1
|
Wei M, Liu M, Ma Y, Tigabu M, Fang K, Guo X, Zheng W, Guo F. Stable isotope analysis in tree rings of conifer species relevant to fire history study. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230466. [PMID: 40241448 PMCID: PMC12004089 DOI: 10.1098/rstb.2023.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 04/18/2025] Open
Abstract
Smoke and particulate matter released from forest fires, affecting the photosynthetic rate and stomatal conductance, may change the isotope composition in tree rings. Therefore, analysis of tree-ring isotopes could be a promising approach to monitor fires. We hypothesized that forest fires could influence the abundance of carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotopes and the radial growth of tree rings of conifers through their impact on the physiological processes. We collected wood cores from four coniferous species in northern and southern China. The isotope composition of these samples was analysed to shed light on the correlation between fire occurrence and tree-ring isotopes. We found that fires led to an increase in δ13C but a decrease in δ15N in the whole wood, while significant increases of above 0.5‰ in δ13C and a decrease of 0.2 to 0.5‰ in δ18O in the α-cellulose were observed. Meteorological factors including precipitation and relative humidity influenced the isotope abundance. Besides, forest fires inhibited the radial growth of conifer trees, particularly Cryptomeria fortunei. Our results suggest that variations in δ13C and δ18O abundance in tree rings play an essential role as an indicator of forest fire occurrence, providing additional insights into the study of fire history.This article is part of the theme issue 'Novel fire regimes under climate changes and human influences: impacts, ecosystem responses and feedbacks'.
Collapse
Affiliation(s)
- Mao Wei
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Mengxia Liu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Yuanfan Ma
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Mulualem Tigabu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Keyan Fang
- Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Xinbin Guo
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenxia Zheng
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Futao Guo
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
2
|
Wieloch T. Shining a new light on the classical concepts of carbon-isotope dendrochronology. THE NEW PHYTOLOGIST 2025; 245:939-944. [PMID: 39562520 PMCID: PMC11711932 DOI: 10.1111/nph.20258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Retrospective information about plant ecophysiology and the climate system are key inputs in Earth system and vegetation models. Dendrochronology provides such information with large spatiotemporal coverage, and carbon-isotope analysis across tree-ring series is among the most advanced dendrochronological tools. For the past 70 years, this analysis was performed on whole molecules and, to this day, 13C discrimination during carbon assimilation is invoked to explain isotope variation and associated climate signals. However, recently it was reported that tree-ring glucose exhibits multiple isotope signals at the intramolecular level (see Wieloch et al., 2025). Here, I estimated the signals' contribution to whole-molecule isotope variation and found that downstream processes in leaf and stem metabolism each introduce more variation than carbon assimilation. Moreover, downstream processes introduce most of the climate information. These findings are inconsistent with the classical concepts/practices of carbon-isotope dendrochronology. More importantly, intramolecular tree-ring isotope analysis promises novel insights into forest metabolism and the climate of the past.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences, Umeå Plant Science Centre90183UmeåSweden
- Division of Geological and Planetary SciencesCalifornia Institute of Technology91125PasadenaCAUSA
| |
Collapse
|
3
|
Tang X, Yue C, Liu B, Liu B, Liu J, Zhao H, Xu M, Wen W, Yang J, He J, Song X. Unraveling the drivers of optimal stomatal behavior in global C 3 plants: A carbon isotope perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178208. [PMID: 39740628 DOI: 10.1016/j.scitotenv.2024.178208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Understanding the drivers of stomatal behavior is critical for modeling terrestrial carbon cycle and water balance. The unified stomatal optimization (USO) model provides a mechanistic linkage between stomatal conductance (gs) and photosynthesis (A), with its slope parameter (g1) inversely related to intrinsic water use efficiency (iWUE), providing a key proxy to characterize the differences in iWUE and stomatal behavior. While many studies have identified multiple environmental factors influencing g1, the potential role of evolutionary history in shaping g1 remains incompletely understood. Leaf organic matter 13C discriminations (Δ13C) can be applied to estimate g1 over timescales from days to whole growing season. However, most applications assume that mesophyll conductance (gm)-a critical parameter in the Δ13C model-is infinite, due to limited information. Here, we incorporated new insight of gm to allow for more realistic parameterization of this variable, and subsequently to enable improved estimation of g1 based on a global bulk leaf Δ13C dataset comprising 2215 observations of 1521 species that span major biomes. Our analysis revealed a significant phylogenetic signal in g1 values, which differed among phylogenetic groups. Through a Bayesian phylogenetic linear mixed model, we found that species and phylogeny together explained 36.63 % of g1 variance, a contribution comparable to that of the environmental factors (44.59 %). Our findings uncovered for the first time that environmental factors, species-level and phylogenetic effects jointly shape g1 variability, thereby contributing to a more comprehensive understanding of optimal stomatal behavior in the context of global environmental change.
Collapse
Affiliation(s)
- Xianhui Tang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yue
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Binbin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jinyue Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Wen
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Yang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhao He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Jin C, Zha T, Bourque CPA, Di K, Zhang W, Jiao Y, Fan Z, Hu Z. Water use efficiency in tropical plants based on a set of newly created leaf photosynthesis-related parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177657. [PMID: 39579903 DOI: 10.1016/j.scitotenv.2024.177657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Water use efficiency (WUE) quantifies the amount of water expended per unit of dry leaf matter accumulated, reflecting the trade-offs between water consumption and carbon uptake. It is also a critical parameter for understanding plant responses to environmental changes. This study introduced an innovative set of WUE-related parameters, including maximum water use efficiency (WUEmax) and associated coefficients of water potential, loss, strategic usage, and total usage (WPC, WLC, WSC, and WTC, respectively) in providing a comprehensive evaluation of water use strategies in 48 common tropical plant species during the natural light fluctuations. These parameters exhibited significant differences among plant types, with sun-adapted and shade-tolerant plants (both C3) showing mean of WUEmax values of 3.81 ± 0.63 and 5.42 ± 1.61 μmol mmol-1, respectively, whereas C4 plants demonstrated a greater WUEmax of 7.04 ± 1.77 μmol mmol-1. Compared to C3 plants, particularly shade-tolerant types, C4 plants exhibited significantly higher WPC and WTC (p < 0.05). Furthermore, shade-tolerant plants displayed lower WLC and higher WSC than sun-adapted plants, suggestive of their specialized adaptations to variations in light intensity. The sensitivity of stomatal and mesophyll conductance (i.e., gs and gm) to incident light (Iinc) and/or intercellular CO2 concentration (Ci) helped clarify the source of variation in WUE-related parameters. In sun-adapted plants, gs was sensitive to changes in both Iinc and Ci. In terms of gm, shade-tolerant plants exhibited the lowest overall sensitivity to Iinc. Increasing atmospheric CO2 concentrations from 400 to 450 ppm caused WUE-related parameters to vary, with this response differing among plant types. These insights emphasize the significance of plant adaptation strategies in tropical rainforest ecosystems.
Collapse
Affiliation(s)
- Chuan Jin
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Faculty of Forestry and Environmental Management, 28 Dineen Drive, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Tianshan Zha
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Charles P-A Bourque
- Faculty of Forestry and Environmental Management, 28 Dineen Drive, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Kai Di
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Weirong Zhang
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Yue Jiao
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Zehao Fan
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Zhongmin Hu
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Yu YZ, Ma WT, Wang X, Tcherkez G, Schnyder H, Gong XY. Reconciling water-use efficiency estimates from carbon isotope discrimination of leaf biomass and tree rings: nonphotosynthetic fractionation matters. THE NEW PHYTOLOGIST 2024; 244:2225-2238. [PMID: 39360441 DOI: 10.1111/nph.20170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Carbon isotope discrimination (∆) in leaf biomass (∆BL) and tree rings (∆TR) provides important proxies for plant responses to climate change, specifically in terms of intrinsic water-use efficiency (iWUE). However, the nonphotosynthetic 12C/13C fractionation in plant tissues has rarely been quantified and its influence on iWUE estimation remains uncertain. We derived a comprehensive, ∆ based iWUE model (iWUEcom) which includes nonphotosynthetic fractionations (d) and characterized tissue-specific d-values based on global compilations of data of ∆BL, ∆TR and real-time ∆ in leaf photosynthesis (∆online). iWUEcom was further validated with independent datasets. ∆BL was larger than ∆online by 2.53‰, while ∆BL and ∆TR showed a mean offset of 2.76‰, indicating that ∆TR is quantitatively very similar to ∆online. Applying the tissue-specific d-values (dBL = 2.5‰, dTR = 0‰), iWUE estimated from ∆BL aligned well with those estimated from ∆TR or gas exchange. ∆BL and ∆TR showed a consistent iWUE trend with an average CO2 sensitivity of 0.15 ppm ppm-1 during 1975-2015. Accounting for nonphotosynthetic fractionations improves the estimation of iWUE based on isotope records in leaf biomass and tree rings, which is ultimate for inferring changes in carbon and water cycles under historical and future climate.
