherche forestièreQuébecQuébecCanada
| | - Martin Perron
- Canada Research Chair in Forest GenomicsInstitute of Integrative Biology and Systems, Centre for Forest ResearchUniversité LavalQuébecQuébecCanada
- Ministère des Forêts, de la Faune et des ParcsGouvernement du Québec, Direction de la recherche forestièreQuébecQuébecCanada
| | - Nathalie Isabel
- Canada Research Chair in Forest GenomicsInstitute of Integrative Biology and Systems, Centre for Forest ResearchUniversité LavalQuébecQuébecCanada
- Laurentian Forestry CentreNatural Resources CanadaQuébecQuébecCanada
| | - Jean Beaulieu
- Canada Research Chair in Forest GenomicsInstitute of Integrative Biology and Systems, Centre for Forest ResearchUniversité LavalQuébecQuébecCanada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute of Integrative Biology and Systems, Centre for Forest ResearchUniversité LavalQuébecQuébecCanada
| |
Collapse
|
45
|
Sang Z, Sebastian‐Azcona J, Hamann A, Menzel A, Hacke U. Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range. Evol Appl 2019; 12:1850-1860. [PMID: 31548862 PMCID: PMC6752154 DOI: 10.1111/eva.12845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
A cost-effective climate change adaptation strategy for the forestry sector is to move seed sources to more northern and higher elevation planting sites as part of ongoing reforestation programs. This is meant to match locally adapted populations with anticipated environments, but adaptive traits do not always show population differences suitable to mitigate climate change impacts. For white spruce, drought tolerance is a critical adaptive trait to prevent mortality and productivity losses. Here, we use a 40-year-old provenance experiment that has been exposed to severe drought periods in 1999 and 2002 to retrospectively investigate drought response and the adaptive capacity of white spruce populations across their boreal range. Relying on dendrochronological analysis under experimentally controlled environments, we evaluate population differences in resistance, resilience, and recovery to these extreme events. Results showed evidence for population differentiation in resistance and recovery parameters, but provenances conformed to approximately the same growth rates under drought conditions and had similar resilience metrics. The lack of populations with better growth rates under drought conditions is contrary to expectations for a wide-ranging species with distinct regional climates. Populations from the wettest environments in the northeastern boreal were surprisingly drought-tolerant, suggesting that these populations would readily resist water deficits projected for the 2080s, and supporting the view that northeastern Canada will provide a refugium for boreal species under climate change. The findings also suggest that white spruce is sensitive to growth reductions under climate change in the western boreal. The study highlights that population differentiation in adaptive capacity is species- and trait-specific, and we provide a counterexample for drought tolerance traits, where assisted migration prescriptions may be ineffective to mitigate climate change impacts. For resource managers and policy makers, we provide maps where planning for widespread declines of boreal white spruce forests may be unavoidable.
Collapse
Affiliation(s)
- Zihaohan Sang
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| | | | - Andreas Hamann
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| | - Annette Menzel
- Department of Ecology and Ecosystem ManagementTechnical University of MunichFreisingGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| | - Uwe Hacke
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
46
|
Mark G. Tjoelker. THE NEW PHYTOLOGIST 2019; 222:1188-1189. [PMID: 30972820 DOI: 10.1111/nph.15745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
47
|
Avanzi C, Piermattei A, Piotti A, Büntgen U, Heer K, Opgenoorth L, Spanu I, Urbinati C, Vendramin GG, Leonardi S. Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:493-504. [PMID: 30199693 DOI: 10.1016/j.scitotenv.2018.08.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Cambial growth is a phenotypic trait influenced by various physiological processes, numerous biotic and abiotic drivers, as well as by the genetic background. By archiving the outcome of such complex interplay, tree-rings are an exceptional resource for addressing individual long-term growth responses to changing environments and climate. Disentangling the effects of the different drivers of tree growth, however, remains challenging because of the lack of multidisciplinary data. Here, we combine individual dendrochronological, genetic and spatial data to assess the relative importance of genetic similarity and spatial proximity on Norway spruce (Picea abies (L.) Karst.) growth performances. We intensively sampled five plots from two populations in southern and central Europe, characterizing a total of 482 trees. A two-step analytical framework was developed. First, the effects of climate and tree age on tree-ring width (TRW) were estimated for each individual using a random slope linear mixed-effects model. Individual parameters were then tested against genetic and spatial variables by Mantel tests, partial redundancy analyses and variance partitioning. Our modelling approach successfully captured a large fraction of variance in TRW (conditional R2 values up to 0.94) which was largely embedded in inter-individual differences. All statistical approaches consistently showed that genetic similarity was not related to variation in the individual parameters describing growth responses. In contrast, up to 29% of the variance of individual parameters was accounted by spatial variables, revealing that microenvironmental features are more relevant than genetic similarity in determining similar growth patterns. Our study highlights both the advantages of modelling dendrochronological data at the individual level and the relevance of microenvironmental variation on individual growth patterns. These two aspects should be carefully considered in future multidisciplinary studies on growth dynamics in natural populations.
