1
|
Liu Q, Xu X, Liang J, Zhang S, Wang G, Liu Y. Physiological mechanisms and drought resistance assessment of four dominant species on the Loess Plateau under drought stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70261. [PMID: 40344583 DOI: 10.1111/ppl.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 05/11/2025]
Abstract
The escalating frequency and severity of droughts have caused growth decline and increased mortality risk for plantations on the Loess Plateau. The main aim of this study was to explore the physiological mechanisms of four native dominant species during drought-induced mortality and evaluate their drought resistance capabilities. Drought was induced by withholding water from potted seedings, and we compared patterns in pit membrane damage, hydraulic function, and non-structural carbohydrates (NSC) dynamics across four tree species with distinct anatomical features. Our findings reveal species-specific vulnerability thresholds: Pinus tabulaeformis (-2.86 Mpa), Quercus liaotungensis (-1.92 Mpa), Robinia pseudoacacia (-0.109 Mpa), and Syringa reticulata (-0.93 Mpa). Additionally, drought stress was found to compromise pit membrane integrity, with water potential thresholds identified as R.pseudoacacia (-1.37 Mpa), S. reticulata (-2.20 Mpa), Q. liaotungensis (-2.39 Mpa), and P. tabulaeformis (-1.85 Mpa). The study concludes that R. pseudoacacia and S. reticulata exhibit greater susceptibility to hydraulic failure under severe drought conditions, leading to increased mortality risks. In contrast, Q. liaotungensis and P. tabulaeformis demonstrate enhanced drought tolerance and survival capacity. Our research elucidates the physiological mechanisms of drought-induced mortality, emphasizing the critical role of pit membrane damage in this process. These findings not only provide valuable insights into the drought resistance of native dominant species but also establish a scientific foundation for future artificial forest transformation initiatives on the Loess Plateau.
Collapse
Affiliation(s)
- Qing Liu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, China
| | - Xiaoyang Xu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Liang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqi Zhang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoliang Wang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Liu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
da Silva OB, de Castro EM, Vassura Y, Pires MV, de Carvalho CGP, de Carvalho LM, Pereira MP. Root system morphoanatomy of sunflower genotypes under water deficit. BMC PLANT BIOLOGY 2025; 25:449. [PMID: 40205530 PMCID: PMC11980319 DOI: 10.1186/s12870-025-06468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Sunflower is classified as a moderately drought tolerant crop. Genotypic variations and water availability are factors that influence the root development of the crop, which is important for water absorption in deep regions of the soil. Therefore, tests in controlled water deficit environments allow evaluating a set of morphoanatomical characteristics of the root system that attribute tolerance to water deficit, contributing to sunflower genetic improvement programs. The objective of this study was to identify a set of root morphoanatomical characteristics of four sunflower genotypes subjected to controlled water deficit. We tested four commercial sunflower genotypes (OLISUN03, AGUARÁ06, HELIO250 and BRS323) under well-irrigated (field capacity) and water restriction (40% of field capacity) conditions, completely randomized design with six replicates was applied, grown in rhizotron pot, allowing to evaluate root development through imaging and anatomical characteristics related to water absorption in different regions of the sunflower root system. Plants under water deficit showed changes that contributed to water absorption in different positions of root development. Under water deficit, the tissue differentiation occurred first near the root apex, while at field capacity differentiation occurred close to the root base. In the condition of water deficit, it was verified narrow root system architecture (RSA) for the genotype OLISUN03, deep RSA for BRS323, reduced endoderm thickness in OLISUN03 and vascular cylinder area in AGUARÁ06. In general, water deficit promoted changes in the morphological and anatomical characteristics of the root system. Morphological and anatomical modifications of the root system contribute to the anchoring and absorption of water and nutrients in places with little water availability in the soil.
Collapse
Affiliation(s)
- Orivaldo Benedito da Silva
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | - Evaristo Mauro de Castro
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Yohanna Vassura
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Mateus Vilela Pires
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | | | - Marcio Paulo Pereira
- Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
3
|
Alonso-Forn D, Buesa I, Flor L, Sabater A, Medrano H, Escalona JM. Implications of root morphology and anatomy for water deficit tolerance and recovery of grapevine rootstocks. FRONTIERS IN PLANT SCIENCE 2025; 16:1541523. [PMID: 40182539 PMCID: PMC11966617 DOI: 10.3389/fpls.2025.1541523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The intensification of drought conditions due to climate change poses a major challenge to sustainable grape production. Rootstocks are essential in supporting grapevine water uptake and drought resilience; however, their physiological responses to water stress are not fully understood. Under the hypothesis that root morphology and anatomy may be key traits in grapevine tolerance to water deficit, this study aimed to investigate these traits across diverse rootstocks under progressive water deficit and recovery phases. Thirteen genotypes, including commercial rootstocks and recently bred RG-series and RM2, were evaluated over two seasons in controlled pot-based conditions. Plants were subjected to five distinct watering stages, from well-watered to severe drought. Root traits, such as length, density, and xylem anatomical features, were analyzed alongside stem water potential (Ψstem) to gauge plant water status. Results showed significant genotype-specific differences in root morphology and anatomy, impacting drought tolerance and recovery. Rootstocks with higher root length density (RLD) and a larger proportion of fine roots maintained Ψstem more effectively under severe drought. Additionally, smaller xylem vessel diameters and reduced xylem area relative to root cross-sectional area correlated with improved water transport efficiency and faster recovery post-drought. A trade-off emerged wherein increased root density enhanced water uptake capacity but came at the cost of reduced transport efficiency. Notably, rootstocks 420A, 41B, RM2, and Fercal displayed superior drought resilience, while the RG-series did not outperform established genotypes like 13-5 Evex, 110 Richter, and 140 Ruggeri. These results underscore the role of root morphology and anatomy in grapevine drought tolerance, suggesting that these traits could be incorporated as criteria for future rootstocks breeding programs. Nevertheless, field-testing under non-limiting soil conditions is essential to validate these findings.
Collapse
Affiliation(s)
- David Alonso-Forn
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - Ignacio Buesa
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
- Dept. of Ecology and Global Change, Desertification Research Center (CIDE; CSIC-UV-GVA), Valencia, Spain
| | - Luis Flor
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Antoni Sabater
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Hipólito Medrano
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - José M. Escalona
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| |
Collapse
|
4
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
5
|
Rissanen K, Vitali V, Kneeshaw D, Paquette A. Vessel anatomy of urban Celtis occidentalis trees varies to favour safety or efficiency depending on site conditions. TREES (BERLIN, GERMANY : WEST) 2025; 39:29. [PMID: 39949646 PMCID: PMC11813969 DOI: 10.1007/s00468-025-02603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Key message Urban trees can acclimate to their growth environment through changes in vessel anatomy. Vessel lumen area and vessel frequency following a gradient from park trees to inner-city street trees. Abstract Urban trees stand in potentially stressful growth environments occurring along gradients of urban heat and impermeable surface cover and, to survive, can adjust their function and structure. The consequent tree-to-tree variations in hydraulic xylem traits can shed light on tree hydraulics and capacity to acclimate to diverse conditions, as well as identify limitations to tree growth and survival. Using microscopic analysis of increment cores, we compared early wood vessel traits of the ring-porous angiosperm Celtis occidentalis in three urban site types: central streets, residential streets and parks, within the city of Montreal. We explored differences in vessel traits (mean vessel lumen area, vessel frequency, vessel grouping index and derived variables) between site types, vessel trait intercorrelations and correlations with monthly temperature, precipitation and heat-moisture index over 10 years. The vessel traits significantly differed between site types. Park trees had the largest and central street trees had the smallest vessel lumen area and theoretical hydraulic conductivity; traits supporting efficient water transport. Central street trees had the largest vessel frequency and smallest theoretical vulnerability to cavitation; traits connected to hydraulic safety. Residential street tree traits were in between. Among central and residential street trees, water transport efficiency traits correlated positively with cool springs or arid summers, whereas among park trees, mainly vessel frequency and grouping index responded to climate variations. These results highlight the capacity of C. occidentalis to acclimate to urban environments and the potential of anatomical traits for quantifying the effects of urban environments on tree functioning. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00468-025-02603-3.