Collapse
Affiliation(s)
- Yong Zhi Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Wei Ting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xuming Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, 42 rue Georges Morel, Beaucouzé, 49070, France
- Research School of Biology, ANU College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising, 85354, Germany
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China
| |
Collapse
|
6
|
Joffe R, Tosens T, Berthe A, Jolivet Y, Niinemets Ü, Gandin A. Reduced mesophyll conductance under chronic O 3 exposure in poplar reflects thicker cell walls and increased subcellular diffusion pathway lengths according to the anatomical model. PLANT, CELL & ENVIRONMENT 2024; 47:4815-4832. [PMID: 39101376 DOI: 10.1111/pce.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.
Collapse
Affiliation(s)
- Ricardo Joffe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Tiina Tosens
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Audrey Berthe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Anthony Gandin
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
7
|
Pan S, Wang X, Yan Z, Wu J, Guo L, Peng Z, Wu Y, Li J, Wang B, Su Y, Liu L. Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients. THE NEW PHYTOLOGIST 2024; 244:1250-1262. [PMID: 39223910 DOI: 10.1111/nph.20100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems. We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ13C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance (G w max ) and maximum carboxylation capacity (V c max ). We found that leaves in cold-temperate forests displayed 'fast' carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, andV c max , as an adaptation to the shorter growing season. However, these leaves exhibited 'slow' hydraulic traits, with larger but fewer stomata and similarG w max , resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE. Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon-water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.
Collapse
Affiliation(s)
- Shengnan Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
8
|
Vilà-Vilardell L, Valor T, Hood-Nowotny R, Schott K, Piqué M, Casals P. Thinning followed by slash burning enhances growth and reduces vulnerability to drought for Pinus nigra. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3030. [PMID: 39252434 DOI: 10.1002/eap.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 09/11/2024]
Abstract
Increasingly frequent severe drought events are pushing Mediterranean forests to unprecedented responses. Lack of management leads to dense forests that are highly susceptible to drought stress, potentially resulting in extensive dieback and increased vulnerability to other disturbances. Forest treatments like thinning and slash burning reduce competition for resources and have the potential to enhance tree growth and vigor and minimize tree vulnerability to drought. Here, we used tree rings to study the growth and physiological response of black pine (Pinus nigra) to drought in northeastern Spain under different treatments, including two thinning intensities (light and heavy, with 10% and 40% basal area reduction, respectively) followed by two understory treatments (clearing alone and in combination with slash burning), resulting in a research design of four treatments plus an untreated control with three replicates. Specifically, we studied basal area increment (BAI), resilience indices, and intrinsic water use efficiency (iWUE) using carbon and oxygen isotope composition (δ13C and δ18O in tree-ring cellulose) before and after treatments. Our results showed that BAI and resistance to drought increased in the heavy-thin (burned and unburned) and light-thin burned units. Resilience increased in the burned units regardless of the thinning intensity, while recovery was not affected by treatment. Slash burning additionally increased BAI in the light-thin and resistance and resilience in the heavy-thin units compared with clearing alone. The stable isotope analysis revealed a minor effect of treatments on δ13C and δ18O. No change in iWUE among treatments was presumably linked to a proportional increase in both net CO2 assimilation and stomatal conductance, which particularly increased in the heavy-thin (burned and unburned) and light-thin burned units, indicating that these trees were the least affected by drought. This study shows that management approaches aimed at reducing wildfire hazard can also increase the vigor of dominant trees under drought stress. By reducing competition both from the overstory and the understory, thinning followed by clearing alone or in combination with slash burning promotes tree growth and vigor and increases its resistance and resilience to drought.
Collapse
Affiliation(s)
| | - Teresa Valor
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| | - Rebecca Hood-Nowotny
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Katharina Schott
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Míriam Piqué
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| | - Pere Casals
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| |
Collapse
|
9
|
Xu B, Li H, Wang Q, Li Q, Sha Y, Ma C, Yang A, Li M. Effect of nitrogen reduction combined with biochar application on soda saline soil and soybean growth in black soil areas. FRONTIERS IN PLANT SCIENCE 2024; 15:1441649. [PMID: 39372859 PMCID: PMC11449875 DOI: 10.3389/fpls.2024.1441649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
The combination of biochar and nitrogen (N) fertilization in agricultural salt-affected soils is an effective strategy for amending the soil and promoting production. To investigate the effect of nitrogen reduction combined with biochar application on a soda saline soil and soybean growth in black soil areas, a pot experiment was set up with two biochar application levels, 0 (B0) and 4.5 t/hm2 (B1); two biochar application depths, 0-20 cm (H1) and 0-40 cm (H2); and two nitrogen application levels, conventional nitrogen application (N0) and nitrogen reduction of 15% (N1). The results showed that the application of biochar improved the saline soil status and significantly increased soybean yield under lower nitrogen application. Moreover, increasing the depth of biochar application enhanced the effectiveness of biochar in reducing saline soil barriers to crop growth, which promoted soybean growth. Increasing the depth of biochar application increased the K+ and Ca2+ contents, soil nitrogen content, N fertilizer agronomic efficiency, leaf total nitrogen, N use efficiency, AN, Tr, gs, SPAD, leaf water potential, water content and soybean yield and its components. However, the Na+ content, SAR, ESP, Na+/K+, Ci and water use efficiency decreased with increasing biochar depth. Among the treatments with low nitrogen input and biochar, B1H1N1 resulted in the greatest soil improvement in the 0-20 cm soil layer compared with B0N0; for example, K+ content increased by 61.87%, Na+ content decreased by 44.80%, SAR decreased by 46.68%, and nitrate nitrogen increased by 26.61%. However, in the 20-40 cm soil layer, B1H2N1 had the greatest effect on improving the soil physicochemical properties, K+ content increased by 62.54%, Na+ content decreased by 29.76%, SAR decreased by 32.85%, and nitrate nitrogen content increased by 30.77%. In addition, compared with B0N0, total leaf nitrogen increased in B1H2N1 by 25.07%, N use efficiency increased by 6.7%, N fertilizer agronomic efficiency increased by 32.79%, partial factor productivity of nitrogen increased by 28.37%, gs increased by 22.10%, leaf water potential increased by 27.33% and water content increased by 6.44%. In conclusion, B1H2N1 had the greatest effect on improving the condition of saline soil; it not only effectively regulated the distribution of salt in soda saline soil and provided a low-salt environment for crop growth but also activated deep soil resources. Therefore, among all treatments investigated in this study, B1H2N1 was considered most suitable for improving the condition of soda saline soil in black soil areas and enhancing the growth of soybean plants.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Efficient Use of Agricultural Water Resources of Ministry of Agriculture and Rural Affairs of the People′s Republic of China, Northeast Agricultural University, Harbin, China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
- National Key Laboratory of Smart Farm Technology and System, Northeast Agricultural University, Harbin, Heilongjiang, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Research Center for Smart Water Network, Northeast Agricultural University, Harbin, Heilongjiang, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Hongyu Li
- Key Laboratory of Efficient Use of Agricultural Water Resources of Ministry of Agriculture and Rural Affairs of the People′s Republic of China, Northeast Agricultural University, Harbin, China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
- National Key Laboratory of Smart Farm Technology and System, Northeast Agricultural University, Harbin, Heilongjiang, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Research Center for Smart Water Network, Northeast Agricultural University, Harbin, Heilongjiang, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Qiuju Wang
- Heilongjiang Province Black Soil Protection and Utilization Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Quanfeng Li
- School of Public Administration and Law, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan Sha
- Key Laboratory of Efficient Use of Agricultural Water Resources of Ministry of Agriculture and Rural Affairs of the People′s Republic of China, Northeast Agricultural University, Harbin, China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
- National Key Laboratory of Smart Farm Technology and System, Northeast Agricultural University, Harbin, Heilongjiang, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Research Center for Smart Water Network, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chen Ma
- School of Public Administration and Law, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Aizheng Yang
- Key Laboratory of Efficient Use of Agricultural Water Resources of Ministry of Agriculture and Rural Affairs of the People′s Republic of China, Northeast Agricultural University, Harbin, China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
- National Key Laboratory of Smart Farm Technology and System, Northeast Agricultural University, Harbin, Heilongjiang, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Research Center for Smart Water Network, Northeast Agricultural University, Harbin, Heilongjiang, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Mo Li
- Key Laboratory of Efficient Use of Agricultural Water Resources of Ministry of Agriculture and Rural Affairs of the People′s Republic of China, Northeast Agricultural University, Harbin, China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
- National Key Laboratory of Smart Farm Technology and System, Northeast Agricultural University, Harbin, Heilongjiang, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Research Center for Smart Water Network, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Wang X, Ma WT, Sun YR, Xu YN, Li L, Miao G, Tcherkez G, Gong XY. The response of mesophyll conductance to short-term CO 2 variation is related to stomatal conductance. PLANT, CELL & ENVIRONMENT 2024; 47:3590-3604. [PMID: 39031544 DOI: 10.1111/pce.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024]
Abstract
The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.
