1
|
Tricerri N, Tomasella M, Cavalletto S, Petruzzellis F, Natale S, Crivellaro A, Gamba R, Piermattei A, D'Amico L, Tromba G, Nardini A, Zwieniecki MA, Secchi F. Fibers beyond structure: do they contribute to embolism reversal after drought relief in poplar? THE NEW PHYTOLOGIST 2025. [PMID: 40313028 DOI: 10.1111/nph.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Short-term recovery from drought-induced vessel embolism is an energy-dependent biological process that requires a water source and solutes, both likely supplied by parenchyma cells. Despite fibers primarily providing structural support, their functional role as a reservoir of unbound water during and after stress remains unclear. In this study, Populus nigra plants were exposed to two drying regimes (slow and fast developing stress). At the end of the drought treatments and after stress relief, nondestructive structural observations were performed in vivo using synchrotron X-ray microCT. Different drought progression rates did not affect the final extent of vessel embolism, but poplars subjected to slower drought development exhibited higher levels of air-filled fibers. Following stress relief, faster hydraulic recovery was observed in plants exposed to rapid drought, which displayed lower occurrences of water-depleted fibers. We suggest a novel functional role for xylem fibers during drought and recovery. We hypothesize that parenchyma cells can access water stored in completely mature fibers via pits, enhancing their survival during drought. Upon xylem tension relief, this stored water may be mobilized by living cells from fibers to vessels, facilitating the recovery of their transport function.
Collapse
Affiliation(s)
- Niccolò Tricerri
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- University School for Advanced Studies IUSS Pavia, 27100, Pavia, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Silvia Cavalletto
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padova, Italy
| | - Sara Natale
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padova, Italy
| | - Alan Crivellaro
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Rachele Gamba
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Alma Piermattei
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Ave, 95616, Davis, CA, USA
| | - Francesca Secchi
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| |
Collapse
|
2
|
Stewart JJ, Allen BS, Polutchko SK, Ocheltree TW, Gleason SM. Xylem embolism refilling revealed in stems of a weedy grass. Proc Natl Acad Sci U S A 2025; 122:e2420618122. [PMID: 40112095 PMCID: PMC12002171 DOI: 10.1073/pnas.2420618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Plant hydraulic dysfunction by embolism formation can impair photosynthesis, growth, and reproduction and, in severe cases, lead to death. Embolism reversal, or "refilling," is a hypothesized adaptive process in which xylem functionality is rapidly and sustainably restored. This study investigated xylem embolism refilling during recovery from severe drought stress using entirely noninvasive measurements of the same plants. These results were considered in relation to functional traits to address long-standing gaps in understanding the consequences of severe drought stress. Leaf and stem xylem embolism as well as transpiration, photosynthesis, and stem water potential were characterized nondestructively on intact barnyard grass plants during an acute drought event. Plants were rewatered and returned to growth conditions for 10 d, during which time recovery of stem xylem embolism and transpiration were monitored. Leaf xylem embolism and declines in leaf gas exchange occurred mostly between -1.0 MPa and -2.0 MPa, whereas stem xylem embolism occurred mostly between -3.0 MPa and -4.0 MPa. In all measured plants, which included embolism levels up to 88%, stem xylem embolism reversed completely within 24 h after rewatering, and this refilling supported recovery of transpiration and growth after plants were returned to growth conditions. This study provides direct evidence of complete and functional stem xylem refilling. These results present a clear need to elucidate underlying mechanisms and the adaptive significance of this phenomenon as well as its prevalence in nature.
Collapse
Affiliation(s)
- Jared J. Stewart
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Brendan S. Allen
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Stephanie K. Polutchko
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - Troy W. Ocheltree
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Sean M. Gleason
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
3
|
Harrison Day BL, Johnson KM, Tonet V, Bourbia I, Blackman CJ, Brodribb TJ. A one-way ticket: Wheat roots do not functionally refill xylem emboli following rehydration. PLANT PHYSIOLOGY 2024; 196:2362-2373. [PMID: 39297870 PMCID: PMC11638109 DOI: 10.1093/plphys/kiae407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 12/14/2024]
Abstract
Understanding xylem embolism spread in roots is essential for predicting the loss of function across root systems during drought. However, the lasting relevance of root embolism to plant recovery depends on whether roots can refill xylem emboli and resume function after rehydration. Using MicroCT and optical and dye staining methods, we investigated embolism repair in rehydrated intact roots of wheat (Triticum aestivum L. 'Krichauff') exposed to a severe water deficit of -3.5 MPa, known to cause approximately 30% total root network embolism in this species. Air emboli in the xylem vessels of intact roots remained clearly observable using MicroCT after overnight rehydration. This result was verified by xylem staining of the root system and optical quantification of emboli, both of which indicated a lack of functional root xylem recovery 60 h following soil re-saturation. The absence of root xylem refilling in wheat has substantial implications for how we understand plant recovery after drought. Our findings suggest that xylem embolism causes irreversible damage to the soil-root hydraulic connection in affected parts of the root network.
Collapse
Affiliation(s)
| | - Kate M Johnson
- Plant Ecology Research Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8930 Birmensdorf, Switzerland
| | - Vanessa Tonet
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris J Blackman
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
4
|
Mekarni L, Cochard H, Lehmann MM, Turberg P, Grossiord C. In vivo X-ray microtomography locally affects stem radial growth with no immediate physiological impact. PLANT PHYSIOLOGY 2024; 196:153-163. [PMID: 38757896 PMCID: PMC11491841 DOI: 10.1093/plphys/kiae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.
Collapse
Affiliation(s)
- Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Pascal Turberg
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| |
Collapse
|
5
|
Tomasella M, Petruzzellis F, Natale S, Tromba G, Nardini A. Detecting and Quantifying Xylem Embolism by Synchrotron-Based X-Ray Micro-CT. Methods Mol Biol 2024; 2722:51-63. [PMID: 37897599 DOI: 10.1007/978-1-0716-3477-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The vulnerability to xylem embolism is a key trait underlying species-specific drought tolerance of plants, and hence is critical for screening climate-resilient crops and understanding vegetation responses to drought and heat waves. Yet, accurate determination of embolism in plant's xylem is challenging, because most traditional hydraulic techniques are destructive and prone to artefacts. Hence, direct and in vivo synchrotron-based X-ray micro-CT observation of xylem conduits has emerged as a key reference technique for accurate quantification of vulnerability to xylem embolism. Micro-CT is nowadays a fundamental tool for studies of plant hydraulic architecture, and this chapter describes the fundamentals of acquisition and processing of micro-CT images of plant xylem.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | | | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | | | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.
