1
|
Samraoui KR, Klimeš A, Jandová V, Altmanová N, Altman J, Dvorský M, Lanta V, Řeháková K, Ruka AT, Fibich P, Liancourt P, Doležal J. Trade-Offs Between Growth, Longevity, and Storage Carbohydrates in Herbs and Shrubs: Evidence for Active Carbon Allocation Strategies. PLANT, CELL & ENVIRONMENT 2025; 48:4505-4517. [PMID: 40016866 PMCID: PMC12050394 DOI: 10.1111/pce.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Plants store nonstructural carbohydrates (NSCs) like starch, fructans and soluble sugars to support metabolism, stress tolerance and defence during low photosynthesis, ultimately influencing their growth and longevity. However, the relationship between NSC composition and growth or persistence in wild plants remains unclear. This study explores trade-offs between growth, longevity and NSCs in 201 plant species across diverse climates in the Western USA, spanning 500-4300 m in elevation and 80-1000 mm in precipitation. Annual growth rates and plant ages were derived from the ring widths of semidesert, steppe and alpine herbs and shrubs, along with NSC profiles in their roots and rhizomes. Results showed an inverse relationship between growth and age, with total NSC, starch and fructan levels negatively correlated with growth, supporting the growth-longevity and growth-storage trade-off hypotheses. Conversely, higher growth rates were linked to soluble sugars, suggesting that climate-driven growth limitations alone do not explain increased NSCs. Fructans were positively associated with longevity, especially in long-lived desert shrubs and alpine herbs, underscoring NSCs' active role in survival strategies. These findings challenge the carbon surplus hypothesis, suggesting that plants actively use specific NSCs to balance growth and persistence, with energy-rich sugars promoting growth and osmoprotective fructans enhancing longevity.
Collapse
Affiliation(s)
- Kenz Raouf Samraoui
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Adam Klimeš
- Faculty of Mathematics and Natural Sciences, Department of Biological SciencesUniversity of BergenBergenNorway
| | - Veronika Jandová
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Nela Altmanová
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Jan Altman
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Miroslav Dvorský
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Vojtech Lanta
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Klára Řeháková
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Adam Taylor Ruka
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | | | - Jiří Doležal
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Zhang YL, Gessler A, Lehmann MM, Schaub M, Saurer M, Rigling A, Li MH. Exogenous sugar addition can exacerbate root carbon limitation in trees. THE NEW PHYTOLOGIST 2025. [PMID: 40400220 DOI: 10.1111/nph.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025]
Abstract
In most tree species, roots serve as major carbon (C) sinks, where C is depleted first when C assimilation is limited. Recent methodological advancements in sugar infusion allow for a better understanding of physiological processes alleviating root C limitation. We conducted a glasshouse experiment with maple (Acer pseudoplatanus L.) and pine (Pinus sylvestris L.) saplings that underwent defoliation followed by either slow, fast, or no 13C-labeled glucose infusion. We measured photosynthetic parameters, nonstructural carbohydrate (NSC) concentrations, and δ13C in cellulose of leaves, twigs, and fine roots, as well as the isotopic composition of dark-respired CO2. Sugar infusion induced photosynthetic downregulation and leaf senescence in maple but not in pine. Leaf photosynthesis was negatively correlated with leaf NSC concentration in maple. These responses exacerbated root C limitation in maple. Conversely, pine maintained stable photosynthetic rates and needle NSC concentrations across treatments, showing the potential of sugar infusion to mitigate root C limitation. Our study suggests that exogenous sugar supply reduces the root C availability when it impairs a plant's photosynthetic performance. Species-specific differences influence infused sugar transport and overall source-sink responses. Alleviating C limitation in roots via exogenous sugar addition is feasible only if photosynthesis is not impeded.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Chimphango SBM, MacAlister D, Ogola JBO, Muasya AM. Growth-defence carbon allocation is complementary for enhanced crop yield under drought and heat stress in tolerant chickpea genotypes. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154473. [PMID: 40086341 DOI: 10.1016/j.jplph.2025.154473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Non-structural carbohydrates (NSC) are major substrates for primary and secondary plant metabolism with various functions including growth, storage of carbon (C) and energy, osmotic adjustment and synthesis of antioxidants for defence against biotic and abiotic stresses. The allocation of C to growth and defence molecules is labelled antagonistic because it is perceived that limited photosynthates produced under stress is allocated preferentially to defence molecules at the expense of growth, leading to the development of the growth-defence trade-off concept. Several studies and literature reviews have provided evidence both in support and against the growth-defence trade-off. Therefore, it remains unclear whether the allocation of NSC to storage and defence molecules is at the expense of plant growth, especially in annual or short-lived flowering plants. This article reviews literature on sugar and antioxidant metabolism in tolerant/desi and sensitive/kabuli genotypes of chickpea under drought and heat stress conditions. The results show that some of the desi genotypes and drought and heat stress tolerant genotypes accumulated greater NSC, proline or antioxidant enzymes and produced higher biomass and seed yield than kabuli and sensitive genotypes under stress. This is new evidence to support the view that plants accumulate NSC and secondary metabolites and grow at the same time under drought and heat stress conditions which implies complementary allocation of C to growth and defence metabolism. Understanding the growth-defence trade-off and its application is important as it affects plant growth, seed yield, and plant fitness in both natural ecosystems and crop improvement programmes in agriculture.
Collapse
Affiliation(s)
- Samson B M Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.
| | - Dunja MacAlister
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - John B O Ogola
- Department of Plant and Soil Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
4
|
Luo N, Vitasse Y, Gessler A, Walde MG. Dealing With Two Stresses: Impact of a Damaging Spring Frost Followed by a Summer Drought on Saplings of Four Temperate Tree Species. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159681 DOI: 10.1111/pce.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Global warming increases the likelihood that temperate tree species will face damaging late spring frost (LSF) and severe summer drought during the same growing season. However, the interactive effects of these two stresses are barely explored. We investigated the physiological and growth responses of Acer campestre, Fagus sylvatica, Quercus robur and Quercus petraea saplings to artificially induced LSF and drought, focusing on stomatal gas exchange, carbon partitioning, nonstructural carbohydrates (NSCs), phenology and tree growth. LSF depleted NSCs and changed carbon allocation patterns 1 month after the event. Additionally, LSF decreased diameter increment and root growth of A. campestre and F. sylvatica in the current year. Drought affected gas exchange of all species, decreased NSCs of A. campestre, reduced biomass of Q. robur, and exacerbated the detrimental LSF effect on Q. robur's NSCs. Our findings indicate that saplings prioritized canopy restoration immediately after LSF, and favored reserve replenishment before growth until the end of the growing season. Furthermore, we highlight the risk that LSF and drought in the same year could push tree species beyond their physiological limits and we emphasize the importance of studying multiple stressors' interactions to better understand threshold effects that could profoundly alter forest ecosystems.
Collapse
Affiliation(s)
- Na Luo
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yann Vitasse
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Arthur Gessler
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Manuel G Walde
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Paligi SS, Link RM, Hackmann CA, Coners H, Leuschner C. Water consumption of beech, spruce and Douglas fir in pure and mixed stands in a wet and a dry year - Testing predictions of the iso/anisohydry concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178948. [PMID: 40043649 DOI: 10.1016/j.scitotenv.2025.178948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
A rising atmospheric vapour pressure deficit (VPD) increases forest transpiration and depletes soil moisture reserves, exposing trees to stress and reducing groundwater recharge. How stand water consumption varies with the species composition, is not well known, but is crucial for managing water resources. We measured stand-level transpiration of nearby pure European beech, Norway spruce and Douglas fir stands and a beech-Douglas fir mixture on deep sandy soil with sap flux systems during a wet and a dry year to compare the species' water use patterns under varying water availability and examine species mixing effects. In the wet year, pure Douglas fir consumed 123 % more water (472 mm yr-1) than pure beech (212 mm yr-1) and 50 % more than pure spruce (estimated at 307 mm yr-1), with the mixed stand being intermediate (295 mm yr-1). In the dry year, isohydric Douglas fir and spruce reduced water use by 38 % and 26 %, respectively; yet, their water consumption still exceeded the beech stand. In contrast, beech transpiration increased in the dry year by 2 % due to elevated VPD. In the mixture, Douglas fir reduced transpiration in the dry year less than in the pure stand (-28 % vs. -38 %), suggesting the species profited from beech admixture. We conclude that forest water consumption is determined by both stand structural properties and tree species identity, with the degree of isohydricity largely determining interannual transpiration variation. High water consumption of Douglas fir rapidly depletes soil moisture, which may reduce groundwater recharge and threaten the species in drier regions.
