1
|
Li W, Xia M, Zeng H, Lin H, Teschendorff AE, Gao X, Wang S. Longitudinal analysis of epigenome-wide DNA methylation reveals novel loci associated with BMI change in East Asians. Clin Epigenetics 2024; 16:70. [PMID: 38802969 PMCID: PMC11131215 DOI: 10.1186/s13148-024-01679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Obesity is a global public health concern linked to chronic diseases such as cardiovascular disease and type 2 diabetes (T2D). Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may contribute to obesity. However, the molecular mechanism underlying the longitudinal change of BMI has not been well-explored, especially in East Asian populations. METHODS This study performed a longitudinal epigenome-wide association analysis of DNA methylation to uncover novel loci associated with BMI change in 533 individuals across two Chinese cohorts with repeated DNA methylation and BMI measurements over four years. RESULTS We identified three novel CpG sites (cg14671384, cg25540824, and cg10848724) significantly associated with BMI change. Two of the identified CpG sites were located in regions previously associated with body shape and basal metabolic rate. Annotation of the top 20 BMI change-associated CpGs revealed strong connections to obesity and T2D. Notably, these CpGs exhibited active regulatory roles and located in genes with high expression in the liver and digestive tract, suggesting a potential regulatory pathway from genome to phenotypes of energy metabolism and absorption via DNA methylation. Cross-sectional and longitudinal EWAS comparisons indicated different mechanisms between CpGs related to BMI and BMI change. CONCLUSION This study enhances our understanding of the epigenetic dynamics underlying BMI change and emphasizes the value of longitudinal analyses in deciphering the complex interplay between epigenetics and obesity.
Collapse
Affiliation(s)
- Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Renzetti S, Gennings C, Calza S. A weighted quantile sum regression with penalized weights and two indices. Front Public Health 2023; 11:1151821. [PMID: 37533534 PMCID: PMC10392701 DOI: 10.3389/fpubh.2023.1151821] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Background New statistical methodologies were developed in the last decade to face the challenges of estimating the effects of exposure to multiple chemicals. Weighted Quantile Sum (WQS) regression is a recent statistical method that allows estimating a mixture effect associated with a specific health effect and identifying the components that characterize the mixture effect. Objectives In this study, we propose an extension of WQS regression that estimates two mixture effects of chemicals on a health outcome in the same model through the inclusion of two indices, one in the positive direction and one in the negative direction, with the introduction of a penalization term. Methods To evaluate the performance of this new model we performed both a simulation study and a real case study where we assessed the effects of nutrients on obesity among adults using the National Health and Nutrition Examination Survey (NHANES) data. Results The method showed good performance in estimating both the regression parameter and the weights associated with the single elements when the penalized term was set equal to the magnitude of the Akaike information criterion of the unpenalized WQS regression. The two indices further helped to give a better estimate of the parameters [Positive direction Median Error (PME): 0.022; Negative direction Median Error (NME): -0.044] compared to the standard WQS without the penalization term (PME: -0.227; NME: 0.215). In the case study, WQS with two indices was able to find a significant effect of nutrients on obesity in both directions identifying sodium and magnesium as the main actors in the positive and negative association, respectively. Discussion Through this work, we introduced an extension of WQS regression that improved the accuracy of the parameter estimates when considering a mixture of elements that can have both a protective and a harmful effect on the outcome; and the advantage of adding a penalization term when estimating the weights.
Collapse
Affiliation(s)
- Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
3
|
Tang Y, Yu Y, Li R, Tao Z, Zhang L, Wang X, Qi X, Li Y, Meng T, Qu H, Zhou M, Xu J, Liu J. Phenylalanine promotes alveolar macrophage pyroptosis via the activation of CaSR in ARDS. Front Immunol 2023; 14:1114129. [PMID: 37377971 PMCID: PMC10291621 DOI: 10.3389/fimmu.2023.1114129] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality rates in patients admitted to the intensive care unit (ICU) patients with overwhelming inflammation considered to be an internal cause. The authors' previous study indicated a potential correlation between phenylalanine levels and lung injury. Phenylalanine induces inflammation by enhancing the innate immune response and the release of pro-inflammatory cytokines. Alveolar macrophages (AMs) can respond to stimuli via synthesis and release of inflammatory mediators through pyroptosis, one form of programmed cell death acting through the nucleotide-binging oligomerization domain-like receptors protein 3 (NLRP3) signaling pathway, resulting in the cleavage of caspase-1 and gasdermin D (GSDMD) and the release of interleukin (IL) -1β and IL-18, aggravating lung inflammation and injury in ARDS. In this study, phenylalanine promoted pyroptosis of AMs, which exacerbated lung inflammation and ARDS lethality in mice. Furthermore, phenylalanine initiated the NLRP3 pathway by activating the calcium-sensing receptor (CaSR). These findings uncovered a critical mechanism of action of phenylalanine in the context of ARDS and may be a new treatment target for ARDS.