| |
Collapse
|
6
|
Losso A, Gauthey A, Choat B, Mayr S. Seasonal variation in the xylem sap composition of six Australian trees and shrubs. AOB PLANTS 2023; 15:plad064. [PMID: 37899974 PMCID: PMC10601387 DOI: 10.1093/aobpla/plad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023]
Abstract
In recent years, xylem sap composition has been shown to affect xylem hydraulics. However, information on how much xylem sap composition can vary across seasons and specifically under drought stress is still limited. We measured xylem sap chemical composition ([Ca2+], [K+], [Na+], electrical conductivity EC and pH) and surface tension (γ) of six Australian angiosperm trees and shrubs over 1 year, which comprised of exceptional dry and wet periods. Percentage losses of hydraulic conductivity and predawn leaf water potential were also monitored. In all species, measured parameters changed considerably over the annual time course. Ions and pH tended to decrease during winter months whereas γ showed a slight increase. No clear correlation was found between sap and hydraulic parameters, except for pH that was higher when plants suffered higher drought stress levels. Results indicate xylem sap composition to be complex and dynamic, where most variation in its composition seems to be dictated by season, even under severe dry conditions. However, pH might play a role as signals of drought stress.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797 Penrith, 2751 New South Wales, Australia
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797 Penrith, 2751 New South Wales, Australia
- Plant Ecology Research Laboratory PERL, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797 Penrith, 2751 New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Charra-Vaskou K, Lintunen A, Améglio T, Badel E, Cochard H, Mayr S, Salmon Y, Suhonen H, van Rooij M, Charrier G. Xylem embolism and bubble formation during freezing suggest complex dynamics of pressure in Betula pendula stems. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5840-5853. [PMID: 37463327 DOI: 10.1093/jxb/erad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Freeze-thaw-induced embolism, a key limiting factor for perennial plants results from the formation of gas bubbles during freezing and their expansion during thawing. However, the ice volumetric increase generates local pressures, which can affect the formation of bubbles. To characterize local dynamics of pressure tension and the physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emission analysis and synchrotron-based high-resolution computed tomography on the diffuse-porous species Betula pendula. Visualization of individual air-filled vessels and the distribution of gas bubbles in frozen xylem were performed.. Ultrasonic emissions occurred after ice formation, together with bubble formation, whereas the development of embolism took place after thawing. The pictures of frozen tissues indicated that the positive pressure induced by the volumetric increase of ice can provoke inward flow from the cell wall toward the lumen of the vessels. We found no evidence that wider vessels within a tissue were more prone to embolism, although the occurrence of gas bubbles in larger conduits would make them prone to earlier embolism. These results highlight the need to monitor local pressure as well as ice and air distribution during xylem freezing to understand the mechanism leading to frost-induced embolism.
Collapse
Affiliation(s)
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research/ Physics, Faculty of Science, University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/ Forest Science, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Stefan Mayr
- Institute for Botany, University of Innsbruck, Austria
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/ Physics, Faculty of Science, University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/ Forest Science, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | | | - Mahaut van Rooij
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Vuerich M, Petrussa E, Boscutti F, Braidot E, Filippi A, Petruzzellis F, Tomasella M, Tromba G, Pizzuto M, Nardini A, Secchi F, Casolo V. Contrasting Responses of Two Grapevine Cultivars to Drought: The Role of Non-structural Carbohydrates in Xylem Hydraulic Recovery. PLANT & CELL PHYSIOLOGY 2023; 64:920-932. [PMID: 37384580 DOI: 10.1093/pcp/pcad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased Ψpd in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT.
Collapse
Affiliation(s)
- Marco Vuerich
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Elisa Petrussa
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Francesco Boscutti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Enrico Braidot
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Antonio Filippi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
- Dipartimento di Area Medica, Università di Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Mauro Pizzuto
- Vivai Cooperativi Rauscedo, Via Udine, 39, Rauscedo (PN) 33095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Francesca Secchi
- Dipartimento di Scienze Agrarie, Forestali, Alimentari (DISAFA), Università di Torino, Largo Paolo Braccini 2, Grugliasco (TO) 10095, Italy
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| |
Collapse
|
9
|
Moraes IC, Hesterberg D, Bacchim Neto FA, Archilha NL, Pérez CA, Araújo MVA, Ferreira TR. Monte Carlo simulations of synchrotron X-ray dose affecting root growth during in vivo tomographic imaging. Sci Rep 2023; 13:5643. [PMID: 37024527 PMCID: PMC10079845 DOI: 10.1038/s41598-023-32540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Synchrotron X-ray computed tomography (XCT) has been increasingly applied to study the in vivo dynamics of root growth and rhizosphere processes. However, minimizing radiation-induced damage to root growth warrants further investigation. Our objective was to develop a robust approach for modeling and evaluating ways to reduce synchrotron X-ray dose effects on root growth during in vivo imaging. Wheat roots growing in soil were exposed to X-rays during XCT experiments resolved in space (3D) plus time (4D). The dose rate and cumulative absorbed dose in roots were modelled using the Monte Carlo code FLUKA for different experimental conditions of polychromatic and quasi-monochromatic X-ray beam configurations. The most impactful factors affecting damage to roots were incident X-ray energy spectrum, stored current in the accelerator machine, position of the root in the soil, and possibly the number of exposures during the 4D XCT experiments. Our results imply that radiation dose during in vivo imaging of plant roots can be diminished by using monochromatic radiation at the highest energy suitable for a given sample thickness and field of view, and by controlling the rotation axis of off-centered roots to increase attenuation of radiation by the soil matrix.
