1
|
Yun JI, Yun SI, Kim JH, Kim DG, Lee DW. Mediation of Osseointegration, Osteoimmunology, and Osteoimmunologic Integration by Tregs and Macrophages: A Narrative Review. Int J Mol Sci 2025; 26:5421. [PMID: 40508228 PMCID: PMC12154945 DOI: 10.3390/ijms26115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/15/2025] [Accepted: 06/04/2025] [Indexed: 06/16/2025] Open
Abstract
Osseointegration is the direct contact between living bone and a dental implant, with supporting evidence confirming the direct connection between bone and titanium, found using an electron microscope. However, the fundamental mechanisms and interconnections between the bone and titanium are not clearly understood. At present, osteoimmunology explores the interaction between bone and immune cells not only in the medical field but also in dentistry. Immunology in bone cell formation has long been a research topic; however, interest in these effects has recently surged. Through subsequent studies, osteoimmune reaction occurs in response to dental implant insertion into the bone and this mechanism portrays more accurate tissue response compared to the traditional term osseointegration. Additionally, osseointegration is a foreign body defense mechanism to protect the implant when bone forms at the contact surface between the dental implant and the alveolar bone. The term "osteoimmunology" refers to the relationship between the immune system and bone tissues. Understanding osteoimmunologic concepts may enable the development of immunomodulatory strategies to improve, maintain, and ultimately restore osseointegration. In order for biocompatible materials such as dental implants to settle and be maintained in the body, it is necessary to understand the complex interrelationships of the bone immune environment, which will enable the development of biomaterials that are more favorable to osteoimmune environments. Therefore, this review presents previous insights into cellular and molecular interactions between bone and the immune system, specifies the roles of T-regulatory cells (Tregs) and macrophages, and demonstrates their potential for translational applications worldwide.
Collapse
Affiliation(s)
- Jong Il Yun
- Dental R&D Center, Zerone Cellvane Inc., Seoul 04363, Republic of Korea; (J.I.Y.); (J.H.K.)
| | - Su In Yun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Jae Hong Kim
- Dental R&D Center, Zerone Cellvane Inc., Seoul 04363, Republic of Korea; (J.I.Y.); (J.H.K.)
| | - Duk Gyu Kim
- Zerone Cellvane Inc., Cheonan 31116, Republic of Korea;
| | | |
Collapse
|
2
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2025; 60:101-120. [PMID: 39044454 PMCID: PMC11873684 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Anne George
- Department of Oral BiologyCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Salvador Nares
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Shi C, Ou X, Lei X, Huang L, Xu S, Li W, Zhao X. Myeloid dendritic cells and periodontal disease association: integrated study of single-cell sequencing and Mendelian randomization analysis. Front Immunol 2025; 15:1522281. [PMID: 39830509 PMCID: PMC11739323 DOI: 10.3389/fimmu.2024.1522281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Background Periodontal disease is a widespread inflammatory condition that compromises the supporting structures of the teeth, potentially resulting in tooth loss if left untreated. Despite advancements in therapeutic interventions and an enhanced understanding of its pathophysiology, emerging techniques such as single-cell RNA sequencing (scRNA-seq) and Mendelian randomization (MR) present new opportunities for precision medicine in the management of periodontal disease. Methods Data derived from the GSE152042 dataset underwent rigorous quality control, normalization, and dimensionality reduction using Seurat and the MonacoImmuneData framework. Marker genes were identified to delineate subgroups for subsequent analysis utilizing CellChat and ClusterProfilerR. MR analysis of the expression quantitative trait loci (eQTLs) for these genes was conducted to determine causal relationships with periodontal disease, leveraging data from the IEU Open GWAS project. Results Single-cell analysis revealed distinct immune cell subtypes and indicated an increased presence of myeloid dendritic cells (mDCs) in patients with periodontal disease. MR analysis identified twenty-six significant genes, with LIMA1 (LIM domain and actin-binding 1) demonstrating a robust causal association with the progression of periodontal disease. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses highlighted crucial pathways involved in periodontal inflammation and tissue destruction. Visualization at the single-cell level elucidated the role of LIMA1 in disease progression, alongside differences in cell communication dynamics between LIMA1-positive and -negative populations. Conclusion This study underscores the utility of scRNA-seq and MR in elucidating essential factors in the pathogenesis of periodontal disease, thereby reinforcing the necessity for targeted therapeutic strategies. The identification of LIMA1 as a pivotal gene in periodontal disease progression opens new avenues for precision medicine approaches, potentially enhancing treatment efficacy and patient outcomes in periodontal management.