Collapse
Affiliation(s)
- Yiding Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheying Tao
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Qi
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianjiao Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Cardiac Surgery, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Iamartino L, Brandi ML. The calcium-sensing receptor in inflammation: Recent updates. Front Physiol 2022; 13:1059369. [PMID: 36467702 PMCID: PMC9716066 DOI: 10.3389/fphys.2022.1059369] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
The Calcium-Sensing Receptor (CaSR) is a member of the class C of G-proteins coupled receptors (GPCRs), it plays a pivotal role in calcium homeostasis by directly controlling calcium excretion in the kidneys and indirectly by regulating parathyroid hormone (PTH) release from the parathyroid glands. The CaSR is found to be ubiquitously expressed in the body, playing a plethora of additional functions spanning from fluid secretion, insulin release, neuronal development, vessel tone to cell proliferation and apoptosis, to name but a few. The present review aims to elucidate and clarify the emerging regulatory effects that the CaSR plays in inflammation in several tissues, where it mostly promotes pro-inflammatory responses, with the exception of the large intestine, where contradictory roles have been recently reported. The CaSR has been found to be expressed even in immune cells, where it stimulates immune response and chemokinesis. On the other hand, CaSR expression seems to be boosted under inflammatory stimulus, in particular, by pro-inflammatory cytokines. Because of this, the CaSR has been addressed as a key factor responsible for hypocalcemia and low levels of PTH that are commonly found in critically ill patients under sepsis or after burn injury. Moreover, the CaSR has been found to be implicated in autoimmune-hypoparathyroidism, recently found also in patients treated with immune-checkpoint inhibitors. Given the tight bound between the CaSR, calcium and vitamin D metabolism, we also speculate about their roles in the pathogenesis of severe acute respiratory syndrome coronavirus-19 (SARS-COVID-19) infection and their impact on patients' prognosis. We will further explore the therapeutic potential of pharmacological targeting of the CaSR for the treatment and management of aberrant inflammatory responses.
Collapse
Affiliation(s)
- Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
6
|
Zulkifli MF, Radzi MNFM, Saludes JP, Dalisay DS, Ismail WIW. Potential of Natural Honey in Controlling Obesity and its Related Complications. J Evid Based Integr Med 2022; 27:2515690X221103304. [PMID: 36263596 PMCID: PMC9585569 DOI: 10.1177/2515690x221103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Honey has a long history of therapeutic properties for multiple diseases, including inflammation and oxidative stress. This review aimed to provide a better understanding and renewed interest in the potential role of honey in obesity control, obesity-related diseases treatment and weight management, with specific reference to its components and the effect of honey overall. There is compelling evidence that honey possesses the desired properties for this purpose, as seen in the in vitro, in silico, in vivo and clinical analyses discussed in this review. This review also highlights the components potentially responsible for the health benefits of honey. Honey and its components reduce blood sugar levels, improve insulin sensitivity and lipid metabolism by reducing triglycerides, and reduce total cholesterol and LDL levels while increasing HDL levels that prevent excessive weight gain and reduce the risk of obesity and its complications. Further controlled studies are necessary to validate the role of honey in the management of obesity, both as a preventive and as a therapeutic agent.
Collapse
Affiliation(s)
- Muhammad Faiz Zulkifli
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Naim Fadhli Mohd Radzi
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Jonel P. Saludes
- Center for Chemical Biology & Biotechnology (C2B2) and Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology & Biotechnology (C2B2) and Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Wan Iryani Wan Ismail
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia,Biological Security and Sustainability (BIOSES) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia,Wan Iryani Wan Ismail, Cell Signaling and Biotechnology Research Group (CesBTech), Biological Security and Sustainability (BIOSES) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21300, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
7
|
Das S, Choudhuri D. Dietary calcium regulates the risk renal injury in high fat diet induced obese rats by regulating renal lipid metabolism, oxidative stress and inflammation. Arch Physiol Biochem 2022; 128:1039-1049. [PMID: 32255372 DOI: 10.1080/13813455.2020.1746812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONTEXT The antiobesity effect of dietary calcium by preventing fat accumulation and weight gain was well established from several epidemiological and animal studies. OBJECTIVE To evaluate the effect of dietary calcium against obesity-associated with renal injury in high fat diet induced obese rats. Materials and Methods: Obesity was induced by high fat diet (HFD) and then given either low or high calcium HFD (0.25% and 1.0%) for another 30 days. RESULTS The results showed that 1.0% high calcium group was effective in reducing renal lipogenesis activity, lipid accumulation, fatty acid synthase (FAS) activity, acetyl coenzyme A carboxylase (ACC) expression, oxidative stress, inflammation and increased the adenosine monophosphate kinase (AMPK) expression. DISCUSSION AND CONCLUSION Downregulation of renal lipid accumulation by high calcium diet through AMPK mediated lipogenesis activity, oxidative stress and the inflammatory response seemed to prevent the renal injury in high fat diet (HFD) induced obese rats.
Collapse
Affiliation(s)
- Sandeep Das
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, Agartala, India
| | - Dipayan Choudhuri
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, Agartala, India
| |
Collapse
|
8
|
Sundararaman SS, Peters LJF, Jansen Y, Gencer S, Yan Y, Nazir S, Bonnin Marquez A, Kahles F, Lehrke M, Biessen EAL, Jankowski J, Weber C, Döring Y, van der Vorst EPC. Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoe -/- mice. Sci Rep 2021; 11:10409. [PMID: 34001955 PMCID: PMC8128899 DOI: 10.1038/s41598-021-89893-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
The calcium sensing receptor (CaSR) is a G-protein coupled receptor that especially plays an important role in the sensing of extracellular calcium to maintain its homeostasis. Several in-vitro studies demonstrated that CaSR plays a role in adipose tissue metabolism and inflammation, resulting in systemic inflammation and contributing to atherosclerosis development. The aim of this study was to investigate whether adipocyte CaSR plays a role in adipose tissue inflammation in-vivo and atherosclerosis development. By using a newly established conditional mature adipocyte specific CaSR deficient mouse on a hyperlipidemic and atherosclerosis prone Apoe−/− background it could be shown that CaSR deficiency in adipocytes does neither contribute to initiation nor to progression of atherosclerotic plaques as judged by the unchanged lesion size or composition. Additionally, CaSR deficiency did not influence gonadal visceral adipose tissue (vAT) inflammation in-vivo, although a small decrease in gonadal visceral adipose cholesterol content could be observed. In conclusion, adipocyte CaSR seems not to be involved in vAT inflammation in-vivo and does not influence atherosclerosis development in hyperlipidemic Apoe−/− mice.