Collapse
Affiliation(s)
- Isabela C Moraes
- Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Dean Hesterberg
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Fernando A Bacchim Neto
- Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Nathaly L Archilha
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Maria Victória A Araújo
- Department of Biology, Federal University of Ceará (UFC), Fortaleza, Ceará, 60440-900, Brazil
| | - Talita R Ferreira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
10
|
Trifilò P, Abate E, Petruzzellis F, Azzarà M, Nardini A. Critical water contents at leaf, stem and root level leading to irreversible drought-induced damage in two woody and one herbaceous species. PLANT, CELL & ENVIRONMENT 2023; 46:119-132. [PMID: 36266962 DOI: 10.1111/pce.14469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Plant water content is a simple and promising parameter for monitoring drought-driven plant mortality risk. However, critical water content thresholds leading to cell damage and plant failure are still unknown. Moreover, it is unclear whether whole-plant or a specific organ water content is the most reliable indicator of mortality risk. We assessed differences in dehydration thresholds in leaf, stem and root samples, hampering the organ-specific rehydration capacity and increasing the mortality risk. We also tested eventual differences between a fast experimental dehydration of uprooted plants, compared to long-term water stress induced by withholding irrigation in potted plants. We investigated three species with different growth forms and leaf habits i.e., Helianthus annuus (herbaceous), Populus nigra (deciduous tree) and Quercus ilex (evergreen tree). Results obtained by the two dehydration treatments largely overlapped, thus validating bench dehydration as a fast but reliable method to assess species-specific critical water content thresholds. Regardless of the organ considered, a relative water content value of 60% induced significant cell membrane damage and loss of rehydration capacity, thus leading to irreversible plant failure and death.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Elisa Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | | | - Maria Azzarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| |
Collapse
|
11
|
Chin ARO, Guzmán-Delgado P, Sillett SC, Kerhoulas LP, Ambrose AR, McElrone AR, Zwieniecki MA. Tracheid buckling buys time, foliar water uptake pays it back: Coordination of leaf structure and function in tall redwood trees. PLANT, CELL & ENVIRONMENT 2022; 45:2607-2616. [PMID: 35736139 DOI: 10.1111/pce.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tracheid buckling may protect leaves in the dynamic environments of forest canopies, where rapid intensifications of evaporative demand, such as those brought on by changes in light availability, can result in sudden increases in transpiration rate. While treetop leaves function in reliably direct light, leaves below the upper crown must tolerate rapid, thermally driven increases in evaporative demand. Using synchrotron-based X-ray microtomography, we visualized impacts of experimentally induced water stress and subsequent fogging on living cells in redwood leaves, adding ecological and functional context through crown-wide explorations of variation in leaf physiology and microclimate. Under drought, leaf transfusion tracheids buckle, releasing water that supplies sufficient temporal reserves for leaves to reduce stomatal conductance safely while stopping the further rise of tension. Tracheid buckling fraction decreases with height and is closely coordinated with transfusion tissue capacity and stomatal conductance to provide temporal reserves optimized for local variation in microclimate. Foliar water uptake fully restores collapsed and air-filled transfusion tracheids in leaves on excised shoots, suggesting that trees may use aerial water sources for recovery. In the intensely variable deep-crown environment, foliar water uptake can allow for repetitive cycles of tracheid buckling and unbuckling, protecting the tree from damaging levels of hydraulic tension and supporting leaf survival.
Collapse
Affiliation(s)
- Alana R O Chin
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Paula Guzmán-Delgado
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Stephen C Sillett
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, California, USA
| | - Lucy P Kerhoulas
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, California, USA
| | - Anthony R Ambrose
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Andrew R McElrone
- USDA-ARS & Viticulture and Enology Department, University of California Davis, Davis, California, USA
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
12
|
Lamacque L, Sabin F, Améglio T, Herbette S, Charrier G. Detection of acoustic events in lavender for measuring xylem vulnerability to embolism and cellular damage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3699-3710. [PMID: 35176148 DOI: 10.1093/jxb/erac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Acoustic emission analysis is promising to investigate the physiological events leading to drought-induced injury and mortality. However, their nature and source are not fully understood, making this technique difficult to use as a direct measure of the loss of xylem hydraulic conductance. Acoustic emissions were recorded during severe dehydration in lavender plants (Lavandula angustifolia) and compared with the dynamics of embolism development and cell damage. The timing and characteristics of acoustic signals from two independent recording systems were compared by principal component analysis (PCA). Changes in water potential, branch diameter, loss of hydraulic conductance, and cellular damage were also measured to quantify drought-induced damages. Two distinct phases of acoustic emissions were observed during dehydration: the first one associated with a rapid loss of diameter and a significant increase in loss of xylem conductance (90%), and the second with slower changes in diameter and a significant increase in cellular damage. Based on PCA, a developed algorithm discriminated hydraulic-related acoustic signals from other sources, proposing a reconstruction of hydraulic vulnerability curves. Cellular damage preceded by hydraulic failure seems to lead to a lack of recovery. The second acoustic phase would allow detection of plant mortality.
Collapse
Affiliation(s)
- Lia Lamacque
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
- Institut Technique Interprofessionnel Plantes à Parfum, Médicinal, Aromatiques et Industrielles, 26740 Montboucher-sur-Jabron, France
- CNRS Aix-Marseille University, France
| | - Florian Sabin
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Gauthey A, Peters JMR, Lòpez R, Carins-Murphy MR, Rodriguez-Dominguez CM, Tissue DT, Medlyn BE, Brodribb TJ, Choat B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. PLANT, CELL & ENVIRONMENT 2022; 45:1216-1228. [PMID: 35119114 DOI: 10.1111/pce.14265] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Environmental Sciences Division, Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Rosana Lòpez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Syndey University, Richmond, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
14
|
Tomasella M, Natale S, Petruzzellis F, Di Bert S, D’Amico L, Tromba G, Nardini A. No Evidence for Light-Induced Embolism Repair in Cut Stems of Drought-Resistant Mediterranean Species under Soaking. PLANTS 2022; 11:plants11030307. [PMID: 35161287 PMCID: PMC8840644 DOI: 10.3390/plants11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Recent studies suggested that stem photosynthesis could favor bark water uptake and embolism recovery when stem segments are soaked in water under light conditions, but evidence for this phenomenon in drought-resistant Mediterranean species with photosynthetic stems is missing. (2) Embolism recovery upon immersion in water for 2 h–4 h under light was assessed (i) via a classical hydraulic method in leafless Fraxinus ornus and Olea europaea branch segments stressed to xylem water potentials (Yxyl) inducing ca. 50% loss of hydraulic conductivity (PLC) and (ii) via X-ray micro-CT imaging of the stem segments of drought-stressed potted F. ornus saplings. Hydraulic recovery was also assessed in vivo in intact drought-stressed F. ornus saplings upon soil re-irrigation. (3) Intact F. ornus plants recovered hydraulic function through root water uptake. Conversely, the soaked stem segments of both species did not refill embolized conduits, although Yxyl recovered to pre-stress levels (between −0.5 MPa and −0.2 MPa). (4) We hypothesize that xylem embolism recovery through bark water uptake, even in light conditions, may not be a common phenomenon in woody plants and/or that wounds caused by cutting short stem segments might inhibit the refilling process upon soaking.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100 Udine, Italy
| | - Sara Di Bert
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Lorenzo D’Amico
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Italy (G.T.)
- Dipartimento di Fisica, Università di Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Italy (G.T.)