Collapse
Affiliation(s)
- ChengJi Shi
- Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - XinYi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - XiaoXu Lei
- Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - LiJuan Huang
- Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - ShuHao Xu
- Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Wei Li
- Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Xi Zhao
- Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China
| |
Collapse
|
4
|
Pejcic A, Andjelkovic Z, Marjanovic D, Minic I, Matvijenko V, Arsic Z, Jovanovic R, Subaric L. Comparative analysis of antigen-presenting cells in gingival tissues in healthy and periodontitis patients. J Clin Pathol 2024; 77:702-708. [PMID: 37433669 DOI: 10.1136/jcp-2021-207975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
AIMS Microbial flora of dental plaque trigger innate and adaptive immune responses. The function of antigen-presenting cells (APCs) is to bridge the innate and adaptive immune systems. The human immune system contains three main types of APCs: dendritic cells (DC) (Langerhans cells (LCs) and interstitial DCs, IDCs), macrophages and B lymphocytes. In this study, the distribution and density of all APCs in healthy and inflamed human gingival tissue were comparatively analysed. METHODS Research was conducted on gingival biopsy specimens obtained from 55 patients and classified in three groups: healthy gingiva (control group, n=10), moderate periodontal disease (PD) (n=21) and severe PD (n=24). For APCs' identification antibodies raised against CD1a (for LCs), S100 protein (for iDCs), CD68 (for macrophages) and CD20 (for B lymphocytes) were used. RESULTS Increased density of IDCs, macrophages and B lymphocytes in lamina propria and reduced density of LCs in the gingival epithelium were found in patients with periodontitis. Simultaneously, it was noticed an increased concentration of macrophages and B cells in the gingival epithelium in patients with PD. No statistically significant difference in the distribution and density of APC was found among patients with moderate and advanced periodontitis. CONCLUSIONS It was hypothesised that in the periodontitis the role of antigen presentation was largely taken from LCs by the DCs, macrophages and B cells. These APCs are thought to have less protective and tolerogenic potential than LCs and this is a significant reason for alveolar bone destruction in periodontitis.
Collapse
Affiliation(s)
- Ana Pejcic
- Periodontology and Oral Medicine, University of Niš, Medical Faculty, Nis, Serbia
| | - Zlatibor Andjelkovic
- Institute of Histology and Embriology, University of Pristina, Medical Faculty, Kosovska Mitrovica, Serbia
| | - Dragan Marjanovic
- Periodontology and Oral Medicine, University of Pristina, Dental Clinic, Kosovska Mitrovica, Serbia
| | - Ivan Minic
- Periodontology and Oral Medicine, University of Niš, Medical Faculty, Nis, Serbia
| | - Vladimir Matvijenko
- Restorative Dentistry, University of Pristina, Dental Clinic, Kosovska Mitrovica, Serbia
| | - Zoran Arsic
- Restorative Dentistry, University of Pristina, Dental Clinic, Kosovska Mitrovica, Serbia
| | - Radovan Jovanovic
- Dental Clinic, University of Pristina, Medical Faculty, Kosovska Mitrovica, Serbia
| | - Ljiljana Subaric
- Dental Clinic, University of Pristina, Medical Faculty, Kosovska Mitrovica, Serbia
| |
Collapse
|
5
|
Vale GC, Mota BIS, Ando-Suguimoto ES, Mayer MPA. Lactobacilli Probiotics Modulate Antibacterial Response Gene Transcription of Dendritic Cells Challenged with LPS. Probiotics Antimicrob Proteins 2024; 16:293-307. [PMID: 36696085 DOI: 10.1007/s12602-023-10043-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Probiotics are beneficial bacteria that may modulate the immune response by altering the maturation and function of antigen-presenting cells, such as dendritic cells. This study aimed to evaluate the antibacterial gene expression of dendritic cells challenged with LPS and probiotics. Immature dendritic cells were obtained from human CD14+ monocytes and challenged with E. coli LPS and probiotics Lacticaseibacillus rhamnosus (LR-32) and Lactobacillus acidophilus (LA-5) at a ratio DC:bacteria of 1:10. The analysis of gene expression was performed by RT-qPCR using the Kit RT2 human antibacterial response. In the supernatant, the cytokines secretion was determined by ELISA. Tukey post-ANOVA with p at 5% was used for statistical analysis. LPS showed the higher upregulation of 29 genes compared with the groups where probiotics were added to LPS, including genes related to an inflammatory response like BIRC3, CASP1, CCL5, CXCL1, IL12B, IL18, MYD88, NLRP3, RIPK1, and