1
|
Huang Q, Chen X, Zhong S, Wu S, Guo J, Wang Q, Li J, Li D, Xia Y, Zhang J, Wang X. MIKC-Type MADS-Box Gene Analysis Reveals the Role of PlSOC1 in Bud Dormancy Transition in Herbaceous Peony. PLANTS (BASEL, SWITZERLAND) 2025; 14:928. [PMID: 40265879 PMCID: PMC11945514 DOI: 10.3390/plants14060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
The MIKC-type MADS-box (MIKC) gene family is essential for controlling various plant developmental processes, including flowering time and dormancy transitions. Although the MIKC gene family has been widely studied across different plants, its characterization and functional study in herbaceous peony remain limited. In this study, 19 Paeonia lactiflora Pall. MIKC-type (PlMIKC) genes were identified from the transcriptome of a low-chilling requirement Paeonia lactiflora Pall. cultivar 'Hang Baishao'. These MIKC genes were categorized into seven clades: six were classified as MIKCC-type, including FUL/AP1, DAM, PI, AGL18, AGL12, AG, and SOC1, and one, AGL30, was classified as MIKC*-type. Notably, the FLC clade genes were absent in Paeonia lactiflora Pall. The PlMIKC genes were predominantly localized to the nucleus, and their sequences contained highly conserved MADS and K-domains. Phylogenetic analysis demonstrated that PlMIKC genes share a strong evolutionary affinity with the MIKC genes from grapevine (Vitis vinifera) and poplar (Populus trichocarpa). A low-temperature-induced bud dormancy transition (BDT) experiment revealed that PlMIKC genes, such as PlFUL and PlDAM, were highly expressed during dormancy maintenance, while PlSOC1, PlAGL12, and PlAGL30 were upregulated during BDT. Additionally, the transient overexpression of PlSOC1 in 'Hang Baishao' significantly accelerated BDT and promoted bud break, suggesting that SOC1, traditionally linked to flowering regulation, also plays a key role in dormancy transition. Since limited literature on the MIKC gene family is currently available in herbaceous peony, this study expands the knowledge of the MIKC genes in Paeonia lactiflora Pall. and offers valuable insights into the molecular regulation of bud dormancy in response to low temperatures.
Collapse
Affiliation(s)
- Qiaoyu Huang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Xiaoxuan Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Shuyun Zhong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Shuangzhe Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Junhong Guo
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Qiyao Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Jiahe Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Danqing Li
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Yiping Xia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Jiaping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (Y.X.)
| | - Xiaobin Wang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
2
|
Zheng J, He Y, Wang F, Zheng R, Wu J, Hänninen H, Zhang R. Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming. TREE PHYSIOLOGY 2024; 44:tpae124. [PMID: 39331733 DOI: 10.1093/treephys/tpae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.
Collapse
Affiliation(s)
- Jinbin Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Fucheng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rujing Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
3
|
Zhang W, Liao L, Wan B, Han Y. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:70. [PMID: 39391168 PMCID: PMC11461438 DOI: 10.1007/s11032-024-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Bud endodormancy in deciduous fruit trees is an adaptive trait evolved by selection for the capacity to survive unfavorable environmental conditions. Deciduous trees require a certain amount of winter chill named chilling requirement (CR) to promote bud endodormancy release. In recent decades, global warming has endangered the chill accumulation in deciduous fruit trees. Developing low-CR cultivars is a practical way to neutralize the effect of climate changes on the cultivation and distribution of deciduous fruit trees. In this review, we focus on the effect of chilling accumulation on bud endodormancy release and the genetic mechanisms underlying the chilling requirement in deciduous fruit trees. Additionally, we put forth a regulatory model for bud endodormancy and provide prospective directions for future research in deciduous fruit trees.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Baoxiong Wan
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004 Guangxi China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
4
|
Bas TG, Sáez ML, Sáez N. Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1231. [PMID: 38732447 PMCID: PMC11085170 DOI: 10.3390/plants13091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