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
- Correspondence:
| |
Collapse
|
15
|
Ganthaler A, Bär A, Dämon B, Losso A, Nardini A, Dullin C, Tromba G, von Arx G, Mayr S. Alpine dwarf shrubs show high proportions of nonfunctional xylem: Visualization and quantification of species-specific patterns. PLANT, CELL & ENVIRONMENT 2022; 45:55-68. [PMID: 34783044 DOI: 10.1111/pce.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Xylem conductive capacity is a key determinant of plant hydraulic function and intimately linked to photosynthesis and productivity, but can be impeded by temporary or permanent conduit dysfunctions. Here we show that persistent xylem dysfunctions in unstressed plants are frequent in Alpine dwarf shrubs and occur in various but species-specific cross-sectional patterns. Combined synchrotron micro-computed tomography (micro-CT) imaging, xylem staining, and flow measurements in saturated samples of six widespread Ericaceae species evidence a high proportion (19%-50%) of hydraulically nonfunctional xylem areas in the absence of drought stress, with regular distribution of dysfunctions between or within growth rings. Dysfunctions were only partly reversible and reduced the specific hydraulic conductivity to 1.38 to 3.57 ×10-4 m2 s-1 MPa-1 . Decommission of inner growth rings was clearly related to stem age and a higher vulnerability to cavitation of older rings, while the high proportion of nonfunctional conduits in each annual ring needs further investigations. The lower the xylem fraction contributing to the transport function, the higher was the hydraulic efficiency of conducting xylem areas. Improved understanding of the functional lifespan of xylem elements and the prevalence and nature of dysfunctions is critical to correctly assess structure-function relationships and whole-plant hydraulic strategies.
Collapse
Affiliation(s)
- Andrea Ganthaler
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Birgit Dämon
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Christian Dullin
- Elettra-Sincrotrone Trieste, Basovizza, Italy
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
- Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany
| | | | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Johnson KM, Lucani C, Brodribb TJ. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. THE NEW PHYTOLOGIST 2022; 233:207-218. [PMID: 34625973 DOI: 10.1111/nph.17786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants in vivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage in vivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored in vivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher Lucani
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
17
|
Muthukrishnan V, Ramasamy S, Damodaran N. Disease recognition in philodendron leaf using image processing technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67321-67330. [PMID: 34245416 DOI: 10.1007/s11356-021-15336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Numerous disease recognition techniques are available to identify diseases in plant leaves. Assignment of spherical polar coordinate treated equivalent to hue, saturation, and intensity helps for disease recognition in Philodendron leaf which was identified as specks. Black vision, white vision, and color vision for the eye are possible with photopigments present in rods and cones in the retina. The highlight of this paper is converting the Philodendron leaf in natural color to grayscale and applying the technique of hue, saturation, and value to the gray image. Then running iteration for the double-sized image by allowing for the simultaneous recognition of the diseased part helps for the identification of the spots present in the leaf. This focuses specks on a brighter scale.
Collapse
|
18
|
Meixner M, Foerst P, Windt CW. Reduced spatial resolution MRI suffices to image and quantify drought induced embolism formation in trees. PLANT METHODS 2021; 17:38. [PMID: 33823898 PMCID: PMC8025330 DOI: 10.1186/s13007-021-00732-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/18/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is uniquely suited to non-invasively and continuously monitor embolism formation in trees. Depending on the MRI method used, quantitative parameter maps of water content and MRI signal relaxation behavior can be generated. The ability to measure dynamic differences in water content and relaxation behavior can be used to detect xylem embolism formation, even if xylem conduits are too small to be spatially resolved. This is especially advantageous when using affordable small-scale low-field MRI scanners. The amount of signal that can be obtained from an object strongly depends on the strength of the magnetic field of the imager's magnet. Imaging at lower resolutions thus would allow to reduce the cost, size and weight of the MRI scanner and to shorten image acquisition times. RESULTS We investigated how much spatial resolution can be sacrificed without losing the ability to monitor embolism formation in coniferous softwood (spruce, Picea abies) and diffuse porous beech (Fagus sylvatica). Saplings of both species were bench dehydrated, while they were continuously imaged at stepwise decreasing spatial resolutions. Imaging was done by means of a small-scale MRI device, utilizing image matrix sizes of 128 × 128, 64 × 64 and 32 × 32 pixels at a constant FOV of 19 and 23 mm, respectively. While images at the lowest resolutions (pixel sizes 0.59 × 0.59 mm and 0.72 × 0.72 mm) were no longer sufficient to resolve finer details of the stem anatomy, they did permit an approximate localization of embolism formation and the generation of accurate vulnerability curves. CONCLUSIONS When using MRI, spatial resolution can be sacrificed without losing the ability to visualize and quantify embolism formation. Imaging at lower spatial resolution to monitor embolism formation has two advantages. Firstly, the acquisition time per image can be reduced dramatically. This enables continuous imaging at high time resolution, which may be beneficial to monitor rapid dynamics of embolism formation. Secondly, if the requirements for spatial resolution are relaxed, much simpler MRI devices can be used. This has the potential to make non-invasive MR imaging of embolism formation much more affordable and more widely available.
