1
|
Zhao LB, Tang ZX, Zhai HF, Lai HY, Li HY, Liu S, Liao XD, Xing SC. Organic fertilizer mitigated the oxidative stress of tomato induced by nanoplastics through affecting rhizosphere soil microorganisms and bacteriophage functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138301. [PMID: 40245718 DOI: 10.1016/j.jhazmat.2025.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Nanoplastics (NPs), which are widely present in agricultural soils, are difficult to remove and are potentially harmful to plant growth and development. However, few studies have focused on how to mitigation the oxidative stress in plants induced by soil NPs exposure. Therefore, in this study, the effects of organic and chemical fertilizers on the oxidative stress of tomato under exposure to polystyrene nanoplastics (PS-NPs) in soil were investigated. Compared with chemical fertilizer under exposure to PS-NPs, the organic fertilizer reduced the reactive oxygen species (ROS) content by 25.63 % and the H2O2 content by 34.58 % in tomato stems, whereas no significant effects were observed with respect to the amount of PS-NP internalized in tomato. Additionally, organic fertilizer increased the accumulation of the phytohormones salicylic acid (SA) and abscisic acid (ABA) by 76.53 % and 22.54 %, respectively, and these factors are key for reducing the ROS and H2O2 contents in stems. In the rhizosphere microbiome of organic fertilizer group under exposure to PS-NPs, enrichment in Actinomycetes and an increased abundance of terpenoids and polyketides metabolism were the main factors affecting the accumulation of ABA and SA. Moreover, bacteriophage activity in the rhizosphere indirectly contributed to the increase in this function. These changes ultimately resulted in a reduction in oxidative stress in tomato stems and protected tomato growth. The results of this study will provide a better understanding of the interaction between plants and nanoplastics in soil and provide a new reference for alleviating the oxidative stress caused by nanoplastics in plants.
Collapse
Affiliation(s)
- Liang-Bin Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zi-Xuan Tang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Fang Zhai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yu Lai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Zhao Q, Ali Q, Yuan W, Zhang G, Li H, Zhou L, Yao H, Chong J, Gu Q, Wu H, Gao X. Role of iturin from Bacillus velezensis DMW1 in suppressing growth and pathogenicity of Plectosphaerella cucumerina in tomato by reshaping the rhizosphere microbial communities. Microbiol Res 2025; 296:128150. [PMID: 40132485 DOI: 10.1016/j.micres.2025.128150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Plant-associated microbiomes play a crucial role in suppressing plant and soil pathogens. However, the mechanisms by which pathogen invasion influences the interaction between bacteria and fungi remain unknown and warrant further investigation. In this study, Bacillus spp. was found to be more abundant in diseased rhizosphere in the presence of the soil-borne fungus Plectosphaerella cucumerina. Most of the isolated Bacillus spp. exhibited a robust ability to balance reactive oxygen species (ROS) and demonstrated broad-spectrum antagonistic activity against P. cucumerina, Phytophthora capsica, Fusarium oxysporum, and Ralstonia solanacearum. The secondary metabolite iturin was identified as the key antifungal compound produced by the representative strain Bacillus velezensis DMW1, which effectively inhibits fungal growth and disrupts cell structures. Transcriptome analysis revealed that fungi treated with iturin (28.67 µg/mL) exhibited 4995 differentially expressed genes (DEGs), including 2611 upregulated genes and 2384 downregulated genes, compared to the control group. Furthermore, the application of DMW1 and return-deficient mutant (Δitu) significantly altered microbial diversity and enriched beneficial microorganisms in the rhizosphere soil. The overall findings highlight the potential of DMW1 as a promising biological agent for controlling soil-borne diseases. Its strong antimicrobial properties, ability to colonize host plants effectively, and capacity to reshape the soil microbiota make it a valuable resource for enhancing microbial ecosystems and providing long-term benefits to plants.
Collapse
Affiliation(s)
- Qian Zhao
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Weiwei Yuan
- Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Gege Zhang
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Hui Li
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Longteng Zhou
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Hemin Yao
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Junjun Chong
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China.
| |
Collapse
|
3
|
Chen P, Yu Q, Wang C, Montoya L, West PT, Xu L, Varoquaux N, Cole B, Hixson KK, Kim YM, Liu L, Zhang B, Zhang J, Li B, Purdom E, Vogel J, Jansson C, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW, Gao C. Holo-omics disentangle drought response and biotic interactions among plant, endophyte and pathogen. THE NEW PHYTOLOGIST 2025; 246:2702-2717. [PMID: 40247824 DOI: 10.1111/nph.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Holo-omics provide a novel opportunity to study the interactions among fungi from different functional guilds in host plants in field conditions. We address the entangled responses of plant pathogenic and endophytic fungi associated with sorghum when droughted through the assembly of the most abundant fungal, endophyte genome from rhizospheric metagenomic sequences followed by a comparison of its metatranscriptome with the host plant metabolome and transcriptome. The rise in relative abundance of endophytic Acremonium persicinum (operational taxonomic unit 5 (OTU5)) in drought co-occurs with a rise in fungal membrane dynamics and plant metabolites, led by ethanolamine, a key phospholipid membrane component. The negative association between endophytic A. persicinum (OTU5) and plant pathogenic fungi co-occurs with a rise in expression of the endophyte's biosynthetic gene clusters coding for secondary compounds. Endophytic A. persicinum (OTU5) and plant pathogenic fungi are negatively associated under preflowering drought but not under postflowering drought, likely a consequence of variation in fungal fitness responses to changes in the availability of water and niche space caused by plant maturation over the growing season. Our findings suggest that the dynamic biotic interactions among host, beneficial and harmful microbiota in a changing environment can be disentangled by a blending of field observation, laboratory validation, holo-omics and ecological modelling.
Collapse
Affiliation(s)
- Peilin Chen
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyi Yu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Patrick T West
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ling Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100049, China
| | - Nelle Varoquaux
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Benjamin Cole
- Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Kim K Hixson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ling Liu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baodan Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baiyang Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - John Vogel
- Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Christer Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Robert B Hutmacher
- UC Davis Department of Plant Sciences, University of California West Side Research & Extension Center, Five Points, CA, 93624, USA
| | - Jeffery A Dahlberg
- University of California Kearney Agricultural Research & Extension Center, Parlier, CA, 93648, USA
| | - Devin Coleman-Derr
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, 94710, USA
| | - Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Cheng Gao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Ma Y, Zuohereguli K, Zhang L, Kang Y, Shi L, Xu H, Ruan Y, Wen T, Mei X, Dong C, Xu Y, Shen Q. Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers. PLANT, CELL & ENVIRONMENT 2025; 48:3968-3980. [PMID: 39871496 DOI: 10.1111/pce.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms. The SQR9 and T4742 treatments increased the total biomass of pear trees by 68% and 84%, respectively, compared to the conventional organic fertilizer treatment (CK). SQR9 tends to increase soil organic matter and available phosphorus, while T4742 more effectively enhances nitrogen, potassium, iron and zinc levels. These effects were primarily linked to changes in the microbial community. T4742 treatment enriched twice as many differential microbes as SQR9. SQR9 significantly enriched Urebacillus, Streptomyces and Mycobacterium, while T4742 increased the abundance of Pseudomonas, Aspergillus and Penicillium. In vitro experiments revealed that secondary metabolites secreted by B. velezensis SQR9 and T. harzianum NJAU4742 stimulate the growth of key probiotics associated with their respective treatments, enhancing soil fertility and plant biomass. The study revealed the specific roles of these bioorganic fertilizers in agricultural applications, providing new insights for developing effective and targeted bioorganic fertilizer products and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Yanwei Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Kuerban Zuohereguli
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Lisheng Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yalong Kang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Liwen Shi
- Beijing Jiagetiandi Tech. Co. Ltd., Beijing, China
| | - Hao Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinlan Mei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Caixia Dong
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Sun X, Xu Z, Zhang N, Miao Y, Zhang C, Ma X, Shen Q, Zhang R. Biofertilizer Industry and Research Developments in China: A Mini-Review. Microb Biotechnol 2025; 18:e70163. [PMID: 40411486 PMCID: PMC12103079 DOI: 10.1111/1751-7915.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/26/2025] Open
Abstract
Reliance on chemical fertilizers has significantly boosted food production in China, but it has also led to soil degradation, environmental pollution, and greenhouse gas emissions. To address these pressing issues, the Chinese government has launched various initiatives to reduce chemical fertilizer consumption and promote biofertilizers as effective alternatives to enhance soil fertility and mitigate environmental pollution. Biofertilizers promote crop growth by providing or activating essential nutrients, suppressing plant pathogens, improving soil health, and increasing resilience to abiotic stresses. The growing adoption of biofertilizers in China is reflected in the registration of more than 10,000 products, an annual production exceeding 35 million tons, and a market value of over US$5.5 billion, indicating a significant shift towards sustainable agricultural practices. Despite this progress, challenges such as the dominance of nitrogen fertilizers, inconsistent product performance, and the need for cultivar-specific microbial inoculants remain. Foundational research on the microbial genera utilised in biofertilizers, including nitrogen-fixing genera Rhizobium, Paenibacillus, and Pseudomonas, the widely used genus, Bacillus and Trichoderma, as well as multipurpose synthetic communities, is essential for overcoming these obstacles and enhancing the efficacy of biofertilizers. This review delves into the historical development of the biofertilizer industry and recent advancements in fundamental research on biofertilizers in China, highlighting the essential role of biofertilizers in promoting green agricultural development.