This research reviews the phenomenon of extractive deforestation as a possible trigger for cascade reactions that could affect part of the forest ecosystem and its biodiversity (surface, aerial, and underground) in tropical, subtropical, and boreal forests. The controversy and disparities in criteria generated in the international scientific community around the hypothesis of a possible link between "mother trees" and mycorrhizal networks in coopetition for nutrients, nitrogen, and carbon are analyzed. The objective is to promote awareness to generate more scientific knowledge about the eventual impacts of forest extraction. Public policies are emphasized as crucial mediators for balanced sustainable development. Currently, the effects of extractive deforestation on forest ecosystems are poorly understood, which requires caution and forest protection. Continued research to increase our knowledge in molecular biology is advocated to understand the adaptation of biological organisms to the new conditions of the ecosystem both in the face of extractive deforestation and reforestation. The environmental impacts of extractive deforestation, such as the loss of biodiversity, soil degradation, altered water cycles, and the contribution of climate change, remain largely unknown. Long-term and high-quality research is essential to ensure forest sustainability and the preservation of biodiversity for future generations.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - Mario Luis Sáez
- Facultad de Humanidades, La Serena University, Coquimbo 1700000, Chile;
| | - Nicolas Sáez
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| |
Collapse
|
5
|
Cheng DX, Wang XH, Wang CL, Li XY, Ye ZL, Li WF. Cambium Reactivation Is Closely Related to the Cell-Cycle Gene Configuration in Larix kaempferi. Int J Mol Sci 2024; 25:3578. [PMID: 38612390 PMCID: PMC11011626 DOI: 10.3390/ijms25073578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Dormancy release and reactivation in temperate trees are mainly controlled by temperature and are affected by age, but the underlying molecular mechanisms are still unclear. In this study, we explored the effects of low temperatures in winter and warm temperatures in spring on dormancy release and reactivation in Larix kaempferi. Further, we established the relationships between cell-cycle genes and cambium cell division. The results showed that chilling accelerated L. kaempferi bud break overall, and the longer the duration of chilling is, the shorter the bud break time is. After dormancy release, warm temperatures induced cell-cycle gene expression; when the configuration value of the cell-cycle genes reached 4.97, the cambium cells divided and L. kaempferi reactivated. This study helps to predict the impact of climate change on wood production and provides technical support for seedling cultivation in greenhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (D.-X.C.); (X.-H.W.); (C.-L.W.); (X.-Y.L.); (Z.-L.Y.)
| |
Collapse
|
6
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
7
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
8
|
Kinmonth-Schultz H, Sønstebø JH, Croneberger AJ, Johnsen SS, Leder E, Lewandowska-Sabat A, Imaizumi T, Rognli OA, Vinje H, Ward JK, Fjellheim S. Responsiveness to long days for flowering is reduced in Arabidopsis by yearly variation in growing season temperatures. PLANT, CELL & ENVIRONMENT 2023; 46:3337-3352. [PMID: 37249162 PMCID: PMC12009757 DOI: 10.1111/pce.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway. We used a variable reduction strategy to assess which of 100 climate descriptors from their home sites correlated most to their flowering behaviours when tested for responsiveness to photoperiod after saturation of vernalization; then, assessed sequence variation of 19 known environmental-response flowering genes. Photoperiod responsiveness inversely correlated with interannual variation in timing of growing season onset. Time to flowering appeared driven by growing season length, curtailed by cold fall temperatures. The distribution of FLM, TFL2 and HOS1 haplotypes, genes involved in ambient temperature response, correlated with growing-season climate. We show that long-day responsiveness and late flowering may be driven not by risk of spring frosts, but by growing season temperature and length, perhaps to opportunistically maximize growth.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- University of Kansas, Ecology and Evolutionary Biology Department (cur. Tennessee Technological University)
| | - Jørn H. Sønstebø
- University of South-Eastern Norway, Faculty of Technology, Natural Sciences and Maritime Sciences
| | | | | | - Erica Leder
- University of Gothenburg, Tjärnö Marine Laboratory
- Natural History Museum, University of Oslo
| | | | | | | | - Hilde Vinje
- Norwegian University of Life Sciences
- Faculty of Chemistry, Biotechnology and Food Science
| | - Joy K. Ward
- Case Western Reserve, College of Arts and Science
| | - Siri Fjellheim
- Norwegian University of Life Sciences
- Faculty of Biosciences
| |
Collapse
|
9
|
Zhao YL, Li Y, Cao K, Yao JL, Bie HL, Khan IA, Fang WC, Chen CW, Wang XW, Wu JL, Guo WW, Wang LR. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. PLANT PHYSIOLOGY 2023; 193:448-465. [PMID: 37217835 PMCID: PMC10469376 DOI: 10.1093/plphys/kiad291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.