Collapse
Affiliation(s)
- Sai Sahana Sundararaman
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Linsey J F Peters
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sumra Nazir
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Bonnin Marquez
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Florian Kahles
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Erik A L Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Emiel P C van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany. .,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
9
|
Altered intestinal epithelial nutrient transport: an underappreciated factor in obesity modulated by diet and microbiota. Biochem J 2021; 478:975-995. [PMID: 33661278 DOI: 10.1042/bcj20200902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Dietary nutrients absorbed in the proximal small intestine and assimilated in different tissues have a profound effect on overall energy homeostasis, determined by a balance between body's energy intake and expenditure. In obesity, altered intestinal absorption and consequently tissue assimilation of nutrients may disturb the energy balance leading to metabolic abnormalities at the cellular level. The absorption of nutrients such as sugars, amino acids and fatty acids released from food digestion require high-capacity transporter proteins expressed in the intestinal epithelial absorptive cells. Furthermore, nutrient sensing by specific transporters/receptors expressed in the epithelial enteroendocrine cells triggers release of gut hormones involved in regulating energy homeostasis via their effects on appetite and food intake. Therefore, the intestinal epithelial cells play a pivotal role in the pathophysiology of obesity and associated complications. Over the past decade, gut microbiota has emerged as a key factor contributing to obesity via its effects on digestion and absorption of nutrients in the small intestine, and energy harvest from dietary fiber, undigested component of food, in the large intestine. Various mechanisms of microbiota effects on obesity have been implicated. However, the impact of obesity-associated microbiota on the intestinal nutrient transporters needs extensive investigation. This review marshals the limited studies addressing the altered structure and function of the gut epithelium in obesity with special emphasis on nutrient transporters and role of diet and microbiota. The review also discusses the thoughts and controversies and research gaps in this field.
Collapse
|
10
|
Das S, Choudhuri D. Role of dietary calcium and its possible mechanism against metabolic disorders: A concise review. J Food Biochem 2021; 45:e13697. [PMID: 33694258 DOI: 10.1111/jfbc.13697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
The global prevalence of metabolic disorders including hypertension, dyslipidemia, insulin resistance, nonalcoholic fatty liver, and cardiovascular diseases seemed to affect people of all ages cutting across the national, economic, and demographic barrier. Therefore, the prevention of metabolic disorders is considered of paramount importance. The dietary role of nutrients including vitamins and minerals is one of the recommended preventive measures against metabolic disorders in modern society. Recently, dietary calcium, a common nutrient not only showed a beneficial effect against obesity through weight management, but also gained great attention against the risk of metabolic disorders. Though dietary calcium shows several beneficial effects against metabolic disorders but some inconsistent results were also reported. So, the present review aims to extract recent knowledge as well as their possible underlying mechanisms regarding the role of dietary calcium against metabolic disorders. The present review also discusses the negative impact as well as prospect of calcium intake on health issues. In summary, high calcium diet prevents the harmful consequences of metabolic disorders by regulating hormonal actions, alteration in intracellular calcium level, renin-angiotensin system, intestinal fat absorption, fecal fat excretion, lipid metabolism, carbohydrate metabolism, inflammation, and oxidative stress which together improve the metabolic health of an individual. PRACTICAL APPLICATIONS: Metabolic disorder is a global health issue across all sections of society and is growing rapidly in spite of several attempts by the scientific community to prevent it. Recently dietary calcium gained great attention in the last few years for its role in the management and treatment of metabolic disorders. The current review highlights the beneficial role of dietary calcium against several metabolic complications by exploring their underlying mechanisms at cellular level. This study will provide valuable information regarding the recommendation of dietary calcium in health policy as well as its inclusion in the dietary chart through calcium-rich foods and/or taking calcium supplements which can be a useful approach in preventing the risk of metabolic disorder depending on the health status of an individual.
Collapse
Affiliation(s)
- Sandeep Das
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Agartala, India
| | - Dipayan Choudhuri
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Agartala, India
| |
Collapse
|
11
|
D’Auria E, Borsani B, Pendezza E, Bosetti A, Paradiso L, Zuccotti GV, Verduci E. Complementary Feeding: Pitfalls for Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:7931. [PMID: 33137971 PMCID: PMC7662522 DOI: 10.3390/ijerph17217931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
The term complementary feeding is defined as the period in which a progressive reduction of breastfeeding or infant-formula feeding takes place, while the infant is gradually introduced to solid foods. It is a crucial time in the infant's life, not only because of the rapid changes in nutritional requirements and the consequent impact on infant growth and development, but also for a generation of lifelong flavor preferences and dietary habits that will influence mid and long-term health. There is an increasing body of evidence addressing the pivotal role of nutrition, especially during the early stages of life, and its link to the onset of chronic non-communicable diseases, such as obesity, hypertension, diabetes, and allergic diseases. It is clear that the way in which a child is introduced to complementary foods may have effects on the individual's entire life. The aim of this review is to discuss the effects of complementary feeding timing, composition, and mode on mid and long-term health outcomes, in the light of the current evidence. Furthermore, we suggest practical tips for a healthy approach to complementary feeding, aiming at a healthy future, and highlight gaps to be filled.