TIRAP. Similarly, LPS increased the transcription of genes enrolled with apoptosis such as CARD6, CASP1, IRF5, MAP2K1, MAP2K4, MAPK1, MYD88, NLRP3, RIPK2, TNF, TNFRSF1A, and XIAP when compared to probiotics groups (p < 0.05). Although probiotics decrease several genes upregulated by LPS, the transcription of encoded cytokines IL12A, IL12B, IL1B, IL6, CXCL8, and TNF genes was maintained upregulated by probiotics, except for IL18, which was downregulated by LA-5. LA-5 led to a higher transcription of IL1B, IL6, and CXCL-8 which was followed by the secretion of these proteins by ELISA. The results suggest that probiotics attenuate the transcription of inflammatory and immune response genes caused by LPS.
Collapse
Affiliation(s)
- Glauber Campos Vale
- Restorative Dentistry Department, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, CEP: 64049-550, Teresina, Brazil.
| | - Brenda Izabela Santana Mota
- Restorative Dentistry Department, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, CEP: 64049-550, Teresina, Brazil
| | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Li J, Wang Y, Tang M, Zhang C, Fei Y, Li M, Li M, Gui S, Guo J. New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial activity, immunomodulation and periodontium regeneration. J Nanobiotechnology 2024; 22:19. [PMID: 38178140 PMCID: PMC10768271 DOI: 10.1186/s12951-023-02261-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the local microbiome and the host immune response, resulting in periodontal structure damage and even tooth loss. Scaling and root planning combined with antibiotics are the conventional means of nonsurgical treatment of periodontitis, but they are insufficient to fully heal periodontitis due to intractable bacterial attachment and drug resistance. Novel and effective therapeutic options in clinical drug therapy remain scarce. Nanotherapeutics achieve stable cell targeting, oral retention and smart release by great flexibility in changing the chemical composition or physical characteristics of nanoparticles. Meanwhile, the protectiveness and high surface area to volume ratio of nanoparticles enable high drug loading, ensuring a remarkable therapeutic efficacy. Currently, the combination of advanced nanoparticles and novel therapeutic strategies is the most active research area in periodontitis treatment. In this review, we first introduce the pathogenesis of periodontitis, and then summarize the state-of-the-art nanotherapeutic strategies based on the triple concerto of antibacterial activity, immunomodulation and periodontium regeneration, particularly focusing on the therapeutic mechanism and ingenious design of nanomedicines. Finally, the challenges and prospects of nano therapy for periodontitis are discussed from the perspective of current treatment problems and future development trends.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chengdong Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yachen Fei
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Meng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengjie Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| |
Collapse
|
7
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Sarasati A, Jonarta AL. Potential targets of phytochemical immunomodulatory therapy in periodontitis immunopathogenesis: A narrative review. Saudi Dent J 2023; 35:920-928. [PMID: 38107043 PMCID: PMC10724349 DOI: 10.1016/j.sdentj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Periodontitis is one of the most prevalent diseases occurring worldwide, and is caused by an imbalance of host immunological defenses and microbiome profile which occurs in the oral cavity. This imbalance leads to irregularity and uncontrolled activities of immune cells, resulting in over-reactivity of periodontopathogens and tissue destruction. To alleviate periodontitis, exact targeting of specific events involving particular cells could be a potential application of immunomodulatory agents. Phytochemical drug development targeting specific immunopathogenesis events could be a promising complementary, alternative approach to periodontal therapy. Objectives This review aimed to explore various events involving a variety of cells in the immunopathogenesis of periodontitis in order to determine potential specific immunomodulation targets for future development of effective phytochemical drugs. Results Immunopathogenesis of periodontitis contributes significantly to the disease onset and resolution. Various events occur during the disease development, which involve a variety of immune cells and mediators. Among these, neutrophils, cytokines and lymphocytes, especially