Collapse
Affiliation(s)
- Xinli Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Chao Zhang
- Shandong Jinyimeng Shengtai Feiye CO. LTDLinsuChina
| | - Xiaoli Ma
- Shandong Jinyimeng Shengtai Feiye CO. LTDLinsuChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
6
|
Singh BK, Jiang G, Wei Z, Sáez-Sandino T, Gao M, Liu H, Xiong C. Plant pathogens, microbiomes, and soil health. Trends Microbiol 2025:S0966-842X(25)00109-X. [PMID: 40274492 DOI: 10.1016/j.tim.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Healthy soil is vital for ecosystem sustainability and global food security. However, anthropogenic activities that promote intensive agriculture, landscape and biodiversity homogenization, and climate change disrupt soil health. The soil microbiome is a critical component of healthy soils, and increasing evidence suggests that soils with low diversity or homogenized microbial systems are more susceptible to soil pathogen invasion, but the extent and mechanisms that increase the threat of pathogen invasion (i.e., increase in prevalence of existing species and introduction of new species) remain unclear. This article aims to fill this knowledge gap by synthesizing the literature and providing novel insights for the scientific community and policy advisors. We also present the current and future global distribution of some dominant soil-borne pathogens. We argue that an improved understanding of the interplay between the soil microbiome, soil health, host, and pathogen distribution, and their responses to environmental changes is urgently needed to ensure the future of productive farms, safe food, sustainable environments, and holistic global well-being.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Min Gao
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hongwei Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
7
|
Qiu D, Ke M, Xu N, Hu H, Zhu Y, Lu T, Jin M, Zhang Z, Zhang Q, Penuelas J, Gillings M, Qian H. Continuous Rice Cultivation Increases Celery Yield by Enhancing Plant Beneficial Bacteria in Rice-Celery Rotations. Environ Microbiol 2025; 27:e70085. [PMID: 40151905 DOI: 10.1111/1462-2920.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
The sustainable management of crops is a fundamental challenge as the human population and demand for food increase. Crop rotation, a practice that has been used for centuries, offers a sustainable solution with minimal environmental impact. However, our understanding of how microbial diversity changes during rotation and how microbially mediated functions enhance plant production remains limited. In our study, we combined field surveys of rice-celery rotations with greenhouse experiments. We found that crop rotation increased yield by increasing the presence of plant-beneficial bacteria, including a novel strain named Acinetobacter bohemicus HfQ1. Bacteria that promote plant growth are enriched under crop rotation, leading to increased ammonia oxidation, siderophore production and indole-3-acetic acid synthesis. These beneficial ecological consequences of crop rotation were consistent across various crops during our metadata analysis. Our study provides new insights into the development of innovative crop rotation models and effective strategies to safeguard food production and advance sustainable agriculture. Additionally, the Acinetobacter strain may serve as a potential microbial agent to replace chemical fertilisers, further supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Nuohan Xu
- Institute for Advanced Study, Shaoxing University, Shaoxing, People's Republic of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, People's Republic of China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuke Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - MingKang Jin
- Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qi Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing, People's Republic of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, People's Republic of China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, New South Wales, Australia
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Institute for Advanced Study, Shaoxing University, Shaoxing, People's Republic of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
8
|
Chen X, Zheng Z, Zhang N, Yu H, Wu Y, Shi F. Incidence and Severity Distribution of Sweet Cherry ( Prunus avium) and Their Influencing Factors in Southwest China. PLANT DISEASE 2025; 109:816-824. [PMID: 40139982 DOI: 10.1094/pdis-08-24-1727-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Root rot disease is a significant constraint to sweet cherry production in the highlands of southwest China, causing substantial yield losses. While the disease is prevalent, the complex interplay of climate, topography, soil, and management practices on its development remains poorly understood. To address this knowledge gap, a field survey encompassing 95 field sites was conducted to assess disease incidence (DI) and canopy damage index (CDI). Our results showed that the average DI and CDI were 27.04 and 20.52%, respectively. DI and CDI were influenced by management practices: they both increased with the number of planting years and were lower with Cerasus szechuanica rootstock and composted animal manures compared with Da-qingye rootstock and uncomposted animal manures. Climatic and topographic factors also played an important role in observing higher DI at higher altitudes and shady slopes (P < 0.05). Moreover, both DI and CDI demonstrated positive correlations with the aridity index and sunshine duration and negative correlations with mean annual temperature and mean annual precipitation (P < 0.05). Soil properties, including moisture content, bulk density, pH, and sand content, were positively associated with DI and CDI, while clay content and available potassium exhibited negative correlation. The present study emphasizes the combined impact of multiple factors on root rot disease in sweet cherry, with management practices and soil properties having a more decisive effect than climate and topography. These findings provide crucial insights for developing effective disease management strategies.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Nannan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Hongdou Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Yan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| | - Fusun Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Mao County 623200, China
| |
Collapse
|
9
|
Hou J, Yin H, Wang D, Luo J, Yang W, Kang T. The influence of rhizosphere soil microorganisms and environmental factors on gentiopicroside content in the roots and rhizomes of Gentiana scabra Bunge from Liaoning Province. Front Microbiol 2025; 16:1554981. [PMID: 40182295 PMCID: PMC11966429 DOI: 10.3389/fmicb.2025.1554981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Background Rhizosphere soil microorganisms, as the second genome of plants, play an important role in the formation of secondary metabolites of medicinal plants and are one of the key factors in the formation of the authenticity of medicinal materials. Methods In this paper, the rhizosphere soils of Gentiana scabra Bunge from six producing areas in Liaoning Province were taken as the research objects. Through high-throughput sequencing technology, and with the help of PLS-DA and RDA, the impacts of rhizosphere soil microorganisms and environmental factors on the quality of G. scabra were explored in depth. Results Alpha diversity shows that the diversity of bacterial communities varies significantly, while the regularity of fungi is weak; beta diversity shows that samples from different producing areas can be effectively grouped according to community structure. LDA effect shows that the differential species of bacteria and fungi vary among different producing areas. Indicator and random forest analysis show that Sphingomonas and Subgroup_2 are the main indicator species of the bacterial communities in the high-content group, which can increase the evenness of microbial communities and maintain or enhance species diversity. The regularity of fungal communities is relatively weak. Functional metagenomic analysis shows that the functions of soil microorganisms in the six producing areas are similar but the relative abundances are different. The main functions of bacteria are closely related to microbial metabolism in diverse environments, biosynthesis of secondary metabolites, metabolic pathways, etc.; fungi are mainly lichen parasite, plant saprotroph, and ericoid mycorrhizal. PLS-DA and RDA analysis show that properly adjusting the key environmental factors of Ca, pH, and rapidly available potassium, which have a great influence on G. scabra, can affect the abundances of microorganisms such as Subgroup_2, Burkholderia-Caballeronia-Paraburkholderia, Metarhizium, Bryobacter, Fusarium, Rhodanobacter, Cladophialophora, Sphingomonas and Trichoderma, and then regulate the content of gentiopicroside. Discussion This study provides practical microbial approaches and strategies for improving gentiopicroside content in the roots and rhizomes of G. scabra, and lays a solid scientific foundation for ensuring the quality and safety of genuine medicinal materials and the stable and sustainable development of the G. scabra planting industry.
Collapse
Affiliation(s)
- Jianming Hou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Haibo Yin
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao - di Herbs, Beijing, China
| | - Dan Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Jiayi Luo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Wenqi Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Tingguo Kang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| |
Collapse
|
10
|
Li T, Shi X, Wang J, Zhou Y, Wang T, Xu Y, Xu Z, Raza W, Liu D, Shen Q. Turning antagonists into allies: Bacterial-fungal interactions enhance the efficacy of controlling Fusarium wilt disease. SCIENCE ADVANCES 2025; 11:eads5089. [PMID: 39937904 PMCID: PMC11817942 DOI: 10.1126/sciadv.ads5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Intense microbial competition in soil has driven the evolution of resistance mechanisms, yet the implications of such evolution on plant health remain unclear. Our study explored the conversion from antagonism to coexistence between Bacillus velezensis (Bv) and Trichoderma guizhouense (Tg) and its effects on Fusarium wilt disease (FWD) control. We found a bacilysin transmembrane transporter (TgMFS4) in Tg, critical during cross-kingdom dialogue with Bv. Deleting Tgmfs4 (ΔTgmfs4) mitigated Bv-Tg antagonism, reduced bacilysin import into Tg, and elevated its level in the coculture environment. This increase acted as a feedback regulator, limiting overproduction and enhancing Bv biomass. ΔTgmfs4 coinoculation with Bv demonstrated enhanced FWD control relative to wild-type Tg (Tg-WT). In addition, the Tg-WT+ Bv consortium up-regulated antimycotic secretion pathways, whereas the ΔTgmfs4+ Bv consortium enriched the CAZyme (carbohydrate-active enzyme) family gene expression in the rhizosphere, potentiating plant immune responses. This study elucidates the intricacies of bacterial-fungal interactions and their ramifications for plant health.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoteng Shi
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jiaguo Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yihao Zhou
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tuokai Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yan Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Waseem Raza
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing 210095, Jiangsu, China
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
11
|
Ma Y, Wang H, Kang Y, Wen T. Small molecule metabolites drive plant rhizosphere microbial community assembly patterns. Front Microbiol 2025; 16:1503537. [PMID: 40008040 PMCID: PMC11854121 DOI: 10.3389/fmicb.2025.1503537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The assembly of rhizosphere microbial communities is essential for maintaining plant health, yet it is influenced by a wide range of biotic and abiotic factors. The key drivers shaping the composition of these communities, however, remain poorly understood. In this study, we analyzed 108 plant samples and evaluated root traits, plant growth characteristics, soil enzyme activities, rhizosphere metabolites, and soil chemical properties to identify the primary determinants of rhizosphere community assembly. Across 36 soil samples, we obtained 969,634 high-quality sequences, clustering into 6,284 ASVs predominantly classified into Proteobacteria (57.99%), Actinobacteria (30%), and Bacteroidetes (5.13%). Our findings revealed that rhizosphere metabolites accounted for more variance in microbial community composition compared to chemical properties (ANOVA, F = 1.53, p = 0.04), enzyme activities, or root traits (ANOVA, F = 1.04, p = 0.001). Seven small molecule metabolites, including glycerol, sorbitol, phytol, and alpha-ketoglutaric acid, were significantly correlated with βNTI, underscoring their role as critical drivers of microbial community assembly. The genus Rhizobium, significantly associated with βNTI (R = 0.25, p = 0.009), emerged as a keystone taxon shaping community structure. Soil culture experiments further validated that small molecule metabolites can modulate microbial community assembly. The ST treatment, enriched with these metabolites, produced 1,032,205 high-quality sequences and exhibited significant shifts in community composition (Adonis, p = 0.001, R = 0.463), with Rhizobium showing higher abundance compared to the control (CK). Variable selection (βNTI >2) drove phylogenetic turnover in ST, while stochastic processes (|βNTI| < 2) dominated in CK. This study provides quantitative insights into the role of rhizosphere metabolites in shaping microbial community assembly and highlights their potential for targeted modulation of rhizosphere microbiomes.
Collapse
Affiliation(s)
- Yanwei Ma
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Heqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yalong Kang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Guo S, Pan R, Zhang Y, Gu Q, Shen Q, Yang J, Huang L, Shen Z, Li R. Plant-microbe interactions influence plant performance via boosting beneficial root-endophytic bacteria. ENVIRONMENTAL MICROBIOME 2025; 20:18. [PMID: 39905504 DOI: 10.1186/s40793-025-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Salvia miltiorrhiza is a highly valuable medicinal plant and its cultivation is constrained by limited suitable land. Long-term continuous cropping practices alleviate limitations in planting area as well as causes the decline in plant yield and quality. Endophytic microorganisms colonize inside plant roots and are known to play important roles in improving the performance of model plants (such as Arabidopsis thaliana) and food crops (such as wheat, soybean, rice and maize). However, the understanding of how medicinal plants with different growth status (i.e., healthy and disease) shape the assembly of root-endophytic microorganisms and the functional importance of these microorganisms in improving plant performance remains largely unknown. RESULTS Here, we investigated the assembly of root-endophytic microorganisms in medicinal plants with different growth status and its links with plant performance improvement. We found that medicinal plants with different growth status had distinct root-endophytic bacterial communities. Healthy plant roots recruited some potentially beneficial bacteria partners, particularly Pseudomonas into the endosphere. We further investigated the functional importance of these potentially beneficial bacteria on plant performance in subsequent greenhouse and field experiments. We found that root-endophytic Pseudomonas effectively increased medicinal plant seedling growth, crop yield, and the content of effective medicinal components. CONCLUSIONS Taken together, we demonstrate that healthy medicinal plants can form a distinct root-endophytic bacterial community, leading to an increase in plant growth-promoting endophytic bacteria (PGPEB) that contribute to the improvement of crop growth and quality. Our research provides valuable insights into the significant role of PGPEB in enhancing crop growth and improving medicinal plants quality for human health development in the future.