Collapse
Affiliation(s)
- Sharath S Paligi
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Roman M Link
- TUD Dresden University of Technology, Chair of Forest Botany, Pienner Straße 7, 01737 Tharandt, Germany
| | - Christina A Hackmann
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Heinz Coners
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany; Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075 Göttingen, Germany
| |
Collapse
|
6
|
Peltier DMP, Carbone MS, Ogle K, Koch GW, Richardson AD. Decades-old carbon reserves are widespread among tree species, constrained only by sapwood longevity. THE NEW PHYTOLOGIST 2025; 245:1468-1480. [PMID: 39627652 DOI: 10.1111/nph.20310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 01/24/2025]
Abstract
Carbon reserves are distributed throughout plant cells allowing past photosynthesis to fuel current metabolism. In trees, comparing the radiocarbon (Δ14C) of reserves to the atmospheric bomb spike can trace reserve ages. We synthesized Δ14C observations of stem reserves in nine tree species, fitting a new process model of reserve building. We asked how the distribution, mixing, and turnover of reserves vary across trees and species. We also explored how stress (drought and aridity) and disturbance (fire and bark beetles) perturb reserves. Given sufficient sapwood, young (< 1 yr) and old (20-60+ yr) reserves were simultaneously present in single trees, including 'prebomb' reserves in two conifers. The process model suggested that most reserves are deeply mixed (30.2 ± 21.7 rings) and then respired (2.7 ± 3.5-yr turnover time). Disturbance strongly increased Δ14C mean ages of reserves (+15-35 yr), while drought and aridity effects on mixing and turnover were species-dependent. Fire recovery in Sequoia sempervirens also appears to involve previously unobserved outward mixing of old reserves. Deep mixing and rapid turnover indicate most photosynthate is rapidly metabolized. Yet ecological variation in reserve ages is enormous, perhaps driven by stress and disturbance. Across species, maximum reserve ages appear primarily constrained by sapwood longevity, and thus old reserves are probably widespread.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Mariah S Carbone
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kiona Ogle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
7
|
Piper FI, Fajardo A. Local adaptation to aridity in a widely distributed angiosperm tree species is mediated by seasonal increase of sugars and reduced growth. TREE PHYSIOLOGY 2024; 44:134-144. [PMID: 37369020 PMCID: PMC11898622 DOI: 10.1093/treephys/tpad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Trees in dry climates often have higher concentrations of total non-structural carbohydrates (NSC = starch + soluble sugars [SS]) and grow less than conspecifics in more humid climates. This pattern might result from the growth being more constrained by aridity than the carbon (C) gain, or reflect local adaptation to aridity, since NSC fuel metabolism and ensure adequate osmoregulation through the supply of SS, while low growth reduces water and C demands. It has been further proposed that C allocation to storage could come at the expense of growth (i.e., a growth-storage trade-off). We examined whether NSC and growth reflect the local adaptation to aridity in Embothrium coccineum J. R. Forst & G. Forst. (Proteaceae), a species with an exceptionally wide niche. To control for any influence of phenotypic plasticity on NSC and growth, we collected seeds from dry (46° 16'S, 71° 55'W, 500 mm year-1) and moist (45° 24'S, 72° 40'W, >2500 mm year-1) climates and grew seedlings in a common garden experiment for 3 years. We then compared the NSC and SS concentrations and pools (i.e., total contents) and the biomass of seedlings at spring, summer and fall. Seedlings from the dry climate had significantly lower biomass and similar NSC concentrations and pools as seedlings from moist climate, suggesting that reduced growth in arid environments does not result from a prioritization of C allocation to storage but that it confers advantages under aridity (e.g., lower transpiration area). Across organs, starch and NSC decreased similarly in seedlings from both climates from spring onward. However, root and stem SS concentrations increased during the growing season, and these increases were significantly higher in seedlings from the dry climate. The greater SS accumulation in seedlings from the dry climate compared with those from the moist climate demonstrates ecotypic differentiation in the seasonal dynamics of SS, suggesting that SS underlie local adaptation to aridity.
Collapse
Affiliation(s)
- Frida I Piper
- Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca 3460000, Chile
- Instituto de Ecología y Biodiversidad (IEB), Barrio Universitario, Concepción 4070386, Chile
- Núcleo Milenio Límite de la Vida en Patagonia (Lili), Universidad Austral de Chile, Valdivia, Chile
| | - Alex Fajardo
- Instituto de Ecología y Biodiversidad (IEB), Barrio Universitario, Concepción 4070386, Chile
- Núcleo Milenio Límite de la Vida en Patagonia (Lili), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Investigación Interdisciplinaria (I), Vicerrectoría Académica, Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| |
Collapse
|
8
|
Peltier DMP, Nguyen P, Ebert C, Koch GW, Schuur EAG, Ogle K. Moisture stress limits radial mixing of non-structural carbohydrates in sapwood of trembling aspen. TREE PHYSIOLOGY 2024; 44:204-216. [PMID: 37387246 DOI: 10.1093/treephys/tpad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Dynamics in non-structural carbohydrate (NSC) pools may underlie observed drought legacies in tree growth. We assessed how aridity influences the dynamics of different-aged NSC pools in tree sapwood at two sites with differing climate conditions ('wet' vs 'dry'), which also experienced widespread regional drought 5 years earlier. We used an incubation method to measure the radiocarbon (Δ14C) in CO2 respired from Populus tremuloides Michx. (aspen) tree rings to evaluate NSC storage and mixing patterns, coupled with measurements of NSC (soluble sugars and starch) concentrations and respired δ13C-CO2. At a wet site, CO2 respired from rings formed during 1962-67 was only ~11 years old, suggesting deep sapwood mixing of NSCs as starch. At a dry site, the total NSC was about one-third of wet-site totals, maximum ages in deep rings were lower and ages more rapidly increased in shallow rings and then plateaued. These results suggest historically shallower mixing and/or relatively higher consumption of NSCs under dry conditions. Both sites, however, had similar aged NSC (<1 year) in the most recent six rings, indicative of deep radial mixing following relatively wet conditions during the sampling year. We suggest that the significant differences in NSC mixing among sites are driven by moisture stress, where aridity reduces NSC reserves and restricts the depth of radial mixing. However, dynamic climate conditions in the south-western USA resulted in more complex radial patterns of sapwood NSC age than previously described. We suggest a novel conceptual framework to understand how moisture variability might influence the dynamics of NSC mixing in the sapwood.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Chris Ebert
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
| | - George W Koch
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, AZ 86011, USA
| |
Collapse
|
9
|
Helm J, Muhr J, Hilman B, Kahmen A, Schulze ED, Trumbore S, Herrera-Ramírez D, Hartmann H. Carbon dynamics in long-term starving poplar trees-the importance of older carbohydrates and a shift to lipids during survival. TREE PHYSIOLOGY 2024; 44:173-185. [PMID: 37941495 PMCID: PMC11898624 DOI: 10.1093/treephys/tpad135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Carbon (C) assimilation can be severely impaired during periods of environmental stress, like drought or defoliation, making trees heavily dependent on the use of C reserve pools for survival; yet, the dynamics of reserve use during periods of reduced C supply are still poorly understood. We used stem girdling in mature poplar trees (Populus tremula L. hybrids), a lipid-storing species, to permanently interrupt the phloem C transport and induced C shortage in the isolated stem section below the girdle and monitored metabolic activity during three campaigns in the growing seasons of 2018, 2019 and 2021. We measured respiratory fluxes (CO2 and O2), non-structural carbon concentration, the respiratory substrate (based on isotopic analysis and CO2/O2 ratio) and the age of the respiratory substrate (based on radiocarbon analysis). Our study shows that poplar trees can survive long periods of reduced C supply from the canopy by switching in metabolism from recent carbohydrates to older storage pools with a potential mixture of respiratory substrates, including lipids. This mechanism of stress resilience can explain why tree decline may take many years before death occurs.
Collapse
Affiliation(s)
- Juliane Helm
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
- Department of Environmental Sciences–Botany, University of Basel, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Jan Muhr
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
- Department of Forest Botany and Tree Physiology, Laboratory for Radioisotopes, Georg-August University Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| | - Boaz Hilman
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
| | - Ansgar Kahmen
- Department of Environmental Sciences–Botany, University of Basel, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
| | - David Herrera-Ramírez
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll-Str.10, Jena 07743, Germany
- Institute for Forest Protection, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, Quedlinburg 06484, Germany
| |
Collapse
|
10
|
Šamajová V, Marešová J, Majdák A, Jakuš R, Blaženec M. The spruce bark volatiles and internal phloem chemical profiles after the forest gap formation: the annual course. FOLIA OECOLOGICA 2024; 51:165-174. [DOI: 10.2478/foecol-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Our study explores the impact of sudden gap formation on the bark volatile and internal chemical profiles of Norway spruce trees during the initial dry year of research plot 2018 following gap formation. We investigated the annual variation in two main physiological traits of Norway spruce trees at the forest edge (FE) and in the forest interior (FI): bark monoterpene (MT) emission spectra and internal phloem MT composition. Given that gap formation increases the solar radiation dose and temperature for trees at the forest edge, we hypothesized that the concentrations of airborne terpenes released from the tree bark and internal phloem terpenes will increase as a consequence of induced tree defenses. Our findings demonstrate significant increases in both airborne terpene concentrations and internal terpene composition in trees at the forest edge compared to the control trees in the forest interior. This study provides novel insights into the annual dynamics of bark monoterpenes following forest edge establishment and underscores the physiological changes experienced by trees in response to the gap formation.