Collapse
Affiliation(s)
- Kaisa Rissanen
- Département Des Sciences Biologiques, Centre for Forest Research, Université du Québec À Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8 Canada
- Present Address: Institute for Atmospheric and Earth System Research, Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, Helsinki, Finland
| | - Valentina Vitali
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Daniel Kneeshaw
- Département Des Sciences Biologiques, Centre for Forest Research, Université du Québec À Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8 Canada
| | - Alain Paquette
- Département Des Sciences Biologiques, Centre for Forest Research, Université du Québec À Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8 Canada
| |
Collapse
|
6
|
Guangxin J, Zheyuan W, Jiaqi S, Hongrui Z, Kexin W, Jingjing X, Nan S, Tanhang Z, Siyue Q, Changjun D, Huihui Z. The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress. TREE PHYSIOLOGY 2025; 45:tpaf004. [PMID: 39776216 DOI: 10.1093/treephys/tpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semiarid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation. Additionally, drought stress triggered oxidative damage through increased reactive oxygen species production, leading to malondialdehyde accumulation. Weighted gene co-expression network analysis revealed that differentially expressed genes closely associated with physiological responses were enriched in cell redox homeostasis pathways, specifically the thioredoxin-peroxiredoxin pathway. Key genes in this pathway and in cyclic electron flow, such as PGR5-L1A, were downregulated, suggesting compromised reactive oxygen species scavenging and photoprotection under drought stress. Notably, ZX4 poplar exhibited higher drought tolerance, maintaining stronger activity in cyclic electron flow and the thioredoxin-peroxiredoxin pathway compared with ZX3 and ZX5. Genes like PGR5-L1A, 2-Cys Prx BAS1, PrxQ and TPX are promising candidates for enhancing drought resistance in poplars through genetic improvement, with potential applications for developing resilient forestry varieties.
Collapse
Affiliation(s)
- Ji Guangxin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Wang Zheyuan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Song Jiaqi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zhang Hongrui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Wang Kexin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xu Jingjing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Sun Nan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zhang Tanhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Qi Siyue
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Ding Changjun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Zhang Huihui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
7
|
Cui Z, Hu H, Li X, Liu X, Zhang Q, Hong Z, Zhang N, Lin W, Xu D. Physiological and biochemical mechanisms of drought regulating the size and color of heartwood in Dalbergia odorifera. TREE PHYSIOLOGY 2025; 45:tpae157. [PMID: 39658202 DOI: 10.1093/treephys/tpae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Drought has been found to affect the size and color of precious heartwood of Dalbergia odorifera, but the mechanism remains unclear. For this purpose, we performed the measurement of heartwood size, color and flavonoid content and composition in a 15-year-old mixed plantation of D. odorifera and Santalum album that had been subjected to two levels of rainfall exclusion and control treatments for 7 years, and carbon isotope labeling and anatomical observation in 2-year-old potted D. odorifera seedlings exposed to two levels of drought and control treatments. The field experiment showed that drought had significant effects on heartwood size and color of D. odorifera. More starch was depleted in the transition zone (TZ) in drought than in control. Drought significantly decreased the values of color parameters and increased the contents of total flavonoids, glycitein, fisetin, chrysin and claussequinone, and total flavonoids, glycitein, fisetin, chrysin and claussequinone were significantly negatively correlated with L* and b*. The pot experiment showed that during longitudinal transport of nonstructural carbohydrate (NSC), the dilution factor of 13C abundance in the inner bark sap in severe drought (SD) was twice as much as that in control. The inner bark thickness and transverse area of sieve tubes in SD were significantly lower than those in control. Our findings further confirm that drought promotes the heartwood formation of D. odorifera, and discuss interspecific variations in the response of heartwood formation to drought. Drought enhances the exchange transport of NSC between phloem and xylem by reducing the transverse area of sieve tubes, thus causing more NSC to be transported into xylem, and drought also promotes the depletion of starch in the TZ to produce more heartwood. Drought darkens the heartwood color by increasing the contents of total flavonoids, glycitein, fisetin, chrysin and claussequinone in heartwood. To our knowledge, this is the first study addressing the physiological and biochemical mechanism of drought regulating heartwood formation.
Collapse
Affiliation(s)
- Zhiyi Cui
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Houzhen Hu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Xiaofei Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Xiaojin Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Qilei Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Ningnan Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Wei Lin
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan 528012, Guangdong, China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| |
Collapse
|
8
|
Wang P, Wu X, Li N, Nie H, Ma Y, Wu J, Zhang Z, Ma Y. The StbHLH47 transcription factor negatively regulates drought tolerance in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2025; 25:14. [PMID: 39754033 PMCID: PMC11699788 DOI: 10.1186/s12870-024-06010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms. The bHLH transcription factors involved play crucial roles not only in plant development and growth but also in responsesresponse to abiotic stress. RESULTS In this study, the StbHLH47 gene, which is highly expressed in potato leaves, was cloned and isolated. Subcellular localization assays revealed that the gene StbHLH47 performs transcriptional functions in the nucleus, as evidenced by increased malondialdehyde (MDA) content and relative conductivity under drought stress. These findings indicate that overexpressing plants are more sensitive to drought stress. Differential gene expression analysis of wild-type plants (WT) and plants overexpressing StbHLH47 (OE-StbHLH47) under drought stress revealed that the significantly differentially expressed genes were enriched in metabolic pathways, biosynthesis of various plant secondary metabolites, biosynthesis of metabolites, plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signalling pathway-plant, phenylpropanoid biosynthesis, and plant‒pathogen interactions. Among these pathways, the phenylalanine and abscisic acid (ABA) signal transduction pathways were enriched in a greater number of differentially expressed genes, and the expression trends of these differentially expressed genes (DEGs) were significantly different between WT and OE-StbHLH47. Therefore, it is speculated that StbHLH47 may regulate drought resistance mainly through these two pathways. Additionally, RT‒qPCR was used for fluorescence quantification of the expression of StNCED1 and StERD11, which are known for their drought resistance, and the results revealed that the expression levels were much lower in OE-StbHLH47 than in WT plants. CONCLUSION RNA-seq, RT‒qPCR, and physiological index analyses under drought conditions revealed that overexpression of the StbHLH47 gene increased the sensitivity of potato plants to drought stress, indicating that StbHLH47 negatively regulates drought tolerance in potato plants. In summary, our results indicate that StbHLH47 is a negative regulator of drought tolerance and provide a theoretical basis for further studies on the molecular mechanism involved.