Collapse
Affiliation(s)
- Sai Guo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rubin Pan
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Quanwei Gu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
13
|
Lv J, Li X, Zhao L, Zhang S, Wang G, Wang X, Wang Y, Chen X, Yin C, Mao Z. Lactobacillus reuteri metabolites alleviate apple replant disease (ARD) by driving beneficial bacteria to reshape the core root microbiome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109345. [PMID: 39615192 DOI: 10.1016/j.plaphy.2024.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
Previous studies have shown that the bacterial fertilizer Lactobacillus reuteri (LBR) significantly alleviates apple replant disease (ARD), but the mechanism behind its effectiveness remains unclear. This study investigated the effects of key LBR metabolites on the rhizosphere microbial community. The biocontrol function of extracellular polysaccharides (EPS) was examined and shown to be further enhanced after optimizing the fermentation conditions. The optimized fermentation conditions were found to generate intermediates involved in various plant metabolic pathways, leading to plant growth promotion, increased abundance of beneficial bacteria like Bacillus and Pseudomonas in the rhizosphere soil, and decreased abundance of pathogenic fungi. Through the isolation and identification of rhizosphere microorganisms, a strain of Pseudomonas monteilii with chemotaxis to EPS was isolated, which had growth promotion ability and effectively improved plant resistance and relieves ARD. To further understand the mechanism underlying the inhibitory effect on soil pathogens of microbial aggregations and development in the rhizosphere driven by beneficial bacteria metabolites. These findings offer valuable technical insights for utilizing biocontrol bacteria metabolites in ARD management.
Collapse
Affiliation(s)
- Jinhui Lv
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Xiaoxuan Li
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Lei Zhao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Susu Zhang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong, 250000, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong, 250000, PR China
| | - Xiaoqi Wang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
14
|
Li C, Sun L, Jia Z, Tang Y, Liu X, Zhang J, Müller C. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. PLANT, CELL & ENVIRONMENT 2025; 48:1162-1178. [PMID: 39420635 DOI: 10.1111/pce.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The application of microbial inoculants holds promise for the sustainable restoration of abandoned mine sites by affecting soil nutrients and microbial communities. However, the responses of plant microbial communities to microbial inoculants in mine restoration remain largely unknown. To bridge this knowledge gap, we conducted a 4-year field experiment at an abandoned carbonate mine site to assess the impacts of microbial inoculants on the soil-plant microbiome. Our findings revealed that microbial inoculants significantly changed roots, fine root bacterial and fungal communities. Further, no significant correlations were observed between the soil-plant nutrient content (Z-score) and microbial alpha diversity. However, a significantly positive correlation was found between the relative abundance of the keystone ecological cluster (Module #1) and soil-plant nutrient content. The application of microbial inoculants also increased complexity, albeit decreased stability of plant microbiome networks, alongside a reduction in stochastic assembly. Conversely, they decreased the complexity but increased the stability of soil microbiome networks, accompanied by an increase in stochastic assembly. Notably, the number of specifically enriched microbiome functional traits of roots and root nodules under the microbial inoculant treatments surpassed that of the control. In summary, our findings underscored the potential of microbial inoculants to enhance soil-plant functionality at abandoned mine restoration sites.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Lianhao Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| |
Collapse
|
15
|
Zhang D, Li J, Jiang Y, Wang Y, Zhang G, Xu Y. Microecological shifts govern the fostering of soil and crop pathogens in agro-ecosystems under different fertilization regimes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124115. [PMID: 39823940 DOI: 10.1016/j.jenvman.2025.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Pathogenic bacteria in agroecosystems have been of great concern because of their threat to crop and human health. This study aimed to understand how the microecological environment created by different fertilization regimes affects the fate of soil and crop pathogenic microorganisms. The situation of soil and crop pathogenic bacteria in different ecosystems was explored by setting up seven different fertilization treatments. Network modularization and cohesion index analyses demonstrated that microbial networks were least stable in the 100% chemical fertilizer treatment. Regarding microbial community evolution, as the percentage of chemical fertilizer application increased, microbial evolution gradually shifted from the K-strategy to the r-strategy, implying that environmental microorganisms following chemical fertilizer application increase were primarily developed to enhance survival and reproduction, which in turn increased the occurrence of pathogenic bacteria. Compared to soils treated with 100% organic fertilizer (T1), the relative abundance of the pathogenic bacteria Gemmatimonas, Gaiella, and Gemmatirosa in soils treated with 100% chemical fertilizer (T6) increased by 74.09%, 18.01%, and 61.18%, respectively. Additionally, 100% chemical fertilizer application showed the highest diversity of soil pathogens and an enhanced microbial "Matthew effect" in roots. Structural equation modeling revealed that variations in soil microbial communities and pathogenic bacteria had a marked influence on the occurrence of crop pathogens. This study provides microecological evidence for the prevalence of pathogenic bacteria under different fertilization conditions and provides important theoretical and practical insights for optimal agroecosystem management.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Jie Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Jiang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yujun Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
16
|
Su Y, Ren Y, Wang G, Li J, Zhang H, Yang Y, Pang X, Han J. Microalgae and microbial inoculant as partial substitutes for chemical fertilizer enhance Polygala tenuifolia yield and quality by improving soil microorganisms. FRONTIERS IN PLANT SCIENCE 2025; 15:1499966. [PMID: 39886683 PMCID: PMC11779722 DOI: 10.3389/fpls.2024.1499966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant Polygala tenuifolia. The growth parameters, bioactive component contents, soil properties and composition of rhizosphere microorganisms were measured. The results indicated that substituting 40% of chemical fertilizer with microalgae showed the most pronounced growth-promoting effect, leading to a 29.30% increase in underground biomass and a 19.72% increase in 3,6'-disinapoylsucrose (DISS) content. Substituting 20% of chemical fertilizer with microalgae improved soil quality, significantly increasing soil organic matter content by 15.68% (p<0.05). Microalgae addition significantly affected the rhizosphere bacterial community composition of P. tenuifolia, reducing the relative abundance of Cladosporium by 33.33% and 57.93%, while increasing the relative abundance of Chloroflexi by 31.06% and 38.27%, under 20% and 40% chemical fertilizer reduction, respectively. The relative abundance of Chloroflexi positively correlated with both the underground biomass and DISS content (p<0.05), indicating that microalgae may stimulate Chloroflexi species associated with carbon cycling, thereby enhancing soil fertility, nutrient absorption, and ultimately leading to increased biomass accumulation and production of bioactive components in P. tenuifolia. In addition, there was no significant difference in underground growth and bioactive component contents between reduced chemical fertilizer dosage combined with solid microbial inoculant (SMI) and polyglutamic microbial inoculant (PMI), compared with 100% chemical fertilizer. Correlation analysis revealed that PMI could increase soil phosphorus availability through Streptomyces recruitment. In conclusion, our findings demonstrated that bio-organic fertilizers can partially substitute chemical fertilizer to improve soil properties and microorganisms, enhancing the growth and quality of P. tenuifolia. This provides a theoretical basis for increasing medicinal plant productivity under chemical fertilizer reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Zeng W, Xiang D, Li X, Gao Q, Chen Y, Wang K, Qian Y, Wang L, Li J, Mi Q, Huang H, Xu L, Zhao M, Zhang Y, Xiang H. Effects of combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizosphere bacteria on seedling growth and rhizosphere microecology. Front Microbiol 2025; 15:1475485. [PMID: 39867496 PMCID: PMC11758927 DOI: 10.3389/fmicb.2024.1475485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi (Funneliformis mosseae) and two PGPR (Bacillus sp., Pseudomonas sp.) on the growth of tobacco seedlings, together with high-throughput sequencing technology to reveal associated rhizosphere microecological mechanisms. All inoculation treatments significantly increased the aboveground dry weight; root dry weight; seedling nitrogen, phosphorus, and potassium uptake; plant height; stem thickness; maximum leaf area; chlorophyll content; total root length, surface area, and volume; and average root diameter. The highest values for these indices were observed in the combined treatment of F. mosseae and Pseudomonas sp. SG29 (A_SG29). Furthermore, the A_SG29 treatment yielded the highest diversity indexes and largest percentages of significantly enriched bacterial taxa, and significantly promoted the colonization of AMF in tobacco roots and Pseudomonas in rhizosphere soil. Differential metabolic-pathway predictions using PICRUSt2 showed that the A_SG29 treatment significantly increased the metabolic pathway richness of tobacco rhizosphere microorganisms, and significantly up-regulated some metabolic pathways that may benefit plant growth. Co-inoculation with F. mosseae and Pseudomonas sp. SG29 promoted tobacco-seedling growth by significantly improving rhizosphere microbial communities' structure and function. In summary, the combined inoculation of AMF and SG29 promotes tobacco seedling growth, optimizes the rhizosphere microbial community's structure and function, and serves as a sustainable microbial co-cultivation method for tobacco seedling production.
Collapse
Affiliation(s)
- Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Dan Xiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Yudong Chen
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Kunmiao Wang
- Yunnan Academy of Tobacco Science, Kunming, China
| | | | - Luoping Wang
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Jing Li
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Qili Mi
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Li Xu
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Mingfang Zhao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yingzhen Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
18
|
Chen P, Li J, Wei D, Chen Y, He C, Bao H, Jia Z, Ruan Y, Fan P. Soil fungal networks exhibit sparser interactions than bacterial networks in diseased banana plantations. Appl Environ Microbiol 2024; 90:e0157224. [PMID: 39513723 PMCID: PMC11653737 DOI: 10.1128/aem.01572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Soil microorganisms play a crucial role in suppressing soil-borne diseases. Although the composition of microbial communities in healthy versus diseased soils is somewhat understood, the interplay between microbial interactions and disease incidence remains unclear. This study used 16S rRNA and fungal internal transcribed spacer (ITS) sequencing to investigate the bacterial and fungal community composition in three soil types: forest soil (Z), soil from healthy banana plantations (H), and soil from diseased banana plantations (D). Principal coordinate analysis revealed significant differences among the bacterial and fungal community structures of the three soil types. Compared with those in forest soil, bacterial and fungal diversities significantly decreased in diseased banana soil. Key microorganisms, including the bacteria Chloroflexi and Pseudonocardia and the fungi Mortierellomycota and Moesziomyces, were significantly increased in soil from diseased banana plantations. Redundancy analysis revealed that total nitrogen and available phosphorus were the primary drivers of the soil microbial community structure. The neutral community model posited that the bacterial community assembly in banana plantations is predominantly governed by stochastic processes, whereas the fungal community assembly in banana plantations is primarily driven by deterministic processes. Furthermore, co-occurrence network analysis revealed that the proportion of positive edges in the fungal network of soil from diseased banana plantations was 5.92 times lower than that in soil from healthy banana plantations, and its fungal network structure was sparse and simple. In conclusion, reduced interactions within the fungal network were significantly linked to the epidemiology of Fusarium wilt. These findings underscore the critical role of soil fungal communities in modulating pathogens. IMPORTANCE Soil microorganisms are pivotal in mitigating soil-borne diseases. The intricate mechanisms underlying the interactions among microbes and their impact on disease occurrence remain enigmatic. This study underscores that a reduction in fungal network interactions correlates with the incidence of soil-borne Fusarium wilt.