Collapse
Affiliation(s)
- Camilla Avanzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN Cambridge, United Kingdom.
| | - Andrea Piotti
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN Cambridge, United Kingdom; Swiss Federal Research Institute, WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Czech Globe, Global Change Research Institute CAS and Masaryk University, Kotlárská 2, 61137 Brno, Czech Republic.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Lars Opgenoorth
- Department of Ecology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Ilaria Spanu
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Carlo Urbinati
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Giovanni Giuseppe Vendramin
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
48
|
Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC. Twentieth century redistribution in climatic drivers of global tree growth. SCIENCE ADVANCES 2019; 5:eaat4313. [PMID: 30746436 PMCID: PMC6357745 DOI: 10.1126/sciadv.aat4313] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/06/2018] [Indexed: 05/19/2023]
Abstract
Energy and water limitations of tree growth remain insufficiently understood at large spatiotemporal scales, hindering model representation of interannual or longer-term ecosystem processes. By assessing and statistically scaling the climatic drivers from 2710 tree-ring sites, we identified the boreal and temperate land areas where tree growth during 1930-1960 CE responded positively to temperature (20.8 ± 3.7 Mio km2; 25.9 ± 4.6%), precipitation (77.5 ± 3.3 Mio km2; 96.4 ± 4.1%), and other parameters. The spatial manifestation of this climate response is determined by latitudinal and altitudinal temperature gradients, indicating that warming leads to geographic shifts in growth limitations. We observed a significant (P < 0.001) decrease in temperature response at cold-dry sites between 1930-1960 and 1960-1990 CE, and the total temperature-limited area shrunk by -8.7 ± 0.6 Mio km2. Simultaneously, trees became more limited by atmospheric water demand almost worldwide. These changes occurred under mild warming, and we expect that continued climate change will trigger a major redistribution in growth responses to climate.
Collapse
Affiliation(s)
- Flurin Babst
- Dendro Sciences Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Department of Ecology, W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, AZ 85721, USA
- Corresponding author.
| | - Olivier Bouriaud
- Stefan cel Mare University of Suceava, Strada Universitătii 13, Suceava 720229, Romania
| | | | - Valerie Trouet
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, AZ 85721, USA
| | - Martin P. Girardin
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC G1V4C7, Canada
- Centre d’étude de la forêt, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - David C. Frank
- Dendro Sciences Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
49
|
Isaac-Renton M, Montwé D, Hamann A, Spiecker H, Cherubini P, Treydte K. Northern forest tree populations are physiologically maladapted to drought. Nat Commun 2018; 9:5254. [PMID: 30531998 PMCID: PMC6288165 DOI: 10.1038/s41467-018-07701-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/14/2018] [Indexed: 11/08/2022] Open
Abstract
Northern forests at the leading edge of their distributions may not show increased primary productivity under climate warming, being limited by climatic extremes such as drought. Looking beyond tree growth to underlying physiological mechanisms is fundamental for accurate predictions of forest responses to climate warming and drought stress. Within a 32-year genetic field trial, we analyze relative contributions of xylem plasticity and inferred stomatal response to drought tolerance in regional populations of a widespread conifer. Genetic adaptation leads to varying responses under drought. Trailing-edge tree populations produce fewer tracheids with thicker cell walls, characteristic of drought-tolerance. Stomatal response explains the moderate drought tolerance of tree populations in central areas of the species range. Growth loss of the northern population is linked to low stomatal responsiveness combined with the production of tracheids with thinner cell walls. Forests of the western boreal may therefore lack physiological adaptations necessary to tolerate drier conditions.
Collapse
Affiliation(s)
- Miriam Isaac-Renton
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - David Montwé
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Andreas Hamann
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Heinrich Spiecker
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-Universität-Freiburg, Tennenbacherstrasse 4, 79106, Freiburg, Germany
| | - Paolo Cherubini
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Kerstin Treydte
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
50
|
Influence of Spatiotemporal Dynamics on the Fine-Scale Spatial Genetic Structure of Differently Managed Picea abies Stands. FORESTS 2018. [DOI: 10.3390/f9100622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tandem analysis of dendrochronological and genetic data is piquing forest ecologists’ interest and represents a promising approach for studying the temporal development of genetic structure in forest tree populations. Such multidisciplinary approach can help elucidate to what extent different management practices have impacted the fine-scale spatial genetic structure of forest stands through time. In this study, we jointly analysed spatial, age and genetic data from three differently managed Norway spruce permanent plots to assess: (1) possible differences among plots in the spatial distribution of individuals and their genetic structure due to different management practices, and (2) whether modifications in the age structure influenced the fine-scale spatial genetic structure within each permanent plot. With these aims, we genetically characterized at five nuclear microsatellite markers a large subset (328) of all the trees for which spatial and age data were collected (1472). We found that different management practices determined a similar spatial structure in terms of trees’ ages (r < 25 m in all plots) and neutral genetic diversity (Sp ranging from 0.002 to 0.004). Hot spots and cold spots of trees’ age were not statistically different in terms of genetic diversity, and trees’ age was not statistically different among the genetic clusters detected. On the other hand, the spatial distribution of individuals was significantly clustered up to 22 m only in the wooded pasture plot. Our main findings show that forest land use and management can indeed determine markedly different spatial layouts of Norway spruce individuals but do not produce strong distortions in the spatial structure of age and genetic parameters.
Collapse
|