Collapse
Affiliation(s)
- Peijie Wang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaojuan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Nan Li
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Hushuai Nie
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Yu Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Juan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Zhicheng Zhang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, China
| | - Yanhong Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
9
|
González‐Melo A, Salgado‐Negret B, Norden N, González‐M R, Benavides JP, Cely JM, Abad Ferrer J, Idárraga Á, Moreno E, Pizano C, Puentes‐Marín J, Pulido N, Rivera K, Rojas‐Bautista F, Solorzano JF, Umaña MN. Linking seedling wood anatomical trade-offs with drought and seedling growth and survival in tropical dry forests. THE NEW PHYTOLOGIST 2025; 245:117-129. [PMID: 39473120 PMCID: PMC11617663 DOI: 10.1111/nph.20222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024]
Abstract
Wood anatomy plays a key role in plants' ability to persist under drought and should therefore predict demography. Plants balance their resource allocation among wood cell types responsible for different functions. However, it remains unclear how these anatomical trade-offs vary with water availability, and the extent to which they influence demographic rates. We investigated how wood anatomical trade-offs were related to drought and demographic rates, for seedling communities in four tropical dry forests differing in their aridity indexes (AIs). We measured wood density, as well as vessel, fiber and parenchyma traits of 65 species, and we monitored growth and survival for a 1-yr period. Two axes defined wood anatomical structure: a fiber-parenchyma axis and a vessel-wood density axis. Seedlings in drier sites had larger fiber but lower parenchyma fractions, while in less dry forests, seedlings had the opposite allocation pattern. The fiber-parenchyma trade-off was unrelated to growth but was positively related to survival, and this later relationship was mediated by the AI. These findings expand our knowledge about the wood anatomical trade-offs that mediate responses to drought conditions and influence demographic rates, in the seedling layer. This information is needed to anticipate future responses of forests to changing drought conditions.
Collapse
Affiliation(s)
- Andrés González‐Melo
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotá111061Colombia
| | - Roy González‐M
- Departamento de Ciencias ForestalesUniversidad del TolimaIbagué730010Colombia
| | | | - Juan Manuel Cely
- Departamento de BiologíaUniversidad NacionalBogotá111321Colombia
| | - Julio Abad Ferrer
- Dirección Territorial Caribe, Parques Nacionales Naturales de ColombiaSanta Marta110221Colombia
| | - Álvaro Idárraga
- Fundación Jardín Botánico de MedellínHerbario “Joaquín Antonio Uribe” (JAUM)Medellín050010Colombia
| | - Esteban Moreno
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Camila Pizano
- Departamento de BiologíaUniversidad IcesiCali760031Colombia
| | | | - Nancy Pulido
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Katherine Rivera
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | | | - Juan Felipe Solorzano
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - María Natalia Umaña
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| |
Collapse
|
10
|
Zhang YB, Huang XY, Corrêa Scalon M, Ke Y, Liu JX, Wang Q, Li WH, Yang D, Ellsworth DS, Zhang YJ, Zhang JL. Mistletoes have higher hydraulic safety but lower efficiency in xylem traits than their hosts. THE NEW PHYTOLOGIST 2025; 245:607-624. [PMID: 39538365 DOI: 10.1111/nph.20257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both mistletoes and their hosts are challenged by increasing drought, highlighting the necessity of understanding their comparative hydraulic properties. The high transpiration of mistletoes requires efficient water transport, while high xylem tensions demand strong embolism resistance, representing a hydraulic paradox. This study, conducted across four environments with different aridity indices in Yunnan, China, examined the xylem traits of 119 mistletoe-host species pairs. Mistletoes showed lower water use efficiency, indicating a more aggressive water use. They also showed lower hydraulic efficiency (lower vessel diameter and theoretical hydraulic conductivity) but higher safety (lower vulnerability index and higher conduit wall reinforcement, vessel grouping index, and wood density) compared with their hosts, supporting the trade-off between efficiency and safety. Environmental variation across sites significantly affected xylem trait comparisons between mistletoes and hosts. Additionally, the xylem traits of mistletoes were strongly influenced by host water supply efficiency. The overall xylem trait relationships in mistletoes and hosts were different. These findings stress the impact of host and site on the hydraulic traits of mistletoes, and suggest that mistletoes may achieve high transpiration by maintaining high stomatal conductance under low water potentials. This study illuminates the distinctive adaptation strategies of mistletoes due to their parasitic lifestyle.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xian-Yan Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hua Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| |
Collapse
|
11
|
Wang AY, Lu YJ, Cui HX, Liu SS, Li SQ, Hao GY. Xylem Hydraulics of Two Temperate Tree Species with Contrasting Growth Rates. PLANTS (BASEL, SWITZERLAND) 2024; 13:3575. [PMID: 39771271 PMCID: PMC11678599 DOI: 10.3390/plants13243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Hydraulic functionality is crucial for tree productivity and stress tolerance. According to the theory of the fast-slow economics spectrum, the adaptive strategies of different tree species diverge along a spectrum defined by coordination and trade-offs of a suite of functional traits. The fast- and slow-growing species are expected to differ in hydraulic efficiency and safety; however, there is still a lack of investigation on the mechanistic association between tree growth rate and tree hydraulic functionality. Here, in a common garden condition, we measured radial growth rate and hydraulic traits in a fast-growing (Populus alba L. × P. berolinensis Dippel) and a slow-growing tree species (Acer truncatum Bunge), which are both important tree species for afforestation in northern China. In line with the contrasts in radial growth rate and wood anatomical traits at both the tissue and pit levels between the two species, stem hydraulic conductivity of the Populus species was significantly higher than that of the Acer species, but the resistance to drought-induced xylem cavitation was the opposite. A trade-off between hydraulic efficiency and safety was observed across the sampled trees of the two species. Higher water-transport efficiency supports the greater leaf net photosynthetic carbon assimilation capacity of the Populus species and hence facilitates fast growth, while the conservative hydraulic traits of the Acer species result in a slower growth rate but enhanced drought tolerance.
Collapse
Affiliation(s)
- Ai-Ying Wang
- School of Life Sciences and Engineering, Shenyang University, Shenyang 110044, China; (A.-Y.W.); (Y.-J.L.); (S.-Q.L.)
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, China
| | - Yi-Jun Lu
- School of Life Sciences and Engineering, Shenyang University, Shenyang 110044, China; (A.-Y.W.); (Y.-J.L.); (S.-Q.L.)
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, China
| | - Han-Xiao Cui
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (H.-X.C.); (S.-S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Si Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (H.-X.C.); (S.-S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Qi Li
- School of Life Sciences and Engineering, Shenyang University, Shenyang 110044, China; (A.-Y.W.); (Y.-J.L.); (S.-Q.L.)
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (H.-X.C.); (S.-S.L.)
| |
Collapse
|
12
|
Zhang F, Liu YW, Qin J, Jansen S, Zhu SD, Cao KF. Xylem embolism induced by freeze-thaw and drought are influenced by different anatomical traits in subtropical montane evergreen angiosperm trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14567. [PMID: 39377145 DOI: 10.1111/ppl.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Subtropical evergreen broadleaved forests distributed in montane zones of southern China experience seasonal droughts and winter frost. Previously, studies have recognized that xylem anatomy is a determinant of its vulnerability to embolism caused by drought and freezing events. We hypothesized that there is a coordination of xylem resistance to freeze-thaw and drought-induced embolism for the subtropical montane evergreen broadleaved tree species because they are influenced by common xylem structural traits (e.g., vessel diameter). We examined the branch xylem anatomy, resistance to drought-induced embolism (P50), and the percent loss of branch hydraulic conductivity after a severe winter frost (PLCwinter) for 15 evergreen broadleaved tree species in a montane forest in South China. Our results showed that P50 of the studied species ranged from -2.81 to -5.13 MPa, which was not associated with most xylem anatomical properties except for the axial parenchyma-to-vessel connectivity. These tree species differed substantially in PLCwinter, ranging from 0% to 76.41%. PLCwinter was positively related to vessel diameter and negatively related to vessel density, vessel group index, and vessel-to-vessel connectivity, but no coordination with P50. This study suggests that hydraulic adaptation to frost is important to determine the distributional limit of subtropical montane evergreen woody angiosperms.