Collapse
Affiliation(s)
- Veronika Šamajová
- Faculty of Ecology and Environmental Sciences , Technical University in Zvolen , T. G. Masaryka 24 , Zvolen , Slovakia
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Jana Marešová
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Andrej Majdák
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Rastislav Jakuš
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Miroslav Blaženec
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| |
Collapse
|
11
|
Lehmanski LMA, Kösters LM, Huang J, Göbel M, Gershenzon J, Hartmann H. Windthrow causes declines in carbohydrate and phenolic concentrations and increased monoterpene emission in Norway spruce. PLoS One 2024; 19:e0302714. [PMID: 38805412 PMCID: PMC11132463 DOI: 10.1371/journal.pone.0302714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
With the increasing frequencies of extreme weather events caused by climate change, the risk of forest damage from insect attacks grows. Storms and droughts can damage and weaken trees, reduce tree vigour and defence capacity and thus provide host trees that can be successfully attacked by damaging insects, as often observed in Norway spruce stands attacked by the Eurasian spruce bark beetle Ips typographus. Following storms, partially uprooted trees with grounded crowns suffer reduced water uptake and carbon assimilation, which may lower their vigour and decrease their ability to defend against insect attack. We conducted in situ measurements on windthrown and standing control trees to determine the concentrations of non-structural carbohydrates (NSCs), of phenolic defences and volatile monoterpene emissions. These are the main storage and defence compounds responsible for beetle´s pioneer success and host tree selection. Our results show that while sugar and phenolic concentrations of standing trees remained rather constant over a 4-month period, windthrown trees experienced a decrease of 78% and 37% of sugar and phenolic concentrations, respectively. This strong decline was especially pronounced for fructose (-83%) and glucose (-85%) and for taxifolin (-50.1%). Windthrown trees emitted 25 times greater monoterpene concentrations than standing trees, in particular alpha-pinene (23 times greater), beta-pinene (27 times greater) and 3-carene (90 times greater). We conclude that windthrown trees exhibited reduced resources of anti-herbivore and anti-pathogen defence compounds needed for the response to herbivore attack. The enhanced emission rates of volatile terpenes from windthrown trees may provide olfactory cues during bark beetle early swarming related to altered tree defences. Our results contribute to the knowledge of fallen trees vigour and their defence capacity during the first months after the wind-throw disturbance. Yet, the influence of different emission rates and profiles on bark beetle behaviour and host selection requires further investigation.
Collapse
Affiliation(s)
- Linda M. A. Lehmanski
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Lara M. Kösters
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Martin Göbel
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Institute for Forest Protection, Julius Kühn-Institute Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
- Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Netherer S, Lehmanski L, Bachlehner A, Rosner S, Savi T, Schmidt A, Huang J, Paiva MR, Mateus E, Hartmann H, Gershenzon J. Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. THE NEW PHYTOLOGIST 2024; 242:1000-1017. [PMID: 38433329 DOI: 10.1111/nph.19635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/I, Vienna, 1190, Austria
| | - Linda Lehmanski
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
| | - Albert Bachlehner
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/I, Vienna, 1190, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
| | - Maria Rosa Paiva
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, Center for Environmental and Sustainability Research (CENSE), NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Eduardo Mateus
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, Center for Environmental and Sustainability Research (CENSE), NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
- Institute for Forest Protection, Julius Kühn-Institute for Cultivated Plants, Erwin-Baur-Str. 27, Quedlinburg, 06484, Germany
- Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, Göttingen, 37077, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| |
Collapse
|
13
|
Hunziker S, Nazarova T, Kather M, Hartmann M, Brunner I, Schaub M, Rigling A, Hug C, Schönbeck L, Bose AK, Kammerer B, Gessler A. The metabolic fingerprint of Scots pine-root and needle metabolites show different patterns in dying trees. TREE PHYSIOLOGY 2024; 44:tpae036. [PMID: 38526975 PMCID: PMC11056600 DOI: 10.1093/treephys/tpae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia. So far, changes in metabolic pathways and metabolite profiles in needles and roots on the trajectory toward mortality are unknown, although they could contribute to a better understanding of the mortality mechanisms. Therefore, we linked long-term observations of canopy defoliation and tree mortality with the characterization of the primary metabolite profile in needles and fine roots of Scots pines from a forest site in the Swiss Rhone valley. Our results show that Scots pines are able to maintain metabolic homeostasis in needles over a wide range of canopy defoliation levels. However, there is a metabolic tipping point at around 80-85% needle loss. Above this threshold, many stress-related metabolites (particularly osmoprotectants, defense compounds and antioxidants) increase in the needles, whereas they decrease in the fine roots. If this defoliation tipping point is exceeded, the trees are very likely to die within a few years. The different patterns between needles and roots indicate that mainly belowground carbon starvation impairs key functions for tree survival and suggest that this is an important factor explaining the increasing mortality of Scots pines.
Collapse
Affiliation(s)
- Stefan Hunziker
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Tatiana Nazarova
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Michel Kather
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg 79014, Germany
| | - Martin Hartmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| | - Christian Hug
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Botany and Plant Sciences, University of California, Riverside, CA 9252, USA
| | - Arun K Bose
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg 79014, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
14
|
Wang C, Sun Y, Zou X, Chen HYH, Delgado-Baquerizo M, Yang J, Wang G, Liu Y, Ruan H. Increased fine root production coupled with reduced aboveground production of plantations under a three-year experimental drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168370. [PMID: 37952676 DOI: 10.1016/j.scitotenv.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Climate change has led to more frequent and intense droughts. A better understanding of forest production under drought stress is critical for assessing the resilience of forests and their capacity to deliver ecosystem services under climate change. However, the direction and magnitude of drought effects on aboveground and belowground forest ecosystem components remain poorly understood. Here, we conducted a drought experiment including 30 % and 50 % throughfall reduction in a poplar plantation in the eastern coast of China to test how different drought intensities affected aboveground and fine root production. We further investigated the responses of soil physicochemical properties (e.g., soil moisture, soil pH, soil carbon, and soil nitrogen), and microbial properties (e.g., total microbial biomass, fungi:bacteria ratios, and Gram+:Gram- bacteria ratios) to drought. We found that the aboveground production decreased by 12.2 % and 19.3 % following 30 % and 50 % drought intensities, respectively. However, fine root production increased by 21.6 % and 35.1 % under 30 % and 50 % drought intensities, respectively. Moreover, all above- and belowground components exhibited stronger responses to 50 % compared with 30 % drought intensity. Our results provide some of the first direct evidence for simultaneous responses of forest above- and belowground production to moderate and intense droughts, by demonstrating that fine root production is more sensitive than aboveground production to both levels of drought stress.
Collapse
Affiliation(s)
- Cuiting Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuan Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Xiaoming Zou
- Department of Environmental Science, University of Puerto Rico, P. O. Box 70377, San Juan, PR 00936-8377, USA
| | - Han Y H Chen
- Faculty of Natural Resource Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P78 5E1, Canada
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Jingyan Yang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guobing Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuwei Liu
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
15
|
Frost CJ. Overlaps and trade-offs in the diversity and inducibility of volatile chemical profiles among diverse sympatric neotropical canopy trees. PLANT, CELL & ENVIRONMENT 2023; 46:3059-3071. [PMID: 37082810 DOI: 10.1111/pce.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non-flexible defence-related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA-induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β-ocimene, linalool, and α-farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny-based and MeJA-independent variation the richness and diversity of constitutive wound-emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non-volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper-diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.
Collapse
Affiliation(s)
- Christopher J Frost
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Húdoková H, Fleischer P, Ježík M, Marešová J, Pšidová E, Mukarram M, Ditmarová Ľ, Sliacka-KonôPková A, Jamnická G. Can seedlings of Norway spruce ( Picea abies L. H. Karst.) populations withstand changed climate conditions? PHOTOSYNTHETICA 2023; 61:328-341. [PMID: 39651359 PMCID: PMC11558570 DOI: 10.32615/ps.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/12/2023] [Indexed: 12/11/2024]
Abstract
A manipulative experiment with two different water regimes was established to identify the variability of physiological responses to environmental changes in 5-year-old Norway spruce provenances in the Western Carpathians. While variations in the growth responses were detected only between treatments, photosynthetic and biochemical parameters were also differently influenced among provenances. Following drought treatment, an obvious shrinkage of tree stems was observed. In most provenances, drought had a negative effect on leaf gas-exchange parameters and kinetics of chlorophyll a fluorescence. Secondary metabolism was not affected so much with notable differences in concentration of sabinene, o-cimene, and (-)-alpha-terpineol monoterpenes. The most suitable indicators of drought stress were abscisic acid and fluorescence parameters. Seedlings from the highest altitude (1,500 m a.s.l.) responded better to stress conditions than the other populations. Such provenance trials may be a valuable tool in assessing the adaptive potential of spruce populations under changing climate.