Collapse
Affiliation(s)
- Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wen-Wu Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
10
|
Song GQ, Carter BB, Zhong GY. Multiple transcriptome comparisons reveal the essential roles of FLOWERING LOCUS T in floral initiation and SOC1 and SVP in floral activation in blueberry. Front Genet 2023; 14:1105519. [PMID: 37091803 PMCID: PMC10113452 DOI: 10.3389/fgene.2023.1105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The flowering mechanisms, especially chilling requirement-regulated flowering, in deciduous woody crops remain to be elucidated. Flower buds of northern highbush blueberry cultivar Aurora require approximately 1,000 chilling hours to bloom. Overexpression of a blueberry FLOWERING LOCUS T (VcFT) enabled precocious flowering of transgenic “Aurora” mainly in non-terminated apical buds during flower bud formation, meanwhile, most of the mature flower buds could not break until they received enough chilling hours. In this study, we highlighted two groups of differentially expressed genes (DEGs) in flower buds caused by VcFT overexpression (VcFT-OX) and full chilling. We compared the two groups of DEGs with a focus on flowering pathway genes. We found: 1) In non-chilled flower buds, VcFT-OX drove a high VcFT expression and repressed expression of a major MADS-box gene, blueberry SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (VcSOC1) resulting an increased VcFT/VcSOC1 expression ratio; 2) In fully chilled flower buds that are ready to break, the chilling upregulated VcSOC1 expression in non-transgenic “Aurora” and repressed VcFT expression in VcFT-OX “Aurora”, and each resulted in a decreased ratio of VcFT to VcSOC1; additionally, expression of a blueberry SHORT VEGETATIVE PHASE (VcSVP) was upregulated in chilled flower buds of both transgenic and non-transgenic’ “Aurora”. Together with additional analysis of VcFT and VcSOC1 in the transcriptome data of other genotypes and tissues, we provide evidence to support that VcFT expression plays a significant role in promoting floral initiation and that VcSOC1 expression is a key floral activator. We thus propose a new hypothesis on blueberry flowering mechanism, of which the ratios of VcFT-to-VcSOC1 at transcript levels in the flowering pathways determine flower bud formation and bud breaking. Generally, an increased VcFT/VcSOC1 ratio or increased VcSOC1 in leaf promotes precocious flowering and flower bud formation, and a decreased VcFT/VcSOC1 ratio with increased VcSOC1 in fully chilled flower buds contributes to flower bud breaking.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Guo-qing Song,
| | - Benjamin B. Carter
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY, United States
| |
Collapse
|
11
|
Li J, Guan J, Han W, Tian R, Lu B, Yu D, Zheng J. Important role of precipitation in controlling a more uniform spring phenology in the Qinba Mountains, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1074405. [PMID: 36844100 PMCID: PMC9945530 DOI: 10.3389/fpls.2023.1074405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Under global warming, the gradual pattern of spring phenology along elevation gradients (EG) has significantly changed. However, current knowledge on the phenomenon of a more uniform spring phenology is mainly focused on the effect of temperature and neglected precipitation. This study aimed to determine whether a more uniform spring phenology occurs along EG in the Qinba Mountains (QB) and explore the effect of precipitation on this pattern. We used Savitzky-Golay (S-G) filtering to extract the start of season (SOS) of the forest from the MODIS Enhanced Vegetation Index (EVI) during 2001-2018 and determined the main drivers of the SOS patterns along EG by partial correlation analyses. The SOS showed a more uniform trend along EG in the QB with a rate of 0.26 ± 0.01 days 100 m-1 per decade during 2001-2018, but there were differences around 2011. A delayed SOS at low elevations was possibly due to the reduced spring precipitation (SP) and spring temperature (ST) between 2001 and 2011. Additionally, an advanced SOS at high elevations may have been caused by the increased SP and reduced winter temperature (WT). These divergent trends contributed to a significant uniform trend of SOS with a rate of 0.85 ± 0.02 days 100 m-1 per decade. Since 2011, significantly higher SP (especially at low elevations) and rising ST advanced the SOS, and the SOS at lower altitudes was more advanced than at higher altitudes, resulting in greater SOS differences along EG (0.54 ± 0.02 days 100 m-1 per decade). The SP determined the direction of the uniform trend in SOS by controlling the SOS patterns at low elevations. A more uniform SOS may have important effects on local ecosystem stability. Our findings could provide a theoretical basis for establishing ecological restoration measures in areas experiencing similar trends.