Collapse
Affiliation(s)
- Feng Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yi-Wen Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Nanjing University, Nanjing, Jiangsu, China
| | - Jie Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Tianjin University, Tianjin, Tianjin, China
| | | | - Shi-Dan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Du M, Xu C, Wang A, Lv P, Xu Z, Zhang X. Different drought recovery strategy between Larix spp. and Quercus mongolica in temperate forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173521. [PMID: 38802012 DOI: 10.1016/j.scitotenv.2024.173521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Forests are experiencing increasingly severe drought stress worldwide. Although most studies have quantified how tree growth was affected by extreme droughts, how trees recover from different drought intensities are still poorly understood for different species. We used a network of tree-ring data comprising 731 Quercus mongolica trees across 29 sites, 312 Larix olgensis Henry trees from 13 sites, and 818 Larix principis-rupprechtii trees from 34 sites, covering most of their distribution range in northern China, to compare the influences of drought intensity on post-drought recovery. The results showed that summer droughts had strong negative influences on tree growth. Post-drought growth varied with drought intensity for the three species. Larix species exhibited strong legacy effects after severe droughts, which is related to the lack of compensatory growth. In contrast, the compensatory growth of Q. mongolica reduced drought legacy effect. However, the compensatory growth of Q. mongolica gradually weaken with increasing drought intensity and disappeared during severe drought. Our findings indicated that influence of drought on Q. mongolica growth mainly shown in drought years, but Larix species suffered from long-term drought legacy effects, implying Q. mongolica rapidly recovered from droughts but Larix species need several years to recover from droughts, thus the two genera have different recovery strategy.
Collapse
Affiliation(s)
- Mingchao Du
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Chen Xu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, 071001 Baoding, China
| | - Ao Wang
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Pengcheng Lv
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Zhongqi Xu
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Xianliang Zhang
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China; Long-term Silviculture base in Saihanba, Chengde, Hebei 068456, China; Urban Forest Health Technology Innovation Center, 071001 Baoding, China.
| |
Collapse
|
14
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
15
|
Haverroth EJ, Rimer IM, Oliveira LA, de Lima LGA, Cesarino I, Martins SCV, McAdam SAM, Cardoso AA. Gradients in embolism resistance within stems driven by secondary growth in herbs. PLANT, CELL & ENVIRONMENT 2024; 47:2986-2998. [PMID: 38644584 DOI: 10.1111/pce.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Leydson G A de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
17
|
Ma BL, Liao SH, Lv QZ, Huang X, Jiang ZM, Cai J. Seasonal plasticity of stem embolism resistance and its potential driving factors in six temperate woody species. PHYSIOLOGIA PLANTARUM 2024; 176:e14421. [PMID: 38956781 DOI: 10.1111/ppl.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
The seasonal plasticity of resistance to xylem embolism has been demonstrated in leaves of some tree species, but is controversial in stems. In this study, we investigated the seasonality of stem xylem resistance to embolism in six temperate woody species (four deciduous and two evergreen tree species) that were grown at the same site. The xylem conduit anatomy, the concentrations, and ratios of the main cation in the xylem sap, as well as the content of nonstructural carbohydrates (including soluble sugars and starch) were measured in each species under each season to reveal the potential mechanisms of seasonal change in embolism resistance. The stem of all species showed increasing resistance to embolism as seasons progressed, with more vulnerable xylem in spring, but no significant adjustment in the other three seasons. The seasonal plasticity of stem embolism resistance was greater in deciduous species than in evergreen. On a seasonal scale, conduit diameter and conduit implosion resistance, the ratios of K+/Ca2+ and K+/Na+, and starch content were generally not correlated with embolism resistance, suggesting that these are probably not the main drivers of seasonal plasticity of stem embolism resistance. The seasonality of embolism resistance provides critical information for better understanding plant hydraulics in response to seasonal environments, especially under climate change.
Collapse
Affiliation(s)
- Bo-Long Ma
- College of Forestry, Northwest A&F University, Yangling, China
| | - Su-Hui Liao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Qing-Zi Lv
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zai-Min Jiang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Yang X, Yan H, Hao C, Hu J, Yang G, An S, Wang L, Ouyang F, Zhang M, Wang J. Climate of origin shapes variations in wood anatomical properties of 17 Picea species. BMC PLANT BIOLOGY 2024; 24:414. [PMID: 38760680 PMCID: PMC11100223 DOI: 10.1186/s12870-024-05103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Forest Cultivation, Central South University of Forestry and Technology, Changsha, 410000, People's Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Chunhui Hao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Sanping An
- Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Research Institute of Forestry of Xiaolong Mountain, Tianshui, 741022, People's Republic of China
| | - Lifang Wang
- Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Research Institute of Forestry of Xiaolong Mountain, Tianshui, 741022, People's Republic of China
| | - Fangqun Ouyang
- Beijing Floriculture Engineering Technology Research Centre, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Botanical Garden, Beijing, 100093, China
| | - Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
19
|
Grossman JJ, Coe HB, Fey O, Fraser N, Salaam M, Semper C, Williamson CG. Temperate woody species across the angiosperm phylogeny acquire tolerance to water deficit stress during the growing season. THE NEW PHYTOLOGIST 2024. [PMID: 38511237 DOI: 10.1111/nph.19692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Understanding the capacity of temperate trees to acclimate to limited soil water has become essential in the face of increasing drought risk due to climate change. We documented seasonal - or phenological - patterns in acclimation to water deficit stress in stems and leaves of tree species spanning the angiosperm phylogeny. Over 3 yr of field observations carried out in two US arboreta, we measured stem vulnerability to embolism (36 individuals of 7 Species) and turgor loss point (119 individuals of 27 species) over the growing season. We also conducted a growth chamber experiment on 20 individuals of one species to assess the mechanistic relationship between soil water restriction and acclimation. In three-quarters of species measured, plants became less vulnerable to embolism and/or loss of turgor over the growing season. We were able to stimulate this acclimatory effect by withholding water in the growth chamber experiment. Temperate angiosperms are capable of acclimation to soil water deficit stress, showing maximum vulnerability to soil water deficits following budbreak and becoming more resilient to damage over the course of the growing season or in response to simulated drought. The species-specific tempo and extent of this acclimatory potential constitutes preadaptive climate change resilience.
Collapse
Affiliation(s)
- Jake J Grossman
- Biology Department & Environmental Studies Department, St. Olaf College, 1520 St Olaf Ave, Northfield, MN, 55057, USA
| | - Henry B Coe
- Environmental Permitting and Planning Group, Hazen and Sawyer 498 Seventh Ave #11, New York, NY, 10018, USA
| | - Olivia Fey
- Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Natalie Fraser
- Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Musa Salaam
- Wilmer Eye Institute, Bayview Medical Center, Johns Hopkins University, 4940 Eastern Ave, Baltimore, MD, 21224, USA
| | - Chelsea Semper
- Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N, St. Paul, MN, 55108, USA
| | - Ceci G Williamson
- Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| |
Collapse
|
20
|
Zhu B, Guo P, Wu S, Yang Q, He F, Gao X, Zhang Y, Xiao J. A Better Fruit Quality of Grafted Blueberry Than Own-Rooted Blueberry Is Linked to Its Anatomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:625. [PMID: 38475469 DOI: 10.3390/plants13050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
To further clarify the impact of different rootstocks in grafted blueberry, fruit quality, mineral contents, and leaf gas exchange were investigated in 'O'Neal' blueberry (Vaccinium corymbosum) grafted onto 'Anna' (V. corymbosum) (AO), 'Sharpblue' (V. corymbosum) (SO), 'Baldwin' (V. virgatum) (BO), 'Plolific' (V. virgatum) (PO), and 'Tifblue' (V. virgatum) (TO) rootstocks and own-rooted 'O'Neal' (NO), and differences in anatomic structures and drought resistance were determined in AO, TO, and NO. The findings revealed that fruit quality in TO and PO was excellent, that of BO and SO was good, and that of AO and NO was medium. 'Tifblue' and 'Plolific' rootstocks significantly increased the levels of leaf phosphorus and net photosynthetic rate of 'O'Neal', accompanied by a synchronous increase in their transpiration rates, stomatal conductance, and intercellular CO2. Additionally, the comprehensive evaluation scores from a principal component analysis based on anatomic structure traits from high to low were in the order TO > AO > NO. The P50 (xylem water potential at 50% loss of hydraulic conductivity) values of these grafted plants descended in the order NO > AO > TO, and the branch hydraulic conductivity of TO and sapwood hydraulic conductivity of TO and AO were significantly lower than those of NO. Thus, TO plants exhibited the strongest drought resistance, followed by AO, and NO, and this trait was related to the effects of different rootstocks on the fruit quality of 'O'Neal' blueberry. These results provided a basis for a deeper understanding of the interaction between rootstocks and scions, as well mechanisms to improve blueberry fruit quality.