Collapse
Affiliation(s)
- H. Húdoková
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - P. Fleischer
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
- Administration of Tatra National Park, Tatranská Lomnica, 059 60 Vysoké Tatry, Slovakia
| | - M. Ježík
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - J. Marešová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - E. Pšidová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - M. Mukarram
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Ľ. Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - A. Sliacka-KonôPková
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - G. Jamnická
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| |
Collapse
|
17
|
Malone SC, Simonpietri A, Knighton WB, Trowbridge AM. Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon. TREE PHYSIOLOGY 2023; 43:938-951. [PMID: 36762917 DOI: 10.1093/treephys/tpad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed.
Collapse
Affiliation(s)
- Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Austin Simonpietri
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter B Knighton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
18
|
Huang R, Zhang T, Ge X, Cao Y, Li Z, Zhou B. Emission Trade-Off between Isoprene and Other BVOC Components in Pinus massoniana Saplings May Be Regulated by Content of Chlorophylls, Starch and NSCs under Drought Stress. Int J Mol Sci 2023; 24:ijms24108946. [PMID: 37240289 DOI: 10.3390/ijms24108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this work was to study the changes in the BVOCs emission rates and physiological mechanistic response of Pinus massoniana saplings in response to drought stress. Drought stress significantly reduced the emission rates of total BVOCs, monoterpenes, and sesquiterpenes, but had no significant effect on the emission rate of isoprene, which slightly increased under drought stress. A significant negative relationship was observed between the emission rates of total BVOCs, monoterpenes, and sesquiterpenes and the content of chlorophylls, starch, and NSCs, and a positive relationship was observed between the isoprene emission rate and the content of chlorophylls, starch, and NSCs, indicating different control mechanism over the emission of the different components of BVOCs. Under drought stress, the emission trade-off between isoprene and other BVOCs components may be driven by the content of chlorophylls, starch, and NSCs. Considering the inconsistent responses of the different components of BVOCs to drought stress for different plant species, close attention should be paid to the effect of drought stress and global change on plant BVOCs emissions in the future.
Collapse
Affiliation(s)
- Runxia Huang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Tianning Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Xiaogai Ge
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Yonghui Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Zhengcai Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Benzhi Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| |
Collapse
|
19
|
Wang M, Li G, Feng Z, Liu Y, Yuan X, Uscola M. A wider spectrum of avoidance and tolerance mechanisms explained ozone sensitivity of two white poplar ploidy levels. ANNALS OF BOTANY 2023; 131:655-666. [PMID: 36694346 PMCID: PMC10147324 DOI: 10.1093/aob/mcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. METHODS Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. KEY RESULTS Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. CONCLUSIONS Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.
Collapse
Affiliation(s)
- Miaomiao Wang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Guolei Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mercedes Uscola
- Universidad de Alcalá, Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, U.D. Ecología, Apdo. 20, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Marešová J, Húdoková H, Sarvašová L, Fleischer P, Ditmarová Ľ, Blaženec M, Jamnická G. Dynamics of internal isoprenoid metabolites in young Picea abies (Norway spruce) shoots during drought stress conditions in springtime. PHYTOCHEMISTRY 2022; 203:113414. [PMID: 36057316 DOI: 10.1016/j.phytochem.2022.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Currently, large areas of Picea abies (Norway spruce) stands in Europe are increasingly affected by drought and heat waves. Moreover, early spring drought has occurred with much higher frequency. Our work focuses on physiological changes induced by drought in four-year-old spruce seedlings during shoot elongation. We investigated drought effect on photosynthetic rate, concentration of abscisic acid and its metabolites, amount and composition of monoterpenes in needles of seedlings from five different provenances (altitude range 550-1280 m above sea level) in Western Carpathians. Spruce seedlings subjected to one-month drought stress of moderate intensity (about 50% of soil water content at the end of experiment) showed significant reduction of CO2 uptake and increased concentration of ABA related to untreated controls. Induced drought affected needle monoterpene content and composition. Observed changes in drought-induced physiological parameters were influenced by seedling provenance. The provenance from 920 m above sea level showed the greatest sensitivity to drought with significantly highest ABA content and, at the same time, a clear decline of CO2 uptake and amounts of total monoterpenes. Our results indicating intra-specific provenance-related variability in physiological response of spruce seedlings to drought may provide a basis for improved reforestation strategies in drought risk areas.
Collapse
Affiliation(s)
- Jana Marešová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Hana Húdoková
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia; Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, TG Masaryka 24, 96001, Zvolen, Slovakia.
| | - Lenka Sarvašová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Peter Fleischer
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia; Technical University in Zvolen, Faculty of Forestry, TG Masaryka 24, 96001, Zvolen, Slovakia
| | - Ľubica Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Miroslav Blaženec
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Gabriela Jamnická
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| |
Collapse
|
21
|
Zepeda AC, Heuvelink E, Marcelis LFM. Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature. FRONTIERS IN PLANT SCIENCE 2022; 13:968881. [PMID: 36262659 PMCID: PMC9574331 DOI: 10.3389/fpls.2022.968881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in light intensity and temperature lead to periods of asynchrony between carbon (C) supply by photosynthesis and C demand by the plant organs. Storage and remobilization of non-structural carbohydrates (NSC) are important processes that allow plants to buffer these fluctuations. We aimed to test the hypothesis that C storage and remobilization can buffer the effects of temperature and light fluctuations on growth of tomato plants. Tomato plants were grown at temperature amplitudes of 3 or 10°C (deviation around the mean of 22°C) combined with integration periods (IP) of 2 or 10 days. Temperature and light were applied in Phase (high temperature simultaneously with high light intensity, (400 μmol m-2 s-1), low temperature simultaneously with low light intensity (200 μmol m-2 s-1) or in Antiphase (high temperature with low light intensity, low temperature with high light intensity). A control treatment with constant temperature (22°C) and a constant light intensity (300 μmol m-2 s-1) was also applied. After 20 days all treatments had received the same temperature and light integral. Differences in final structural dry weight were relatively small, while NSC concentrations were highly dynamic and followed changes of light and temperature (a positive correlation with decreasing temperature and increasing light intensity). High temperature and low light intensity lead to depletion of the NSC pool, but NSC level never dropped below 8% of the plant weight and this fraction was not mobilizable. Our results suggest that growing plants under fluctuating conditions do not necessarily have detrimental effects on plant growth and may improve biomass production in plants. These findings highlight the importance in the NSC pool dynamics to buffer fluctuations of light and temperature on plant structural growth.
Collapse
|
22
|
Oberleitner F, Hartmann H, Hasibeder R, Huang J, Losso A, Mayr S, Oberhuber W, Wieser G, Bahn M. Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. PLANT, CELL & ENVIRONMENT 2022; 45:2617-2635. [PMID: 35610775 DOI: 10.1111/pce.14369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wieser
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Blumstein M, Sala A, Weston DJ, Holbrook NM, Hopkins R. Plant carbohydrate storage: intra- and inter-specific trade-offs reveal a major life history trait. THE NEW PHYTOLOGIST 2022; 235:2211-2222. [PMID: 35524463 DOI: 10.1111/nph.18213] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Trade-offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade-offs typically fall along a productive growth to conservative, bet-hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade-off framework is not well understood. We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database. We demonstrate that storage is actively accumulated, as part of a conservative, bet-hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the species Populus trichocarpa, genetic trade-offs show that for each additional unit of wood area growth (in cm2 yr-1 ) that genotypes invest in, they lose 1.2 to 1.7 units (mg g-1 NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr-1 ), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots. Our findings impact our understanding of basic plant biology, fit storage into a widely used growth-survival trade-off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today.