Collapse
Affiliation(s)
- Marco Meixner
- Chair of Process Systems Engineering, Technical University Munich, Munich, Germany
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Petra Foerst
- Chair of Process Systems Engineering, Technical University Munich, Munich, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
19
|
Secchi F, Pagliarani C, Cavalletto S, Petruzzellis F, Tonel G, Savi T, Tromba G, Obertino MM, Lovisolo C, Nardini A, Zwieniecki MA. Chemical inhibition of xylem cellular activity impedes the removal of drought-induced embolisms in poplar stems - new insights from micro-CT analysis. THE NEW PHYTOLOGIST 2021; 229:820-830. [PMID: 32890423 DOI: 10.1111/nph.16912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Torino, 10135, Italy
| | - Silvia Cavalletto
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, Trieste, 34127, Italy
| | - Giulia Tonel
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Tadeja Savi
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Maria Margherita Obertino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, Trieste, 34127, Italy
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Gauthey A, Peters JMR, Carins-Murphy MR, Rodriguez-Dominguez CM, Li X, Delzon S, King A, López R, Medlyn BE, Tissue DT, Brodribb TJ, Choat B. Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. THE NEW PHYTOLOGIST 2020; 228:884-897. [PMID: 32542732 DOI: 10.1111/nph.16746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Madeline R Carins-Murphy
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
| | - Celia M Rodriguez-Dominguez
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Sylvain Delzon
- UMR BIOGECO, INRA, Univ Bordeaux, Talence, 33450, France
| | - Andrew King
- L'Orme de Merisiers, Synchrotron SOLEIL, 91190 Saint-Aubin-BP48, Gif-sur-Yvette Cedex, France
| | - Rosana López
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
- PIAF, INRA, University of Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
21
|
Peters JMR, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ, Choat B. Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6623-6637. [PMID: 32822502 PMCID: PMC7586747 DOI: 10.1093/jxb/eraa381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/18/2020] [Indexed: 05/08/2023]
Abstract
Root vulnerability to cavitation is challenging to measure and under-represented in current datasets. This gap limits the precision of models used to predict plant responses to drought because roots comprise the critical interface between plant and soil. In this study, we measured vulnerability to drought-induced cavitation in woody roots and stems of five tree species (Acacia aneura, Cedrus deodara, Eucalyptus crebra, Eucalytus saligna, and Quercus palustris) with a wide range of xylem anatomies. X-ray microtomography was used to visualize the accumulation of xylem embolism in stems and roots of intact plants that were naturally dehydrated to varying levels of water stress. Vulnerability to cavitation, defined as the water potential causing a 50% loss of hydraulic function (P50), varied broadly among the species (-4.51 MPa to -11.93 MPa in stems and -3.13 MPa to -9.64 MPa in roots). The P50 of roots and stems was significantly related across species, with species that had more vulnerable stems also having more vulnerable roots. While there was strong convergence in root and stem vulnerability to cavitation, the P50 of roots was significantly higher than the P50 of stems in three species. However, the difference in root and stem vulnerability for these species was small; between 1% and 31% of stem P50. Thus, while some differences existed between organs, roots were not dramatically more vulnerable to embolism than stems, and the differences observed were less than those reported in previous studies. Further study is required to evaluate the vulnerability across root orders and to extend these conclusions to a greater number of species and xylem functional types.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Oak Ridge National Laboratory, Climate Change Science Institute & Environmental Science Division, Oak Ridge, TN, USA
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Departamento de Sistemas y Recursos Naturales. Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
22
|
Cardoso AA, Visel D, Kane CN, Batz TA, García Sánchez C, Kaack L, Lamarque LJ, Wagner Y, King A, Torres-Ruiz JM, Corso D, Burlett R, Badel E, Cochard H, Delzon S, Jansen S, McAdam SAM. Drought-induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in Selaginella. THE NEW PHYTOLOGIST 2020; 227:1804-1817. [PMID: 32386326 DOI: 10.1111/nph.16649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 05/25/2023]
Abstract
Lycophytes are the earliest diverging extant lineage of vascular plants, sister to all other vascular plants. Given that most species are adapted to ever-wet environments, it has been hypothesized that lycophytes, and by extension the common ancestor of all vascular plants, have few adaptations to drought. We investigated the responses to drought of key fitness-related traits such as stomatal regulation, shoot hydraulic conductance (Kshoot ) and stem xylem embolism resistance in Selaginella haematodes and S. pulcherrima, both native to tropical understory. During drought stomata in both species were found to close before declines in Kshoot , with a 50% loss of Kshoot occurring at -1.7 and -2.5 MPa in S. haematodes and S. pulcherrima, respectively. Direct observational methods revealed that the xylem of both species was resistant to embolism formation, with 50% of embolized xylem area occurring at -3.0 and -4.6 MPa in S. haematodes and S. pulcherrima, respectively. X-ray microcomputed tomography images of stems revealed that the decline in Kshoot occurred with the formation of an air-filled lacuna, disconnecting the central vascular cylinder from the cortex. We propose that embolism-resistant xylem and large capacitance, provided by collapsing inner cortical cells, is essential for Selaginella survival during water deficit.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dominik Visel
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Timothy A Batz
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Clara García Sánchez
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | | | - Yael Wagner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Andrew King
- Synchrotron Source Optimisée de Lumière d'Energie Intermédiaire du LURE, L'Orme de Merisiers, Saint Aubin-BP48, Gif-sur-Yvette Cedex, France
| | - José M Torres-Ruiz
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Déborah Corso
- INRAE, BIOGECO, University of Bordeaux, Pessac, 33615, France
| | - Régis Burlett
- INRAE, BIOGECO, University of Bordeaux, Pessac, 33615, France
| | - Eric Badel
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Sylvain Delzon
- INRAE, BIOGECO, University of Bordeaux, Pessac, 33615, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
23
|
Mijovilovich A, Morina F, Bokhari SN, Wolff T, Küpper H. Analysis of trace metal distribution in plants with lab-based microscopic X-ray fluorescence imaging. PLANT METHODS 2020; 16:82. [PMID: 32523612 PMCID: PMC7278123 DOI: 10.1186/s13007-020-00621-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Many metals are essential for plants and humans. Knowledge of metal distribution in plant tissues in vivo contributes to the understanding of physiological mechanisms of metal uptake, accumulation and sequestration. For those studies, X-rays are a non-destructive tool, especially suited to study metals in plants. RESULTS We present microfluorescence imaging of trace elements in living plants using a customized benchtop X-ray fluorescence machine. The system was optimized by additional detector shielding to minimize stray counts, and by a custom-made measuring chamber to ensure sample integrity. Protocols of data recording and analysis were optimised to minimise artefacts. We show that Zn distribution maps of whole leaves in high resolution are easily attainable in the hyperaccumulator Noccaea caerulescens. The sensitivity of the method was further shown by analysis of micro- (Cu, Ni, Fe, Zn) and macronutrients (Ca, K) in non-hyperaccumulating crop plants (soybean roots and pepper leaves), which could be obtained in high resolution for scan areas of several millimetres. This allows to study trace metal distribution in shoots and roots with a wide overview of the object, and thus avoids making conclusions based on singular features of tiny spots. The custom-made measuring chamber with continuous humidity and air supply coupled to devices for imaging chlorophyll fluorescence kinetic measurements enabled direct correlation of element distribution with photosynthesis. Leaf samples remained vital even after 20 h of X-ray measurements. Subtle changes in some of photosynthetic parameters in response to the X-ray radiation are discussed. CONCLUSIONS We show that using an optimized benchtop machine, with protocols for measurement and quantification tailored for plant analyses, trace metal distribution can be investigated in a reliable manner in intact, living plant leaves and roots. Zinc distribution maps showed higher accumulation in the tips and the veins of young leaves compared to the mesophyll tissue, while in the older leaves the distribution was more homogeneous.