Collapse
Affiliation(s)
- Xuming Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Yan Ran Sun
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Yi Ning Xu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Guofang Miao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France
- Research, School of Biology, ANU College of Sciences, Australian National University, Canberra, Acton, Australia
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
11
|
Márquez DA, Busch FA. The interplay of short-term mesophyll and stomatal conductance responses under variable environmental conditions. PLANT, CELL & ENVIRONMENT 2024; 47:3393-3410. [PMID: 38488802 DOI: 10.1111/pce.14880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 08/16/2024]
Abstract
Understanding the short-term responses of mesophyll conductance (gm) and stomatal conductance (gsc) to environmental changes remains a challenging yet central aspect of plant physiology. This review synthesises our current knowledge of these short-term responses, which underpin CO2 diffusion within leaves. Recent methodological advances in measuring gm using online isotopic discrimination and chlorophyll fluorescence have improved our confidence in detecting short-term gm responses, but results need to be carefully evaluated. Environmental factors like vapour pressure deficit and CO2 concentration indirectly impact gm through gsc changes, highlighting some of the complex interactions between the two parameters. Evidence suggests that short-term responses of gm are not, or at least not fully, mechanistically linked to changes in gsc, cautioning against using gsc as a reliable proxy for gm. The overarching challenge lies in unravelling the mechanistic basis of short-term gm responses, which will contribute to the development of accurate models bridging laboratory insights with broader ecological implications. Addressing these gaps in understanding is crucial for refining predictions of gm behaviour under changing environmental conditions.
Collapse
Affiliation(s)
- Diego A Márquez
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Florian A Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Fernandez-Tschieder E, Marshall JD, Binkley D. Carbon budget at the individual-tree scale: dominant Eucalyptus trees partition less carbon belowground. THE NEW PHYTOLOGIST 2024. [PMID: 38641865 DOI: 10.1111/nph.19764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/06/2024] [Indexed: 04/21/2024]
Abstract
Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.
Collapse
Affiliation(s)
- Ezequiel Fernandez-Tschieder
- National Institute of Agricultural Technology (INTA), Agricultural Experimental Station of Delta del Paraná, Campana, B2804, Argentina
- Graduate Degree Program in Ecology, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, 15374, Germany
- Department of Geological Sciences, Gothenburg University, Gothenburg, 405 30, Sweden
- Department of Energy and Matter Fluxes, Czech Globe, Belidla, 603 00, Czechia
| | - Dan Binkley
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
13
|
Yu YZ, Liu HT, Yang F, Li L, Schäufele R, Tcherkez G, Schnyder H, Gong XY. δ13C of bulk organic matter and cellulose reveal post-photosynthetic fractionation during ontogeny in C4 grass leaves. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1451-1464. [PMID: 37943576 DOI: 10.1093/jxb/erad445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The 13C isotope composition (δ13C) of leaf dry matter is a useful tool for physiological and ecological studies. However, how post-photosynthetic fractionation associated with respiration and carbon export influences δ13C remains uncertain. We investigated the effects of post-photosynthetic fractionation on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. With increasing leaf age class, the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2 (ΔDM) increased while that of cellulose (Δcel) was almost constant. The divergence between ΔDM and Δcel increased with leaf age class, with a maximum value of 1.6‰, indicating the accumulation of post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with carbon export of -0.5‰ to -1.0‰. Different ΔDM among leaves, pseudostems, daughter tillers, and roots indicate that post-photosynthetic fractionation happens at the whole-plant level. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the lower sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.
Collapse
Affiliation(s)
- Yong Zhi Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hai Tao Liu
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Fang Yang
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- College of Resources and Environment, Jilin Agricultural University, Changchun 130117, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Science, Australian National University, Canberra ACT 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
14
|
Zheng DM, Wang X, Liu Q, Sun YR, Ma WT, Li L, Yang Z, Tcherkez G, Adams MA, Yang Y, Gong XY. Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development. THE NEW PHYTOLOGIST 2024; 241:1435-1446. [PMID: 37997699 DOI: 10.1111/nph.19428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.
Collapse
Affiliation(s)
- Ding Ming Zheng
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| | - Qi Liu
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Ran Sun
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhijie Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| |
Collapse
|
15
|
Hu Y, Schäfer KVR, Hu S, Zhou W, Xiang D, Zeng Y, Ouyang S, Chen L, Lei P, Deng X, Zhao Z, Fang X, Xiang W. Woody species with higher hydraulic efficiency or lower photosynthetic capacity discriminate more against 13C at the global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168172. [PMID: 37939937 DOI: 10.1016/j.scitotenv.2023.168172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Leaf carbon isotope composition (δ13C) provides an integrative record on the carbon and water balance of plants over long periods. Photosynthetic ability and hydraulic traits which are highly associated with stomatal behavior could affect leaf δ13C. Association between photosynthetic ability and leaf δ13C has been examined, however, how hydraulic traits influence leaf δ13C has not been fully understood. To fill this gap, we investigated the variations in leaf δ13C among 2591 woody species (547 shrub and 2044 tree species), and analyzed the link of leaf δ13C with leaf photosynthetic and xylem hydraulic traits. Our result showed that leaf δ13C was positively correlated to leaf photosynthetic ability and capacity. For hydraulic traits, leaf δ13C was negatively related to hydraulic conductivity (Ks), xylem pressure inducing 50 % loss of hydraulic conductivity (P50) and vessel diameter (Vdia). Associations of leaf δ13C with xylem hydraulic traits indicate woody species with stronger hydraulic safety discriminated less against 13C, while woody species with higher hydraulic efficiency had more negative leaf δ13C. Shrub species, which showed a lower Vdia and P50, had a significant less negative leaf δ13C than tree species. Furthermore, woody species inhabiting in dry regions discriminated less against 13C than those growing in humid regions. Moreover, leaf δ13C displayed a low phylogenetic signal based on Blomberg's K statistic. Overall, woody species with a higher leaf photosynthetic ability or stronger hydraulic safety system discriminated less against 13C and adopt the provident water use strategy.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Songjiang Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Dong Xiang
- Forestry Bureau of Huaihua Perfecture, Huaihua 418099, Hunan, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Zhonghui Zhao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Hunan 438107, China.
| |
Collapse
|
16
|
Pataczek L, Weselek A, Bauerle A, Högy P, Lewandowski I, Zikeli S, Schweiger A. Agrivoltaics mitigate drought effects in winter wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e14081. [PMID: 38148203 DOI: 10.1111/ppl.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/28/2023]
Abstract
Climate change is expected to decrease water availability in many agricultural production areas around the globe. At the same time renewable energy concepts such as agrivoltaics (AV) are necessary to manage the energy transition. Several studies showed that evapotranspiration can be reduced in AV systems, resulting in increased water availability for crops. However, effects on crop performance and productivity remain unclear to date. Carbon-13 isotopic composition (δ13 C and discrimination against carbon-13) can be used as a proxy for the effects of water availability on plant performance, integrating crop responses over the entire growing season. The aim of this study was to assess these effects via carbon isotopic composition in grains, as well as grain yield of winter wheat in an AV system in southwest Germany. Crops were cultivated over four seasons from 2016-2020 in the AV system and on an unshaded adjacent reference (REF) site. Across all seasons, average grain yield did not significantly differ between AV and REF (4.7 vs 5.2 t ha-1 ), with higher interannual yield stability in the AV system. However, δ13 C as well as carbon-13 isotope discrimination differed significantly across the seasons by 1‰ (AV: -29.0‰ vs REF: -28.0‰ and AV: 21.6‰ vs REF: 20.6‰) between the AV system and the REF site. These drought mitigation effects as indicated by the results of this study will become crucial for the resilience of agricultural production in the near future when drought events will become significantly more frequent and severe.
Collapse
Affiliation(s)
- Lisa Pataczek
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Axel Weselek
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Andrea Bauerle
- Institute of Crop Science, Department of Biobased Resources in the Bioeconomy, University of Hohenheim, Stuttgart, Germany
| | - Petra Högy
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Iris Lewandowski
- Institute of Crop Science, Department of Biobased Resources in the Bioeconomy, University of Hohenheim, Stuttgart, Germany
| | - Sabine Zikeli
- Center for Organic Farming, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schweiger
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
17
|
Guo J, Beverly DP, Ewers BE, Williams DG. Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers. PHOTOSYNTHESIS RESEARCH 2023; 157:85-101. [PMID: 37212937 DOI: 10.1007/s11120-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic responses across complex elevational gradients provides insight into fundamental processes driving responses of plant growth and net primary production to environmental change. Gas exchange of needles and twig water potential were measured in two widespread coniferous tree species, Pinus contorta and Picea engelmannii, over an 800-m elevation gradient in southeastern Wyoming, USA. We hypothesized that limitations to photosynthesis imposed by mesophyll conductance (gm) would be greatest at the highest elevation sites due to higher leaf mass per area (LMA) and that estimations of maximum rate of carboxylation (Vcmax) without including gm would obscure elevational patterns of photosynthetic capacity. We found that gm decreased with elevation for P. contorta and remained constant for P. engelmannii, but in general, limitation to photosynthesis by gm was small. Indeed, estimations of Vcmax when including gm were equivalent to those estimated without including gm and no correlation was found between gm and LMA nor between gm and leaf N. Stomatal conductance (gs) and biochemical demand for CO2 were by far the most limiting processes to photosynthesis at all sites along the elevation gradient. Photosynthetic capacity (A) and gs were influenced strongly by differences in soil water availability across the elevation transect, while gm was less responsive to water availability. Based on our analysis, variation in gm plays only a minor role in driving patterns of photosynthesis in P. contorta and P. engelmannii across complex elevational gradients in dry, continental environments of the Rocky Mountains and accurate modeling of photosynthesis, growth and net primary production in these forests may not require detailed estimation of this trait value.