Collapse
Affiliation(s)
- Meghan Blumstein
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA, 02139, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Noel Michelle Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
- The Arnold Arboretum, 1300 Centre St, Boston, MA, 02130, USA
| |
Collapse
|
24
|
Soderberg DN, Bentz BJ, Runyon JB, Hood SM, Mock KE. Chemical defense strategies, induction timing, growth, and trade‐offs in
Pinus aristata
and
Pinus flexilis. Ecosphere 2022. [DOI: 10.1002/ecs2.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Barbara J. Bentz
- USDA Forest Service, Rocky Mountain Research Station Logan Utah USA
| | - Justin B. Runyon
- USDA Forest Service, Rocky Mountain Research Station Bozeman Montana USA
| | - Sharon M. Hood
- USDA Forest Service, Rocky Mountain Research Station Missoula Montana USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
25
|
Brunn M, Hafner BD, Zwetsloot MJ, Weikl F, Pritsch K, Hikino K, Ruehr NK, Sayer EJ, Bauerle TL. Carbon allocation to root exudates is maintained in mature temperate tree species under drought. THE NEW PHYTOLOGIST 2022; 235:965-977. [PMID: 35403713 DOI: 10.1111/nph.18157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon (C) exuded via roots is proposed to increase under drought and facilitate important ecosystem functions. However, it is unknown how exudate quantities relate to the total C budget of a drought-stressed tree, that is, how much of net-C assimilation is allocated to exudation at the tree level. We calculated the proportion of daily C assimilation allocated to root exudation during early summer by collecting root exudates from mature Fagus sylvatica and Picea abies exposed to experimental drought, and combining above- and belowground C fluxes with leaf, stem and fine-root surface area. Exudation from individual roots increased exponentially with decreasing soil moisture, with the highest increase at the wilting point. Despite c. 50% reduced C assimilation under drought, exudation from fine-root systems was maintained and trees exuded 1.0% (F. sylvatica) to 2.5% (P. abies) of net C into the rhizosphere, increasing the proportion of C allocation to exudates two- to three-fold. Water-limited P. abies released two-thirds of its exudate C into the surface soil, whereas in droughted F. sylvatica it was only one-third. Across the entire root system, droughted trees maintained exudation similar to controls, suggesting drought-imposed belowground C investment, which could be beneficial for ecosystem resilience.
Collapse
Affiliation(s)
- Melanie Brunn
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, 76829, Landau, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marie J Zwetsloot
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Fabian Weikl
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, 85354, Freising, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kyohsuke Hikino
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, 85354, Freising, Germany
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467, Garmisch-Partenkirchen, Germany
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
26
|
Wilkinson SW, Dalen LS, Skrautvol TO, Ton J, Krokene P, Mageroy MH. Transcriptomic changes during the establishment of long-term methyl jasmonate-induced resistance in Norway spruce. PLANT, CELL & ENVIRONMENT 2022; 45:1891-1913. [PMID: 35348221 PMCID: PMC9321552 DOI: 10.1111/pce.14320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Norway spruce (Picea abies) is an economically and ecologically important tree species that grows across northern and central Europe. Treating Norway spruce with jasmonate has long-lasting beneficial effects on tree resistance to damaging pests, such as the European spruce bark beetle Ips typographus and its fungal associates. The (epi)genetic mechanisms involved in such long-lasting jasmonate induced resistance (IR) have gained much recent interest but remain largely unknown. In this study, we treated 2-year-old spruce seedlings with methyl jasmonate (MeJA) and challenged them with the I. typographus vectored necrotrophic fungus Grosmannia penicillata. MeJA treatment reduced the extent of necrotic lesions in the bark 8 weeks after infection and thus elicited long-term IR against the fungus. The transcriptional response of spruce bark to MeJA treatment was analysed over a 4-week time course using mRNA-seq. This analysis provided evidence that MeJA treatment induced a transient upregulation of jasmonic acid, salicylic acid and ethylene biosynthesis genes and downstream signalling genes. Our data also suggests that defence-related genes are induced while genes related to growth are repressed by methyl jasmonate treatment. These results provide new clues about the potential underpinning mechanisms and costs associated with long-term MeJA-IR in Norway spruce.
Collapse
Affiliation(s)
- Samuel W. Wilkinson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodUniversity of SheffieldSheffieldUK
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Lars S. Dalen
- Department of CommunicationsNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Thomas O. Skrautvol
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodUniversity of SheffieldSheffieldUK
| | - Paal Krokene
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Melissa H. Mageroy
- Division for Biotechnology and Plant HealthNorwegian Institute of Bioeconomy ResearchÅsNorway
| |
Collapse
|
27
|
Han Y, Deng J, Zhou W, Wang QW, Yu D. Seasonal Responses of Hydraulic Function and Carbon Dynamics in Spruce Seedlings to Continuous Drought. FRONTIERS IN PLANT SCIENCE 2022; 13:868108. [PMID: 35599899 PMCID: PMC9115555 DOI: 10.3389/fpls.2022.868108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Drought is expected to increase in the frequency and duration associated with climate change. Although hydraulic function and carbon (C) storage have been widely recognized as key components to plant survival under a single drought, the physiological responses to continuous drought remain largely unknown, particularly for high northern temperate and boreal forests which are sensitive to water stress. In this study, we quantified the survival, growth, gas exchange, water relations, and nonstructural carbohydrates (NSCs) in 3-year-old Jezo spruce (Picea jezoensis) seedlings responding to continuous drought stress. Seedlings were maintained in drought conditions for 392 days, covering two growing and one dormant winter season. Seedlings subjected to drought showed a significant decrease in net photosynthesis rate (A net ) and stomatal conductance (g s ) in both growing seasons, and biomass in the second growing season. The seedling mortality continuously increased to 35.6% at the experimental end. Notably, responses of C storage and leaf water potential to drought varied greatly depending on seasons. Living seedlings exposed to drought and control treatments had similar NSC concentrations in both growing seasons. However, seedlings with concentrations of both the soluble sugars and starch less than 1% in root died in the winter dormant season. In the second growing season, compared with the control treatment, droughted seedlings had significantly lower leaf water potential and stem wood-specific hydraulic conductivity (K w). Meanwhile, the leaf predawn water potential did not recover overnight. These suggest that C starvation might be an important reason for seedlings that died in the winter dormant season, while in the growing season drought may limit seedling survival and growth through inducing hydraulic failure. Such seasonal dependence in hydraulic dysfunction and C depletion may lead to higher mortality in spruce forests facing extended drought duration expected in the future.
Collapse
Affiliation(s)
- Yangang Han
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
28
|
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. THE NEW PHYTOLOGIST 2022; 233:1051-1066. [PMID: 34614214 DOI: 10.1111/nph.17773] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G-D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed 'big data' resources including multi-omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi-omics biology to better understand how selection has shaped the mechanisms of G-D tradeoffs. Multi-omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G-D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G-D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply- and demand-side perspectives of previous G-D tradeoff theories.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
29
|
A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. REMOTE SENSING 2022. [DOI: 10.3390/rs14030562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.
Collapse
|
30
|
Xie W, Hodge A, Hao Z, Fu W, Guo L, Zhang X, Chen B. Increased Carbon Partitioning to Secondary Metabolites Under Phosphorus Deficiency in Glycyrrhiza uralensis Fisch. Is Modulated by Plant Growth Stage and Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:876192. [PMID: 35720585 PMCID: PMC9201690 DOI: 10.3389/fpls.2022.876192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 05/17/2023]
Abstract
Phosphorus (P) is one of the macronutrients limiting plant growth. Plants regulate carbon (C) allocation and partitioning to cope with P deficiency, while such strategy could potentially be influenced by plant growth stage and arbuscular mycorrhizal (AM) symbiosis. In a greenhouse pot experiment using licorice (Glycyrrhiza uralensis) as the host plant, we investigated C allocation belowground and partitioning in roots of P-limited plants in comparison with P-sufficient plants under different mycorrhization status in two plant growth stages. The experimental results indicated that increased C allocation belowground by P limitation was observed only in non-AM plants in the early growth stage. Although root C partitioning to secondary metabolites (SMs) in the non-AM plants was increased by P limitation as expected, trade-off patterns were different between the two growth stages, with C partitioning to SMs at the expense of non-structural carbohydrates (NSCs) in the early growth stage but at the expense of root growth in the late growth stage. These changes, however, largely disappeared because of AM symbiosis, where more root C was partitioned to root growth and AM fungus without any changes in C allocation belowground and partitioning to SMs under P limitations. The results highlighted that besides assisting with plant P acquisition, AM symbiosis may alter plant C allocation and partitioning to improve plant tolerance to P deficiency.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Angela Hodge
- Department of Biology, University of York, York, United Kingdom
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhipeng Hao,
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Baodong Chen,
| |
Collapse
|
31
|
Li W, Zhang H, Wang W, Zhang P, Ward ND, Norwood M, Myers-Pigg A, Zhao C, Leff R, Yabusaki S, Waichler S, Bailey VL, McDowell NG. Changes in carbon and nitrogen metabolism during seawater-induced mortality of Picea sitchensis trees. TREE PHYSIOLOGY 2021; 41:2326-2340. [PMID: 34014270 DOI: 10.1093/treephys/tpab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Increasing seawater exposure is causing mortality of coastal forests, yet the physiological response associated with seawater-induced tree mortality, particularly in non-halophytes, is poorly understood. We investigated the shifts in carbon and nitrogen (N) metabolism of mature Sitka-spruce trees that were dying after an ecosystem-scale manipulation of tidal seawater exposure. Soil porewater salinity and foliar ion concentrations increased after seawater exposure and were strongly correlated with the percentage of live foliated crown (PLFC; e.g., crown 'greenness', a measure of progression to death). Co-occurring with decreasing PLFC was decreasing photosynthetic capacity, N-investment into photosynthesis, N-resorption efficiency and non-structural carbohydrate (soluble sugars and starch) concentrations, with the starch reserves depleted to near zero when PLFC dropped below 5%. Combined with declining PLFC, these changes subsequently decreased total carbon gain and thus exacerbated the carbon starvation process. This study suggests that an impairment in carbon and N metabolism during the mortality process after seawater exposure is associated with the process of carbon starvation, and provides critical knowledge necessary to predict sea-level rise impacts on coastal forests.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Peipei Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Nicholas D Ward
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA
| | - Matt Norwood
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Allison Myers-Pigg
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Chuanyan Zhao
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Riley Leff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
32
|
Erbilgin N, Zanganeh L, Klutsch JG, Chen SH, Zhao S, Ishangulyyeva G, Burr SJ, Gaylord M, Hofstetter R, Keefover-Ring K, Raffa KF, Kolb T. Combined drought and bark beetle attacks deplete non-structural carbohydrates and promote death of mature pine trees. PLANT, CELL & ENVIRONMENT 2021; 44:3636-3651. [PMID: 34612515 DOI: 10.1111/pce.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.