Collapse
Affiliation(s)
- Jianhao Li
- College of Geography and Remote sensing Sciences, Institute of Arid Ecology and Environment, Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Jingyun Guan
- College of Geography and Remote sensing Sciences, Institute of Arid Ecology and Environment, Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- College of Tourism, Xinjiang University of Finance & Economics, Urumqi, China
| | - Wangqiang Han
- College of Geography and Remote sensing Sciences, Institute of Arid Ecology and Environment, Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Ruikang Tian
- College of Geography and Remote sensing Sciences, Institute of Arid Ecology and Environment, Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Binbin Lu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Danlin Yu
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, United States
| | - Jianghua Zheng
- College of Geography and Remote sensing Sciences, Institute of Arid Ecology and Environment, Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| |
Collapse
|
12
|
Zhai DL, Xu JC. The legacy effects of rubber defoliation period on the refoliation phenology, leaf disease, and latex yield. PLANT DIVERSITY 2023; 45:98-103. [PMID: 36876313 PMCID: PMC9975472 DOI: 10.1016/j.pld.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 06/17/2023]
Abstract
The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances, ecosystem, and species distribution. However, current studies on leaf phenology have mainly focused on temperate trees, while few studies including tropical trees. Little attention has been paid to globally extensive industrial plantations. Rubber plantations are important to both the local and global economies. In this study, we investigated the legacy effects of defoliation phenology on the following year's leaf flushing, leaf disease, and also latex yield of rubber trees, an economically important tree to local people and the world. Results show that extended duration of defoliation increased the subsequent duration of refoliation and rates of infection by powdery mildew disease, but led to reduced latex yield in March. This legacy effect of rubber defoliation may relate to the carbohydrate reserved in the trees. A longer duration of defoliation would consume more reserved carbohydrates, reducing available reserves for disease defense and latex production. Extended duration of defoliation period was associated with either a lower temperature before the cessation of latex tapping in October-November and/or a higher temperature after the cessation of latex tapping in December-January. Leaf falling signals the end of photosynthetic activities in deciduous trees. Thus, the leaf falling phenology will impact ecological processes involving rubber trees. Our findings indicated that the inclusion of defoliation periods in future rubber trees' research, will be crucial to furthering our understanding of leaf flushing, powdery mildew disease, and latex yield.
Collapse
Affiliation(s)
- De-Li Zhai
- Center for Mountain Futures, Kunming Institute of Botany, Kunming 650201, Yunnan, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Jian-Chu Xu
- Center for Mountain Futures, Kunming Institute of Botany, Kunming 650201, Yunnan, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry (ICRAF), Kunming 650201, Yunnan, China
| |
Collapse
|
13
|
Xu T, Zhang J, Shao L, Wang X, Zhang R, Ji C, Xia Y, Zhang L, Zhang J, Li D. Later Growth Cessation and Increased Freezing Tolerance Potentially Result in Later Dormancy in Evergreen Iris Compared with Deciduous Iris. Int J Mol Sci 2022; 23:ijms231911123. [PMID: 36232426 PMCID: PMC9569662 DOI: 10.3390/ijms231911123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Winter dormancy is a protective survival strategy for plants to resist harsh natural environments. In the context of global warming, the progression of dormancy has been significantly affected in perennials, which requires further research. Here, a systematic study was performed to compare the induction of dormancy in two closely related iris species with an ecodormancy-only process, the evergreen Iris japonica Thunb. and the deciduous Iris tectorum Maxim. under artificial conditions. Firstly, morphological and physiological observations were evaluated to ensure the developmental status of the two iris species. Furthermore, the expression patterns of the genes involved in key pathways related to plant winter dormancy were determined, and correlation analyses with dormancy marker genes were conducted. We found that deciduous iris entered dormancy earlier than evergreen iris under artificial dormancy induction conditions. Phytohormones and carbohydrates play roles in coordinating growth and stress responses during dormancy induction in both iris species. Moreover, dormancy-related MADS-box genes and SnRKs (Snf1-related protein kinase) might represent a bridge between carbohydrate and phytohormone interaction during iris dormancy. These findings provide a hypothetical model explaining the later dormancy in evergreen iris compared with deciduous iris under artificial dormancy induction conditions and reveal some candidate genes. The findings of this study could provide new insights into the research of dormancy in perennial plants with an ecodormancy-only process and contribute to effectively managing iris production, postharvest storage, and shipping.
Collapse
Affiliation(s)
- Tong Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Zhang
- Department of Environmental Science and Landscape Architecture, Graduate School of Horticulture, Chiba University, Chiba 271-0092, Japan
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Runlong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Ji
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.Z.); (D.L.)