Collapse
Affiliation(s)
- Jiemin Guo
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
| | - Daniel P Beverly
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
- Biology Department, Indiana University, Bloomington, IN, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
18
|
Baca Cabrera JC, Hirl RT, Zhu J, Schäufele R, Ogée J, Schnyder H. 18 O enrichment of sucrose and photosynthetic and nonphotosynthetic leaf water in a C 3 grass-atmospheric drivers and physiological relations. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37376738 DOI: 10.1111/pce.14655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The 18 O enrichment (Δ18 O) of leaf water affects the Δ18 O of photosynthetic products such as sucrose, generating an isotopic archive of plant function and past climate. However, uncertainty remains as to whether leaf water compartmentation between photosynthetic and nonphotosynthetic tissue affects the relationship between Δ18 O of bulk leaf water (Δ18 OLW ) and leaf sucrose (Δ18 OSucrose ). We grew Lolium perenne (a C3 grass) in mesocosm-scale, replicated experiments with daytime relative humidity (50% or 75%) and CO2 level (200, 400 or 800 μmol mol-1 ) as factors, and determined Δ18 OLW , Δ18 OSucrose and morphophysiological leaf parameters, including transpiration (Eleaf ), stomatal conductance (gs ) and mesophyll conductance to CO2 (gm ). The Δ18 O of photosynthetic medium water (Δ18 OSSW ) was estimated from Δ18 OSucrose and the equilibrium fractionation between water and carbonyl groups (εbio ). Δ18 OSSW was well predicted by theoretical estimates of leaf water at the evaporative site (Δ18 Oe ) with adjustments that correlated with gas exchange parameters (gs or total conductance to CO2 ). Isotopic mass balance and published work indicated that nonphotosynthetic tissue water was a large fraction (~0.53) of bulk leaf water. Δ18 OLW was a poor proxy for Δ18 OSucrose , mainly due to opposite Δ18 O responses of nonphotosynthetic tissue water (Δ18 Onon-SSW ) relative to Δ18 OSSW , driven by atmospheric conditions.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Regina T Hirl
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| | - Jianjun Zhu
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| | - Rudi Schäufele
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| | | | - Hans Schnyder
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| |
Collapse
|
19
|
Wang S, Han Y, Jia Y, Chen Z, Wang G. Addressing the Relationship between Leaf Nitrogen and Carbon Isotope Discrimination from the Three Levels of Community, Population and Individual. PLANTS (BASEL, SWITZERLAND) 2023; 12:1551. [PMID: 37050177 PMCID: PMC10097192 DOI: 10.3390/plants12071551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The carbon, nitrogen and water cycles of terrestrial ecosystems are important biogeochemical cycles. Addressing the relationship of leaf nitrogen (N) and carbon isotope discrimination (Δ) will enhance the understanding of the links between these three cycles in plant leaves because Δ can reflect time-integrated leaf-level water-use efficiency (WUE) over the period when the leaf material is produced. Previous studies have paid considerable attention to the relationship. However, these studies have not effectively eliminated the interference of environmental factors, inter-species, and inter-individual differences in this relationship, so new research is necessary. To minimize these interferences, the present work explored the relationship at the three levels of community, population, and plant individual. Three patterns of positive, negative and no relationship were observed across communities, populations, and individuals, which is dependent on environmental conditions, species, and plant individuals. The results strongly suggested that there is no general pattern for the relationship between leaf N and Δ. Furthermore, the results indicated that there is often no coupling between leaf-level long-term WUE and leaf N in the metabolic process of carbon, N and water in leaves. The main reason for the lack of this relationship is that most plants do not invest large amounts of nitrogen into photosynthesis. In addition, the present study also observed that, for most plant species, leaf N was not related to photosynthetic rate, and that variations in photosynthetic rates are mainly driven by stomatal conductance.
Collapse
Affiliation(s)
- Shuhan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department of Biotechonology, College of Biotechonology and Pharmceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaowen Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yufu Jia
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Zhang Y, Qin Q, Zhu Q, Sun X, Bai Y, Liu Y. Stable isotopes in tree rings record physiological trends in Larix gmelinii after fires. TREE PHYSIOLOGY 2023:tpad033. [PMID: 36928744 DOI: 10.1093/treephys/tpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Fire is an important regulator of ecosystem dynamics in boreal forests, and especially has a complicated association with growth and physiological processes of fire-tolerant tree species. Stable isotope ratios in tree rings are used extensively in eco-physiological studies for evaluating the impact of past environmental (e.g., drought, air pollution) factors on tree growth and physiological processes. Yet, such studies based on carbon (δ13C) and oxygen (δ18O) isotope ratios in tree rings are rarely conducted on fire effect, especially not well explored for fire-tolerant trees. In this study, we investigated variations in basal area increment and isotopes of Larix gmelinii (Rupr.) Rupr. before and after three moderate fires (different fire years) at three sites across the Great Xing'an Mountains, Northeastern China. We found that the radial growth of L. gmelinii trees has significantly declined after the fires across study sites. Following the fires, a simultaneous increase in δ13C and δ18O has strengthened the link between the two isotopes. Further, fires have significantly enhanced the 13C-derived intrinsic water-use efficiency (iWUE) and largely altered the relationships between δ13C, δ18O, iWUE and climate (temperature and precipitation). A dual-isotope conceptual model revealed that an initial co-increase in δ13C and δ18O in the fire year can be mainly attributed to a reduction in stomatal conductance with a constant photosynthetic rate. However, this physiological response would shift to different patterns over post-fire time between sites, which might be partly related to spring temperature. This study is beneficial to better understand, in a physiological perspective, how fire-tolerant tree species adapt to a fire-prone environment. We also remind that the limitation of model assumptions and constraints may challenge model applicability and further inferred physiological response.
Collapse
Affiliation(s)
- Yujian Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, 100083, Beijing, China
| | - Qianqian Qin
- School of Ecology and Nature Conservation, Beijing Forestry University, 100083, Beijing, China
| | - Qiang Zhu
- School of Ecology and Nature Conservation, Beijing Forestry University, 100083, Beijing, China
| | - Xingyue Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, 100083, Beijing, China
| | - Yansong Bai
- School of Ecology and Nature Conservation, Beijing Forestry University, 100083, Beijing, China
| | - Yanhong Liu
- Beijing Key Laboratory of Forest Resources and Ecosystem Process, Beijing Forestry University, 100083, Beijing, China
| |
Collapse
|
21
|
Tang Y, Sahlstedt E, Young G, Schiestl‐Aalto P, Saurer M, Kolari P, Jyske T, Bäck J, Rinne‐Garmston KT. Estimating intraseasonal intrinsic water-use efficiency from high-resolution tree-ring δ 13 C data in boreal Scots pine forests. THE NEW PHYTOLOGIST 2023; 237:1606-1619. [PMID: 36451527 PMCID: PMC10108005 DOI: 10.1111/nph.18649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/16/2022] [Indexed: 05/26/2023]
Abstract
Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.
Collapse
Affiliation(s)
- Yu Tang
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research (INAR) / Forest SciencesUniversity of HelsinkiPO Box 2700014HelsinkiFinland
| | - Elina Sahlstedt
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
| | - Giles Young
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
| | - Pauliina Schiestl‐Aalto
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiPO Box 6800014HelsinkiFinland
| | - Matthias Saurer
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research (WSL)Zürcherstrasse 1118903BirmensdorfSwitzerland
| | - Pasi Kolari
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiPO Box 6800014HelsinkiFinland
| | - Tuula Jyske
- Production Systems UnitNatural Resources Institute FinlandTietotie 202150EspooFinland
| | - Jaana Bäck
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research (INAR) / Forest SciencesUniversity of HelsinkiPO Box 2700014HelsinkiFinland
| | - Katja T. Rinne‐Garmston
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
| |
Collapse
|
22
|
Lin X, Wu B, Wang J, Wang G, Chen Z, Liang Y, Liu J, Wang H. Effects of Geographical and Climatic Factors on the Intrinsic Water Use Efficiency of Tropical Plants: Evidence from Leaf 13C. PLANTS (BASEL, SWITZERLAND) 2023; 12:951. [PMID: 36840299 PMCID: PMC9962877 DOI: 10.3390/plants12040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Understanding the water use efficiency (WUE) and adaptation strategies of plants in high-temperature and rainy areas is essential under global climate change. The leaf carbon content (LCC) and intrinsic WUE of 424 plant samples (from 312 plant species) on Hainan Island were measured to examine their relationship with geographical and climatic factors in herbs, trees, vines and ferns. The LCC ranged from 306.30 to 559.20 mg g-1, with an average of 418.85 mg g-1, and decreased with increasing mean annual temperature (MAT). The range of intrinsic WUE was 8.61 to 123.39 μmol mol-1 with an average value of 60.66 μmol mol-1. The intrinsic WUE decreased with increasing altitude and relative humidity (RH) and wind speed (WS), but increased with increasing latitude, MAT and rainy season temperature (RST), indicating that geographical and climatic factors affect the intrinsic WUE. Stepwise regression suggested that in tropical regions with high temperature and humidity, the change in plant intrinsic WUE was mainly driven by WS. In addition, the main factors affecting the intrinsic WUE of different plant functional types of plants are unique, implying that plants of different plant functional types have distinctive adaptive strategies to environmental change. The present study may provide an insight in water management in tropical rainforest.