Collapse
Affiliation(s)
- Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Leila Zanganeh
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Department of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Department of Forestry, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - Shih-Hsuan Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Shiyang Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J Burr
- Forest Health Protection, USDA Forest Service, Milwaukee, Wisconsin, USA
| | - Monica Gaylord
- Forest Health Protection, USDA Forest Service, Flagstaff, Arizona, USA
| | - Richard Hofstetter
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas Kolb
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
33
|
Wang M, Li G, Feng Z, Liu Y, Xu Y, Uscola M. Uptake of nitrogen forms by diploid and triploid white poplar depends on seasonal carbon use strategy and elevated summer ozone. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7180-7190. [PMID: 34228101 DOI: 10.1093/jxb/erab317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The ability of plants to acquire soil nitrogen (N) sources is plastic in response to abiotic and biotic factors. However, information about how plant preferences among N forms changes in response to internal plant N demand through growth phases, or to environmental stress such as ozone (O3), is scarce. Diploid and triploid Chinese white poplar were used to investigate N form preferences at two key developmental periods (spring, summer) and in response to summer O3 (ambient, 60 ppb above ambient). We used stable isotopes to quantify NH4+, NO3- and glycine N-uptake rates. Carbon acquisition was recorded simultaneously. Both ploidy levels differed in growth, N form preferences, and N and C use strategies. Diploid white poplars grew faster in spring but slower in summer compared with triploids. Diploid white poplars also showed plasticity among N form preferences through the season, with no preferences in spring, and NO3- preferred in summer, while triploids showed an overall preference for NO3-. Carbon acquisition and NO3- uptake were inhibited in both ploidy levels of poplar at elevated O3, which also reduced diploid total N uptake. However, triploid white poplars alleviated N uptake reduction, switching to similar preferences among N forms. We conclude that N form preferences by white poplar are driven by internal C and N use in response to nutrient demands, and external factors such as O3.
Collapse
Affiliation(s)
- Miaomiao Wang
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Guolei Li
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yong Liu
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mercedes Uscola
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, U.D. Ecología, Universidad de Alcalá, Apdo. 20, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
34
|
Hotter droughts alter resource allocation to chemical defenses in piñon pine. Oecologia 2021; 197:921-938. [PMID: 34657177 PMCID: PMC8591002 DOI: 10.1007/s00442-021-05058-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023]
Abstract
Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.
Collapse
|
35
|
Furze ME, Wainwright DK, Huggett BA, Knipfer T, McElrone AJ, Brodersen CR. Ecologically driven selection of nonstructural carbohydrate storage in oak trees. THE NEW PHYTOLOGIST 2021; 232:567-578. [PMID: 34235751 DOI: 10.1111/nph.17605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 oak species (Quercus spp.) growing in a common garden and representing multiple evolutions of three different leaf habits (deciduous, brevideciduous and evergreen). The best fitting evolutionary models indicated that deciduous oak species are evolving towards higher NSC concentrations than their brevideciduous and evergreen relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ). Overall, our work provides insight into the evolutionary drivers of NSC storage and suggests that a deciduous strategy may confer an advantage against stress associated with a changing world. Future work should examine additional clades to further corroborate this idea.
Collapse
Affiliation(s)
- Morgan E Furze
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Dylan K Wainwright
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Brett A Huggett
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
- US Department of Agriculture - Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA, 95618, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
36
|
How Can Litter Modify the Fluxes of CO2 and CH4 from Forest Soils? A Mini-Review. FORESTS 2021. [DOI: 10.3390/f12091276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Forests contribute strongly to global carbon (C) sequestration and the exchange of greenhouse gases (GHG) between the soil and the atmosphere. Whilst the microbial activity of forest soils is a major determinant of net GHG exchange, this may be modified by the presence of litter through a range of mechanisms. Litter may act as a physical barrier modifying gas exchange, water movement/retention and temperature/irradiance fluctuations; provide a source of nutrients for microbes; enhance any priming effects, and facilitate macro-aggregate formation. Moreover, any effects are influenced by litter quality and regulated by tree species, climatic conditions (rainfall, temperature), and forest management (clear-cutting, fertilization, extensive deforestation). Based on climate change projections, the importance of the litter layer is likely to increase due to an litter increase and changes in quality. Future studies will therefore have to take into account the effects of litter on soil CO2 and CH4 fluxes for various types of forests globally, including the impact of climate change, insect infestation, and shifts in tree species composition, as well as a better understanding of its role in monoterpene production, which requires the integration of microbiological studies conducted on soils in different climatic zones.
Collapse
|
37
|
Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proc Natl Acad Sci U S A 2021; 118:2023297118. [PMID: 34389667 DOI: 10.1073/pnas.2023297118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Climate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.g., growth and storage) under severe source limitation remains limited. Using flux measurements, isotopic tracing, targeted metabolomics, and transcriptomics, we investigated how limitation of source supply influences sink activity, particularly growth and carbon storage, and their relative regulation in Norway spruce (Picea abies) clones. During photosynthetic deprivation, absolute rates of respiration, growth, and allocation to storage all decline. When trees approach neutral carbon balance, i.e., daytime net carbon gain equals nighttime carbon loss, genes encoding major enzymes of metabolic pathways remain relatively unaffected. However, under negative carbon balance, photosynthesis and growth are down-regulated while sucrose and starch biosynthesis pathways are up-regulated, indicating that trees prioritize carbon allocation to storage over growth. Moreover, trees under negative carbon balance actively increase the turnover rate of starch, lipids, and amino acids, most likely to support respiration and mitigate stress. Our study provides molecular evidence that trees faced with severe photosynthetic limitation strategically regulate storage allocation and consumption at the expense of growth. Understanding such allocation strategies is crucial for predicting how trees may respond to extreme events involving steep declines in photosynthesis, like severe drought, or defoliation by heat waves, late frost, or insect attack.
Collapse
|
38
|
Ouyang SN, Gessler A, Saurer M, Hagedorn F, Gao DC, Wang XY, Schaub M, Li MH, Shen WJ, Schönbeck L. Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought. TREE PHYSIOLOGY 2021; 41:1400-1412. [PMID: 33595075 PMCID: PMC8436808 DOI: 10.1093/treephys/tpab019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The role of carbon (C) and nutrient uptake, allocation, storage and especially their interactions in survival and recovery of trees under increased frequencies and intensities of drought events is not well understood. A full factorial experiment with four soil water content regimes ranging from extreme drought to well-watered conditions and two fertilization levels was carried out. We aimed to investigate whether nutrient addition mitigates drought effects on downy oak (Quercus pubescens Willd.) and whether storage pools of non-structural carbohydrates (NSC) are modified to enhance survival after 2.5 years of drought and recovery after drought relief. Physiological traits, such as photosynthesis, predawn leaf water potential as well as tissue biomass together with pools and dynamics of NSC and nutrients at the whole-tree level were investigated. Our results showed that fertilization played a minor role in saplings' physiological processes to cope with drought and drought relief, but reduced sapling mortality during extreme drought. Irrespective of nutrient supply, Q. pubescens showed increased soluble sugar concentration in all tissues with increasing drought intensity, mostly because of starch degradation. After 28 days of drought relief, tissue sugar concentrations decreased, reaching comparable values to those of well-watered plants. Only during the recovery process from extreme drought, root NSC concentration strongly declined, leading to an almost complete NSC depletion after 28 days of rewetting, simultaneously with new leaves flushing. These findings suggest that extreme drought can lead to root C exhaustion. After drought relief, the repair and regrowth of organs can even exacerbate the root C depletion. We concluded that under future climate conditions with repeated drought events, the insufficient and lagged C replenishment in roots might eventually lead to C starvation and further mortality.