Collapse
Affiliation(s)
- Bo Zhu
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Peipei Guo
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuangshuang Wu
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qingjing Yang
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Feng He
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xuan Gao
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ya Zhang
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
21
|
Liu YY, Chao L, Li ZG, Ma L, Hu BQ, Zhu SD, Cao KF. Water storage capacity is inversely associated with xylem embolism resistance in tropical karst tree species. TREE PHYSIOLOGY 2024; 44:tpae017. [PMID: 38281245 DOI: 10.1093/treephys/tpae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Tropical karst habitats are characterized by limited and patchy soil, large rocky outcrops and porous substrates, resulting in high habitat heterogeneity and soil moisture fluctuations. Xylem hydraulic efficiency and safety can determine the drought adaptation and spatial distribution of woody plants growing in karst environments. In this study, we measured sapwood-specific hydraulic conductivity (Ks), vulnerability to embolism, wood density, saturated water content, and vessel and pit anatomical characteristics in the branch stems of 12 evergreen tree species in a tropical karst seasonal rainforest in southwestern China. We aimed to characterize the effects of structural characteristics on hydraulic efficiency and safety. Our results showed that there was no significant correlation between Ks and hydraulic safety across the tropical karst woody species. Ks was correlated with hydraulic vessel diameter (r = 0.80, P < 0.05) and vessel density (r = -0.60, P < 0.05), while the stem water potential at 50 and 88% loss of hydraulic conductivity (P50 and P88) were both significantly correlated with wood density (P < 0.05) and saturated water content (P = 0.052 and P < 0.05, respectively). High stem water storage capacity was associated with low cavitation resistance possibly because of its buffering the moisture fluctuations in karst environments. However, both Ks and P50/P88 were decoupled from the anatomical traits of pit and pit membranes. This may explain the lack of tradeoff between hydraulic safety and efficiency in tropical karst evergreen tree species. Our results suggest that diverse hydraulic trait combination may facilitate species coexistence in karst environments with high spatial heterogeneity.
Collapse
Affiliation(s)
- Yan-Yan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Lin Chao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Zhong-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
| | - Lin Ma
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Bao-Qing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
22
|
Jupa R, Pokorná K. Bark wounding triggers gradual embolism spreading in two diffuse-porous tree species. TREE PHYSIOLOGY 2024; 44:tpad132. [PMID: 37930242 PMCID: PMC10849750 DOI: 10.1093/treephys/tpad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Xylem transport is essential for the growth, development and survival of vascular plants. Bark wounding may increase the risk of xylem transport failure by tension-driven embolism. However, the consequences of bark wounding for xylem transport are poorly understood. Here, we examined the impacts of the bark wounding on embolism formation, leaf water potential and gas exchange in the terminal branches of two diffuse-porous tree species (Acer platanoides L. and Prunus avium L.). The effects of bark removal were examined on field-grown mature trees exposed to increased evaporative demands on a short-term and longer-term basis (6 h vs 6 days after bark wounding). Bark removal of 30% of branch circumference had a limited effect on the xylem hydraulic conductivity when embolized vessels were typically restricted to the last annual ring near the bark wound. Over the 6-day exposure, the non-conductive xylem area had significantly increased in the xylem tissue underneath the bark wound (from 22-29% to 51-52% of the last annual ring area in the bark wound zone), pointing to gradual yet relatively limited embolism spreading to deeper xylem layers over time. In both species, the bark removal tended to result in a small but non-significant increase in the percent loss of hydraulic conductivity compared with control intact branches 6 days after bark wounding (from 6 to 8-10% in both species). The bark wounding had no significant effects on midday leaf water potential, CO2 assimilation rates, stomatal conductance and water-use efficiency of the leaves of the current-year shoot, possibly due to limited impacts on xylem transport. The results of this study demonstrate that bark wounding induces limited but gradual embolism spreading. However, the impacts of bark wounding may not significantly limit water delivery to distal organs and leaf gas exchange at the scale of several days.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Kamila Pokorná
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| |
Collapse
|
23
|
González-Melo A, Posada JM, Beauchêne J, Lehnebach R, Levionnois S, Derroire G, Clair B. The links between wood traits and species demography change during tree development in a lowland tropical rainforest. AOB PLANTS 2024; 16:plad090. [PMID: 38249523 PMCID: PMC10799319 DOI: 10.1093/aobpla/plad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured 11 wood traits (i.e. structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates (MR) at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while MR decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and MR than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.
Collapse
Affiliation(s)
- Andrés González-Melo
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Juan Manuel Posada
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Jacques Beauchêne
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Romain Lehnebach
- CNRS, Laboratory of Botany and Modeling of Plant Architecture and Vegetation (UMR AMAP), 34398 Montpellier, France
| | - Sébastian Levionnois
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
| | - Géraldine Derroire
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Bruno Clair
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
- Laboratoire de Mécanique de Génie Civil (LMGC), CNRS, Université de Montpellier, 34000, France
| |
Collapse
|
24
|
Wei Y, Chen YJ, Siddiq Z, Zhang JL, Zhang SB, Jansen S, Cao KF. Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species. TREE PHYSIOLOGY 2023; 43:2109-2120. [PMID: 37672225 DOI: 10.1093/treephys/tpad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Collapse
Affiliation(s)
- Yang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang 653300, Yunnan, China
| | - Zafar Siddiq
- Department of Botany, Government College University, Katchery Road, Lahore 54000, Punjab, Pakistan
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Baden-Wurttemberg, Germany
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| |
Collapse
|
25
|
Waite PA, Leuschner C, Delzon S, Triadiati T, Saad A, Schuldt B. Plasticity of wood and leaf traits related to hydraulic efficiency and safety is linked to evaporative demand and not soil moisture in rubber (Hevea brasiliensis). TREE PHYSIOLOGY 2023; 43:2131-2149. [PMID: 37707940 DOI: 10.1093/treephys/tpad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
The predicted increase of drought intensity in South-East Asia has raised concern about the sustainability of rubber (Hevea brasiliensis Müll. Arg.) cultivation. In order to quantify the degree of phenotypic plasticity in this important tree crop species, we analysed a set of wood and leaf traits related to the hydraulic safety and efficiency in PB260 clones from eight small-holder plantations in Jambi province, Indonesia, representing a gradient in local microclimatic and edaphic conditions. Across plots, branch embolism resistance (P50) ranged from -2.14 to -2.58 MPa. The P50 and P88 values declined, and the hydraulic safety margin increased, with an increase in the mean annual vapour pressure deficit (VPD). Among leaf traits, only the changes in specific leaf area were related to the differences in evaporative demand. These variations of hydraulic trait values were not related to soil moisture levels. We did not find a trade-off between hydraulic safety and efficiency, but vessel density (VD) emerged as a major trait associated with both safety and efficiency. The VD, and not vessel diameter, was closely related to P50 and P88 as well as to specific hydraulic conductivity, the lumen-to-sapwood area ratio and the vessel grouping index. In conclusion, our results demonstrate some degree of phenotypic plasticity in wood traits related to hydraulic safety in this tropical tree species, but this is only in response to the local changes in evaporative demand and not soil moisture. Given that VPD may increasingly limit plant growth in a warmer world, our results provide evidence of hydraulic trait changes in response to a rising evaporative demand.