Collapse
Affiliation(s)
- Xiaoyan Lin
- School of Forestry, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571700, China
| | - Bingsun Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571700, China
| | - Jingjing Wang
- School of Forestry, Hainan University, Haikou 570228, China
- Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571700, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yongyi Liang
- School of Forestry, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiexi Liu
- School of Forestry, Hainan University, Haikou 570228, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institutes of Plant Physiology and Ecology, Shanghai 200032, China
| | - Hao Wang
- School of Forestry, Hainan University, Haikou 570228, China
- College of International Studies, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Ma WT, Yu YZ, Wang X, Gong XY. Estimation of intrinsic water-use efficiency from δ 13C signature of C 3 leaves: Assumptions and uncertainty. FRONTIERS IN PLANT SCIENCE 2023; 13:1037972. [PMID: 36714771 PMCID: PMC9877432 DOI: 10.3389/fpls.2022.1037972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Carbon isotope composition (δ13C) has been widely used to estimate the intrinsic water-use efficiency (iWUE) of plants in ecosystems around the world, providing an ultimate record of the functional response of plants to climate change. This approach relies on established relationships between leaf gas exchange and isotopic discrimination, which are reflected in different formulations of 13C-based iWUE models. In the current literature, most studies have utilized the simple, linear equation of photosynthetic discrimination to estimate iWUE. However, recent studies demonstrated that using this linear model for quantitative studies of iWUE could be problematic. Despite these advances, there is a scarcity of review papers that have comprehensively reviewed the theoretical basis, assumptions, and uncertainty of 13C-based iWUE models. Here, we 1) present the theoretical basis of 13C-based iWUE models: the classical model (iWUEsim), the comprehensive model (iWUEcom), and the model incorporating mesophyll conductance (iWUEmes); 2) discuss the limitations of the widely used iWUEsim model; 3) and make suggestions on the application of the iWUEmes model. Finally, we suggest that a mechanistic understanding of mesophyll conductance associated effects and post-photosynthetic fractionation are the bottlenecks for improving the 13C-based estimation of iWUE.
Collapse
Affiliation(s)
- Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
24
|
Kännaste A, Jürisoo L, Runno-Paurson E, Kask K, Talts E, Pärlist P, Drenkhan R, Niinemets Ü. Impacts of Dutch elm disease-causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen resistance. TREE PHYSIOLOGY 2023; 43:57-74. [PMID: 36106799 DOI: 10.1093/treephys/tpac108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.
Collapse
Affiliation(s)
- Astrid Kännaste
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Liina Jürisoo
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Kaia Kask
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Piret Pärlist
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Rein Drenkhan
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
25
|
Fang L, Martre P, Jin K, Du X, van der Putten PEL, Yin X, Struik PC. Neglecting acclimation of photosynthesis under drought can cause significant errors in predicting leaf photosynthesis in wheat. GLOBAL CHANGE BIOLOGY 2023; 29:505-521. [PMID: 36300859 PMCID: PMC10091787 DOI: 10.1111/gcb.16488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth ). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3 -photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth . Drought affected photosynthesis by lowering its optimum temperature (Topt ) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax ) and the maximum rate of carboxylation by Rubisco (Vcmax ). Topt for Vcmax was up to 40°C under well-watered conditions but 24-34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth , but acclimate considerably to drought and the combination of drought and Tgrowth . The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth , strongly overestimate leaf photosynthesis under variable temperature and drought.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSEUniv Montpellier, INRAE, Institut Agro MontpellierMontpellierFrance
| | - Kaining Jin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| | - Xinmiao Du
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
26
|
Tang Y, Schiestl-Aalto P, Lehmann MM, Saurer M, Sahlstedt E, Kolari P, Leppä K, Bäck J, Rinne-Garmston KT. Estimating intra-seasonal photosynthetic discrimination and water use efficiency using δ13C of leaf sucrose in Scots pine. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:321-335. [PMID: 36255219 PMCID: PMC9786842 DOI: 10.1093/jxb/erac413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/17/2022] [Indexed: 05/31/2023]
Abstract
Sucrose has a unique role in recording environmental and physiological signals during photosynthesis in its carbon isotope composition (δ13C) and transport of the signal to tree rings. Yet, instead of sucrose, total organic matter (TOM) or water-soluble carbohydrates (WSC) are typically analysed in studies that follow δ13C signals within trees. To study how the choice of organic material may bias the interpretation of δ13C records, we used mature field-grown Scots pine (Pinus sylvestris) to compare for the first time δ13C of different leaf carbon pools with δ13C of assimilates estimated by a chamber-Picarro system (δ13CA_Picarro), and a photosynthetic discrimination model (δ13CA_model). Compared with sucrose, the other tested carbon pools, such as TOM and WSC, poorly recorded the seasonal trends or absolute values of δ13CA_Picarro and δ13CA_model. Consequently, in comparison with the other carbon pools, sucrose δ13C was superior for reconstructing changes in intrinsic water use efficiency (iWUE), agreeing in both absolute values and intra-seasonal variations with iWUE estimated from gas exchange. Thus, deriving iWUE and environmental signals from δ13C of bulk organic matter can lead to misinterpretation. Our findings underscore the advantage of using sucrose δ13C to understand plant physiological responses in depth.
Collapse
Affiliation(s)
| | - Paulina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Elina Sahlstedt
- Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
| | - Kersti Leppä
- Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Katja T Rinne-Garmston
- Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
27
|
Wang Z, Liu J, Wang Y, Agathokleous E, Hamoud YA, Qiu R, Hong C, Tian M, Shaghaleh H, Guo X. Relationships between stable isotope natural abundances (δ 13C and δ 15N) and water use efficiency in rice under alternate wetting and drying irrigation in soils with high clay contents. FRONTIERS IN PLANT SCIENCE 2022; 13:1077152. [PMID: 36531393 PMCID: PMC9756853 DOI: 10.3389/fpls.2022.1077152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Natural abundance of the stable isotope (δ13C and δ15N) in plants is widely used to indicate water use efficiency (WUE). However, soil water and texture properties may affect this relationship, which remains largely elusive. Therefore, the purpose of this study was to evaluate δ13C as affected by different combinations of alternate wetting and drying irrigation (AWD) with varied soil clay contents in different organs and whole plant and assess the feasibility of using δ13C and δ15N as a physiological indicator of whole-plant water use efficiency (WUEwhole-plant). Three AWD regimes, I100 (30 mm flooded when soil reached 100% saturation), I90 (30 mm flooded when reached 90% saturation) and I70 (30 mm flooded when reached 70% saturation) and three soil clay contents, 40% (S40), 50% (S50), and 60% (S60), were included. Observed variations in WUEwhole-plant did not conform to theoretical expectations of the organs δ13C (δ13Corgans) of plant biomass based on pooled data from all treatments. However, a positive relationship between δ13Cleaf and WUEET (dry biomass/evapotranspiration) was observed under I90 regime, whereas there were no significant relationships between δ13Corgans and WUEET under I100 or I70 regimes. Under I100, weak relationships between δ13Corgans and WUEET could be explained by (i) variation in C allocation patterns under different clay content, and (ii) relatively higher rate of panicle water loss, which was independent of stomatal regulation and photosynthesis. Under I70, weak relationships between δ13Corgans and WUEET could be ascribed to (i) bigger cracks induced by water-limited irrigation regime and high clay content soil, and (ii) damage caused by severe drought. In addition, a negative relationship was observed between WUEwhole-plant and shoot δ15N (δ15Nshoot) across the three irrigation treatments, indicating that WUEwhole-plant is tightly associated with N metabolism and N isotope discrimination in rice. Therefore, δ13C should be used cautiously as an indicator of rice WUEwhole-plant at different AWD regimes with high clay content, whereas δ15N could be considered an effective indicator of WUEwhole-plant.