Collapse
Affiliation(s)
- Sheng-Nan Ouyang
- South China Botanical Garden, Chinese Academy of Sciences,723 XingKe Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Ramistrasse 101, Zurich 8902, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - De-Cai Gao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- School of Geographical Sciences, Northeast Normal University, 5268 Renming Road, Nanguan District, Changchun 130024, China
| | - Xiao-Yu Wang
- Jiyang College, Zhejiang A&F University, 72 Puyang Road,Jiyang District, Zhuji 311800, China
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Mai-He Li
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- School of Geographical Sciences, Northeast Normal University, 5268 Renming Road, Nanguan District, Changchun 130024, China
| | | | - Leonie Schönbeck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf 8903, Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Route Cantonale, Lausanne 1015, Switzerland
| |
Collapse
|
39
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Basler D, Chen Y, Friend AD, Seyednasrollah B, Eckes-Shephard AH, Richardson AD. Manipulating phloem transport affects wood formation but not local nonstructural carbon reserves in an evergreen conifer. PLANT, CELL & ENVIRONMENT 2021; 44:2506-2521. [PMID: 34043242 DOI: 10.1111/pce.14117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effects on structural development, CO2 efflux and nonstructural carbon reserves in stems of mature white pines. Wood formation and stem CO2 efflux varied with a location relative to treatment (i.e., above or below the restriction). We observed up to twice as many tracheids formed above versus below the treatment after the phloem transport manipulation, whereas the cell-wall area decreased only slightly below the treatments, and cell size did not change relative to the control. Nonstructural carbon reserves in the xylem, needles and roots were largely unaffected by the treatments. Our results suggest that low and high carbon supply affects wood formation, primarily through a strong effect on cell proliferation, and respiration, but local nonstructural carbon concentrations appear to be maintained homeostatically. This contrasts with reports of decoupling of source activity and wood formation at the whole-tree or ecosystem level, highlighting the need to better understand organ-specific responses, within-tree feedbacks, as well as phenological and ontogenetic effects on sink-source dynamics.
Collapse
Affiliation(s)
- Tim Rademacher
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - James M LeMoine
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Bijan Seyednasrollah
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
40
|
Perkovich C, Ward D. Herbivore-induced defenses are not under phylogenetic constraints in the genus Quercus (oak): Phylogenetic patterns of growth, defense, and storage. Ecol Evol 2021; 11:5187-5203. [PMID: 34026000 PMCID: PMC8131805 DOI: 10.1002/ece3.7409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution of plant defenses is often constrained by phylogeny. Many of the differences between competing plant defense theories hinge upon the differences in the location of meristem damage (apical versus auxiliary) and the amount of tissue removed. We analyzed the growth and defense responses of 12 Quercus (oak) species from a well-resolved molecular phylogeny using phylogenetically independent contrasts. Access to light is paramount for forest-dwelling tree species, such as many members of the genus Quercus. We therefore predicted a greater investment in defense when apical meristem tissue was removed. We also predicted a greater investment in defense when large amounts of tissue were removed and a greater investment in growth when less tissues were removed. We conducted five simulated herbivory treatments including a control with no damage and alterations of the location of meristem damage (apical versus auxiliary shoots) and intensity (25% versus 75% tissue removal). We measured growth, defense, and nutrient re-allocation traits in response to simulated herbivory. Phylomorphospace models were used to demonstrate the phylogenetic nature of trade-offs between characteristics of growth, chemical defenses, and nutrient re-allocation. We found that growth-defense trade-offs in control treatments were under phylogenetic constraints, but phylogenetic constraints and growth-defense trade-offs were not common in the simulated herbivory treatments. Growth-defense constraints exist within the Quercus genus, although there are adaptations to herbivory that vary among species.
Collapse
Affiliation(s)
| | - David Ward
- Department of Biological SciencesKent State UniversityKentOHUSA
| |
Collapse
|
41
|
Jiang P, Meinzer FC, Fu X, Kou L, Dai X, Wang H. Trade-offs between xylem water and carbohydrate storage among 24 coexisting subtropical understory shrub species spanning a spectrum of isohydry. TREE PHYSIOLOGY 2021; 41:403-415. [PMID: 33079181 DOI: 10.1093/treephys/tpaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic capacitance and carbohydrate storage are two drought adaptation strategies of woody angiosperms. However, we currently lack information on their associations and how they are associated with species' degree of isohydry. We measured total stem xylem nonstructural carbohydrate (NSC) concentration in the dry and wet seasons, xylem hydraulic capacitance, native leaf water potentials, pressure-volume curve parameters and photosynthetic performance in 24 woody understory species differing in their degree of isohydry. We found a trade-off between xylem water and carbohydrate storage both in storage capacitance and along a spectrum of isohydry. Species with higher hydraulic capacitance had lower native NSC storage. The less isohydric species tended to show greater NSC depletion in the dry season and have more drought-tolerant leaves. In contrast, the more isohydric species had higher hydraulic capacitance, which may enhance their drought avoidance capacity. In these species, leaf flushing in the wet season and higher photosynthetic rates in the dry season resulted in accumulation rather than depletion of NSC in the dry season. Our results provide new insights into the mechanisms through which xylem storage functions determine co-occurring species' drought adaptation strategies and improve our capacity to predict community assembly processes under drought.
Collapse
Affiliation(s)
- Peipei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Babst F, Friend AD, Karamihalaki M, Wei J, von Arx G, Papale D, Peters RL. Modeling Ambitions Outpace Observations of Forest Carbon Allocation. TRENDS IN PLANT SCIENCE 2021; 26:210-219. [PMID: 33168468 DOI: 10.1016/j.tplants.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
There have been vociferous calls for 'tree-centered' vegetation models to refine predictions of forest carbon (C) cycling. Unfortunately, our global survey at flux-tower sites indicates insufficient empirical data support for this much-needed model development. We urge for a new generation of studies across large environmental gradients that strategically pair long-term ecosystem monitoring with manipulative experiments on mature trees. For this, we outline a versatile experimental framework to build cross-scale data archives of C uptake and allocation to structural, non-structural, and respiratory sinks. Community-wide efforts and discussions are needed to implement this framework, especially in hitherto underrepresented tropical forests. Global coordination and realistic priorities for data collection will thereby be key to achieve and maintain adequate empirical support for tree-centered vegetation modeling.
Collapse
Affiliation(s)
- Flurin Babst
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Maria Karamihalaki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jingshu Wei
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Georg von Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Dario Papale
- DIBAF, University of Tuscia, Largo dell'Universita, 01100 Viterbo, Italy
| | - Richard L Peters
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Laboratory of Plant Ecology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
43
|
Netherer S, Kandasamy D, Jirosová A, Kalinová B, Schebeck M, Schlyter F. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. JOURNAL OF PEST SCIENCE 2021; 94:591-614. [PMID: 34720785 PMCID: PMC8550215 DOI: 10.1007/s10340-021-01341-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Resilience and functionality of European Norway spruce forests are increasingly threatened by mass outbreaks of the bark beetle Ips typographus promoted by heat, wind throw and drought. Here, we review current knowledge on Norway spruce and I. typographus interactions from the perspective of drought-stressed trees, host selection, colonisation behaviour of beetles, with multi-level effects of symbiotic ophiostomatoid fungi. By including chemo-ecological, molecular and behavioural perspectives, we provide a comprehensive picture on this complex, multitrophic system in the light of climate change. Trees invest carbon into specialised metabolism to produce defence compounds against biotic invaders; processes that are strongly affected by physiological stress such as drought. Spruce bark contains numerous terpenoid and phenolic substances, which are important for bark beetle aggregation and attack success. Abiotic stressors such as increased temperatures and drought affect composition, amounts and emission rates of volatile compounds. Thus, drought events may influence olfactory responses of I. typographus, and further the pheromone communication enabling mass attack. In addition, I. typographus is associated with numerous ophiostomatoid fungal symbionts with multiple effects on beetle life history. Symbiotic fungi degrade spruce toxins, help to exhaust tree defences, produce beetle semiochemicals, and possibly provide nutrition. As the various fungal associates have different temperature optima, they can influence the performance of I. typographus differently under changing environmental conditions. Finally, we discuss why effects of drought on tree-killing by bark beetles are still poorly understood and provide an outlook on future research on this eruptive species using both, field and laboratory experiments.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anna Jirosová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Blanka Kalinová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Fredrik Schlyter
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
- Chemical Ecology Plant Protection Department, Swedish University of Agricultural Sciences, SLU, Alnarp, Sweden
| |
Collapse
|
44
|
Tang M, Zhao W, Xing M, Zhao J, Jiang Z, You J, Ni B, Ni Y, Liu C, Li J, Chen X. Resource allocation strategies among vegetative growth, sexual reproduction, asexual reproduction and defense during growing season of Aconitum kusnezoffii Reichb. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:957-977. [PMID: 33180340 DOI: 10.1111/tpj.15080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Natural plants must actively allocate their limited resources for survival and reproduction. Although vegetative growth, sexual reproduction, asexual reproduction and defense are all basic processes in the life cycle of plants, the strategies used to allocate resources between these processes are poorly understood. These processes are conspicuous in naturally grown Aconitum kusnezoffii Reichb., which makes it a suitable study subject. Here, the morphology, dry matter, total organic carbon, total nitrogen and aconitum alkaloid levels of shoot, principal root (PR) and lateral roots were measured throughout the growing season. Then, transcriptome and metabolite content analyses were performed. We found that vegetative growth began first. After vegetative growth ceased, sexual development began. Flower organ development was accompanied by increased photosynthesis and the PR consumed temporarily stored resources after flower formation. Asexual propagule development initiated earlier than sexual reproduction and kept accumulating resources after that. Development was slow before flower formation, mainly manifesting as increasing length; then, after flower formation it accelerated via enhanced material transport and accumulation. Defense compounds were maintained at low levels before flowering. In particular, the turnover of defense compounds was enhanced before and after flower bud emergence, providing resources for other processes. After flower formation, defense compounds were accumulated. The pattern found herein provides a vivid example for further studies on resource allocation strategies. The exciting finding that the PR, as a more direct storage site for photosynthate, is a buffer unit for resources, and that defense compounds can be reused for other processes, suggests a need to explore potential mechanisms.