Collapse
Affiliation(s)
- Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20122 Milan, Italy; (B.B.); (E.P.); (A.B.); (L.P.); (G.V.Z.); (E.V.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Das S, Choudhuri D. Dietary calcium regulates the insulin sensitivity by altering the adipokine secretion in high fat diet induced obese rats. Life Sci 2020; 250:117560. [DOI: 10.1016/j.lfs.2020.117560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/30/2022]
|
13
|
McKay J, Ho S, Jane M, Pal S. Overweight & obese Australian adults and micronutrient deficiency. BMC Nutr 2020; 6:12. [PMID: 32377370 PMCID: PMC7193396 DOI: 10.1186/s40795-020-00336-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Micronutrients have been implicated as an important factor in regulating various metabolic processes and thus playing a role in the aetiology of obesity. Many studies have been conducted worldwide that clearly show a direct link between obesity and micronutrient deficiencies. The aim of this study was to assess the nutritional status of overweight and obese Australian adults to see if there were any associations between BMI and serum micronutrient levels. Methods Baseline serum micronutrient data of overweight and obese individuals with a body mass index (BMI) between 25 and 40 kg/m2 and aged between 18 and 65 years was compared to the clinical micronutrient reference ranges for associations between BMI and micronutrient status. Results There were significant negative associations between BMI and serum vitamin D (p = 0.044), folate (p = 0.025), magnesium (p = 0.010) and potassium (p = 0.023). Conclusions Overweight and obesity appears to impact on the bioavailability and utilisation of micronutrients with absorption, excretion, storage/distribution (fat sequestering, tissue dispersion), metabolism (catabolic losses, possibly oxidative), increased physiologic requirements, and lower absolute total dietary intake being the current theory for observed differences. While vitamins D, folate, magnesium and potassium showed a negative relationship to BMI, other micronutrients did not. This may be explained by the fortification of certain processed foods, or the possibility of overweight and obese people eating more to satisfy their nutritional requirements.
Collapse
Affiliation(s)
- Jenny McKay
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia
| | - Suleen Ho
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia
| | - Monica Jane
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia
| | - Sebely Pal
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia
| |
Collapse
|
14
|
Reza AM, Tavakoli J, Zhou Y, Qin J, Tang Y. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Grijalva-Avila J, Villanueva-Fierro I, Lares-Asseff I, Chairez-Hernández I, Rivera-Sanchez G, Martínez-Estrada S, Martínez-Rivera I, Quiñones LA, Loera-Castañeda V. Milk intake and IGF-1 rs6214 polymorphism as protective factors to obesity. Int J Food Sci Nutr 2019; 71:388-393. [DOI: 10.1080/09637486.2019.1666805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Ismael Lares-Asseff
- Instituto Politécnico, Nacional-CIIDIR Unidad Durango, Durango, México
- Latin-American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | - Gildardo Rivera-Sanchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | | | | | - Luis A. Quiñones
- Latin-American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Verónica Loera-Castañeda
- Instituto Politécnico, Nacional-CIIDIR Unidad Durango, Durango, México
- Latin-American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
16
|
Effect of Dietary Calcium on Adipogenesis Program and Its Role in Adipocyte Dysfunction in Male Wistar Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40011-019-01135-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Swanson K, Kutzler M, Bionaz M. Cow milk does not affect adiposity in growing piglets as a model for children. J Dairy Sci 2019; 102:4798-4807. [PMID: 30904312 DOI: 10.3168/jds.2018-15201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
The effect of milk consumption on childhood obesity is unclear and a direct demonstration of an association is needed. In the present study, we used piglets as a model for prepubertal children to determine the effect of milk on adipose tissue. Two studies were conducted: study 1 with 5-wk-old male piglets (n = 8) and study 2 with 8- to 9-wk-old male piglets (n = 12). The piglets were fed a normal growing diet and randomly assigned to receive daily either 750 mL of whole cow milk or an isocaloric maltodextrin solution (control). For approximately 12 wk, body weight, feed intake, and subcutaneous back fat thickness were determined ultrasonographically and recorded. At euthanasia, back and neck fat thicknesses were measured and samples of back fat were collected for adipose histology. In study 1, but not study 2, piglets receiving milk grew more and ate more compared with control. In study 1, both back fat and neck fat thickness were greater in the milk-fed piglets and they had a higher frequency of small adipocytes and a lower frequency of intermediate and large adipocytes compared with controls. In study 2, control pigs had a significantly greater frequency of intermediate adipocytes but the milk-fed piglets tended to have a higher frequency of the largest adipocytes. In conclusion, milk has no apparent causal or consistent effect on adipose tissue in growing piglets.
Collapse
Affiliation(s)
- Katherine Swanson
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - Michelle Kutzler
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331.
| |
Collapse
|
18
|
Dougkas A, Barr S, Reddy S, Summerbell CD. A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. Nutr Res Rev 2019; 32:106-127. [PMID: 30477600 PMCID: PMC6536827 DOI: 10.1017/s0954422418000227] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Existing reviews suggest that milk and other dairy products do not play a role in the development of obesity in childhood, but they do make an important contribution to children's nutrient intake. It is thus curious that public health advice on the consumption of dairy products for children is often perceived as unclear. The present review aimed to provide an overview of the totality of the evidence on the association between milk and other dairy products, and obesity and indicators of adiposity, in children. Our search identified forty-three cross-sectional studies, thirty-one longitudinal cohort studies and twenty randomised controlled trials. We found that milk and other dairy products are consistently found to be not associated, or inversely associated, with obesity and indicators of adiposity in children. Adjustment for energy intake tended to change inverse associations to neutral. Also, we found little evidence to suggest that the relationship varied by type of milk or dairy product, or age of the children, although there was a dearth of evidence for young children. Only nine of the ninety-four studies found a positive association between milk and other dairy products and body fatness. There may be some plausible mechanisms underlying the effect of milk and other dairy products on adiposity that influence energy and fat balance, possibly through fat absorption, appetite or metabolic activity of gut microbiota. In conclusion, there is little evidence to support a concern to limit the consumption of milk and other dairy products for children on the grounds that they may promote obesity.