Collapse
Affiliation(s)
- Zhenchang Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Jinjing Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Department of Soil and Land Reclamation, Aleppo University, Aleppo, Syria
| | - Rangjian Qiu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Cheng Hong
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Minghao Tian
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, China
| | - Xiangping Guo
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| |
Collapse
|
28
|
Cui B, Wang X, Su Y, Gong C, Zhang D, Ouyang Z, Wang X. Responses of tree growth, leaf area and physiology to pavement in Ginkgo biloba and Platanus orientalis. FRONTIERS IN PLANT SCIENCE 2022; 13:1003266. [PMID: 36531361 PMCID: PMC9751631 DOI: 10.3389/fpls.2022.1003266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Trees growing on paved lands endure many environmental stresses in the urban environment. However, the morphological and physiological mechanisms underlying tree adaptation to pavement in the field are less known. In this study, we investigated 40 sites where Ginkgo biloba and Platanus orientalis grow on adjacent pairs of paved and vegetated plots in parks and roadsides in Beijing, China. Relative to the vegetated land, the mean increments in the diameter at breast height and height in the paved land were significantly decreased by 44.5% and 31.9% for G. biloba and 31.7% and 60.1% for P. orientalis, respectively. These decreases are related to both the decrease in assimilation products due to the reductions in leaf area, leaf total nitrogen content, and chlorophyll content and the increase in energy cost due to the synthesis of more soluble sugar and proline for mitigating stress. The increase in leaf soluble sugar content, proline content, and δ13C indicated that trees could adapt to the paved land through the regulation of osmotic balance and the enhancement of water-use efficiency. Piecewise structural equation models showed that trees growing on the paved land are stressed by compounding impacts of the leaf morphological and physiological changes. Therefore, it is critical to explore the complex response of plant morphological and physiological traits to the pavement-induced stress for improving tree health in urban greening.
Collapse
Affiliation(s)
- Bowen Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yuebo Su
- Shenzhen Academy of Environmental Sciences, Shenzhen, China
| | - Cheng Gong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Danhong Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Urban Ecosystem Research Station, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Ubierna N, Holloway‐Phillips M, Farquhar GD. Scaling from fluxes to organic matter: interpreting 13 C isotope ratios of plant material using flux models. THE NEW PHYTOLOGIST 2022; 236:2003-2008. [PMID: 36385264 PMCID: PMC9827853 DOI: 10.1111/nph.18523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article is a Commentary on Leppä et al. (2022), 236: 2044–2060.
Collapse
Affiliation(s)
- Nerea Ubierna
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | | | - Graham D. Farquhar
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
30
|
Mathias JM, Hudiburg TW. isocalcR: An R package to streamline and standardize stable isotope calculations in ecological research. GLOBAL CHANGE BIOLOGY 2022; 28:7428-7436. [PMID: 36002391 DOI: 10.1111/gcb.16407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The use of stable isotopes to characterize ecosystem dynamics and infer leaf gas exchange processes has become increasingly prevalent over the last few decades within the ecological community. While advancements in theory and our understanding of the physiological processes controlling isotopic signatures in plants has been well-documented, no standardized tool currently exists to facilitate the computation of common isotope-derived plant physiological indices. Here, we present isocalcR, an R package intended to facilitate the use of stable isotope data from plant tissues by providing an integrated collection of functions and recommended reference data. The isocalcR R package contains a suite of functions that compute leaf carbon isotope discrimination (∆13 C), leaf intercellular [CO2 ], the ratio of leaf intercellular to atmospheric [CO2 ], the difference between atmospheric and leaf intercellular [CO2 ], and intrinsic water use efficiency from carbon isotope signatures in leaf or wood tissue with minimal inputs from the user. isocalcR also implements and provides recommended input atmospheric [CO2 ] (ppm) and atmospheric δ13 CO2 (‰) data for the period 0-2021 C.E. A major goal of isocalcR is to provide a standardized, open-source tool to streamline the calculation of reproducible physiological indices from stable isotope signatures in plant tissues, incorporating the most up-to-date theory, while simultaneously eliminating potential errors associated with complex calculations. isocalcR can be used for any location globally as long as the user provides information regarding temperature and elevation to the main workhorse functions.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Tara W Hudiburg
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
31
|
Gong XY, Ma WT, Yu YZ, Fang K, Yang Y, Tcherkez G, Adams MA. Overestimated gains in water-use efficiency by global forests. GLOBAL CHANGE BIOLOGY 2022; 28:4923-4934. [PMID: 35490304 DOI: 10.1111/gcb.16221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Increases in terrestrial water-use efficiency (WUE) have been reported in many studies, pointing to potential changes in physiological forcing of global carbon and hydrological cycles. However, gains in WUE are of uncertain magnitude over longer (i.e. >10 years) periods of time largely owing to difficulties in accounting for structural and physiological acclimation. 13 C signatures (i.e. δ13 C) of plant organic matter have long been used to estimate WUE at temporal scales ranging from days to centuries. Mesophyll conductance is a key uncertainty in estimated WUE owing to its influence on diffusion of CO2 to sites of carboxylation. Here we apply new knowledge of mesophyll conductance to 464 δ13 C chronologies in tree-rings of 143 species spanning global biomes. Adjusted for mesophyll conductance, gains in WUE during the 20th century (0.15 ppm year-1 ) were considerably smaller than those estimated from conventional modelling (0.26 ppm year-1 ). Across the globe, mean sensitivity of WUE to atmospheric CO2 was 0.15 ppm ppm-1 . Ratios of internal-to-atmospheric CO2 (on a mole fraction basis; ci /ca ) in leaves were mostly constant over time but differed among biomes and plant taxa-highlighting the significance of both plant structure and physiology. Together with synchronized responses in stomatal and mesophyll conductance, our results suggest that ratios of chloroplastic-to-atmospheric CO2 (cc /ca ) are constrained over time. We conclude that forest WUE may have not increased as much as previously suggested and that projections of future climate forcing via CO2 fertilization may need to be adjusted accordingly.
Collapse
Affiliation(s)
- Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Keyan Fang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Querejeta JI, Prieto I, Armas C, Casanoves F, Diémé JS, Diouf M, Yossi H, Kaya B, Pugnaire FI, Rusch GM. Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. THE NEW PHYTOLOGIST 2022; 235:1351-1364. [PMID: 35582952 PMCID: PMC9542767 DOI: 10.1111/nph.18254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (Narea ) modulates leaf oxygen and carbon isotopic composition (δ18 O, δ13 C), as proxies of stomatal conductance and water-use efficiency, across 34 Sahelian woody species. Dryland species exhibited diverging leaf δ18 O and δ13 C values, indicating large interspecific variation in time-integrated stomatal conductance and water-use efficiency. Structural equation modeling revealed that leaf Narea is a pivotal trait linked to multiple water-use traits. Leaf Narea was positively linked to both δ18 O and δ13 C, suggesting higher carboxylation capacity and tighter stomatal regulation of transpiration in N-rich species, which allows them to achieve higher water-use efficiency and more conservative water use. These adaptations represent a key physiological advantage of N-rich species, such as legumes, that could contribute to their dominance across many dryland regions. This is the first report of a robust mechanistic link between leaf Narea and δ18 O in dryland vegetation that is consistent with core principles of plant physiology.
Collapse
Affiliation(s)
- José Ignacio Querejeta
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)Consejo Superior de Investigaciones Científicas30100MurciaSpain
| | - Iván Prieto
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)Consejo Superior de Investigaciones Científicas30100MurciaSpain
- Estación Experimental de Zonas Áridas (EEZA)Consejo Superior de Investigaciones Científicas04120AlmeríaSpain
- Department of Biodiversity and Environmental management, Ecology AreaFaculty of Biological and Environmental Sciences, University of León24007LeónSpain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA)Consejo Superior de Investigaciones Científicas04120AlmeríaSpain
| | - Fernando Casanoves
- CATIE ‐ Centro Agronómico Tropical de Investigación y Enseñanza30501TurrialbaCosta Rica
| | - Joseph S. Diémé
- Estación Experimental de Zonas Áridas (EEZA)Consejo Superior de Investigaciones Científicas04120AlmeríaSpain
- Institut Sénégalais de Recherches Agricoles (ISRA), Hann Bel AirRoute des hydrocarbures – BP3120DakarSenegal
- Department of AgroforestryUniversité Assane Seck de Ziguinchor (UASZ)Diabir BP523ZiguinchorSenegal
| | - Mayecor Diouf
- Institut Sénégalais de Recherches Agricoles (ISRA), Hann Bel AirRoute des hydrocarbures – BP3120DakarSenegal
- ISRA/CRZ Dahra DjoloffBP 01Dahra DjoloffSenegal
| | - Harouna Yossi
- l'Institut d'Économie Rurale (IER)/Centre Régional de Recherche Agronomique de SotubaBP258BamakoMali
| | - Bocary Kaya
- l'Institut d'Économie Rurale (IER)/Centre Régional de Recherche Agronomique de SotubaBP258BamakoMali
- Millennium Promise West and Central AfricaPO Box 103, Rue 287, Porte 341BamakoMali
| | - Francisco I. Pugnaire
- Estación Experimental de Zonas Áridas (EEZA)Consejo Superior de Investigaciones Científicas04120AlmeríaSpain
| | - Graciela M. Rusch
- Norwegian Institute for Nature Research (NINA)Høgskoleringen 97034TrondheimNorway
| |
Collapse
|
33
|
Fang L, Yin X, van der Putten PEL, Martre P, Struik PC. Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). PLANT, CELL & ENVIRONMENT 2022; 45:2062-2077. [PMID: 35357701 PMCID: PMC9324871 DOI: 10.1111/pce.14324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSE, Institut Agro SupAgro, INRAE, Univ MontpellierMontpellierFrance
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
34
|
Domergue J, Abadie C, Lalande J, Deswarte J, Ober E, Laurent V, Zimmerli C, Lerebour P, Duchalais L, Bédard C, Derory J, Moittie T, Lamothe‐Sibold M, Beauchêne K, Limami AM, Tcherkez G. Grain carbon isotope composition is a marker for allocation and harvest index in wheat. PLANT, CELL & ENVIRONMENT 2022; 45:2145-2157. [PMID: 35475551 PMCID: PMC9323493 DOI: 10.1111/pce.14339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The natural 13 C abundance (δ13 C) in plant leaves has been used for decades with great success in agronomy to monitor water-use efficiency and select modern cultivars adapted to dry conditions. However, in wheat, it is also important to find genotypes with high carbon allocation to spikes and grains, and thus with a high harvest index (HI) and/or low carbon losses via respiration. Finding isotope-based markers of carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we took the advantage of a set of field trials made of more than 600 plots with several wheat cultivars and measured agronomic parameters as well as δ13 C values in leaves and grains. We find a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδcorr ), and the respiration use efficiency-to-HI ratio. It means that overall, efficient carbon allocation to grains is associated with a small isotopic difference between leaves and grains. This effect is explained by postphotosynthetic isotope fractionations, and we show that this can be modelled by equations describing the carbon isotope composition in grains along the wheat growth cycle. Our results show that 13 C natural abundance in grains could be useful to find genotypes with better carbon allocation properties and assist current wheat breeding technologies.