Th17 cells, were reported to be the most relevant components in the disease pathogenesis. These components affect the initial responses to periodontopathogens, inhibit oxidative stress formation, control intercellular communication to enhance inflammation, and promote effector cells' migration to induce alveolar bone resorption. Several phytochemical drugs were developed to cure periodontitis, however, the development of phytochemical immunomodulatory drugs to target specific events has not been realized. Conclusion This review concluded that development of phytochemical immunomodulatory drugs to target particular events generated by neutrophils, pro-inflammatory cytokines and lymphocytes has tremendous potential to regulate and modulate the immunopathogenesis of periodontitis.
Collapse
Affiliation(s)
- Andari Sarasati
- Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Alma Linggar Jonarta
- Oral Biology Department, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Wu L, Luo Z, Chen Y, Yan Z, Fu J, Jiang Y, Xu J, Liu Y. Butyrate Inhibits Dendritic Cell Activation and Alleviates Periodontitis. J Dent Res 2023; 102:1326-1336. [PMID: 37775917 DOI: 10.1177/00220345231187824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
Dendritic cells (DCs) can mediate inflammation-related bone resorption that is crucial in the development of periodontitis. Butyrate is a critical by-product of microbes with antibacterial and anti-inflammatory properties. Here, we found that butyrate inhibited the activation of lipopolysaccharide (LPS)-induced DCs and generation of inflammatory cytokines by DCs. Moreover, butyrate regulated glycolysis in LPS-induced DCs via the G-protein-coupled receptor/hypoxia-inducible factor-1α pathway. In addition, butyrate inhibited the maturation of CD11c+MHC-II+ DCs in vivo, suppressing local inflammatory infiltration and ultimately alleviating bone resorption in a periodontitis model. Our results imply that butyrate suppresses the activation of LPS-induced DCs by modulating their metabolism, highlighting its potential as a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- L Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Z Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Y Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Z Yan
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - J Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Y Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - J Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
10
|
de Vasconcelos Gurgel BC, Peixe PG, Queiroz SIML, de Almeida Freitas R, de Aquino Martins ARL, Duarte PM. Comparison of immunoexpression of dendritic cells, mast cells and blood vessels in periodontal disease between adults and elderly. Clin Oral Investig 2023; 27:6823-6833. [PMID: 37814161 DOI: 10.1007/s00784-023-05297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The aim of this study was to compare, in adults and elderly individuals, the immunoexpression of immature and mature dendritic cells (DCs), mast cells, and blood vessels in healthy and diseased gingival tissues. MATERIALS AND METHODS The expressions of immunohistochemical markers, including CD1a (immature dendritic cells), CD83 (mature dendritic cells), tryptase (mast cells) and CD34 (blood vessels), were analyzed in gingival biopsies from elderly (n = 27) and adult (n = 127) patients presenting health, gingivitis and periodontitis. Positive cells for each specimen and marker were counted. RESULTS There were no differences in the immunostaining of DCs, mast cells and the amount of blood vessels among gingival biopsies with health, gingivitis and periodontitis in adult and elderly subjects (p > 0.05). Immature DCs were more frequent in tissues with gingivitis and periodontitis in elderly patients, when compared to adults (p < 0.05). Furthermore, degranulated mast cell counts were higher, whereas the number of microvessels was lower in gingivitis in the elderly, when compared to adults (p < 0.05). CONCLUSIONS Diseased periodontal sites in the elderly present an overall significant overexpression of immature DCs and degranulated mast cells, in relation to those of adults. Furthermore, gingivitis in elderly is associated with decreased microvessel growth. These immunoinflammatory differences between elderly and adults may have implications in periodontal tissue breakdown in the late adulthood. Further studies should be performed to elucidate this hypothesis. CLINICAL RELEVANCE Understading the relationship between aging and changes in immune cells during periodontal inflammation may lead to therapeutic targets for the future management of periodontal diseases.