Collapse
Affiliation(s)
- Peng Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jinku Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Dandan Wei
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yanlin Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chen He
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huanyu Bao
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhongjun Jia
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yunze Ruan
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
| | - Pingshan Fan
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
19
|
Zhao Q, Wang R, Song Y, Lu J, Zhou B, Song F, Zhang L, Huang Q, Gong J, Lei J, Dong S, Gu Q, Borriss R, Gao X, Wu H. Pyoluteorin-deficient Pseudomonas protegens improves cooperation with Bacillus velezensis, biofilm formation, co-colonizing, and reshapes rhizosphere microbiome. NPJ Biofilms Microbiomes 2024; 10:145. [PMID: 39663366 PMCID: PMC11634903 DOI: 10.1038/s41522-024-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024] Open
Abstract
Plant-beneficial Pseudomonas and Bacillus have been extensively studied and applied in biocontrol of plant diseases. However, there is less known about their interaction within two-strain synthetic communities (SynCom). Our study revealed that Pseudomonas protegens Pf-5 inhibits the growth of several Bacillus species, including Bacillus velezensis. We established a two-strain combination of Pf-5 and DMW1 to elucidate the interaction. In this combination, pyoluteorin conferred the competitive advantage of Pf-5. Noteworthy, pyoluteorin-deficient Pf-5 cooperated with DMW1 in biofilm formation, production of metabolites, root colonization, tomato bacterial wilt disease control, as well as in cooperation with beneficial bacteria in tomato rhizosphere, such as Bacillus spp. RNA-seq analysis and RT-qPCR also proved the pyoluteorin-deficient Pf-5 mutant improved cell motility and metabolite production. This study suggests that the cooperative effect of Bacillus-Pseudomonas consortia depends on the balance of pyoluteorin. Our finding needs to be considered in developing efficient SynCom in sustainable agriculture.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Yan Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Juan Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Bingjie Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Fang Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Lijuan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Qianqian Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Jing Gong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Jingjing Lei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt University Berlin, Berlin, Germany.
| | - Xuewen Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China.
| | - Huijun Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
20
|
Sun X, Liu Y, He L, Kuang Z, Dai S, Hua L, Jiang Q, Wei T, Ye P, Zeng H. Response of Yields, Soil Physiochemical Characteristics, and the Rhizosphere Microbiome to the Occurrence of Root Rot Caused by Fusarium solani in Ligusticum chuanxiong Hort. Microorganisms 2024; 12:2350. [PMID: 39597739 PMCID: PMC11596405 DOI: 10.3390/microorganisms12112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Ligusticum chuanxiong Hort. is considered an important medicinal herb with extremely high economic value and medicinal value due to its various effects, including anti-oxidation, sedative action, hepatoprotection, and invigorating blood circulation. However, L. chuanxiong cultivation is hampered by various plant diseases, especially the root rot caused by Fusarium solani, hindering the sustainable development of the L. chuanxiong industry. The occurrence of soil-borne diseases is closely linked to imbalances in the microbial community structure. Here, we studied the yields, rhizosphere microbiota, and soil physiochemical characteristics of healthy and diseased L. chuanxiong plants affected by root rot with high-throughput sequencing and microbial network analysis, aiming to explore the relationships between soil environmental factors, microbiomes, and plant health of L. chuanxiong. According to the results, L. chuanxiong root rot significantly decreased the yields, altered microbial community diversity and composition, enriched more pathogenic fungi, recruited some beneficial bacteria, and reduced microbial interaction network stability. The Mantel test showed that soil organic matter and pH were the major environmental factors modulating plant microbiome assembly. The root rot severity was significantly affected by soil physiochemical properties, including organic matter, cation exchange capacity, available nitrogen, phosphorus, potassium, and pH. Furthermore, two differential microbes that have great potential in the biocontrol of L. chuanxiong root rot were dug out in the obtained results, which were the genera Trichoderma and Bacillus. This study provided a theoretical basis for further studies revealing the microecological mechanism of L. chuanxiong root rot and the ecological prevention and control of L. chuanxiong root rot from a microbial ecology perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hualan Zeng
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China; (X.S.); (Y.L.); (L.H.); (Z.K.); (S.D.); (L.H.); (Q.J.); (T.W.); (P.Y.)
| |
Collapse
|
21
|
Xu X, Jiang R, Wang X, Liu S, Dong M, Mao H, Li X, Ni Z, Lv N, Deng X, Xiong W, Tao C, Li R, Shen Q, Geisen S. Protorhabditis nematodes and pathogen-antagonistic bacteria interactively promote plant health. MICROBIOME 2024; 12:221. [PMID: 39468636 PMCID: PMC11520073 DOI: 10.1186/s40168-024-01947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fertilization practices control bacterial wilt-causing Ralstonia solanacearum by shaping the soil microbiome. This microbiome is the start of food webs, in which nematodes act as major microbiome predators. However, the multitrophic links between nematodes and the performance of R. solanacearum and plant health, and how these links are affected by fertilization practices, remain unknown. RESULTS Here, we performed a field experiment under no-, chemical-, and bio-organic-fertilization regimes to investigate the potential role of nematodes in suppressing tomato bacterial wilt. We found that bio-organic fertilizers changed nematode community composition and increased abundances of bacterivorous nematodes (e.g., Protorhabditis spp.). We also observed that pathogen-antagonistic bacteria, such as Bacillus spp., positively correlated with abundances of bacterivorous nematodes. In subsequent laboratory and greenhouse experiments, we demonstrated that bacterivorous nematodes preferentially preyed on non-pathogen-antagonistic bacteria over Bacillus. These changes increased the performance of pathogen-antagonistic bacteria that subsequently suppressed R. solanacearum. CONCLUSIONS Overall, bacterivorous nematodes can reduce the abundance of plant pathogens, which might provide a novel protection strategy to promote plant health. Video Abstract.
Collapse
Affiliation(s)
- Xu Xu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Renqiang Jiang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinling Wang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shanshan Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Menghui Dong
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Hancheng Mao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xingrui Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ziyu Ni
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
22
|
Liu X, Du C, Tan Y, Yue C, Fan H. Interplant communication increases aphid resistance and alters rhizospheric microbes in neighboring plants of aphid-infested cucumbers. PEST MANAGEMENT SCIENCE 2024; 80:5005-5013. [PMID: 38845469 DOI: 10.1002/ps.8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Aphis gossypii Glover is a prevalent phytophagous insect that inflicts significant damage on cucumber plants. Recent studies have provided insights into plant communication and signal transduction within conspecifics. However, understanding of the effect of these communication mechanisms on adjacent cucumbers and their resident aphids, especially in the context of an aphid infestation, is still in its early stages. RESULTS Utilizing a partitioned root configuration, a tendency for aphids to gather on nearby cucumber leaves of non-infested plants was observed. Furthermore, neighboring plants near aphid-infested cucumber plants showed a reduction in aphid reproduction rates. Concurrently, these plants exhibited a significant increase in reactive oxygen species (ROS) levels, along with enhanced defensive and antioxidant enzymatic responses. Analysis of the microbial community in the rhizosphere showed significant differences in species composition among the samples. Among these, the bacterial families Microbacteriaceae and Rhizobiaceae, along with the fungal species Leucocoprinus ianthinus and Mortierella globalpina, exhibited increases in their relative abundance in cucumber seedlings located near aphid-infested plants. Significantly, this study unveiled robust correlations between dominant microbial phyla and physiological indicators, primarily associated with aphid resistance mechanisms in plants. CONCLUSION The results show that aphid-infested cucumber plants trigger oxidative stress responses in adjacent seedlings through complex interplant communication mechanisms. In addition, these plants cause changes in the composition of the rhizospheric microbial community and the physiological activity of neighboring plants, consequently boosting their natural resistance to aphids. This study provides essential theoretical foundations to guide the development of sustainable strategies for managing cucumber aphids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
23
|
Niu H, Yuan M, Chen X, Zhao J, Cui Y, Song Y, Zhou S, Song A, Huang Y. Deciphering the differences of bacterial communities between high- and low-productive wheat fields using high-throughput sequencing. Front Microbiol 2024; 15:1391428. [PMID: 39296300 PMCID: PMC11408337 DOI: 10.3389/fmicb.2024.1391428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024] Open
Abstract
Microbial communities have been demonstrated to be essential for healthy and productive soil ecosystems. However, an understanding of the relationship between soil microbial community and soil productivity levels is remarkably limited. In this study, bulk soil (BS), rhizosphere soil (RS), and root (R) samples from the historical high-productive (H) and low-productive (L) soil types of wheat in Hebei province of China were collected and analyzed by high-throughput sequencing. The study highlighted the richness, diversity, and structure of bacterial communities, along with the correlation networks among different bacterial genera. Significant differences in the bacterial community structure between samples of different soil types were observed. Compared with the low-productive soil type, the bacterial communities of samples from the high-productive soil type possessed high species richness, low species diversity, complex and stable networks, and a higher relative abundance of beneficial microbes, such as Pseudoxanthomonas, unclassified Vicinamibacteraceae, Lysobacter, Massilia, Pseudomonas, and Bacillus. Further analysis indicated that the differences were mainly driven by soil organic matter (SOM), available nitrogen (AN), and electrical conductivity (EC). Overall, the soil bacterial community is an important factor affecting soil health and crop production, which provides a theoretical basis for the targeted regulation of microbes in low-productivity soil types.