Collapse
Affiliation(s)
- Jean‐Baptiste Domergue
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Cyril Abadie
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Julie Lalande
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Jean‐Charles Deswarte
- Arvalis Institut du Végétal, Pôle valorisation de l'écophysiologie, ZA des GraviersVilliers le BâcleFrance
| | - Eric Ober
- National Institute of Agricultural BotanyCambridgeUK
| | | | | | | | | | | | | | | | - Marlène Lamothe‐Sibold
- Plateforme Metabolisme MetabolomeSPOmics plant métabolisme métabolome platform, Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRAe, University Paris‐SaclayOrsayFrance
| | - Katia Beauchêne
- Arvalis Institut du Végétal, Pôle PhenoHD3Beauce‐La‐RomaineFrance
| | - Anis M. Limami
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et SemencesUniversité d'Angers, INRAeBeaucouzéFrance
- Research School of Biology, ANU College of ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
35
|
Malécange M, Pérez-Garcia MD, Citerne S, Sergheraert R, Lalande J, Teulat B, Mounier E, Sakr S, Lothier J. Leafamine ®, a Free Amino Acid-Rich Biostimulant, Promotes Growth Performance of Deficit-Irrigated Lettuce. Int J Mol Sci 2022; 23:7338. [PMID: 35806343 PMCID: PMC9266813 DOI: 10.3390/ijms23137338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant -Leafamine®-a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.
Collapse
Affiliation(s)
- Marthe Malécange
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France; (R.S.); (E.M.)
| | - Maria-Dolores Pérez-Garcia
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France;
| | | | - Julie Lalande
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | - Béatrice Teulat
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | | | - Soulaiman Sakr
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | - Jérémy Lothier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| |
Collapse
|
36
|
Stangl ZR, Tarvainen L, Wallin G, Marshall JD. Limits to photosynthesis: seasonal shifts in supply and demand for CO 2 in Scots pine. THE NEW PHYTOLOGIST 2022; 233:1108-1120. [PMID: 34775610 DOI: 10.1111/nph.17856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (Anet ) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (gm ) and its effect on the estimation of carboxylation capacity ( VCmax ). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over Anet . The seasonality of Anet was strongly dependent on VCmax and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that VCmax limited Anet in the spring, whereas daily temperatures and the gradual reduction of light availability limited Anet in the autumn, despite relatively high VCmax . We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between gm and Anet , but not between gm and stomatal conductance.
Collapse
Affiliation(s)
- Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
37
|
Manzur ME, Garello FA, Omacini M, Schnyder H, Sutka MR, García-Parisi PA. Endophytic fungi and drought tolerance: ecophysiological adjustment in shoot and root of an annual mesophytic host grass. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:272-282. [PMID: 35130476 DOI: 10.1071/fp21238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Epichloid endophytic fungi, vertically transmitted symbionts of grasses, can increase plant tolerance to biotic and abiotic stress. Our aim was to identify ecophysiological mechanisms by which the endophyte Epichloë occultans confers drought tolerance to the annual grass Lolium multiflorum Lam. Endophyte-associated or endophyte-free plants were either well-watered or subjected to water deficit. We evaluated plant biomass, root length and nitrogen concentration, and we assessed intrinsic water use efficiency (iWUE) and its components net photosynthesis and stomatal conductance, by carbon and oxygen isotope analysis of shoot tissues. Endophyte-free plants produced more biomass than endophyte-associated ones at field capacity, while water deficit strongly reduced endophyte-free plants biomass. As a result, both types of plants produced similar biomass under water restriction. Based on oxygen isotope composition of plant cellulose, stomatal conductance decreased with water deficit in both endophyte-associated and endophyte-free plants. Meanwhile, carbon isotope composition indicated that iWUE increased with water deficit only in endophyte-associated plants. Thus, the isotope data indicated that net photosynthesis decreased more strongly in endophyte-free plants under water deficit. Additionally, endophyte presence reduced root length but increased its hydraulic conductivity. In conclusion, endophytic fungi confer drought tolerance to the host grass by adjusting shoot and root physiology.
Collapse
Affiliation(s)
- Milena E Manzur
- IIBIO-CONICET-UNSAM, Avenida 25 de Mayo y Francia, San Martín, CPA B1650HMP Buenos Aires, Argentina; and Departamento de Biología Aplicada y Alimentos, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Fabián A Garello
- Departamento de Biología Aplicada y Alimentos, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina; and IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Marina Omacini
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina; and Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Moira R Sutka
- DBBE-IBBEA, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Pablo A García-Parisi
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina; and Departamento de Producción Animal, Cátedra de Forrajicultura, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| |
Collapse
|
38
|
Lavergne A, Hemming D, Prentice IC, Guerrieri R, Oliver RJ, Graven H. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. GLOBAL CHANGE BIOLOGY 2022; 28:524-541. [PMID: 34626040 PMCID: PMC9298043 DOI: 10.1111/gcb.15924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 05/31/2023]
Abstract
Carbon isotope discrimination (Δ13 C) in C3 woody plants is a key variable for the study of photosynthesis. Yet how Δ13 C varies at decadal scales, and across regions, and how it is related to gross primary production (GPP), are still incompletely understood. Here we address these questions by implementing a new Δ13 C modelling capability in the land-surface model JULES incorporating both photorespiratory and mesophyll-conductance fractionations. We test the ability of four leaf-internal CO2 concentration models embedded in JULES to reproduce leaf and tree-ring (TR) carbon isotopic data. We show that all the tested models tend to overestimate average Δ13 C values, and to underestimate interannual variability in Δ13 C. This is likely because they ignore the effects of soil water stress on stomatal behavior. Variations in post-photosynthetic isotopic fractionations across species, sites and years, may also partly explain the discrepancies between predicted and TR-derived Δ13 C values. Nonetheless, the "least-cost" (Prentice) model shows the lowest biases with the isotopic measurements, and lead to improved predictions of canopy-level carbon and water fluxes. Overall, modelled Δ13 C trends vary strongly between regions during the recent (1979-2016) historical period but stay nearly constant when averaged over the globe. Photorespiratory and mesophyll effects modulate the simulated global Δ13 C trend by 0.0015 ± 0.005‰ and -0.0006 ± 0.001‰ ppm-1 , respectively. These predictions contrast with previous findings based on atmospheric carbon isotope measurements. Predicted Δ13 C and GPP tend to be negatively correlated in wet-humid and cold regions, and in tropical African forests, but positively related elsewhere. The negative correlation between Δ13 C and GPP is partly due to the strong dominant influences of temperature on GPP and vapor pressure deficit on Δ13 C in those forests. Our results demonstrate that the combined analysis of Δ13 C and GPP can help understand the drivers of photosynthesis changes in different climatic regions.