Collapse
Affiliation(s)
- Anestis Dougkas
- Institut Paul Bocuse Research Centre, Institut Paul Bocuse, Château du Vivier, BP 25, 69131 Ecully Cedex, France
| | - Suzanne Barr
- Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
19
|
Nielsen FH. The Problematic Use of Dietary Reference Intakes to Assess Magnesium Status and Clinical Importance. Biol Trace Elem Res 2019; 188:52-59. [PMID: 30484139 DOI: 10.1007/s12011-018-1573-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023]
Abstract
Determination of the public health concern about magnesium (Mg) in health and disease has been confounded by the lack of a practical measure of status. This has resulted in a lack of consistency in associating Mg deficiency with specific pathological conditions. Some attempts at associating Mg with a chronic disease have used the Dietary Reference Intakes (DRIs) as a status assessment measure. Use of current DRIs for Mg is problematic because recent evidence suggests that they should be updated and based on body weight. An evidence-based suggested Estimated Average Requirement (EAR) and Recommended Dietary Allowance (RDA) for a 70-kg individual is 175 and 250 mg/day, respectively. However, numerous dietary and physiological factors can affect the need for Mg and thus affect the use of the current or suggested new DRIs to assess Mg status. Calcium intakes above normal requirements can decrease Mg balance and exacerbate signs of Mg deficiency. Mg deficiency apparently occurs often in obesity because of increased need to counteract the inflammatory stress induced by adipose tissue dysfunction. Deficiency in anti-oxidant nutrients such as vitamin E and selenium can exacerbate a response to low dietary Mg indicated by increased oxidative stress which can lead to chronic disease. Dietary modifiers of Mg absorption and excretion affect balance and thus the need for Mg. Factors decreasing Mg balance include low dietary protein and non-fermentable fiber, while factors that can increase balance include fructose and fermentable fiber and fructose-containing oligosaccharides. Use of the DRIs to assess the Mg status of a population or group needs to consider their physiological characteristics and dietary habits and be aware that the DRIs may need updating. The DRIs only can be considered a component of a toolbox that presently includes serum Mg concentration and the daily urinary Mg excretion to assess the Mg status of an individual.
Collapse
|
20
|
Saeedi P, Shavandi A, Skidmore PML. What Do We Know about Diet and Markers of Cardiovascular Health in Children: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E548. [PMID: 30769798 PMCID: PMC6406429 DOI: 10.3390/ijerph16040548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Chronic diseases such as cancer, diabetes, and cardiovascular diseases (CVD) are the main health concerns in the 21st century, with CVD as the number one cause of mortality worldwide. Although CVD hard endpoints such as stroke or heart attack do not usually occur in children, evidence shows that the manifestation of CVD risk factors begins in childhood, preceding clinical complications of CVD in adulthood. Dietary intake is a modifiable risk factor that has been shown to make a substantial contribution to the risk of CVD in adulthood. However, less is known about the association between dietary intake and markers of cardiovascular health in children. This review summarises the current evidence on the relationship between dietary intake and markers of cardiovascular health including traditional CVD risk factors, physical fitness, and indices of arterial stiffness and wave reflection in children. Original research published in English, between January 2008 and December 2018 fulfilling the objective of this review were screened and included. Findings show that adaptation of a healthy lifestyle early in life can be beneficial for reducing the risk of CVD later in life. Furthermore, keeping arterial stiffness low from a young age could be a potential CVD prevention strategy. However, limited studies are available on diet-arterial stiffness relationship in children, and future research is required to better understand this association to aid the development and implementation of evidence-based strategies for preventing CVD-related complications later in life.
Collapse
Affiliation(s)
- Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand.
| | - Amin Shavandi
- BioMatter Unit-Biomass Transformation Lab (BTL), École interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium.
| | - Paula M L Skidmore
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand.
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand.
| |
Collapse
|
21
|
Abstract
We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4–9 %, sufficient to prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some, but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake of seafood.
Collapse
|
22
|
Alomaim H, Griffin P, Swist E, Plouffe LJ, Vandeloo M, Demonty I, Kumar A, Bertinato J. Dietary calcium affects body composition and lipid metabolism in rats. PLoS One 2019; 14:e0210760. [PMID: 30629707 PMCID: PMC6328234 DOI: 10.1371/journal.pone.0210760] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/30/2018] [Indexed: 12/28/2022] Open
Abstract
Calcium (Ca) intakes may affect cardiovascular disease risk by altering body composition (body weight and fat) and serum lipid profile, but results have been inconsistent and the underlying mechanisms are not well understood. The effects of dietary Ca on body composition and lipid metabolism were examined in rats. Male Sprague-Dawley rats were fed high-fat, high-energy diets containing (g/kg) low (0.75Ca, 0.86 ± 0.05; 2Ca, 2.26 ± 0.02), normal (5Ca, 5.55 ± 0.08) or high (10Ca, 11.03 ± 0.17; 20Ca, 21.79 ± 0.15) Ca for 10 weeks. Rats fed the lowest Ca diet (0.75Ca) had lower (p < 0.05) body weight and fat mass compared to other groups. Rats fed the high Ca diets had lower serum total and LDL cholesterol compared to rats fed normal or low Ca. Liver total cholesterol was lower in rats fed high compared to low Ca. In general, liver mRNA expression of genes involved in cholesterol uptake from the circulation (Ldlr), cholesterol synthesis (Hmgcr and Hmgcs1), fatty acid oxidation (Cpt2) and cholesterol esterification (Acat2) were higher in rats fed higher Ca. Apparent digestibility of total trans, saturated, monounsaturated and polyunsaturated fatty acids was lower in rats fed the high compared to the low Ca diets, with the largest effects seen on trans and saturated fatty acids. Fecal excretion of cholesterol and total bile acids was highest in rats fed the highest Ca diet (20Ca). The results suggest little effect of dietary Ca on body composition unless Ca intakes are very low. Decreased bile acid reabsorption and reduced absorption of neutral sterols and saturated and trans fatty acids may contribute to the better serum lipid profile in rats fed higher Ca.