Collapse
Affiliation(s)
- Ana Mijovilovich
- Biology Centre of the Czech Academy of Sciences, Department of Plant Biophysics & Biochemistry, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 Ceske Budejovice, Czech Republic
| | - Filis Morina
- Biology Centre of the Czech Academy of Sciences, Department of Plant Biophysics & Biochemistry, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 Ceske Budejovice, Czech Republic
| | - Syed Nadeem Bokhari
- Biology Centre of the Czech Academy of Sciences, Department of Plant Biophysics & Biochemistry, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 Ceske Budejovice, Czech Republic
| | - Timo Wolff
- Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Hendrik Küpper
- Biology Centre of the Czech Academy of Sciences, Department of Plant Biophysics & Biochemistry, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 Ceske Budejovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, Branišovská 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
24
|
Meixner M, Tomasella M, Foerst P, Windt CW. A small-scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation. THE NEW PHYTOLOGIST 2020; 226:1517-1529. [PMID: 31958150 DOI: 10.1111/nph.16442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/12/2020] [Indexed: 05/13/2023]
Abstract
Magnetic resonance imaging (MRI) is a useful tool to image xylem embolism formation in plants. MRI scanners configured to accept intact plants are rare and expensive. Here, we investigate if affordable small-scale, custom-built low-field MRI scanners would suffice for the purpose. A small-scale, C-shaped permanent magnet was paired with open, plane parallel imaging gradients. The setup was small enough to fit between leaves or branches and offered open access for plant stems of arbitrary length. To counter the two main drawbacks of the system, low signal to noise and reduced magnetic field homogeneity, a multi-spin echo (MSE) pulse sequence was implemented, allowing efficient signal acquisition and quantitative imaging of water content and T2 signal relaxation. The system was tested visualizing embolism formation in Fagus sylvatica during bench dehydration. High-quality images of water content and T2 were readily obtained, which could be utilized to detect the cavitation of vessels smaller than could be spatially resolved. A multiplication of both map types yielded images in which filled xylem appeared with even greater contrast. T2 imaging with small-scale MRI devices allows straightforward visualization of the spatial and temporal dynamics of embolism formation and the derivation of vulnerability curves.
Collapse
Affiliation(s)
- Marco Meixner
- Process Systems Engineering, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
- IBG-2: Plant Sciences Institute, Forschungszentrum Jülich, Leo-Brandt-Straße 1, 52428, Jülich, Germany
| | - Martina Tomasella
- Chair for Ecophysiology of Plants, Technical University Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Petra Foerst
- Process Systems Engineering, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences Institute, Forschungszentrum Jülich, Leo-Brandt-Straße 1, 52428, Jülich, Germany
| |
Collapse
|
25
|
Montanha GS, Rodrigues ES, Marques JPR, de Almeida E, Dos Reis AR, Pereira de Carvalho HW. X-ray fluorescence spectroscopy (XRF) applied to plant science: challenges towards in vivo analysis of plants. Metallomics 2020; 12:183-192. [PMID: 31793600 DOI: 10.1039/c9mt00237e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
X-ray fluorescence spectroscopy (XRF) is an analytical tool used to determine the elemental composition in a myriad of sample matrices. Due to the XRF non-destructive feature, this technique may allow time-resolved plant tissue analyses under in vivo conditions, and additionally, the combination with other non-destructive techniques. In this study, we employed handheld and benchtop XRF to evaluate the elemental distribution changes in living plant tissues exposed to X-rays, as well as real-time uptake kinetics of Zn(aq) and Mn(aq) in soybean (Glycine max (L.) Merrill) stem and leaves, for 48 hours, combined with transpiration rate assessment on leaves by an infrared gas analyzer (IRGA). We found higher Zn content than Mn in stems. The latter micronutrient, in turn, presented higher concentration in leaf veins. Besides, both micronutrients were more concentrated in the first trifolium (i.e., youngest leaf) of soybean plants. Moreover, the transpiration rate was more influenced by circadian cycles than Zn and Mn uptake. Thus, XRF represents a convenient tool for in vivo nutritional studies in plants, and it can be coupled successfully to other analytical techniques.
Collapse
Affiliation(s)
- Gabriel Sgarbiero Montanha
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - Eduardo Santos Rodrigues
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - João Paulo Rodrigues Marques
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - Eduardo de Almeida
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | | | - Hudson Wallace Pereira de Carvalho
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| |
Collapse
|
26
|
Pratt RB, Castro V, Fickle JC, Jacobsen AL. Embolism resistance of different aged stems of a California oak species (Quercus douglasii): optical and microCT methods differ from the benchtop-dehydration standard. TREE PHYSIOLOGY 2020; 40:5-18. [PMID: 31553460 DOI: 10.1093/treephys/tpz092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Vulnerability of xylem to embolism is an important trait related to drought resistance of plants. Methods continue to be developed and debated for measuring embolism. We tested three methods (benchtop dehydration/hydraulic, micro-computed tomography (microCT) and optical) for assessing the vulnerability to embolism of a native California oak species (Quercus douglasii Hook. & Arn.), including an analysis of three different stem ages. All three methods were found to significantly differ in their estimates, with a greater resistance to embolism as follows: microCT > optical > hydraulic. Careful testing was conducted for the hydraulic method to evaluate multiple known potential artifacts, and none was found. One-year-old stems were more resistant than older stems using microCT and optical methods, but not hydraulic methods. Divergence between the microCT and optical methods from the standard hydraulic method was consistent with predictions based on known errors when estimating theoretical losses in hydraulic function in both microCT and optical methods. When the goal of a study is to describe or predict losses in hydraulic conductivity, neither the microCT nor optical methods are reliable for accurately constructing vulnerability curves of stems; nevertheless, these methods may be useful if the goal of a study is to identify embolism events irrespective of hydraulic conductivity or hydraulic function.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| | - Viridiana Castro
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| | - Jaycie C Fickle
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| |
Collapse
|
27
|
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V. The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. Int J Mol Sci 2019; 21:E144. [PMID: 31878253 PMCID: PMC6981889 DOI: 10.3390/ijms21010144] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022] Open
Abstract
The xylem is a complex system that includes a network of dead conduits ensuring long-distance water transport in plants. Under ongoing climate changes, xylem embolism is a major and recurrent cause of drought-induced tree mortality. Non-structural carbohydrates (NSC) play key roles in plant responses to drought and frost stress, and several studies putatively suggest their involvement in the regulation of xylem water transport. However, a clear picture on the roles of NSCs in plant hydraulics has not been drawn to date. We summarize the current knowledge on the involvement of NSCs during embolism formation and subsequent hydraulic recovery. Under drought, sugars are generally accumulated in xylem parenchyma and in xylem sap. At drought-relief, xylem functionality is putatively restored in an osmotically driven process involving wood parenchyma, xylem sap and phloem compartments. By analyzing the published data on stem hydraulics and NSC contents under drought/frost stress and subsequent stress relief, we found that embolism build-up positively correlated to stem NSC depletion, and that the magnitude of post-stress hydraulic recovery positively correlated to consumption of soluble sugars. These findings suggest a close relationship between hydraulics and carbohydrate dynamics. We call for more experiments on hydraulic and NSC dynamics in controlled and field conditions.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy; (E.P.); (V.C.)