Collapse
Affiliation(s)
| | - Deborah Hemming
- Met Office Hadley CentreExeterUK
- Birmingham Institute of Forest ResearchBirminghamUK
| | - Iain Colin Prentice
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonAscotUK
- Grantham Institute – Climate Change and the EnvironmentImperial College LondonLondonUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Earth System ScienceTsinghua UniversityBeijingChina
| | - Rossella Guerrieri
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | | | - Heather Graven
- Department of PhysicsImperial College LondonLondonUK
- Grantham Institute – Climate Change and the EnvironmentImperial College LondonLondonUK
| |
Collapse
|
39
|
Farahat E, Cherubini P, Saurer M, Gärtner H. Wood anatomy and tree-ring stable isotopes indicate a recent decline in water-use efficiency in the desert tree Moringa peregrina. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:127-137. [PMID: 34633523 DOI: 10.1007/s00484-021-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The ability of desert plants to adapt to future climate changes and maximize their water-use efficiency will determine their survival. This study uses wood anatomy and δ13C and δ18O isotope analyses to investigate how Moringa peregrina trees in the Egyptian desert have responded to the environment over the last 10 years. Our results show that M. peregrina tree-ring widths (TRWs) have generally declined over the last decade, although individual series are characterized by high variability and low Rbars. Vessel lumen area percentages (VLA%) are low in wet years but increase significantly in dry years, such as the period 2017-2020. Stable δ13C isotope values decrease between 2010 (- 23.4‰) and 2020 (- 24.9‰), reflecting an unexpected response to an increase in drought conditions. The mean δ18O value (± standard error, SE) for the first ten rings of each tree from bark to pith (2020-2010) is 33.0 ‰ ± 0.85 with a range of 29.2-36.3‰, which indicates a common drought signal. The intrinsic water-use efficiency (iWUE) declines gradually with time, from 130.0 µmol mol-1 in 2010 to 119.4 µmol mol-1 in 2020. The intercellular carbon concentration (Ci) and Ci/Ca ratio increase over the same period, likely as a result of decreasing iWUE. The results show that M. peregrina trees seem to cool their leaves and the boundary air at the cost of saving water.
Collapse
Affiliation(s)
- Emad Farahat
- Botany and Microbiology Department, Faculty of Science, Helwan University, P.O. 11790, Cairo, Egypt.
| | - Paolo Cherubini
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Holger Gärtner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
40
|
Casas C, Gundel PE, Deliens E, Iannone LJ, García Martinez G, Vignale MV, Schnyder H. Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass—Resource eco‐physiological relations. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cecilia Casas
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente Universidad de Buenos Aires Cátedra de Edafología Buenos Aires Argentina
- Facultad de Agronomía IFEVA Universidad de Buenos Aires CONICET Buenos Aires Argentina
- Lehrstuhl für Grünlandlehre Technische Universität München Freising‐Weihenstephan Germany
| | - Pedro E. Gundel
- Facultad de Agronomía IFEVA Universidad de Buenos Aires CONICET Buenos Aires Argentina
- Instituto de Ciencias Biológicas Universidad de Talca Talca Chile
| | - Eluney Deliens
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente Universidad de Buenos Aires Cátedra de Edafología Buenos Aires Argentina
| | - Leopoldo J. Iannone
- Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental Laboratorio de Micología Fitopatología y Liquenología Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Micología y Botánica (INMIBO) CONICET—Universidad de Buenos Aires Buenos Aires Argentina
| | | | - María V. Vignale
- Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental Laboratorio de Micología Fitopatología y Liquenología Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Micología y Botánica (INMIBO) CONICET—Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones (InBioMis) Universidad Nacional de Misiones e Instituto Misionero de Biodiversidad (IMiBio) Posadas Argentina
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre Technische Universität München Freising‐Weihenstephan Germany
| |
Collapse
|
41
|
Adams MA, Buckley TN, Binkley D, Neumann M, Turnbull TL. CO 2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat Commun 2021; 12:5194. [PMID: 34465788 PMCID: PMC8408268 DOI: 10.1038/s41467-021-25365-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Reduced stomatal conductance is a common plant response to rising atmospheric CO2 and increases water use efficiency (W). At the leaf-scale, W depends on water and nitrogen availability in addition to atmospheric CO2. In hydroclimate models W is a key driver of rainfall, droughts, and streamflow extremes. We used global climate data to derive Aridity Indices (AI) for forests over the period 1965-2015 and synthesised those with data for nitrogen deposition and W derived from stable isotopes in tree rings. AI and atmospheric CO2 account for most of the variance in W of trees across the globe, while cumulative nitrogen deposition has a significant effect only in regions without strong legacies of atmospheric pollution. The relation of aridity and W displays a clear discontinuity. W and AI are strongly related below a threshold value of AI ≈ 1 but are not related where AI > 1. Tree ring data emphasise that effective demarcation of water-limited from non-water-limited behaviour of stomata is critical to improving hydrological models that operate at regional to global scales.
Collapse
Affiliation(s)
- Mark A. Adams
- grid.1027.40000 0004 0409 2862Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC Australia ,grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW Australia
| | - Thomas N. Buckley
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Dan Binkley
- grid.261120.60000 0004 1936 8040School of Forestry, Northern Arizona University, Flagstaff, AZ USA
| | - Mathias Neumann
- grid.5173.00000 0001 2298 5320Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tarryn L. Turnbull
- grid.1027.40000 0004 0409 2862Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC Australia ,grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
42
|
Elferjani R, Benomar L, Momayyezi M, Tognetti R, Niinemets Ü, Soolanayakanahally RY, Théroux-Rancourt G, Tosens T, Ripullone F, Bilodeau-Gauthier S, Lamhamedi MS, Calfapietra C, Lamara M. A meta-analysis of mesophyll conductance to CO2 in relation to major abiotic stresses in poplar species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4384-4400. [PMID: 33739415 PMCID: PMC8163042 DOI: 10.1093/jxb/erab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 05/16/2023]
Abstract
Mesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model. We collected raw data of 815 A-Ci response curves from 26 datasets to estimate gm, using a single curve-fitting method to alleviate method-related bias. We performed a meta-analysis to assess the effects of different abiotic stresses on gm. We found a significant increase in gm from the bottom to the top of the canopy that was concomitant with the increase of maximum rate of carboxylation and light-saturated photosynthetic rate (Amax). gm was positively associated with increases in soil moisture and nutrient availability, but was insensitive to increasing soil copper concentration and did not vary with atmospheric CO2 concentration. Our results showed that gm was strongly related to Amax and to a lesser extent to stomatal conductance (gs). Moreover, a negative exponential relationship was obtained between gm and specific leaf area, which may be used to scale-up gm within the canopy.
Collapse
Affiliation(s)
- Raed Elferjani
- Quebec Network for Reforestation and Intensive Silviculture, TELUQ University, Montreal, QC, H2S 3L5, Canada
| | - Lahcen Benomar
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
- Correspondence:
| | - Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Roberto Tognetti
- Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Ülo Niinemets
- Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | | | - Guillaume Théroux-Rancourt
- Institute of Botany, University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
| | - Tiina Tosens
- Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | | | | | - Mohammed S Lamhamedi
- Direction de la Recherche Forestière, 2700 rue Einstein, Québec, QC, G1P 3W8, Canada
| | - Carlo Calfapietra
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, Porano (TR) 05010, Italy
| | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| |
Collapse
|
43
|
Baca Cabrera JC, Hirl RT, Schäufele R, Macdonald A, Schnyder H. Stomatal conductance limited the CO 2 response of grassland in the last century. BMC Biol 2021; 19:50. [PMID: 33757496 PMCID: PMC7989024 DOI: 10.1186/s12915-021-00988-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anthropogenic increase of atmospheric CO2 concentration (ca) is impacting carbon (C), water, and nitrogen (N) cycles in grassland and other terrestrial biomes. Plant canopy stomatal conductance is a key player in these coupled cycles: it is a physiological control of vegetation water use efficiency (the ratio of C gain by photosynthesis to water loss by transpiration), and it responds to photosynthetic activity, which is influenced by vegetation N status. It is unknown if the ca-increase and climate change over the last century have already affected canopy stomatal conductance and its links with C and N processes in grassland. RESULTS Here, we assessed two independent proxies of (growing season-integrating canopy-scale) stomatal conductance changes over the last century: trends of δ18O in cellulose (δ18Ocellulose) in archived herbage from a wide range of grassland communities on the Park Grass Experiment at Rothamsted (U.K.) and changes of the ratio of yields to the CO2 concentration gradient between the atmosphere and the leaf internal gas space (ca - ci). The two proxies correlated closely (R2 = 0.70), in agreement with the hypothesis. In addition, the sensitivity of δ18Ocellulose changes to estimated stomatal conductance changes agreed broadly with published sensitivities across a range of contemporary field and controlled environment studies, further supporting the utility of δ18Ocellulose changes for historical reconstruction of stomatal conductance changes at Park Grass. Trends of δ18Ocellulose differed strongly between plots and indicated much greater reductions of stomatal conductance in grass-rich than dicot-rich communities. Reductions of stomatal conductance were connected with reductions of yield trends, nitrogen acquisition, and nitrogen nutrition index. Although all plots were nitrogen-limited or phosphorus- and nitrogen-co-limited to different degrees, long-term reductions of stomatal conductance were largely independent of fertilizer regimes and soil pH, except for nitrogen fertilizer supply which promoted the abundance of grasses. CONCLUSIONS Our data indicate that some types of temperate grassland may have attained saturation of C sink activity more than one century ago. Increasing N fertilizer supply may not be an effective climate change mitigation strategy in many grasslands, as it promotes the expansion of grasses at the disadvantage of the more CO2 responsive forbs and N-fixing legumes.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Regina T Hirl
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Rudi Schäufele
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Andy Macdonald
- Rothamsted Research, Sustainable Agriculture Sciences Department, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Hans Schnyder
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|