Collapse
Affiliation(s)
- Pierre-André Waite
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Sylvain Delzon
- Department of Biodiversity, Genes, and Communities (BIOGECO), Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Université Bordeaux, Bat. 2 Allée Geoffroy St-Hilaire, Pessac 33615, France
| | - Triadiati Triadiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor IPB University, Darmaga Campus, Bogor 16680, Indonesia
| | - Asmadi Saad
- Department of Soil Science, University of Jambi, Jalan Raya Jambi Muara Bulian KM 15 Mandalo Indah, Jambi, Sumatra 36361, Indonesia
| | - Bernhard Schuldt
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| |
Collapse
|
26
|
Kong L, Song Q, Wei H, Wang Y, Lin M, Sun K, Zhang Y, Yang J, Li C, Luo K. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. THE NEW PHYTOLOGIST 2023; 240:1848-1867. [PMID: 37691138 DOI: 10.1111/nph.19251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.
Collapse
Affiliation(s)
- Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanhong Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Maize Research Institute, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
27
|
Liu X, Liang D, Song W, Wang X, Duan W, Wang C, Wang P. Tobacco roots increasing diameter and secondary lateral density in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108122. [PMID: 37939500 DOI: 10.1016/j.plaphy.2023.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Exploring the responses of root morphology and its physiological mechanisms under drought stress is significant for further improving water and nutrient absorption in roots. Here, we simulated drought through hydroponics combined with PEG treatments in tobacco to characterize the changes in tobacco root architecture. Our results showed the total root length, first lateral root number, and first lateral root length were significantly reduced upon increasing drought severity, but the average root diameter and secondary lateral root density increased under certain drought conditions. The change of auxin content in roots under drought stress was correlated with the root diameter and second lateral root density responses. Exogenous addition of the auxin analog (NAA) and the auxin transport inhibitor (NPA), as well as DR5:GUS staining experiments further demonstrated that auxin participated in this physiological process. Meanwhile, brassinolide (BR) exhibited a similar trend. Exogenous addition of BR (EBR) and the BR synthesis inhibitor BRZ experiments demonstrated that BR may participate upstream of auxin under drought stress. PEG treatment significantly up-regulated NtBRI1 at 9-24 h, and promoted the up-regulation of NtBSK2 and NtBSK3 at 48 h and 24 h, respectively, these genes may contribute to the change in root morphology under drought stress. This study shows that auxin and BR are involved in the changes in root morphology in tobacco exposed to drought stress. The elucidation of the molecular mechanism at play thus represents a future target for breeding drought-tolerant tobacco varieties.
Collapse
Affiliation(s)
- Xiaolei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, PR China
| | - Dong Liang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, PR China; Henan Tobacco Company Sanmenxia City Co., Ltd, Sanmenxia, 472001, PR China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, PR China
| | - Xiaolin Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, PR China
| | - Wangjun Duan
- Sichuan Zhongyan Industry Co., Ltd., Chengdu, 610021, PR China
| | - Chengdong Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, PR China.
| | - Peng Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
28
|
Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J. Optimal balancing of xylem efficiency and safety explains plant vulnerability to drought. Ecol Lett 2023; 26:1485-1496. [PMID: 37330625 DOI: 10.1111/ele.14270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter Fransson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
29
|
Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. TREE PHYSIOLOGY 2023; 43:1307-1318. [PMID: 37067918 DOI: 10.1093/treephys/tpad050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.
Collapse
Affiliation(s)
- Amy N A Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
- College of Life Sciences and Technology, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Ming-Yuan Ni
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| |
Collapse
|
30
|
Simioni PF, Emilio T, Giles AL, Viana de Freitas G, Silva Oliveira R, Setime L, Pierre Vitoria A, Pireda S, Vieira da Silva I, Da Cunha M. Anatomical traits related to leaf and branch hydraulic functioning on Amazonian savanna plants. AOB PLANTS 2023; 15:plad018. [PMID: 37214224 PMCID: PMC10198777 DOI: 10.1093/aobpla/plad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.
Collapse
Affiliation(s)
| | - Thaise Emilio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós-Graduação em Ecologia, Instituto de Biologia, UNICAMP, Campinas, Brasil
| | - André L Giles
- Instituo Nacional de Pesquisa da Amazonia (INPA), Manaus, Amazonas, Brasil
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - Gustavo Viana de Freitas
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | | | - Lara Setime
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Angela Pierre Vitoria
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Saulo Pireda
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Ivone Vieira da Silva
- Laboratório de Biologia Vegetal, Universidade do Estado do Mato Grosso, Alta Floresta, MT, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| |
Collapse
|
31
|
Lamarque LJ, Delmas CEL, Charrier G, Burlett R, Dell'Acqua N, Pouzoulet J, Gambetta GA, Delzon S. Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate. Sci Rep 2023; 13:7724. [PMID: 37173393 PMCID: PMC10181993 DOI: 10.1038/s41598-023-34224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maintaining wine production under global warming partly relies on optimizing the choice of plant material for a given viticultural region and developing drought-resistant cultivars. However, progress in these directions is hampered by the lack of understanding of differences in drought resistance among Vitis genotypes. We investigated patterns of xylem embolism vulnerability within and among 30 Vitis species and sub-species (varieties) from different locations and climates, and assessed the risk of drought vulnerability in 329 viticultural regions worldwide. Within a variety, vulnerability to embolism decreased during summer. Among varieties, we have found wide variations in drought resistance of the vascular system in grapevines. This is particularly the case within Vitis vinifera, with varieties distributed across four clusters of embolism vulnerability. Ugni blanc and Chardonnay featured among the most vulnerable, while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. Regions possibly at greater risk of being vulnerable to drought, such as Poitou-Charentes, France and Marlborough, New Zealand, do not necessarily have arid climates, but rather bear a significant proportion of vulnerable varieties. We demonstrate that grapevine varieties may not respond equally to warmer and drier conditions, and highlight that hydraulic traits are key to improve viticulture suitability under climate change.
Collapse
Affiliation(s)
- Laurent J Lamarque
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France.
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| | | | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Régis Burlett
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | | | | | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Sylvain Delzon
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| |
Collapse
|
32
|
Isasa E, Link RM, Jansen S, Tezeh FR, Kaack L, Sarmento Cabral J, Schuldt B. Addressing controversies in the xylem embolism resistance-vessel diameter relationship. THE NEW PHYTOLOGIST 2023; 238:283-296. [PMID: 36636783 DOI: 10.1111/nph.18731] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Although xylem embolism is a key process during drought-induced tree mortality, its relationship to wood anatomy remains debated. While the functional link between bordered pits and embolism resistance is known, there is no direct, mechanistic explanation for the traditional assumption that wider vessels are more vulnerable than narrow ones. We used data from 20 temperate broad-leaved tree species to study the inter- and intraspecific relationship of water potential at 50% loss of conductivity (P50 ) with hydraulically weighted vessel diameter (Dh ) and tested its link to pit membrane thickness (TPM ) and specific conductivity (Ks ) on species level. Embolism-resistant species had thick pit membranes and narrow vessels. While Dh was weakly associated with TPM , the P50 -Dh relationship remained highly significant after accounting for TPM . The interspecific pattern between P50 and Dh was mirrored by a link between P50 and Ks , but there was no evidence for an intraspecific relationship. Our results provide robust evidence for an interspecific P50 -Dh relationship across our species. As a potential cause for the inconsistencies in published P50 -Dh relationships, our analysis suggests differences in the range of trait values covered, and the level of data aggregation (species, tree or sample level) studied.