Collapse
Affiliation(s)
- Bruno Cesar de Vasconcelos Gurgel
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil.
| | - Patrícia Guerra Peixe
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Salomão Israel Monteiro Lourenço Queiroz
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Roseana de Almeida Freitas
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Ana Rafaela Luz de Aquino Martins
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, University of Florida, 1395 Center Dr, Gainesville, FL, 32610, USA
| |
Collapse
|
11
|
Zhang L, Guan M, Zhang X, Yu F, Lai F. Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:13553-13574. [PMID: 37507593 PMCID: PMC10590321 DOI: 10.1007/s00432-023-05151-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Innate immune effectors, dendritic cells (DCs), influence cancer prognosis and immunotherapy significantly. As such, dendritic cells are important in killing tumors and influencing tumor microenvironment, whereas their roles in lung adenocarcinoma (LUAD) are largely unknown. METHODS In this study, 1658 LUAD patients from different cohorts were included. In addition, 724 cancer patients who received immunotherapy were also included. To identify DC marker genes in LUAD, we used single-cell RNAsequencing data for analysis and determined 83 genes as DC marker genes. Following that, integrative machine learning procedure was developed to construct a signature for DC marker genes. RESULTS Using TCGA bulk-RNA sequencing data as the training set, we developed a signature consisting of seven genes and classified patients by their risk status. Another six independent cohorts demonstrated the signature' s prognostic power, and multivariate analysis demonstrated it was an independent prognostic factor. LUAD patients in the high-risk group displayed more advanced features, discriminatory immune-cell infiltrations and immunosuppressive states. Cell-cell communication analysis indicates that tumor cells with lower risk scores communicate more actively with the tumor microenvironment. Eight independent immunotherapy cohorts revealed that patients with low-risk had better immunotherapy responses. Drug sensitivity analysis indicated that targeted therapy agents exhibited greater sensitivity to low-risk patients, while chemotherapy agents displayed greater sensitivity to high-risk patients. In vitro experiments confirmed that CTSH is a novel protective factor for LUAD. CONCLUSIONS An unique signature based on DC marker genes that is highly predictive of LUAD patients' prognosis and response to immunotherapy. CTSH is a new biomarker for LUAD.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Maohao Guan
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xun Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fengqiang Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Fancai Lai
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
12
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Palideh A, Vaghari-Tabari M, Nosrati Andevari A, Qujeq D, Asemi Z, Alemi F, Rouhani Otaghsara H, Rafieyan S, Yousefi B. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets? Adv Pharm Bull 2023; 13:423-434. [PMID: 37646047 PMCID: PMC10460817 DOI: 10.34172/apb.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/07/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Periodontal disease is the most common oral disease. This disease can be considered as an inflammatory disease. The immune response to bacteria accumulated in the gum line plays a key role in the pathogenesis of periodontal disease. In addition to immune cells, periodontal ligament cells and gingival epithelial cells are also involved in the pathogenesis of this disease. miRNAs which are small RNA molecules with around 22 nucleotides have a considerable relationship with the immune system affecting a wide range of immunological events. These small molecules are also in relation with periodontium tissues especially periodontal ligament cells. Extensive studies have been performed in recent years on the role of miRNAs in the pathogenesis of periodontal disease. In this review paper, we have reviewed the results of these studies and discussed the role of miRNAs in the immunopathogenesis of periodontal disease comprehensively. miRNAs play an important role in the pathogenesis of periodontal disease and maybe helpful therapeutic targets for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sona Rafieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Huang H, Yang R, Shi B. The potential role of cfDNA-related innate immune responses in postoperative bone loss after alveolar bone grafting. Front Immunol 2023; 13:1068186. [PMID: 36685503 PMCID: PMC9845276 DOI: 10.3389/fimmu.2022.1068186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