Collapse
Affiliation(s)
- Mingze Tang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Wei Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Ming Xing
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jiaxin Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Zhang Jiang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jian You
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Biao Ni
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Yuanbo Ni
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Chengbai Liu
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jiangnan Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
45
|
Precipitation Gradient Drives Divergent Relationship between Non-Structural Carbohydrates and Water Availability in Pinus tabulaeformis of Northern China. FORESTS 2021. [DOI: 10.3390/f12020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seasonal non-structural carbohydrate (NSC) dynamics in different organs can indicate the strategies trees use to cope with water stress; however, these dynamics remain poorly understood along a large precipitation gradient. In this study, we hypothesized that the correlation between water availability and NSC concentrations in different organs might be strengthened by decreasing precipitation in Pinus tabulaeformis Carr. forests in temperate China. Our results show that the concentrations of soluble sugars were lower in stems and coarse roots, and starch was higher in branches in the early growing season at drier sites. Throughout the growing season, the concentrations of soluble sugars increased in drier sites, especially for leaves, and remained stable in wetter sites, while starch concentrations were relatively stable in branches and stems at all sites. The NSC concentrations, mainly starch, decreased in coarse roots along the growing season at drier sites. Trees have a faster growth rate with an earlier cessation in active stem growth at drier sites. Interestingly, we also found a divergent relationship between NSCs in different organs and mean growing season water availability, and a stronger correlation was observed in drier sites. These results show that pine forests in arid and semi-arid regions of northern China exhibit different physiological responses to water availability, improving our understanding of the adaptive mechanisms of trees to water limitations in a warmer and drier climate.
Collapse
|
46
|
Zhang Z, Gong J, Li X, Ding Y, Wang B, Shi J, Liu M, Yang B. Underlying mechanism on source-sink carbon balance of grazed perennial grass during regrowth: Insights into optimal grazing regimes of restoration of degraded grasslands in a temperate steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111439. [PMID: 33035939 DOI: 10.1016/j.jenvman.2020.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Overgrazing is the main driver of grassland degradation and productivity reduction in northern China. The restoration of degraded grasslands depends on optimal grazing regimes that modify the source-sink balance to promote best carbon (C) assimilation and allocation, thereby promoting rapid compensatory growth of the grazed plants. We used in situ13CO2 labeling and field regrowth studies of Stipa grandis P.A. Smirn.to examine the effects of different grazing intensities (light, medium, heavy, and grazing exclusion) on photosynthetic C assimilation and partitioning, on reallocation of non-structural carbohydrates during regrowth, and on the underlying regulatory mechanisms. Light grazing increased the sink demand of newly expanded leaves and significantly promoted 13C fixation by increasing the photosynthetic capacity of the leaves and accelerating fructose transfer from the stem. Although C assimilation decreased under medium and heavy grazing, S. grandis exhibited a tolerance strategy that preferentially allocated more starch and 13C to the roots for storage to balance sink competition between newly expanded leaves and the roots. Sucrose phosphate synthase (SPS), sucrose synthase (SS), and other plant hormones regulated source-sink imbalances during regrowth. Abscisic acid promoted accumulation of aboveground biomass by stimulating stem SPS activity, whereas jasmonate increased root starch synthesis, thereby increasing belowground biomass. Overall, S. grandis could optimize source-sink relationships and above- and belowground C allocation to support regrowth after grazing by the regulating activities of SPS, SS and other hormones. These results provide new insights into C budgets under grazing and guidance for sustainable grazing management in semi-arid grasslands.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Yong Ding
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, 120 Ulanqab East Street, Saihan District, Hohhot, Inner Mongolia, 010021, China.
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jiayu Shi
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Min Liu
- Key Laboratory of Tourism and Resources Environment, Taishan University, Tai'an, Shandong province, 271021, China.
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
47
|
The growth and mortality of Pleioblastus pygmaeus under different light availability. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Resco de Dios V, Arteaga C, Peguero-Pina JJ, Sancho-Knapik D, Qin H, Zveushe OK, Sun W, Williams DG, Boer MM, Voltas J, Moreno JM, Tissue DT, Gil-Pelegrín E. Hydraulic and photosynthetic limitations prevail over root non-structural carbohydrate reserves as drivers of resprouting in two Mediterranean oaks. PLANT, CELL & ENVIRONMENT 2020; 43:1944-1957. [PMID: 32394490 DOI: 10.1111/pce.13781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 05/16/2023]
Abstract
Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.
Collapse
Affiliation(s)
- Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, Lleida, Spain
| | - Carles Arteaga
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Zaragoza, Spain
| | - Haiyan Qin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Obey K Zveushe
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jordi Voltas
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - José M Moreno
- Department of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Zaragoza, Spain
| |
Collapse
|
49
|
Hartmann H, Bahn M, Carbone M, Richardson AD. Plant carbon allocation in a changing world - challenges and progress: introduction to a Virtual Issue on carbon allocation: Introduction to a virtual issue on carbon allocation. THE NEW PHYTOLOGIST 2020; 227:981-988. [PMID: 32662104 DOI: 10.1111/nph.16757] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745, Jena, Germany
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Mariah Carbone
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, 200 Beckwith Way, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, 200 Beckwith Way, Flagstaff, AZ, 86011, USA
| |
Collapse
|
50
|
Huang J, Rücker A, Schmidt A, Gleixner G, Gershenzon J, Trumbore S, Hartmann H. Production of constitutive and induced secondary metabolites is coordinated with growth and storage in Norway spruce saplings. TREE PHYSIOLOGY 2020; 40:928-942. [PMID: 32268379 PMCID: PMC7325531 DOI: 10.1093/treephys/tpaa040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/17/2020] [Accepted: 03/18/2020] [Indexed: 05/12/2023]
Abstract
A mechanistic understanding of how trees balance the trade-offs between growth, storage and defense is limited but crucial for predicting tree responses to abiotic and biotic stresses. Here we investigated how trees allocate storage of non-structural carbohydrates (NSC) to growth and constitutive and induced secondary metabolites (SM). We exposed Norway spruce (Picea abies) saplings to 5 weeks of complete darkness to induce light and/or carbon limitation and then applied methyl jasmonate (MeJA) to simulate biotic attack. We measured changes in biomass, NSC (sum of soluble sugars and starches), and constitutive and induced SM (sum of phenolic compounds and terpenoids) in current-year developing and previous-year mature needles and branches, as well as volatiles emitted from the canopy. Under darkness, NSC storage was preferentially used for constitutive biosynthesis of monoterpenes rather than biosynthesis of stilbenes and growth of developing organs, while SM stored in mature organs cannot be remobilized and recycled. Furthermore, MeJA-induced production of SM was constrained by low NSC availability in developing organs but not in mature organs grown in the dark. Emissions of volatiles were suppressed in the dark but after 1 h of re-illumination, emissions of both constitutive and induced monoterpene hydrocarbons recovered rapidly, whereas emissions of linalool and sesquiterpene produced via de novo synthesis did not recover. Our results highlight that light and/or carbon limitation may constrain constitutive and JA-induced biosynthesis of SM in coordination with growth, NSC storage and mobilization.
Collapse
Affiliation(s)
- Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
- Corresponding author ()
| | - Alexander Rücker
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | - Gerd Gleixner
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | - Susan Trumbore
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| |
Collapse
|