Collapse
Affiliation(s)
- Hongjin Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Min Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xiaobo Chen
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jingwei Zhao
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yushuang Cui
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yao Song
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Sihao Zhou
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Alin Song
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Huang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
24
|
Ng CWW, Yan WH, Xia YT, Tsim KWK, To JCT. Plant growth-promoting rhizobacteria enhance active ingredient accumulation in medicinal plants at elevated CO 2 and are associated with indigenous microbiome. Front Microbiol 2024; 15:1426893. [PMID: 39252828 PMCID: PMC11381388 DOI: 10.3389/fmicb.2024.1426893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Plant growth-promoting rhizobacteria (PGPR) and elevated CO2 (eCO2) have demonstrated their individual potential to enhance plant yield and quality through close interaction with rhizosphere microorganisms and plant growth. However, the efficacy of PGPR under eCO2 on rhizosphere microbiome and, ultimately, plant yield and active ingredient accumulation are not yet fully understood. Methods This study investigated how the medicinal plant Pseudostellaria heterophylla (P. heterophylla) and its rhizosphere microbes respond to PGPR (Bacillus subtilis and Pseudomonas fluorescens) at eCO2 (1,000 ppm). Results and Discussion It was found that the yield and active ingredient polysaccharides accumulation in the tuber of P. heterophylla were significantly increased by 38 and 253%, respectively. This promotion has been associated with increased root development and changes in the indigenous microbial community. Metagenomics analysis revealed a significant reduction in pathogenic Fusarium abundance in the rhizosphere. Potential biocontrol bacteria Actinobacteria and Proteobacteria were enriched, especially the genera Bradyrhizobium and Rhodanobacter. The reshaping of the rhizosphere microbiome was accompanied by the upregulation of biological pathways related to metabolite biosynthesis in the rhizosphere. These modifications were related to the promotion of the growth and productivity of P. heterophylla. Our findings highlighted the significant role played by PGPR in medicinal plant yield and active ingredient accumulation when exposed to eCO2.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Wen Hui Yan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Teng Xia
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Justin Chun Ting To
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Li R, Zhang N, Deng X, Tao C, Pei X, Yue Y, Xu X, Wang J, Shen Z, Shen Q, Li R. Tomato bacterial wilt disease outbreaks are accompanied by an increase in soil antibiotic resistance. ENVIRONMENT INTERNATIONAL 2024; 190:108896. [PMID: 39068748 DOI: 10.1016/j.envint.2024.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The presence of soil-borne disease obstacles and antibiotic resistance genes (ARGs) in soil leads to serious economic losses and health risks to humans. One area in need of attention is the evolution of ARGs as pathogenic soil gradually develops, which introduces uncertainty to the dynamic ability of conventional farming models to predict ARGs. Here, we investigated variations in tomato bacterial wilt disease accompanied by the resistome by metagenomic analysis in soils over 13 seasons of monoculture. The results showed that the abundance and diversity of ARGs and mobile genetic elements (MGEs) exhibited a significant and positive correlation with R. solanacearum. Furthermore, the binning approach indicated that fluoroquinolone (qepA), tetracycline (tetA), multidrug resistance genes (MDR, mdtA, acrB, mexB, mexE), and β-lactamases (ampC, blaGOB) carried by the pathogen itself were responsible for the increase in overall soil ARGs. The relationships between pathogens and related ARGs that might underlie the breakdown of soil ARGs were further studied in R. solanacearum invasion pot experiments. This study revealed the dynamics of soil ARGs as soil-borne diseases develop, indicating that these ecological trends can be anticipated. Overall, this study enhances our understanding of the factors driving ARGs in disease-causing soils.
Collapse
Affiliation(s)
- Ruochen Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Na Zhang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xin Pei
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yang Yue
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xu Xu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiabao Wang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
26
|
Cao X, Wang C, Luo X, Yue L, White JC, Wang Z, Xing B. Nano- and Microplastics Increase the Occurrence of Bacterial Wilt in Tomato ( Solanum lycopersicum L.). ACS NANO 2024; 18:18071-18084. [PMID: 38924759 DOI: 10.1021/acsnano.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Concern over nano- and microplastic contamination of terrestrial ecosystems has been increasing. However, little is known about the effect of nano- and microplastics on the response of terrestrial ecosystems already under biotic stress. Here, nano- and microplastics at 150-500 mg·kg-1 were exposed to tomatoes (Solanum lycopersicum L.), and the results demonstrate that the presence of nano- and microplastics increased the occurrence of bacterial wilt caused by Ralstonia solanacearum in tomatoes as a function of contaminant concentration, surface modification, and size. Our work shows that nanoplastics (30 nm, 250 mg·kg-1) increased the disease incidence by 2.19-fold. The disease severities in amino- and carboxyl-modified nanoplastic treatments were 30.4 and 21.7% higher than that in unmodified nanoplastic treatment, respectively. The severity of disease under the influence of different-sized nano- and microplastic treatments followed the order 30 > 100 nm > 1 > 50 μm. Mechanistically, nanoplastics disrupted the structure of the tomato rhizosphere soil bacterial community and suppressed the induced systemic resistance in tomato; nanoplastics in planta decreased the salicylic acid and jasmonic acid content in tomatoes, thus inhibiting systemic acquired resistance; and microplastics increased the soil water retention, leading to increased pathogen abundance in the rhizosphere. Additionally, the leachates from nano- and microplastics had no effect on disease occurrence or the growth of tomatoes. Our findings highlight a potential risk of nano- and microplastic contamination to agriculture sustainability and food security.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xing Luo
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Liu Y, Lai J, Sun X, Huang L, Sheng Y, Zhang Q, Zeng H, Zhang Y, Ye P, Wei S. Comparative Metagenomic Analysis Reveals Rhizosphere Microbiome Assembly and Functional Adaptation Changes Caused by Clubroot Disease in Chinese Cabbage. Microorganisms 2024; 12:1370. [PMID: 39065138 PMCID: PMC11278620 DOI: 10.3390/microorganisms12071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Clubroot is a major disease and severe threat to Chinese cabbage, and it is caused by the pathogen Plasmodiophora brassicae Woron. This pathogen is an obligate biotrophic protist and can persist in soil in the form of resting spores for more than 18 years, which can easily be transmitted through a number of agents, resulting in significant economic losses to global Chinese cabbage production. Rhizosphere microbiomes play fundamental roles in the occurrence and development of plant diseases. The changes in the rhizosphere microorganisms could reveal the severity of plant diseases and provide the basis for their control. Here, we studied the rhizosphere microbiota after clubroot disease infections with different severities by employing metagenomic sequencing, with the aim of exploring the relationships between plant health, rhizosphere microbial communities, and soil environments; then, we identified potential biomarker microbes of clubroot disease. The results showed that clubroot disease severity significantly affected the microbial community composition and structure of the rhizosphere soil, and microbial functions were also dramatically influenced by it. Four different microbes that had great potential in the biocontrol of clubroot disease were identified from the obtained results; they were the genera Pseudomonas, Gemmatimonas, Sphingomonas, and Nocardioides. Soil pH, organic matter contents, total nitrogen, and cation exchange capacity were the major environmental factors modulating plant microbiome assembly. In addition, microbial environmental information processing was extremely strengthened when the plant was subjected to pathogen invasion, but weakened when the disease became serious. In particular, oxidative phosphorylation and glycerol-1-phosphatase might have critical functions in enhancing Chinese cabbage's resistance to clubroot disease. This work revealed the interactions and potential mechanisms among Chinese cabbage, soil environmental factors, clubroot disease, and microbial community structure and functions, which may provide a novel foundation for further studies using microbiological or metabolic methods to develop disease-resistant cultivation technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pengsheng Ye
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences/The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Chengdu 610300, China; (Y.L.); (J.L.); (X.S.); (L.H.); (Y.S.); (Q.Z.); (H.Z.); (Y.Z.)
| | - Shugu Wei
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences/The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Chengdu 610300, China; (Y.L.); (J.L.); (X.S.); (L.H.); (Y.S.); (Q.Z.); (H.Z.); (Y.Z.)
| |
Collapse
|
28
|
Li C, Chen X, Jia Z, Zhai L, Zhang B, Grüters U, Ma S, Qian J, Liu X, Zhang J, Müller C. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nat Ecol Evol 2024; 8:1270-1284. [PMID: 38849504 DOI: 10.1038/s41559-024-02437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Uwe Grüters
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jing Qian
- Yangzhou China Grand Canal Museum, Yangzhou, China
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
29
|
Xun W, Liu Y, Ma A, Yan H, Miao Y, Shao J, Zhang N, Xu Z, Shen Q, Zhang R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. THE NEW PHYTOLOGIST 2024; 242:2401-2410. [PMID: 38494698 DOI: 10.1111/nph.19697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiyuan Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
30
|
Liu Z, Zhang J, Fan C, Sun S, An X, Sun Y, Gao T, Zhang D. Influence of Bacillus subtilis strain Z-14 on microbial ecology of cucumber rhizospheric vermiculite infested with fusarium oxysporum f. sp. cucumerinum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105875. [PMID: 38685217 DOI: 10.1016/j.pestbp.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Fusarium oxysporum (FO) is a typical soil-borne pathogenic fungus, and the cucumber wilt disease caused by F. oxysporum f. sp. cucumerinum (FOC) seriously affects crop yield and quality. Vermiculite is increasingly being used as a culture substrate; nevertheless, studies exploring the effectiveness and mechanisms of biocontrol bacteria in this substrate are limited. In this study, vermiculite was used as a culture substrate to investigate the control effect of Bacillus subtilis strain Z-14 on cucumber wilt and the rhizospheric microecology, focusing on colonization ability, soil microbial diversity, and rhizosphere metabolome. Pot experiments showed that Z-14 effectively colonized the cucumber roots, achieving a controlled efficacy of 61.32% for wilt disease. It significantly increased the abundance of Bacillus and the expression of NRPS and PKS genes, while reducing the abundance of FO in the rhizosphere. Microbial diversity sequencing showed that Z-14 reduced the richness and diversity of the rhizosphere bacterial community, increased the richness and diversity of the fungal community, and alleviated the effect of FO on the community structure of the cucumber rhizosphere. The metabolomics analysis revealed that Z-14 affected ABC transporters, amino acid synthesis, and the biosynthesis of plant secondary metabolites. Additionally, Z-14 increased the contents of phenylacetic acid, capsidol, and quinolinic acid, all of which were related to the antagonistic activity in the rhizosphere. Z-14 exhibited a significant control effect on cucumber wilt and influenced the microflora and metabolites in rhizospheric vermiculite, providing a theoretical basis for further understanding the control effect and mechanism of cucumber wilt in different culture substrates.
Collapse
Affiliation(s)
- Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Jizong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Xutong An
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Yanheng Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China.
| |
Collapse
|
31
|
Zhang L, Yuan L, Wen Y, Zhang M, Huang S, Wang S, Zhao Y, Hao X, Li L, Gao Q, Wang Y, Zhang S, Huang S, Liu K, Yu X, Li D, Xu J, Zhao B, Zhang L, Zhang H, Zhou W, Ai C. Maize functional requirements drive the selection of rhizobacteria under long-term fertilization practices. THE NEW PHYTOLOGIST 2024; 242:1275-1288. [PMID: 38426620 DOI: 10.1111/nph.19653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.
Collapse
Affiliation(s)
- Liyu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Liang Yuan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanchen Wen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Meiling Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Shuyu Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Shiyu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuanzheng Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiangxiang Hao
- Hailun National Observation and Research Station of Agroecosystems, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Lujun Li
- Hailun National Observation and Research Station of Agroecosystems, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qiang Gao
- Jilin Agricultural University, Changchun, 130118, China
| | - Yin Wang
- Jilin Agricultural University, Changchun, 130118, China
| | - Shuiqing Zhang
- Institute of Plant Nutrition, Resource and Environment, Henan Academy of Agricultural Sciences, 116 Garden Road, Zhengzhou, 450002, China
| | - Shaomin Huang
- Institute of Plant Nutrition, Resource and Environment, Henan Academy of Agricultural Sciences, 116 Garden Road, Zhengzhou, 450002, China
| | - Kailou Liu
- Jiangxi Institute of Red Soil, National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, 330046, China
| | - Xichu Yu
- Jiangxi Institute of Red Soil, National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, 330046, China
| | - Dongchu Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiukai Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Bingqiang Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Lu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huimin Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chao Ai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| |
Collapse
|
32
|
Luo DL, Huang SY, Ma CY, Zhang XY, Sun K, Zhang W, Dai CC. Seed-borne bacterial synthetic community resists seed pathogenic fungi and promotes plant growth. J Appl Microbiol 2024; 135:lxae073. [PMID: 38520150 DOI: 10.1093/jambio/lxae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
AIMS In this study, the control effects of synthetic microbial communities composed of peanut seed bacteria against seed aflatoxin contamination caused by Aspergillus flavus and root rot by Fusarium oxysporum were evaluated. METHODS AND RESULTS Potentially conserved microbial synthetic communities (C), growth-promoting synthetic communities (S), and combined synthetic communities (CS) of peanut seeds were constructed after 16S rRNA Illumina sequencing, strain isolation, and measurement of plant growth promotion indicators. Three synthetic communities showed resistance to root rot and CS had the best effect after inoculating into peanut seedlings. This was achieved by increased defense enzyme activity and activated salicylic acid (SA)-related, systematically induced resistance in peanuts. In addition, CS also inhibited the reproduction of A. flavus on peanut seeds and the production of aflatoxin. These effects are related to bacterial degradation of toxins and destruction of mycelia. CONCLUSIONS Inoculation with a synthetic community composed of seed bacteria can help host peanuts resist the invasion of seeds by A. flavus and seedlings by F. oxysporum and promote the growth of peanut seedlings.