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.Z.); (D.L.)
| |
Collapse
|
14
|
Hussain Q, Zheng M, Chang W, Ashraf MF, Khan R, Asim M, Riaz MW, Alwahibi MS, Elshikh MS, Zhang R, Wu J. Genome-Wide Identification and Expression Analysis of SnRK2 Gene Family in Dormant Vegetative Buds of Liriodendron chinense in Response to Abscisic Acid, Chilling, and Photoperiod. Genes (Basel) 2022; 13:genes13081305. [PMID: 35893042 PMCID: PMC9331246 DOI: 10.3390/genes13081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Protein kinases play an essential role in plants’ responses to environmental stress signals. SnRK2 (sucrose non-fermenting 1-related protein kinase 2) is a plant-specific protein kinase that plays a crucial role in abscisic acid and abiotic stress responses in some model plant species. In apple, corn, rice, pepper, grapevine, Arabidopsis thaliana, potato, and tomato, a genome-wide study of the SnRK2 protein family was performed earlier. The genome-wide comprehensive investigation was first revealed to categorize the SnRK2 genes in the Liriodendron chinense (L. chinense). The five SnRK2 genes found in the L. chinense genome were highlighted in this study. The structural gene variants, 3D structure, chromosomal distributions, motif analysis, phylogeny, subcellular localization, cis-regulatory elements, expression profiles in dormant buds, and photoperiod and chilling responses were all investigated in this research. The five SnRK2 genes from L. chinense were grouped into groups (I–IV) based on phylogeny analysis, with three being closely related to other species. Five hormones-, six stress-, two growths and biological process-, and two metabolic-related responsive elements were discovered by studying the cis-elements in the promoters. According to the expression analyses, all five genes were up- and down-regulated in response to abscisic acid (ABA), photoperiod, chilling, and chilling, as well as photoperiod treatments. Our findings gave insight into the SnRK2 family genes in L. chinense and opened up new study options.
Collapse
Affiliation(s)
- Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Manjia Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Wenwen Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Muhammad Furqan Ashraf
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, 9009 Tromsø, Norway;
| | - Rayyan Khan
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (R.K.); (M.A.)
| | - Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (R.K.); (M.A.)
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (M.S.E.)
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (M.S.E.)
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
15
|
Velappan Y, Chabikwa TG, Considine JA, Agudelo-Romero P, Foyer CH, Signorelli S, Considine MJ. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2061-2076. [PMID: 35022731 PMCID: PMC8982382 DOI: 10.1093/jxb/erac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/10/2022] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.
Collapse
Affiliation(s)
- Yazhini Velappan
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Tinashe G Chabikwa
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John A Considine
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
16
|
Satake A, Nagahama A, Sasaki E. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. THE NEW PHYTOLOGIST 2022; 233:2340-2353. [PMID: 34862973 DOI: 10.1111/nph.17897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Plants have evolved to time their leafing, flowering and fruiting in appropriate seasons for growth, reproduction and resting. As a consequence of their adaptation to geographically different environments, there is a rich diversity in plant phenology from temperate and tropical climates. Recent progress in genetic and molecular studies will provide numerous opportunities to study the genetic basis of phenological traits and the history of adaptation of phenological traits to seasonal and aseasonal environments. Integrating molecular data with long-term phenology and climate data into predictive models will be a powerful tool to forecast future phenological changes in the face of global environmental change. Here, we review the cross-scale approach from genes to plant communities from three aspects: the latitudinal gradient of plant phenology at the community level, the environmental and genetic factors underlying the diversity of plant phenology, and an integrated approach to forecast future plant phenology based on genetically informed knowledge. Synthesizing the latest knowledge about plant phenology from molecular, ecological and mathematical perspectives will help us understand how natural selection can lead to the further evolution of the gene regulatory mechanisms in phenological traits in future forest ecosystems.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ai Nagahama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
17
|
Zheng J, Hänninen H, Lin J, Shen S, Zhang R. Extending the Cultivation Area of Pecan ( Carya illinoinensis) Toward the South in Southeastern Subtropical China May Cause Increased Cold Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:768963. [PMID: 34917105 PMCID: PMC8669331 DOI: 10.3389/fpls.2021.768963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 05/05/2023]
Abstract