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy; (E.P.); (V.C.)
| |
Collapse
|
28
|
Hunter P. Illuminating human disease: The potential of in vivo imaging for preclinical research and diagnostics. EMBO Rep 2019; 20:e49195. [PMID: 31523923 PMCID: PMC6776895 DOI: 10.15252/embr.201949195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
New in vivo imaging technologies, including optical methods to observe biological processes in real time, show great promise for preclinical research and diagnostics of human diseases.
Collapse
|
29
|
Holmlund HI, Pratt RB, Jacobsen AL, Davis SD, Pittermann J. High-resolution computed tomography reveals dynamics of desiccation and rehydration in fern petioles of a desiccation-tolerant fern. THE NEW PHYTOLOGIST 2019; 224:97-105. [PMID: 31318447 DOI: 10.1111/nph.16067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Desiccation-tolerant (DT) plants can dry past -100 MPa and subsequently recover function upon rehydration. Vascular DT plants face the unique challenges of desiccating and rehydrating complex tissues without causing structural damage. However, these dynamics have not been studied in intact DT plants. We used high resolution micro-computed tomography (microCT), light microscopy, and fluorescence microscopy to characterize the dynamics of tissue desiccation and rehydration in petioles (stipes) of intact DT ferns. During desiccation, xylem conduits in stipes embolized before cellular dehydration of living tissues within the vascular cylinder. During resurrection, the chlorenchyma and phloem within the stipe vascular cylinder rehydrated before xylem refilling. We identified unique stipe traits that may facilitate desiccation and resurrection of the vascular system, including xylem conduits containing pectin (which may confer flexibility and wettability); chloroplasts within the vascular cylinder; and an endodermal layer impregnated with hydrophobic substances that impede apoplastic leakage while facilitating the upward flow of water within the vascular cylinder. Resurrection ferns are a novel system for studying extreme dehydration recovery and embolism repair in the petioles of intact plants. The unique anatomical traits identified here may contribute to the spatial and temporal dynamics of water movement observed during desiccation and resurrection.
Collapse
Affiliation(s)
- Helen I Holmlund
- University of California, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - R Brandon Pratt
- California State University, 9001 Stockdale Hwy, Bakersfield, CA, 93311, USA
| | - Anna L Jacobsen
- California State University, 9001 Stockdale Hwy, Bakersfield, CA, 93311, USA
| | - Stephen D Davis
- Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Jarmila Pittermann
- University of California, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| |
Collapse
|
30
|
McDowell NG, Brodribb TJ, Nardini A. Hydraulics in the 21 st century. THE NEW PHYTOLOGIST 2019; 224:537-542. [PMID: 31545889 DOI: 10.1111/nph.16151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | - Timothy J Brodribb
- School of Biological Science, University of Tasmania, Hobart, TAS, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| |
Collapse
|
31
|
Liu J, Gu L, Yu Y, Huang P, Wu Z, Zhang Q, Qian Y, Wan X, Sun Z. Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. PLANT, CELL & ENVIRONMENT 2019; 42:2584-2596. [PMID: 31083779 DOI: 10.1111/pce.13578] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to -1.9 MPa (P50 , water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (-1.5 MPa) and moderately dehydrated (-1.9 MPa) branch segments than in the severely dehydrated (-2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.
Collapse
Affiliation(s)
- Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lin Gu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongchang Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhigang Wu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongqiang Qian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
32
|
Venturas MD, Pratt RB, Jacobsen AL, Castro V, Fickle JC, Hacke UG. Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics. PLANT, CELL & ENVIRONMENT 2019; 42:2422-2436. [PMID: 30997689 DOI: 10.1111/pce.13565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
During periods of dehydration, water transport through xylem conduits can become blocked by embolism formation. Xylem embolism compromises water supply to leaves and may lead to losses in productivity or plant death. Vulnerability curves (VCs) characterize plant losses in conductivity as xylem pressures decrease. VCs are widely used to characterize and predict plant water use at different levels of water availability. Several methodologies for constructing VCs exist and sometimes produce different results for the same plant material. We directly compared four VC construction methods on stems of black cottonwood (Populus trichocarpa), a model tree species: dehydration, centrifuge, X-ray-computed microtomography (microCT), and optical. MicroCT VC was the most resistant, dehydration and centrifuge VCs were intermediate, and optical VC was the most vulnerable. Differences among VCs were not associated with how cavitation was induced but were related to how losses in conductivity were evaluated: measured hydraulically (dehydration and centrifuge) versus evaluated from visual information (microCT and optical). Understanding how and why methods differ in estimating vulnerability to xylem embolism is important for advancing knowledge in plant ecophysiology, interpreting literature data, and using accurate VCs in water flux models for predicting plant responses to drought.