Collapse
Affiliation(s)
- Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Roman Mathias Link
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Str. 7, 01737, Tharandt, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fon Robinson Tezeh
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Juliano Sarmento Cabral
- Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of Würzburg, Klara-Oppenheimer-Weg 32, 97074, Würzburg, Germany
- Biodiversity Modelling and Environmental Change, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Str. 7, 01737, Tharandt, Germany
| |
Collapse
|
33
|
Zavadilová I, Szatniewska J, Petrík P, Mauer O, Pokorný R, Stojanović M. Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude. FRONTIERS IN PLANT SCIENCE 2023; 14:1089706. [PMID: 36866386 PMCID: PMC9974152 DOI: 10.3389/fpls.2023.1089706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Under ongoing climate change, more frequent and severe drought periods accompanied by heat waves are expected in the future. Under these conditions, the tree's survival is conditioned by fast recovery of functions after drought release. Therefore, in the presented study, we evaluated the effect of long-term water reduction in soil on tree water use and growth dynamics of Norway spruce. METHODS The experiment was conducted in two young Norway spruce plots located on suboptimal sites at a low altitude of 440 m a.s.l. In the first plot (PE), 25% of precipitation throughfall was excluded since 2007, and the second one represented the control treatment with ambient conditions (PC). Tree sap flow, stem radial increment, and tree water deficit were monitored in two consecutive growing seasons: 2015-2016, with contrasting hydro-climatic conditions. RESULTS Trees in both treatments showed relatively isohydric behavior reflected in a strong reduction of sap flow under the exceptional drought of 2015. Nevertheless, trees from PE treatment reduced sap flow faster than PC under decreasing soil water potential, exhibiting faster stomatal response. This led to a significantly lower sap flow of PE, compared to PC in 2015. The maximal sap flow rates were also lower for PE treatment, compared to PC. Both treatments experienced minimal radial growth during the 2015 drought and subsequent recovery of radial growth under the more the humid year of 2016. However, treatments did not differ significantly in stem radial increments within respective years. DISCUSSION Precipitation exclusion treatment, therefore, led to water loss adjustment, but did not affect growth response to intense drought and growth recovery in the year after drought.
Collapse
Affiliation(s)
- Ina Zavadilová
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czechia
| | - Justyna Szatniewska
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czechia
| | - Peter Petrík
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Oldřich Mauer
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czechia
| | - Radek Pokorný
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czechia
| | - Marko Stojanović
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
34
|
Carmesin CF, Port F, Böhringer S, Gottschalk KE, Rasche V, Jansen S. Ageing-induced shrinkage of intervessel pit membranes in xylem of Clematis vitalba modifies its mechanical properties as revealed by atomic force microscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1002711. [PMID: 36755701 PMCID: PMC9899931 DOI: 10.3389/fpls.2023.1002711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Bordered pit membranes of angiosperm xylem are anisotropic, mesoporous media between neighbouring conduits, with a key role in long distance water transport. Yet, their mechanical properties are poorly understood. Here, we aim to quantify the stiffness of intervessel pit membranes over various growing seasons. By applying an AFM-based indentation technique "Quantitative Imaging" we measured the effective elastic modulus (E effective) of intervessel pit membranes of Clematis vitalba in dependence of size, age, and hydration state. The indentation-deformation behaviour was analysed with a non-linear membrane model, and paired with magnetic resonance imaging to visualise sap-filled and embolised vessels, while geometrical data of bordered pits were obtained using electron microscopy. E effective was transformed to the geometrically independent apparent elastic modulus E apparent and to aspiration pressure P b. The material stiffness (E apparent) of fresh pit membranes was with 57 MPa considerably lower than previously suggested. The estimated pressure for pit membrane aspiration was 2.20+28 MPa. Pit membranes from older growth rings were shrunken, had a higher material stiffness and a lower aspiration pressure than current year ones, suggesting an irreversible, mechanical ageing process. This study provides an experimental-stiffness analysis of hydrated intervessel pit membranes in their native state. The estimated aspiration pressure suggests that membranes are not deflected under normal field conditions. Although absolute values should be interpreted carefully, our data suggest that pit membrane shrinkage implies increasing material stiffness, and highlight the dynamic changes of pit membrane mechanics and their complex, functional behaviour for fluid transport.
Collapse
Affiliation(s)
- Cora F Carmesin
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, Germany
| | - Fabian Port
- Institute of Experimental Physics, Ulm University, Albert Einstein Allee 45, Ulm, Germany
| | - Samuel Böhringer
- Institut für Quantenphysik and Center for Integrated Quantum Science and Technology, Universität Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | | | - Volker Rasche
- Core Facility Small Animal Imaging, Medical Faculty, Ulm University, Ulm, Germany
- Department of Internal Medicine II, Ulm University, Albert Einstein Allee 45, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, Germany
| |
Collapse
|
35
|
Avila RT, Kane CN, Batz TA, Trabi C, Damatta FM, Jansen S, McAdam SAM. The relative area of vessels in xylem correlates with stem embolism resistance within and between genera. TREE PHYSIOLOGY 2023; 43:75-87. [PMID: 36070431 DOI: 10.1093/treephys/tpac110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
Collapse
Affiliation(s)
- Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Cade N Kane
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy A Batz
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Christophe Trabi
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Fábio M Damatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Steven Jansen
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
36
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
37
|
Guan X, Werner J, Cao KF, Pereira L, Kaack L, McAdam SAM, Jansen S. Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1208-1223. [PMID: 34990084 DOI: 10.1111/plb.13384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long-term measurements. We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems. Apart from A. pseudoplatanus and Q. petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited to B. pendula and C. avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM ) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel. Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental and TPM data show that leaf xylem is generally no more vulnerable than stem xylem.
Collapse
Affiliation(s)
- X Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - J Werner
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - K-F Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - L Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - L Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - S A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - S Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
38
|
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. ANNALS OF BOTANY 2022; 130:445-456. [PMID: 35863898 PMCID: PMC9486921 DOI: 10.1093/aob/mcac095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Collapse
Affiliation(s)
| | - Julia Sonsin-Oliveira
- Departamento de Biologia Vegetal, Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasilia (UnB), Brasília, DF, Brazil
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Carmen Regina Marcati
- Departamento de Ciência Florestal, Solos e Ambiente, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, SP, Brazil
| |
Collapse
|
39
|
Levionnois S, Kaack L, Heuret P, Abel N, Ziegler C, Coste S, Stahl C, Jansen S. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. PLANT PHYSIOLOGY 2022; 190:371-386. [PMID: 35567500 PMCID: PMC9434246 DOI: 10.1093/plphys/kiac223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/19/2022] [Indexed: 05/16/2023]
Abstract
Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species. We also conducted gold perfusion and polar lipid detection experiments on three species covering the full range of leaf embolism resistance. We then related these observations to previously published data on embolism resistance of leaf xylem. We also incorporated previously published data on stem embolism resistance and stem xylem pit membranes to investigate the link between vulnerability segmentation (i.e. difference in embolism resistance) and leaf-stem anatomical variation. Maximum pit membrane thickness (Tpm,max) and the pit membrane thickness-to-diameter ratio (Tpm,max/Dpm) were predictive of leaf embolism resistance, especially when vestured pits were taken into account. Variation in Tpm,max/Dpm was the only trait predictive of vulnerability segmentation between leaves and stems. Gold particles of 5- and 10-nm infiltrated pit membranes in three species, while the entry of 50-nm particles was blocked. Moreover, polar lipids were associated with inner conduit walls and pits. Our results suggest that mechanisms related to embolism spreading are determined by Tpm, pore constrictions (i.e. the narrowest bottlenecks along pore pathways), and lipid surfactants, which are largely similar between leaf and stem xylem and between temperate and tropical trees. However, our mechanistic understanding of embolism propagation and the functional relevance of Tpm,max/Dpm remains elusive.