Collapse
Affiliation(s)
- De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shi-Yi Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiang-Yu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
33
|
Yu T, Hou X, Fang X, Razavi B, Zang H, Zeng Z, Yang Y. Short-term continuous monocropping reduces peanut yield mainly via altering soil enzyme activity and fungal community. ENVIRONMENTAL RESEARCH 2024; 245:117977. [PMID: 38141923 DOI: 10.1016/j.envres.2023.117977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Continuous monocropping can lead to soil sickness and increase of soil-borne disease, which finally reduces crop yield. Microorganisms benefit plants by increasing nutrient availability, participating in auxin synthesis, and defending against pathogens. However, little is known about the influence of short-term successive peanuts cropping on soil properties, enzyme activities, its yield, plant-associated microbes, and their potential correlations in peanut production. Here, we examined the community structure, composition, network structure and function of microbes in the rhizosphere and bulk soils under different monocropping years. Moreover, we assessed the impact of changes in the soil micro-environment and associated soil microbes on peanut yield. Our results showed that increase of monocropping year significantly decreased most soil properties, enzyme activities and peanut yield (p < 0.05). Principal co-ordinates analysis (PCoA) and analysis of similarities (ANOSIM) indicated that monocropping year significantly influenced the fungal community structure in the rhizosphere and bulk soils (p < 0.01), while had no effect on the bacterial community. With the increase of continuous monocropping year, peanut selectively decreased (e.g., Candidatus_Entotheonella, Bacillus and Bryobacter) or increased (e.g., Nitrospira, Nocardioides, Ensifer, Gaiella, and Novosphingobium) the abundance of some beneficial bacterial genera in the rhizosphere. Continuous monocropping significantly increased the abundance of plant pathogens (e.g., Plectosphaerella, Colletotrichum, Lectera, Gibberella, Metarhizium, and Microdochium) in the rhizosphere and negatively affected the balance of fungal community. Besides, these species were correlated negatively with L-leucine aminopeptidase (LAP) activity. Network co-occurrence analysis showed that continuous monocropping simplified the interaction network of bacteria and fungi. Random forest and partial least squares path modeling (PLS-PM) analysis further showed that fungal community, pathogen abundance, soil pH, and LAP activity negatively affected peanut yield. In conclusion, short-term continuous monocropping decreased LAP activity and increased potential fungal pathogens abundance, leading to reduction of peanut yield.
Collapse
Affiliation(s)
- Taobing Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiqing Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiangyang Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bahar Razavi
- Department of Soil-Plant-Microbiome, Institute of Phytopathology, University of Kiel, Germany
| | - Huadong Zang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yadong Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Vido JJ, Wang X, Sale PWG, Celestina C, Shindler AE, Hayden HL, Tang C, Wood JL, Franks AE. Bacterial community shifts occur primarily through rhizosphere expansion in response to subsoil amendments. Environ Microbiol 2024; 26:e16587. [PMID: 38454741 DOI: 10.1111/1462-2920.16587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
To comprehensively evaluate the impact of agricultural management practices on soil productivity, it is imperative to conduct a thorough analysis of soil bacterial ecology. Deep-banding nutrient-rich amendments is a soil management practice that aims to improve plant growth and soil structure by addressing the plant-growth constraints posed by dense-clay subsoils. However, the response of bacterial communities to deep-banded amendments has not been thoroughly studied. To address this knowledge gap, we conducted a controlled-environment column experiment to examine the effects of different types of soil amendments (poultry litter, wheat straw + chemical fertiliser and chemical fertiliser alone) on bacterial taxonomic composition in simulated dense-clay subsoils. We evaluated the bacterial taxonomic and ecological group composition in soils beside and below the amendment using 16S rRNA amplicon sequencing and robust statistical methods. Our results indicate that deep-banded amendments alter bacterial communities through direct and indirect mechanisms. All amendments directly facilitated a shift in bacterial communities in the absence of growing wheat. However, a combination of amendments with growing wheat led to a more pronounced bacterial community shift which was distinct from and eclipsed the direct impact of the amendments and plants alone. This indirect mechanism was evidenced to be mediated primarily by plant growth and hypothesised to result from an enhancement in wheat root distribution, density and rhizodeposition changes. Therefore, we propose that subsoil amendments regardless of type facilitated an expansion in the rhizosphere which engineered a substantial plant-mediated bacterial community response within the simulated dense-clay subsoils. Overall, our findings highlight the importance of considering the complex and synergistic interactions between soil physicochemical properties, plant growth and bacterial communities when assessing agricultural management strategies for improving soil and plant productivity.
Collapse
Affiliation(s)
- Joshua J Vido
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
| | - Xiaojuan Wang
- Department of Animal, Plant and Soil Sciences, AgriBio the Centre for AgriBiosciences, La Trobe University, Bundoora, Australia
- School of Agriculture Food, and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Peter W G Sale
- Department of Animal, Plant and Soil Sciences, AgriBio the Centre for AgriBiosciences, La Trobe University, Bundoora, Australia
| | - Corinne Celestina
- Department of Animal, Plant and Soil Sciences, AgriBio the Centre for AgriBiosciences, La Trobe University, Bundoora, Australia
- School of Agriculture Food, and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Anya E Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
| | - Helen L Hayden
- School of Agriculture Food, and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, AgriBio the Centre for AgriBiosciences, La Trobe University, Bundoora, Australia
| | - Jennifer L Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| | - Ashley E Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| |
Collapse
|
35
|
Wu QY, Ma R, Wang X, Ma YN, Wang ZS, Wei HL, Zhang XX. Effects of the invasion of Ralstonia solanacearum on soil microbial community structure in Wuhan, China. mSphere 2024; 9:e0066523. [PMID: 38231250 PMCID: PMC10900898 DOI: 10.1128/msphere.00665-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
This study investigated the change in the microbiome of tomato rhizosphere soils after the invasion of Ralstonia solanacearum and analyzed the correlation between microbes and soil physicochemical properties. Diversity analyses of the bacteria in healthy and diseased rhizosphere soil samples (HRS and DRS) revealed that HRS had a higher species diversity and were compositionally different from DRS (P ≤ 0.05). Substantial differences in the relative abundance of Actinobacteria (37.52% vs 28.96%, P ≤ 0.05) and Proteobacteria (29.20% vs 35.59%, P ≤ 0.05) were identified in HRS and DRS, respectively. Taxonomic composition analysis showed ten differentially abundant genera, and seven of them (Gaiella, Roseisolibacter, Solirubrobacter, Kribbella, Acidibacter, Actinomarinicola, and Marmoricola) are more abundant in HRS. Soil pH and enzyme activities were negatively correlated with the abundance of R. solanacearum. The contents of total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (alkaline N), available phosphorus (AP), available potassium (AK), NO3-N(NN), NH4+-N (AN), and organic matter (OM) were all significantly increased in DRS. The composition and richness of protozoa in the samples show significant differences. Cephalobus, Acrobeles, Heteromita, norank_Tylenchida, and Rotylenchulus were enriched in DRS. Microbial interaction networks revealed that the HRS networks were more complex than the DRS networks. Overall, the results of this study demonstrate that healthy soil has a more complex microbial community structure and higher enzyme activity, and the invasion of R. solanacearum damages the soil microbial system.IMPORTANCEHow does the invasion of Ralstonia solanacearum affect tomato rhizosphere bacteria and protozoa? Which microbial changes can affect the growth of R. solanacearum? To date, most research studies focus on bacteria, with little research on protozoa, and even less on the synergistic effects between protozoa and bacteria. Here, we analyzed the correlation between tomato rhizosphere bacterial and protozoan communities and soil physicochemical properties during the invasion of R. solanacearum. We found that the diversity and abundance of rhizosphere microorganisms in healthy rhizosphere soil samples (HRS) were significantly higher than those in diseased rhizosphere soil samples (DRS), and there were significant changes in soil pH and enzyme activity. Overall, in this study, the analysis of microbial changes during the invasion of R. solanacearum provides a theoretical basis for the prevention and control of bacterial wilt.
Collapse
Affiliation(s)
- Qian-Yu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi-Nan Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Shan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Xia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Xiao Y, Zhang S, Li H, Teng K, Wu S, Liu Y, Yu F, He Z, Li L, Li L, Meng D, Yin H, Wang Y. Metagenomic insights into the response of soil microbial communities to pathogenic Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2024; 15:1325141. [PMID: 38434434 PMCID: PMC10904623 DOI: 10.3389/fpls.2024.1325141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Understanding the response of soil microbial communities to pathogenic Ralstonia solanacearum is crucial for preventing bacterial wilt outbreaks. In this study, we investigated the soil physicochemical and microbial community to assess their impact on the pathogenic R.solanacearum through metagenomics. Our results revealed that certain archaeal taxa were the main contributors influencing the health of plants. Additionally, the presence of the pathogen showed a strong negative correlation with soil phosphorus levels, while soil phosphorus was significantly correlated with bacterial and archaeal communities. We found that the network of microbial interactions in healthy plant rhizosphere soils was more complex compared to diseased soils. The diseased soil network had more linkages, particularly related to the pathogen occurrence. Within the network, the family Comamonadaceae, specifically Ramlibacter_tataouinensis, was enriched in healthy samples and showed a significantly negative correlation with the pathogen. In terms of archaea, Halorubrum, Halorussus_halophilus (family: Halobacteriaceae), and Natronomonas_pharaonis (family: Haloarculaceae) were enriched in healthy plant rhizosphere soils and showed negative correlations with R.solanacearum. These findings suggested that the presence of these archaea may potentially reduce the occurrence of bacterial wilt disease. On the other hand, Halostagnicola_larseniia and Haloterrigena_sp._BND6 (family: Natrialbaceae) had higher relative abundance in diseased plants and exhibited significantly positive correlations with R.solanacearum, indicating their potential contribution to the pathogen's occurrence. Moreover, we explored the possibility of functional gene sharing among the correlating bacterial pairs within the Molecular Ecological Network. Our analysis revealed 468 entries of horizontal gene transfer (HGT) events, emphasizing the significance of HGT in shaping the adaptive traits of plant-associated bacteria, particularly in relation to host colonization and pathogenicity. Overall, this work revealed key factors, patterns and response mechanisms underlying the rhizosphere soil microbial populations. The findings offer valuable guidance for effectively controlling soil-borne bacterial diseases and developing sustainable agriculture practices.