Pecan (Carya illinoinensis) is an important nut tree species in its native areas in temperate and subtropical North America, and as an introduced crop in subtropical southeastern China as well. We used process-based modeling to assess the effects of climatic warming in southeastern China on the leaf-out phenology of pecan seedlings and the subsequent risk of "false springs," i.e., damage caused by low temperatures occurring as a result of prematurely leafing out. In order to maximize the biological realism of the model used in scenario simulations, we developed the model on the basis of experiments explicitly designed for determining the responses modeled. The model showed reasonable internal accuracy when calibrated against leaf-out observations in a whole-tree chamber (WTC) experiment with nine different natural-like fluctuating temperature treatments. The model was used to project the timing of leaf-out in the period 2022-2099 under the warming scenarios RCP4.5 and RCP8.5 in southeastern China. Two locations in the main pecan cultivation area in the northern subtropical zone and one location south of the main cultivation area were addressed. Generally, an advancing trend of leaf-out was projected for all the three locations under both warming scenarios, but in the southern location, a delay was projected under RCP8.5 in many years during the first decades of the 21st century. In the two northern locations, cold damage caused by false springs was projected to occur once in 15-26 years at most, suggesting that pecan cultivation can be continued relatively safely in these two locations. Paradoxically, more frequent cold damage was projected for the southern location than for the two northern locations. The results for the southern location also differed from those for the northern locations in that more frequent cold damage was projected under the RCP4.5 warming scenario (once in 6 years) than under the RCP8.5 scenario (once in 11 years) in the southern location. Due to the uncertainties of the model applied, our conclusions need to be re-examined in an additional experimental study and further model development based on it; but on the basis of our present results, we do not recommend starting large-scale pecan cultivation in locations south of the present main pecan cultivation area in southeastern subtropical China.
Collapse
Affiliation(s)
- Jinbin Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- SFGA Research Center for Torreya Grandis, Zhejiang A&F University, Hangzhou, China
| | - Jianhong Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Sitian Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- SFGA Research Center for Torreya Grandis, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Rui Zhang,
| |
Collapse
|
18
|
Wang X, Zhang R, Huang Q, Shi X, Li D, Shao L, Xu T, Horvath DP, Xia Y, Zhang J. Comparative Study on Physiological Responses and Gene Expression of Bud Endodormancy Release Between Two Herbaceous Peony Cultivars ( Paeonia lactiflora Pall.) With Contrasting Chilling Requirements. FRONTIERS IN PLANT SCIENCE 2021; 12:772285. [PMID: 35185946 PMCID: PMC8847303 DOI: 10.3389/fpls.2021.772285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 05/10/2023]
Abstract
With the global temperature increase, diverse endogenous factors and environmental cues can lead to severe obstacles to bud endodormancy release for important economic plants, such as herbaceous peony (Paeonia lactiflora Pall.). Knowing the underlying mechanism in bud endodormancy release is vital for widely planting herbaceous peony at low latitudes with warm winter climates. A systematic study was carried out between the southern Chinese cultivar 'Hang Baishao' with low-chilling requirement (CR) trait and the northern cultivar 'Zhuguang' with high-CR trait. Peony buds were sampled at regular intervals under natural cold during the crucial bud endodormancy release stage. Physiology and morphology of the buds were observed, and the roles of reactive oxygen species (ROS) and relevant genes in the regulation of bud endodormancy release were also highlighted, which has been rather rare in previous bud dormancy studies of both herbaceous and tree peonies. The expression of the starch metabolism- and sucrose synthesis-related genes PlAMY PlSPS and PlSUS was lower in the high-CR 'Zhuguang' and corresponded to a lower content of soluble sugars. The expression of polyamine oxidase gene PlPAO2 correlated with a higher level of hydrogen peroxide (H2O2) in high-CR 'Zhuguang' than in low CR 'Hang Baishao' during bud endodormancy. Expression of PlMAPKKK5, an intermediate gene in the abscisic acid (ABA) response to ROS signaling, correlated with ROS levels and ABA content. We present the hypothesis that accumulation of ROS increases ABA content and decreases GA3 content and signal transduction leading to reduced expression of PlSVP and PlSOC1. Reduced cell division and increased cellular damage which probably blocked bud endodormancy release were also observed in high-CR 'Zhuguang' through histological observation and related genes expression. This study provides a comparative analysis on physiological responses and gene expression patterns of bud dormancy of geophytes in an increasingly unsuitable environment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Runlong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiaoyu Huang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaohua Shi
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tong Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David P. Horvath
- Agricultural Research Service, United States Department of Agriculture, Washington, DC, United States
- *Correspondence: David P. Horvath,
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Yiping Xia,
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Jiaping Zhang,
| |
Collapse
|