Collapse
Affiliation(s)
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | | | - Nina Abel
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, Nancy 54000, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | | |
Collapse
|
40
|
Hu Y, Xiang W, Schäfer KVR, Lei P, Deng X, Forrester DI, Fang X, Zeng Y, Ouyang S, Chen L, Peng C. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154517. [PMID: 35278541 DOI: 10.1016/j.scitotenv.2022.154517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China.
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - David I Forrester
- Swiss Federal Institute of Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
41
|
Echeverría A, Petrone‐Mendoza E, Segovia‐Rivas A, Figueroa‐Abundiz VA, Olson ME. The vessel wall thickness-vessel diameter relationship across woody angiosperms. AMERICAN JOURNAL OF BOTANY 2022; 109:856-873. [PMID: 35435252 PMCID: PMC9328290 DOI: 10.1002/ajb2.1854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
PREMISE Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.
Collapse
Affiliation(s)
- Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Emilio Petrone‐Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Alí Segovia‐Rivas
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| |
Collapse
|
42
|
Lourenço J, Enquist BJ, von Arx G, Sonsin-Oliveira J, Morino K, Thomaz LD, Milanez CRD. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. THE NEW PHYTOLOGIST 2022; 234:50-63. [PMID: 34981534 DOI: 10.1111/nph.17944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.
Collapse
Affiliation(s)
- Jehová Lourenço
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, H3C 3J7, Canada
- College of Life and Environmental Sciences, Geography, Exeter, Devon, EX4 4QE, UK
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, CH-3012, Switzerland
| | - Julia Sonsin-Oliveira
- Programa de Pós-Graduação (PPG) em Botânica, Departamento de Botânica, Instituto de Ciências Biológicas - Universidade de Brasília - UNB, Brasília, DF, 70919-970, Brazil
| | - Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Luciana Dias Thomaz
- Herbário VIES, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Camilla Rozindo Dias Milanez
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| |
Collapse
|
43
|
Li Y, Jiang Y, Zhao K, Chen Y, Wei W, Shipley B, Chu C. Exploring trait-performance relationships of tree seedlings along experimentally manipulated light and water gradients. Ecology 2022; 103:e3703. [PMID: 35357001 DOI: 10.1002/ecy.3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
A foundational assumption of trait-based ecology is that individual performances should be predicted by its functional traits. However, the trait-performance relationships reported in literature were typically weak, probably due to the ignorance of interactions between traits and environments, intraspecific trait variability and hard traits (directly linked to physiological processes of interest). We conducted an experiment of planting 900 seedlings of six tree species separately (one seedling per pot) along experimentally manipulated light and water gradients, monitored their survival and growth, and measured their morphological, photosynthetic and hydraulic traits. Most trait-performance relationships depended on the environments, either marginally changing (weak trait × environment interaction) or even reversing (strong trait × environment interaction) along light or water gradients in our experiment. Such trait × environment interactions were more likely to be detected in growth models using individual-level traits than models using species mean traits, but seedling growth was not better modelled with individual-level traits than species mean traits. Additionally, none of the hard traits (photosynthetic and hydraulic traits) were better predictors than soft traits (morphological traits) modeling seedling growth and survival along light and water gradients. Our study highlights the necessities of considering trait × environment interactions when predicting response of plants to changing environments. The benefits of using individual-level traits or hard traits to predict plant performance might be reduced or even cancelled if their measurement errors are not well controlled.
Collapse
Affiliation(s)
- Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Kangning Zhao
- School of Architecture, University of South China, Hengyang, Hunan, China
| | - Yang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bill Shipley
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Nie ZF, Liao ZQ, Yao GQ, Tian XQ, Bi MH, Teixeira da Silva JA, Gao TP, Fang XW. Divergent stem hydraulic strategies of Caragana korshinskii resprouts following a disturbance. TREE PHYSIOLOGY 2022; 42:325-336. [PMID: 34387352 DOI: 10.1093/treephys/tpab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Resprouting plants are distributed in many vegetation communities worldwide. With increasing resprout age post-severe-disturbance, new stems grow rapidly at their early age, and decrease in their growth with gradually decreasing water status thereafter. However, there is little knowledge about how stem hydraulic strategies and anatomical traits vary post-disturbance. In this study, the stem water potential (Ψstem), maximum stem hydraulic conductivity (Kstem-max), water potential at 50% loss of hydraulic conductivity (Kstem P50) and anatomical traits of Caragana korshinkii resprouts were measured during a 1- to 13-year post-disturbance period. We found that the Kstem-max decreased with resprout age from 1-year-old resprouts (84.2 mol m-1 s-1 MPa-1) to 13-year-old resprouts (54.2 mol m-1 s-1 MPa-1) as a result of decreases in the aperture fraction (Fap) and the sum of aperture area on per unit intervessel wall area (Aap). The Kstem P50 of the resprouts decreased from 1-year-old resprouts (-1.8 MPa) to 13-year-old resprouts (-2.9 MPa) as a result of increases in vessel implosion resistance (t/b)2, wood density (WD), vessel grouping index (GI) and decreases in Fap and Aap. These shifts in hydraulic structure and function resulted in an age-based divergence in hydraulic strategies i.e., a change from an acquisitive strategy to a conservative strategy, with increasing resprout age post-disturbance.
Collapse
Affiliation(s)
- Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Qiang Liao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | - Tian-Peng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
45
|
Suissa JS, Friedman WE. From cells to stems: the effects of primary vascular construction on drought-induced embolism in fern rhizomes. THE NEW PHYTOLOGIST 2021; 232:2238-2253. [PMID: 34273190 DOI: 10.1111/nph.17629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
While a considerable amount of data exists on the link between xylem construction and hydraulic function, few studies have focused on resistance to drought-induced embolism of primary vasculature in herbaceous plants. Ferns rely entirely on primary xylem and display a remarkable diversity of vascular construction in their rhizomes, making them an ideal group in which to examine hydraulic structure-function relationships. New optical methods allowed us to measure vulnerability to embolism in rhizomes, which are notoriously difficult to work with. We investigated five fern species based on their diverse xylem traits at the cellular, histological, and architectural levels. To link below- and above-ground hydraulics, we then measured leaf-stem vulnerability segmentation. Overall, rhizome vulnerability to embolism was correlated most strongly with cellular but not histological or architectural traits. Interestingly, at P6-12 , species with increased architectural dissection were actually more vulnerable to embolism, suggesting different hydraulic dynamics at low compared to high percent embolism. Importantly, leaves fully embolize before stems reach P88 , suggesting strong vulnerability segmentation. This is the first study to explore the functional implications of primary vascular construction in fern rhizomes and leaf-stem vulnerability segmentation. Strong segmentation suggests that leaves protect perennial rhizomes against severe drought stress and hydraulically induced mortality.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| | - William E Friedman
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
46
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
47
|
Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, Schmidt V, Jansen S. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. THE NEW PHYTOLOGIST 2021; 230:1829-1843. [PMID: 33595117 DOI: 10.1111/nph.17282] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance. Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively). The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed. Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.
Collapse
Affiliation(s)
- Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Zohreh Karimi
- Department of Biology, Faculty of Sciences, Golestan University, Shahid Beheshti St., Gorgan, 15759-49138, Iran
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Christophe L Trabi
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Ya Zhang
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, Wuhu, 241000, China
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|