Collapse
Affiliation(s)
- Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Sai Zhang
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Hongguang Li
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Kai Teng
- Xiangxi Tobacco Co Hunan Prov, Changsha, China
| | - Shaolong Wu
- Hunan Tobacco Research Institute, Changsha, China
| | - Yongbin Liu
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Fahui Yu
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Zhihong He
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Lijuan Li
- Chenzhou Tobacco Company of Hunan Province, Changsha, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
37
|
Guo S, Jiao Z, Yan Z, Yan X, Deng X, Xiong W, Tao C, Liu H, Li R, Shen Q, Kowalchuk GA, Geisen S. Predatory protists reduce bacteria wilt disease incidence in tomato plants. Nat Commun 2024; 15:829. [PMID: 38280866 PMCID: PMC10821857 DOI: 10.1038/s41467-024-45150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Soil organisms are affected by the presence of predatory protists. However, it remains poorly understood how predatory protists can affect plant disease incidence and how fertilization regimes can affect these interactions. Here, we characterise the rhizosphere bacteria, fungi and protists over eleven growing seasons of tomato planting under three fertilization regimes, i.e conventional, organic and bioorganic, and with different bacterial wilt disease incidence levels. We find that predatory protists are negatively associated with disease incidence, especially two ciliophoran Colpoda OTUs, and that bioorganic fertilization enhances the abundance of predatory protists. In glasshouse experiments we find that the predatory protist Colpoda influences disease incidence by directly consuming pathogens and indirectly increasing the presence of pathogen-suppressive microorganisms in the soil. Together, we demonstrate that predatory protists reduce bacterial wilt disease incidence in tomato plants via direct and indirect reductions of pathogens. Our study provides insights on the role that predatory protists play in plant disease, which could be used to design more sustainable agricultural practices.
Collapse
Affiliation(s)
- Sai Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Zixuan Jiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhiguang Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xinyue Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
- Netherlands Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
38
|
Yan K, Lu DS, Ding CJ, Wang Y, Tian YR, Su XH, Dong YF, Wang YP. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168216. [PMID: 37923276 DOI: 10.1016/j.scitotenv.2023.168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Interactions between plants and soil microbes are important to plant hybrid breeding under global change. However, the relationship between host plants and rhizosphere soil microorganisms has not been fully elucidated. Understanding the rhizosphere microbial structure of parents and progenies would provide a deeper insight into how genetic effects modulate the relationship between plants and soil. In this study, two family groups of poplar trees (A: parents and their two progenies; B: parents and their one progeny) with different genetic backgrounds (including seven genotypes) were selected from a common garden, and their rhizobacterial communities were analyzed to explore parent-progeny relationships. Our results showed significant differences in phylogenetic diversity, the number of 16S genes and the structure of rhizosphere bacterial communities (Adonis: R2 = 0.166, P < 0.01) between different family groups. Rhizosphere bacterial community structure was significantly dominated by genetic effects. Compared with abundant taxa, genetic effects were more powerful drivers of rare taxa. In addition, bacterial communities of hybrid progenies were all significantly more similar to their parents compared to the other group of parents, especially among rare taxa. The two poplar family groups exhibited differences between their rhizosphere bacterial co-occurrence networks. Group B had a relatively complex network with 2380 edges and 468 nodes, while group A had 1829 edges and 304 nodes. Soil organic carbon and carbon to nitrogen ratio (C/N) also influenced the rhizosphere bacterial community assembly. This was especially true for soil C/N, which explained 23 % of the β-nearest taxon index (βNTI) variation in rare taxa. Our results reveal the relationship of rhizosphere microorganisms between parents and progenies. This can help facilitate an understanding of the combination of plant breeding with microbes resource utilization and provide a theoretical basis for scientific advancement to support the development of forestry industry.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - De Shan Lu
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Jun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Ren Tian
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Hua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Yan Ping Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
39
|
Guo S, Geisen S, Mo Y, Yan X, Huang R, Liu H, Gao Z, Tao C, Deng X, Xiong W, Shen Q, Kowalchuk GA, Li R. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. THE ISME JOURNAL 2024; 18:wrae180. [PMID: 39312488 PMCID: PMC11459550 DOI: 10.1093/ismejo/wrae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.
Collapse
Affiliation(s)
- Sai Guo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Yani Mo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xinyue Yan
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Ruoling Huang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Zhilei Gao
- Department of Research and Innovation, EUROstyle BV, Ecomunitypark 1, Oosterwolde 8431 SM, the Netherlands
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| |
Collapse
|
40
|
Liu C, Geng HY, Li WX, Li YY, Lu YS, Xie KZ, Sun LL, Zhang JX, Peng HL, Shi CH, Li WL, Zhou CM, Gu WJ, Wang D. Innate Root Exudates Contributed to Contrasting Coping Strategies in Response to Ralstonia solanacearum in Resistant and Susceptible Tomato Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20092-20104. [PMID: 38051256 DOI: 10.1021/acs.jafc.3c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Tomato cultivars with contrasting resistance to pathogens regulate root exudates differentially in response to Ralstonia solanacearum attacks. However, strategies using innate root exudates against infection remain unknown. This study analyzed the innate root exudates of two tomato cultivars and their functions in regulating R. solanacearum infection. The innate root exudates differed between the two cultivars. Astaxanthin released from resistant plants inhibited colonization by R. solanacearum but promoted motility, while neferine released from susceptible plants suppressed motility and colonization. The secretion of astaxanthin in resistant tomatoes promoted the growth of biocontrol fungi in soil and reduced the abundance of pathogenic fungi. Neferine secreted by the susceptible cultivar inhibited the relative abundance of the bacterial-biocontrol-related Bacillus genus, indirectly reducing the soil's immune capacity. This study revealed contrasting strategies using root exudates in resistant and susceptible tomato cultivars to cope with R. solanacearum infection, providing a basis for breeding disease-resistant cultivars.
Collapse
Affiliation(s)
- Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Hao-Yang Geng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Wang-Xi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Yu-Sheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Kai-Zhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Li Li Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Jie-Xin Zhang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Huan-Long Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Chao-Hong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Wan-Ling Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Chang-Min Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| | - Wen-Jie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China
| |
Collapse
|
41
|
Ma CY, Zhang W, Luo DL, Jiang HJ, Wu XH, Sun K, Dai CC. Fungal endophyte promotes plant growth and disease resistance of Arachis hypogaea L. by reshaping the core root microbiome under monocropping conditions. Microbiol Res 2023; 277:127491. [PMID: 37769598 DOI: 10.1016/j.micres.2023.127491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Fungal endophytes play critical roles in helping plants adapt to adverse environmental conditions. The root endophyte Phomopsis liquidambaris can promote the growth and disease control of peanut plants grown under monocropping systems; however, how such beneficial traits are produced is largely unknown. Since the plant endophytic microbiome is directly linked to plant growth and health, and the composition of which has been found to be potentially influenced by microbial inoculants, this study aims to clarify the roles of root endophytic bacterial communities in P. liquidambaris-mediated plant fitness enhancement under monocropping conditions. Here, we found that P. liquidambaris inoculation induced significant changes in the root bacterial community: enriching some beneficial bacteria such as Bradyrhizobium sp. and Streptomyces sp. in the roots, and improving the core microbial-based interaction network. Next, we assembled and simplified a synthetic community (SynII) based on P. liquidambaris-derived key taxa, including Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces sp. MB6, and Bradyrhizobium sp. MB15. Furthermore, the application of the simplified synthetic community suppressed root rot caused by Fusarium oxysporum, promoted plant growth, and increased peanut yields under continuous monocropping conditions. The resistance of synII to F. oxysporum is related to the increased activity of defense enzymes. In addition, synII application significantly increased shoot and root biomass, and yield by 35.56%, 81.19%, and 34.31%, respectively. Collectively, our results suggest that the reshaping of root core microbiota plays an important role in the probiotic-mediated adaptability of plants under adverse environments.
Collapse
Affiliation(s)
- Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiao-Han Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
42
|
Hu JP, Zhang MX, Lü ZL, He YY, Yang XX, Khan A, Xiong YC, Fang XL, Dong QM, Zhang JL. Grazing practices affect phyllosphere and rhizosphere bacterial communities of Kobresia humilis by altering their network stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165814. [PMID: 37517723 DOI: 10.1016/j.scitotenv.2023.165814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The primary utilization strategy for meadow grasslands on the Qinghai-Tibet Plateau (QTP) is livestock grazing. This practice is considered as one of the major drivers of plant-associated bacterial community construction and changes in soil properties. The species of Kobresia humilis is considered as the most dominant one in grasslands. However, how different grazing practices affect the phyllosphere and rhizosphere bacterial communities of K. humilis is unknown. To address this issue, the effects of the grazing enclosure (GE), single-species grazing (YG and SG, representing yak only and sheep only, respectively), and different ratios of grazing (ratio of yak to sheep is 1:2, 1:4, and 1:6, represented by MG1:2, MG1:4, and MG1:6, respectively) on the dominant plant of K. humilis, it's phyllosphere and rhizosphere bacteria, and soil properties were investigated using artificially controlled grazing and grazing enclosure. Our data showed that grazing enclosure enhanced vegetation coverage, and rhizosphere bacterial richness and diversity, while reduced plant number and bacterial network stability of K. humilis. The NO3--N, K+, and Cl- concentrations were lower under grazing compared to GE. SG reduced the concentration of NH4+-N, TN, K+, and Na+ compared to YG. Moderate grazing intensity had a lower relative abundance of the r-strategists (Bacteroidota and Gammaproteobacteria) with higher bacterial network stability. Yak and sheep grazing showed reversed impacts on the bacterial network stability between the phyllosphere and rhizosphere of K. humilis. Proteobacteria and Actinobacteriota were identified in the molecular ecological network analysis as keystone taxa in the phyllosphere and rhizosphere networks, respectively, under all treatments. This study explained why sheep grazing has more adverse effects on grazing-tolerant grass species, K. humilis, than yak grazing, and will contribute to a better understanding of the impacts of different grazing practices and grazing enclosure on alpine grassland ecosystems on the QTP.