Collapse
Affiliation(s)
- Haya Alomaim
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- King Saud bin Abdulaziz University for Health Sciences, Al Hars Al Watani, Ar Rimayah, Riyadh, Saudi Arabia
| | - Philip Griffin
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Eleonora Swist
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Louise J. Plouffe
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michelle Vandeloo
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Isabelle Demonty
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jesse Bertinato
- Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Barry EL, Lund JL, Westreich D, Mott LA, Ahnen DJ, Beck GJ, Bostick RM, Bresalier RS, Burke CA, Church TR, Rees JR, Robertson DJ, Baron JA. Body mass index, calcium supplementation and risk of colorectal adenomas. Int J Cancer 2018; 144:448-458. [PMID: 30117164 DOI: 10.1002/ijc.31803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
Calcium supplementation (1,200 mg/day) did not significantly reduce colorectal adenomas in our recent randomized, controlled trial (Vitamin D/Calcium Polyp Prevention Study, VCPPS, 2004-2013) in contrast to our previous trial (Calcium Polyp Prevention Study, CPPS, 1988-1996). To reconcile these findings, we identified participant characteristics that differed between the study populations and modified the effect of calcium supplementation on adenomas or high-risk findings (advanced or multiple adenomas). Compared to the CPPS, more participants in the VCPPS were obese (body mass index (BMI) ≥30 kg/m2 ; 37.5% vs. 24.4%) and fewer had normal BMI (BMI <25 kg/m2 ; 18.5% vs. 31%). BMI appeared to modify the effect of calcium supplementation on adenomas and especially on high risk-findings: in the VCPPS, there was a 44% reduction in high-risk findings among individuals whose BMI was normal (RR = 0.56, 95% CI = 0.26-1.23), but not among overweight (RR = 1.09, 95% CI = 0.62-1.91) or obese (RR = 1.54, 95% CI = 0.92-2.57) individuals (pinteraction = 0.03). Similarly, in the CPPS, there was a 56% reduction in high-risk findings among individuals whose BMI was normal (RR = 0.44, 95% CI = 0.26-0.74), but not among overweight (RR = 0.87, 95% CI = 0.55-1.39) or obese (RR = 1.02, 95% CI = 0.57-1.82) individuals (pinteraction = 0.02). Standardization of each trial's findings to the BMI distribution in the other attenuated calcium's protective effect on adenomas in the CPPS but enhanced it in the VCPPS. In conclusion, 1,200 mg/day calcium supplementation may reduce risk of colorectal adenomas among those with normal BMI but not in overweight or obese individuals; and differences in BMI distribution partially account for the apparent difference in calcium efficacy between the two trials.
Collapse
Affiliation(s)
- Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Jennifer L Lund
- Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Public Health, Chapel Hill, NC
| | - Daniel Westreich
- Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Public Health, Chapel Hill, NC
| | - Leila A Mott
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Dennis J Ahnen
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Denver, CO
| | - Gerald J Beck
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University and Winship Cancer Institute, Atlanta, GA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Carol A Burke
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
| | - Timothy R Church
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, MN
| | - Judy R Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Douglas J Robertson
- VA Medical Center, White River Junction, VT and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Public Health, Chapel Hill, NC.,Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| |
Collapse
|
24
|
Yang W, Tang K, Wang Y, Zan L. MiR-27a-5p Increases Steer Fat Deposition Partly by Targeting Calcium-sensing Receptor (CASR). Sci Rep 2018; 8:3012. [PMID: 29445089 PMCID: PMC5813002 DOI: 10.1038/s41598-018-20168-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
Castration increases fat deposition, improving beef quality in cattle. Here, the steer group exhibited a significantly higher intramuscular fat (IMF) content than the bull group. To determine the potential roles of microRNAs (miRNAs) in castration-induced fat deposition, differential expression patterns of miRNA in liver tissue were investigated in bulls and steers. A total of 7,827,294 clean reads were obtained from the bull liver library, and 8,312,483 were obtained from the steer liver library; 452 conserved bovine miRNAs and 20 novel miRNAs were identified. The results showed that the expression profiles of miRNA in liver tissue were changed by castration, and 12 miRNAs that were differentially expressed between bulls and steers were identified. Their target genes were majorly involved in the metabolic, PI3K-Akt, and MAPK signaling pathways. Furthermore, six differentially expressed miRNAs were validated by quantitative real-time PCR, and luciferase reporter assays verified that calcium-sensing receptor (CASR) was the direct target of miR-27a-5p. Meantime, we found that the expression level of CASR was significantly higher in steers than in bulls, and revealed that CASR gene silencing in bovine hepatocytes significantly inhibited triacylglycerol (TAG) accumulation and reduced secretion of very low density lipoprotein (VLDL). These results obtained in the liver indicate that miR-27a-5p may increase fat deposition partly by targeting CASR in steers.
Collapse
Affiliation(s)
- Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Low dairy calcium intake is associated with overweight and elevated blood pressure in Polish adults, notably in premenopausal women. Public Health Nutr 2016; 20:630-637. [PMID: 27846926 DOI: 10.1017/s1368980016002706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Dietary Ca is now being recognized to play an important role not only in skeletal integrity, but also in the regulation of energy and metabolism. The aim of the present study was to estimate the relationship of dairy Ca intake with BMI and blood pressure (BP) in a sample derived from the Polish population. DESIGN Ca intake was calculated from an interviewer-administered semi-quantitative FFQ. BMI was calculated from measured weight and height, and BP was measured by a physician. SETTING Cross-sectional epidemiological study on osteoporosis risk factors in Poland. SUBJECTS Randomly selected healthy adult persons (n 1259; 750 women and 509 men). RESULTS Dairy Ca intake was significantly lower in individuals with overweight/obesity (BMI≥25·00 kg/m2) and/or with elevated BP (systolic/diastolic ≥140/≥90 mmHg) than in those with normal body mass and BP, respectively. Ca intake was negatively correlated with BMI (r=-0·12, P<0·001), systolic BP (r=-0·11, P<0·001) and diastolic BP (r=-0·08, P<0·01). Daily dairy Ca intake below 1000 mg was a predictor for BMI≥25·0 kg/m2 (OR=1·44, P<0·005). This relationship was stronger in women, particularly premenopausal women. CONCLUSIONS The obtained results indicate the role of low dairy Ca intake in the development of obesity and hypertension, notably in premenopausal women.