Collapse
Affiliation(s)
- Martin D Venturas
- School of Biological Sciences, University of Utah, Salt Lake City, 84112, Utah, USA
| | - R Brandon Pratt
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Anna L Jacobsen
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Viridiana Castro
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Jaycie C Fickle
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
33
|
Hesse L, Bunk K, Leupold J, Speck T, Masselter T. Structural and functional imaging of large and opaque plant specimens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3659-3678. [PMID: 31188449 DOI: 10.1093/jxb/erz186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Three- and four-dimensional imaging techniques are a prerequisite for spatially resolving the form-structure-function relationships in plants. However, choosing the right imaging method is a difficult and time-consuming process as the imaging principles, advantages and limitations, as well as the appropriate fields of application first need to be compared. The present study aims to provide an overview of three imaging methods that allow for imaging opaque, large and thick (>5 mm, up to several centimeters), hierarchically organized plant samples that can have complex geometries. We compare light microscopy of serial thin sections followed by 3D reconstruction (LMTS3D) as an optical imaging technique, micro-computed tomography (µ-CT) based on ionizing radiation, and magnetic resonance imaging (MRI) which uses the natural magnetic properties of a sample for image acquisition. We discuss the most important imaging principles, advantages, and limitations, and suggest fields of application for each imaging technique (LMTS, µ-CT, and MRI) with regard to static (at a given time; 3D) and dynamic (at different time points; quasi 4D) structural and functional plant imaging.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Katharina Bunk
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| |
Collapse
|
34
|
Hesse L, Leupold J, Poppinga S, Wick M, Strobel K, Masselter T, Speck T. Resolving Form–Structure–Function Relationships in Plants with MRI for Biomimetic Transfer. Integr Comp Biol 2019; 59:1713-1726. [DOI: 10.1093/icb/icz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
In many biomimetic approaches, a deep understanding of the form–structure–function relationships in living and functionally intact organisms, which act as biological role models, is essential. This knowledge is a prerequisite for the identification of parameters that are relevant for the desired technical transfer of working principles. Hence, non-invasive and non-destructive techniques for static (3D) and dynamic (4D) high-resolution plant imaging and analysis on multiple hierarchical levels become increasingly important. In this study we demonstrate that magnetic resonance imaging (MRI) can be used to resolve the plants inner tissue structuring and functioning on the example of four plant concept generators with sizes larger than 5 mm used in current biomimetic research projects: Dragon tree (Dracaena reflexa var. angustifolia), Venus flytrap (Dionaea muscipula), Sugar pine (Pinus lambertiana) and Chinese witch hazel (Hamamelis mollis). Two different MRI sequences were applied for high-resolution 3D imaging of the differing material composition (amount, distribution, and density of various tissues) and condition (hydrated, desiccated, and mechanically stressed) of the four model organisms. Main aim is to better understand their biomechanics, development, and kinematics. The results are used as inspiration for developing novel design and fabrication concepts for bio-inspired technical fiber-reinforced branchings and smart biomimetic actuators.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | - Tom Masselter
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS—FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
35
|
Zeppel MJB, Anderegg WRL, Adams HD, Hudson P, Cook A, Rumman R, Eamus D, Tissue DT, Pacala SW. Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecol Evol 2019; 9:5348-5361. [PMID: 31110684 PMCID: PMC6509402 DOI: 10.1002/ece3.5126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.
Collapse
Affiliation(s)
- Melanie J. B. Zeppel
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | | | - Henry D. Adams
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma
| | - Patrick Hudson
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Alicia Cook
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Rizwana Rumman
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Derek Eamus
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - David T. Tissue
- Hawkesbury Institute of the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
| |
Collapse
|
36
|
Tomasella M, Nardini A, Hesse BD, Machlet A, Matyssek R, Häberle KH. Close to the edge: effects of repeated severe drought on stem hydraulics and non-structural carbohydrates in European beech saplings. TREE PHYSIOLOGY 2019; 39:717-728. [PMID: 30668841 DOI: 10.1093/treephys/tpy142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 05/11/2023]
Abstract
Severe drought events threaten tree water transport system, productivity and survival. Woody angiosperms generally die when embolism-induced loss of hydraulic conductance (PLC) surpasses 80-90% under intense water shortage. However, the recovery capability and possible long-term carry-over effects of repeated drought events could dictate the fate of species' population under climate change scenarios. Potted saplings of European beech (Fagus sylvatica L.) were subjected to two drought cycles in two consecutive growing seasons, aiming to induce minimum leaf water potentials (Ψmd) of about -4 MPa, corresponding to hydraulic thresholds for survival of this species. In the first cycle, a well-irrigated (C) and a drought-stressed group (S) were formed, and, in the following summer, each group was divided in a well-irrigated and a drought-stressed one (four groups in total). The impact of the multiple drought events was assessed by measuring wood anatomical traits, biomass production, water relations, stem hydraulics and non-structural carbohydrate (NSC) content. We also investigated possible connections between stem hydraulics and carbon dynamics during the second drought event and following re-irrigation. S plants had lower Ψmd and maximum specific hydraulic conductivity (Ks) than C plants in the following growing season. Additionally, aboveground biomass production and leaf number were lower compared to C trees, resulting in lower water consumption. However, PLC was similar between groups, probably due to the production of new functional xylem in spring. The second drought event induced 85% PLC and promoted conversion of starch-to soluble sugars. Nevertheless, 1 week after re-irrigation, no embolism repair was observed and soluble sugars were reconverted to starch. The previous drought cycle did not influence the hydraulic performance during the second drought, and after re-irrigation S plants had 40% higher wood NSC content. Our data suggest that beech cannot recover from high embolism levels but multiple droughts might enhance stem NSC availability.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, Università degli Studi di Trieste, Via L. Giorgieri 10, Trieste, Italy
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Andrea Nardini
- Department of Life Sciences, Università degli Studi di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Benjamin D Hesse
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Anna Machlet
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Rainer Matyssek
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Karl-Heinz Häberle
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| |
Collapse
|
37
|
Losso A, Bär A, Dämon B, Dullin C, Ganthaler A, Petruzzellis F, Savi T, Tromba G, Nardini A, Mayr S, Beikircher B. Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. THE NEW PHYTOLOGIST 2019; 221:1831-1842. [PMID: 30347122 PMCID: PMC6492020 DOI: 10.1111/nph.15549] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/14/2018] [Indexed: 05/23/2023]
Abstract
The seedling stage is the most susceptible one during a tree's life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ50 -1.13MPa) than stems (-2.51 MPa) and roots (-1.78 MPa). The main leaf veins of F. sylvatica had similar Ψ50 values (-2.26 MPa) to stems (-2.74 MPa) and roots (-2.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro-CT based PLC calculations. Micro-CT analyses indicated a species-specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade-tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits.
Collapse
Affiliation(s)
- Adriano Losso
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Andreas Bär
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Birgit Dämon
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Christian Dullin
- Institute for Diagnostic and Interventional RadiologyUniversity Medical Center GoettingenRobert‐Koch‐Straße 40Göttingen37075Germany
- Max‐Plank‐Institute for Experimental MedicineHermann‐Rein‐Straße 3Göttingen37075Germany
- Elettra‐Sincrotrone TriesteArea Science ParkTriesteBasovizza34149Italy
| | - Andrea Ganthaler
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Francesco Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Tadeja Savi
- Department of Crop SciencesDivision of Viticulture and PomologyUniversity of Natural Resources and Life Sciences ViennaKonrad Lorenzstrasse 24TullnA‐3430Austria
| | - Giuliana Tromba
- Elettra‐Sincrotrone TriesteArea Science ParkTriesteBasovizza34149Italy
| | - Andrea Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Stefan Mayr
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| | - Barbara Beikircher
- Department of BotanyUniversity of InnsbruckSternwarterstrasse 15InnsbruckA‐6020Austria
| |
Collapse
|