Collapse
Affiliation(s)
- Jin-Peng Hu
- Center for Grassland Microbiome; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ming-Xu Zhang
- Center for Grassland Microbiome; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhao-Long Lü
- Center for Grassland Microbiome; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan-Yuan He
- Center for Grassland Microbiome; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Xia Yang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, People's Republic of China
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiang-Ling Fang
- Center for Grassland Microbiome; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Quan-Min Dong
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, People's Republic of China.
| | - Jin-Lin Zhang
- Center for Grassland Microbiome; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
43
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
44
|
Feng H, Fu R, Luo J, Hou X, Gao K, Su L, Xu Y, Miao Y, Liu Y, Xu Z, Zhang N, Shen Q, Xun W, Zhang R. Listening to plant's Esperanto via root exudates: reprogramming the functional expression of plant growth-promoting rhizobacteria. THE NEW PHYTOLOGIST 2023; 239:2307-2319. [PMID: 37357338 DOI: 10.1111/nph.19086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Rhizomicrobiome plays important roles in plant growth and health, contributing to the sustainable development of agriculture. Plants recruit and assemble the rhizomicrobiome to satisfy their functional requirements, which is widely recognized as the 'cry for help' theory, but the intrinsic mechanisms are still limited. In this study, we revealed a novel mechanism by which plants reprogram the functional expression of inhabited rhizobacteria, in addition to the de novo recruitment of soil microbes, to satisfy different functional requirements as plants grow. This might be an efficient and low-cost strategy and a substantial extension to the rhizomicrobiome recruitment theory. We found that the plant regulated the sequential expression of genes related to biocontrol and plant growth promotion in two well-studied rhizobacteria Bacillus velezensis SQR9 and Pseudomonas protegens CHA0 through root exudate succession across the plant developmental stages. Sixteen key chemicals in root exudates were identified to significantly regulate the rhizobacterial functional gene expression by high-throughput qPCR. This study not only deepens our understanding of the interaction between the plant-rhizosphere microbiome, but also provides a novel strategy to regulate and balance the different functional expression of the rhizomicrobiome to improve plant health and growth.
Collapse
Affiliation(s)
- Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
- College of Agriculture, Henan University, Zhengzhou, 450046, China
| | - Ruixin Fu
- School of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Jiayu Luo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueqin Hou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lv Su
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Xu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang, 050021, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
45
|
Kong W, Qiu L, Ishii S, Jia X, Su F, Song Y, Hao M, Shao M, Wei X. Contrasting response of soil microbiomes to long-term fertilization in various highland cropping systems. ISME COMMUNICATIONS 2023; 3:81. [PMID: 37596350 PMCID: PMC10439144 DOI: 10.1038/s43705-023-00286-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Soil microbiomes play important roles in supporting agricultural ecosystems. However, it is still not well-known how soil microbiomes and their functionality respond to fertilization in various cropping systems. Here we examined the effects of 36 years of phosphorus, nitrogen, and manure application on soil bacterial communities, functionality and crop productivity in three contrasting cropping systems (i.e., continuous leguminous alfalfa (AC), continuous winter wheat (WC), and grain-legume rotation of winter wheat + millet - pea - winter wheat (GLR)) in a highland region of China's Loess Plateau. We showed that long-term fertilization significantly affected soil bacterial communities and that the effects varied with cropping system. Compared with the unfertilized control, fertilization increased soil bacterial richness and diversity in the leguminous AC system, whereas it decreased those in the GLR system. Fertilization, particularly manure application, enlarged the differences in soil bacterial communities among cropping systems. Soil bacterial communities were mostly affected by the soil organic carbon and nitrogen contents in the WC and GLR systems, but by the soil available phosphorous content in the AC system. Crop productivity was closely associated with the abundance of fertilization-responsive taxa in the three cropping systems. Our study highlights that legume and non-legume cropping systems should be disentangled when assessing the responses of soil microbial communities to long-term fertilizer application.
Collapse
Affiliation(s)
- Weibo Kong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Xiaoxu Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fuyuan Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Yu Song
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Mingde Hao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shaanxi, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
46
|
Qin H, Cai R, Wang Y, Deng X, Chen J, Xing J. Intensive management facilitates bacterial invasion on soil microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117963. [PMID: 37105104 DOI: 10.1016/j.jenvman.2023.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Intensive management has greatly altered natural forests, especially forests around the world are increasingly being converted into economic plantations. Soil microbiota are critical for community functions in all ecosystems, but the effects of microbial disturbance during economic plantation remain unclear. Here, we used Escherichia coli O157:H7, a model pathogenic species for bacterial invasion, to assess the invasion impacts on the soil microbial community under intensive management. The E. coli invasion was tracked for 135 days to explore the instant and legacy impacts on the resident community. Our results showed that bamboo economic plantations altered soil abiotic and biotic properties, especially increasing pH and community diversity. Higher pH in bamboo soils resulted in longer pathogen survivals than in natural hardwood soils, indicating that pathogen suppression during intensive management should arouse our attention. A longer invasion legacy effect on the resident community (P < 0.05) were found in bamboo soils underlines the need to quantify the soil resilience even when the invasion was unsuccessful. Deterministic processes drove community assembly in bamboo plantations, and this selection acted more strongly during by E. coli invasion than in hardwood soils. We also showed more associated co-occurrence patterns in bamboo plantations, suggesting more complex potential interactions within the microbial community. Apart from community structure, community functions are also strongly related to the resident species associated with invaders. These findings provide new perspectives to understand intensive management facilitates the bacterial invasion, and the impacts would leave potential risks on environmental and human health.
Collapse
Affiliation(s)
- Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruihang Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Yanan Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiajia Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
47
|
Zeeshan Ul Haq M, Yu J, Yao G, Yang H, Iqbal HA, Tahir H, Cui H, Liu Y, Wu Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int J Mol Sci 2023; 24:12470. [PMID: 37569843 PMCID: PMC10419402 DOI: 10.3390/ijms241512470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
48
|
Yuan T, Ren W, Wang Z, Fry EL, Tang S, Yin J, Zhang J, Jia Z. How does the pattern of root metabolites regulating beneficial microorganisms change with different grazing pressures? FRONTIERS IN PLANT SCIENCE 2023; 14:1180576. [PMID: 37484473 PMCID: PMC10361787 DOI: 10.3389/fpls.2023.1180576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Grazing disturbance can change the structure of plant rhizosphere microbial communities and thereby alter the feedback to promote plant growth or induce plant defenses. However, little is known about how such changes occur and vary under different grazing pressures or the roles of root metabolites in altering the composition of rhizosphere microbial communities. In this study, the effects of different grazing pressures on the composition of microbial communities were investigated, and the mechanisms by which different grazing pressures changed rhizosphere microbiomes were explored with metabolomics. Grazing changed composition, functions, and co-expression networks of microbial communities. Under light grazing (LG), some saprophytic fungi, such as Lentinus sp., Ramichloridium sp., Ascobolus sp. and Hyphoderma sp., were significantly enriched, whereas under heavy grazing (HG), potentially beneficial rhizobacteria, such as Stenotrophomonas sp., Microbacterium sp., and Lysobacter sp., were significantly enriched. The beneficial mycorrhizal fungus Schizothecium sp. was significantly enriched in both LG and HG. Moreover, all enriched beneficial microorganisms were positively correlated with root metabolites, including amino acids (AAs), short-chain organic acids (SCOAs), and alkaloids. This suggests that these significantly enriched rhizosphere microbial changes may be caused by these differential root metabolites. Under LG, it is inferred that root metabolites, especially AAs such as L-Histidine, may regulate specific saprophytic fungi to participate in material transformations and the energy cycle and promote plant growth. Furthermore, to help alleviate the stress of HG and improve plant defenses, it is inferred that the root system actively regulates the synthesis of these root metabolites such as AAs, SCOAs, and alkaloids under grazing interference, and then secretes them to promote the growth of some specific plant growth-promoting rhizobacteria and fungi. To summarize, grasses can regulate beneficial microorganisms by changing root metabolites composition, and the response strategies vary under different grazing pressure in typical grassland ecosystems.
Collapse
Affiliation(s)
- Ting Yuan
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhaoming Wang
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Shiming Tang
- Key Laboratory of Model Innovation in Forage Production Efficiency, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jingjing Yin
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiatao Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhenyu Jia
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| |
Collapse
|
49
|
Lin BJ, Li RC, Liu KC, Pelumi Oladele O, Xu ZY, Lal R, Zhao X, Zhang HL. Management-induced changes in soil organic carbon and related crop yield dynamics in China's cropland. GLOBAL CHANGE BIOLOGY 2023; 29:3575-3590. [PMID: 37021594 DOI: 10.1111/gcb.16703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 06/06/2023]
Abstract
Enhancing soil organic carbon (SOC) sequestration and food supply are vital for human survival when facing climate change. Site-specific best management practices (BMPs) are being promoted for adoption globally as solutions. However, how SOC and crop yield are related to each other in responding to BMPs remains unknown. Here, path analysis based on meta-analysis and machine learning was conducted to identify the effects and potential mechanisms of how the relationship between SOC and crop yield responds to site-specific BMPs in China. The results showed that BMPs could significantly enhance SOC and maintain or increase crop yield. The maximum benefits in SOC (30.6%) and crop yield (79.8%) occurred in mineral fertilizer combined with organic inputs (MOF). Specifically, the optimal SOC and crop yield would be achieved when the areas were arid, soil pH was ≥7.3, initial SOC content was ≤10 g kg-1 , duration was >10 years, and the nitrogen (N) input level was 100-200 kg ha-1 . Further analysis revealed that the original SOC level and crop yield change showed an inverted V-shaped structure. The association between the changes in SOC and crop yield might be linked to the positive role of the nutrient-mediated effect. The results generally suggested that improving the SOC can strongly support better crop performance. Limitations in increasing crop yield still exist due to low original SOC level, and in regions where the excessive N inputs, inappropriate tillage or organic input is inadequate and could be diminished by optimizing BMPs in harmony with site-specific conditions.
Collapse
Affiliation(s)
- Bai-Jian Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Ruo-Chen Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Ke-Chun Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Olatunde Pelumi Oladele
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Zhi-Yu Xu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| |
Collapse
|
50
|
Cao Y, Du P, Zhang J, Ji J, Xu J, Liang B. Dopamine alleviates cadmium stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed by high-throughput sequencing and soil metabolomics. HORTICULTURE RESEARCH 2023; 10:uhad112. [PMID: 37577402 PMCID: PMC10419553 DOI: 10.1093/hr/uhad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Dopamine has demonstrated promise as a stress-relief substance. However, the function of dopamine in Cd tolerance and its mechanism remains largely unknown. The current study was performed to investigate the mechanism of dopamine on alleviating apple Cd stress through regular application of CdCl2 and dopamine solution to potting soil. The results indicated that dopamine significantly reduced reactive oxygen species (ROS) and Cd accumulation and alleviated the inhibitory effect of Cd stress on the growth of apple plants through activation of the antioxidant system, enhancement of photosynthetic capacity, and regulation of gene expression related to Cd absorption and detoxification. The richness of the rhizosphere microbial community increased, and community composition and assembly were affected by dopamine treatment. Network analysis of microbial communities showed that the numbers of nodes and total links increased significantly after dopamine treatment, while the keystone species shifted. Linear discriminant analysis effect size indicated that some biomarkers were significantly enriched after dopamine treatment, suggesting that dopamine induced plants to recruit potentially beneficial microorganisms (Pseudoxanthomonas, Aeromicrobium, Bradyrhizobium, Frankia, Saccharimonadales, Novosphingobium, and Streptomyces) to resist Cd stress. The co-occurrence network showed several metabolites that were positively correlated with relative growth rate and negatively correlated with Cd accumulation, suggesting that potentially beneficial microorganisms may be attracted by several metabolites (L-threonic acid, profenamine, juniperic acid and (3β,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid). Our results demonstrate that dopamine alleviates Cd stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed. This study provides an effective means to reduce the harm to agricultural production caused by heavy metals.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiran Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiahao Ji
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|