Collapse
|
26
|
Sharma SP, Chung HJ, Kim HJ, Hong ST. Paradoxical Effects of Fruit on Obesity. Nutrients 2016; 8:E633. [PMID: 27754404 PMCID: PMC5084020 DOI: 10.3390/nu8100633] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/30/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity is exponentially increasing regardless of its preventable characteristics. The current measures for preventing obesity have failed to address the severity and prevalence of obesity, so alternative approaches based on nutritional and diet changes are attracting attention for the treatment of obesity. Fruit contains large amounts of simple sugars (glucose, fructose, sucrose, etc.), which are well known to induce obesity. Thus, considering the amount of simple sugars found in fruit, it is reasonable to expect that their consumption should contribute to obesity rather than weight reduction. However, epidemiological research has consistently shown that most types of fruit have anti-obesity effects. Thus, due to their anti-obesity effects as well as their vitamin and mineral contents, health organizations are suggesting the consumption of fruit for weight reduction purposes. These contradictory characteristics of fruit with respect to human body weight management motivated us to study previous research to understand the contribution of different types of fruit to weight management. In this review article, we analyze and discuss the relationships between fruit and their anti-obesity effects based on numerous possible underlying mechanisms, and we conclude that each type of fruit has different effects on body weight.
Collapse
Affiliation(s)
- Satya P Sharma
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Hea J Chung
- Department of Microbiology, Seonam University Medical School, Namwon 55724, Korea.
| | - Hyeon J Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Co., 948-9 Dunsan, Bongdong, Wanju 55321, Korea.
| | - Seong T Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Korea.
| |
Collapse
|
27
|
Moschonis G, van den Heuvel EGHM, Mavrogianni C, Singh-Povel CM, Leotsinidis M, Manios Y. Associations of Milk Consumption and Vitamin B₂ and Β 12 Derived from Milk with Fitness, Anthropometric and Biochemical Indices in Children. The Healthy Growth Study. Nutrients 2016; 8:nu8100634. [PMID: 27754376 PMCID: PMC5084021 DOI: 10.3390/nu8100634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 01/24/2023] Open
Abstract
The benefits of dairy consumption seem to extend beyond its significant contribution to ensuring nutrient intake adequacy as indicated by the favourable associations with several health outcomes reported by different studies. The aims of the present study were to examine the associations of milk consumption with fitness, anthropometric and biochemical indices in children and further explore whether the observed associations are attributed to vitamins B₂ and B12 derived from milk. A representative subsample of 600 children aged 9-13 years participating in the Healthy Growth Study was examined. Data were collected on children's dietary intake, using 24 h recalls, as well as on fitness, anthropometric and biochemical indices. Regression analyses were performed for investigating the research hypothesis, adjusting for potential confounders and for B-vitamin status indices (i.e., plasma riboflavin, methylmalonic acid and total homocysteine concentrations), dietary calcium intake and plasma zinc concentrations that could possibly act as effect modifiers. Milk consumption was positively associated with the number of stages performed in the endurance run test (ERT) (β = 0.10; p = 0.017) and negatively with body mass index (BMI) (β = -0.10; p = 0.014), after adjusting for several potential confounders and effect modifiers. Dietary intakes of vitamin B₂ and B12 derived from milk were also positively associated with the number of ERT stages (β = 0.10; p = 0.015 and β = 0.10; p = 0.014 respectively). In conclusion, higher intake of milk as well as vitamin B₂ and B12 derived from milk were independently associated with higher cardiorespiratory fitness in Greek preadolescents. The key roles of these B-vitamins in substrate oxidation, energy production, haemoglobin synthesis and erythropoiesis could provide a basis for interpreting these associations. However, further research is needed to confirm this potential interpretation.
Collapse
Affiliation(s)
- George Moschonis
- Department of Nutrition and Dietetics, Harokopio University, 70 El Venizelou Avenue, Kallithea, 17671 Athens, Greece.
- EnviNHealth S.A., Platonos 34, Moschato, 18345 Athens, Greece.
| | | | - Christina Mavrogianni
- Department of Nutrition and Dietetics, Harokopio University, 70 El Venizelou Avenue, Kallithea, 17671 Athens, Greece.
| | - Cécile M Singh-Povel
- FrieslandCampina, Stationsplein 4, Post Box 1551, 3800 BN Amersfoort, The Netherlands.
| | - Michalis Leotsinidis
- Department of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece.
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University, 70 El Venizelou Avenue, Kallithea, 17671 Athens, Greece.
| |
Collapse
|
28
|
Calcium sensing receptor effects in adipocytes and liver cells: Implications for an adipose-hepatic crosstalk. Arch Biochem Biophys 2016; 607:47-54. [DOI: 10.1016/j.abb.2016.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/11/2023]
|
29
|
Hendy GN, Canaff L. Calcium-Sensing Receptor Gene: Regulation of Expression. Front Physiol 2016; 7:394. [PMID: 27679579 PMCID: PMC5020072 DOI: 10.3389/fphys.2016.00394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.
Collapse
Affiliation(s)
- Geoffrey N Hendy
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| | - Lucie Canaff
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| |
Collapse
|
30
|
Bravo-Sagua R, Mattar P, Díaz X, Lavandero S, Cifuentes M. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications. Front Physiol 2016; 7:395. [PMID: 27660614 PMCID: PMC5014866 DOI: 10.3389/fphys.2016.00395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Pamela Mattar
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Ximena Díaz
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| |
Collapse
|
31
|
Suliburska J, Szulińska M, Tinkov AA, Bogdański P. Effect of Spirulina maxima Supplementation on Calcium, Magnesium, Iron, and Zinc Status in Obese Patients with Treated Hypertension. Biol Trace Elem Res 2016; 173:1-6. [PMID: 26779620 PMCID: PMC4975759 DOI: 10.1007/s12011-016-0623-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022]
Abstract
The effects of Spirulina maxima supplementation on calcium, magnesium, iron, and zinc status were studied in a double-blind placebo-controlled trial of 50 obese subjects with treated hypertension, each randomized to receive 2 g of spirulina or a placebo daily for 3 months. At baseline and after treatment, the calcium, magnesium, iron, and zinc concentration in plasma was assessed. It was found that 3 months of S. maxima supplementation resulted in a significant decrease in the iron level in the plasma of obese patients. In conclusion, this is the first clinical study on the influence of spirulina supplementation on mineral status in obese patients with hypertension. Spirulina supplementation affects the iron status of obese Caucasians with well-treated hypertension.
Collapse
Affiliation(s)
- J Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31 Str., 60-624, Poznan, Poland.
| | - M Szulińska
- Department of Education and Obesity Treatment and Metabolic Disorders, University of Medical Sciences, Poznan, Poland
| | - A A Tinkov
- Orenburg State Medical University, Orenburg, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - P Bogdański
- Department of Education and Obesity Treatment and Metabolic Disorders, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
32
|
Moreno LA, Bel-Serrat S, Santaliestra-Pasías A, Bueno G. Dairy products, yogurt consumption, and cardiometabolic risk in children and adolescents. Nutr Rev 2016; 73 Suppl 1:8-14. [PMID: 26175484 DOI: 10.1093/nutrit/nuv014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The high prevalence of obesity in children is a global health issue. Obesity in children and adolescents can result in hypertension, dyslipidemia, chronic inflammation, and hyperinsulinemia, increasing the risk of death, as children grow into adulthood, and raising public health concerns. Type 2 diabetes in children and adolescents is a cardiovascular disease (CVD) risk factor. Dairy consumption may have a protective effect against the development of CVD, but there is scarce evidence of this in children and adolescents. Within the Healthy Lifestyle in Europe by Nutrition in Adolescence, the objective of this study was to investigate the relationship between dairy consumption and CVD risk factors in a sample of adolescents (aged 12.5-17.5 years) from 8 European cities. Overall, dairy products emerged as the food group that best identified adolescents at low CVD risk. Higher consumption of milk and yogurt and of milk- and yogurt-based beverages was associated with lower body fat, lower risk for CVD, and higher cardiorespiratory fitness.
Collapse
Affiliation(s)
- Luis A Moreno
- L.A. Moreno, S. Bel-Serrat, A. Santaliestra-Pasías, and G. Bueno are with the Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, Zaragoza, Spain. L.A. Moreno, S. Bel-Serrat, and A. Santaliestra-Pasías are with the Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain. G. Bueno is with the Departamento de Pediatría, Universidad de Zaragoza, Zaragoza, Spain.
| | - Silvia Bel-Serrat
- L.A. Moreno, S. Bel-Serrat, A. Santaliestra-Pasías, and G. Bueno are with the Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, Zaragoza, Spain. L.A. Moreno, S. Bel-Serrat, and A. Santaliestra-Pasías are with the Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain. G. Bueno is with the Departamento de Pediatría, Universidad de Zaragoza, Zaragoza, Spain
| | - Alba Santaliestra-Pasías
- L.A. Moreno, S. Bel-Serrat, A. Santaliestra-Pasías, and G. Bueno are with the Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, Zaragoza, Spain. L.A. Moreno, S. Bel-Serrat, and A. Santaliestra-Pasías are with the Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain. G. Bueno is with the Departamento de Pediatría, Universidad de Zaragoza, Zaragoza, Spain
| | - Gloria Bueno
- L.A. Moreno, S. Bel-Serrat, A. Santaliestra-Pasías, and G. Bueno are with the Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, Zaragoza, Spain. L.A. Moreno, S. Bel-Serrat, and A. Santaliestra-Pasías are with the Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain. G. Bueno is with the Departamento de Pediatría, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Castro Burbano J, Fajardo Vanegas P, Robles Rodríguez J, Pazmiño Estévez K. Relationship between dietary calcium intake and adiposity in female adolescents. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.endoen.2016.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Castro Burbano J, Fajardo Vanegas P, Robles Rodríguez J, Pazmiño Estévez K. Relationship between dietary calcium intake and adiposity in female adolescents. ACTA ACUST UNITED AC 2015; 63:58-63. [PMID: 26718194 DOI: 10.1016/j.endonu.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE The prevalence and magnitude of obesity in children and adolescents increase rapidly. Besides genetic and environmental factors, calcium intake has recently been identified as a dietary factor that is inversely related with body mass index and development of overweight and obesity. The purpose of this study was to assess the correlation between dietary calcium intake and body mass index and fat distribution in female adolescents. MATERIALS AND METHODS This was a cross-sectional study where anthropometric variables (weight, height, body mass index, waist and hip circumference) were collected in 244 female adolescents to establish total body adiposity and fat distribution. A 24-hour recall and a food frequency questionnaire were used to assess total calorie, calcium, and dairy products intake. RESULTS Calcium intake was inversely related to body mass index (P<.05), waist circumference(P<.05), hip circumference (P>.05), and waist to hip ratio (P<.05).Overweight (8.3%) and obese (0.7%) adolescents had a lower mean calcium intake than adolescents of normal weight (P=.06). CONCLUSIONS Dietary calcium intake and, to a lesser extent, consumption of dairy products are inversely related to total and abdominal adiposity, and also to the prevalence of overweight in this group of adolescents.
Collapse
Affiliation(s)
- José Castro Burbano
- Escuela de Nutriología, Universidad Internacional del Ecuador, Quito, Ecuador.
| | | | | | | |
Collapse
|