The purpose of treating alveolar bone cleft is to restore a normal maxilla structure. Multiple factors have been identified that can affect the success of alveolar bone grafting. However, with consistent treatment modifications, the surgical outcomes have been improved, but alveolar bone loss still exists. Thus, a new aspect should be found to solve this problem. As alveolar bone belongs to the periodontal tissues, the mechanism of the alveolar bone loss after bone grafting in patients with alveolar bone cleft may be similar to the development of alveolar bone loss in periodontitis. Cell-free DNA (cfDNA) has been demonstrated as a key promoter of alveolar bone loss during periodontal inflammation. We hypothesized that cfDNA-related innate immune responses could be a major inducement for postoperative bone loss after alveolar bone grafting. In this perspective, we preliminarily proved the potential association between cfDNA, TLR9 pathway, and alveolar bone grafting operation, and it might verify that surgical trauma could accumulate cfDNA, which can further activate cellular TLR9 signaling.
Collapse
Affiliation(s)
- Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Renjie Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Bing Shi,
| |
Collapse
|
15
|
Huang H, Pan W, Wang Y, Kim HS, Shao D, Huang B, Ho TC, Lao YH, Quek CH, Shi J, Chen Q, Shi B, Zhang S, Zhao L, Leong KW. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis. Nat Commun 2022; 13:5925. [PMID: 36207325 PMCID: PMC9546917 DOI: 10.1038/s41467-022-33492-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Periodontitis is a common type of inflammatory bone loss and a risk factor for systemic diseases. The pathogenesis of periodontitis involves inflammatory dysregulation, which represents a target for new therapeutic strategies to treat periodontitis. After establishing the correlation of cell-free DNA (cfDNA) level with periodontitis in patient samples, we test the hypothesis that the cfDNA-scavenging approach will benefit periodontitis treatment. We create a nanoparticulate cfDNA scavenger specific for periodontitis by coating selenium-doped hydroxyapatite nanoparticles (SeHANs) with cationic polyamidoamine dendrimers (PAMAM-G3), namely G3@SeHANs, and compare the activities of G3@SeHANs with those of soluble PAMAM-G3 polymer. Both G3@SeHANs and PAMAM-G3 inhibit periodontitis-related proinflammation in vitro by scavenging cfDNA and alleviate inflammatory bone loss in a mouse model of ligature-induced periodontitis. G3@SeHANs also regulate the mononuclear phagocyte system in a periodontitis environment, promoting the M2 over the M1 macrophage phenotype. G3@SeHANs show greater therapeutic effects than PAMAM-G3 in reducing proinflammation and alveolar bone loss in vivo. Our findings demonstrate the importance of cfDNA in periodontitis and the potential for using hydroxyapatite-based nanoparticulate cfDNA scavengers to ameliorate periodontitis.
Collapse
Affiliation(s)
- Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiyi Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, the Republic of Korea
| | - Dan Shao
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Baoding Huang
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510000, China
| | - Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Chai Hoon Quek
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Jiayu Shi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, 48109, MI, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Lei Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA.
- Department of Systems Biology, Columbia University Medical Center, New York, 10032, NY, USA.
| |
Collapse
|
16
|
Identification of Endoplasmic Reticulum Stress-Related Biomarkers of Periodontitis Based on Machine Learning: A Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:8611755. [PMID: 36072904 PMCID: PMC9444421 DOI: 10.1155/2022/8611755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Objective To screen for potential endoplasmic reticulum stress- (ERS-) related biomarkers of periodontitis using machine learning methods and explore their relationship with immune cells. Methods Three datasets of periodontitis (GSE10334, GES16134, and GES23586) were obtained from the Gene Expression Omnibus (GEO), and the samples were randomly assigned to the training set or the validation set. ERS-related differentially expressed genes (DEGs) between periodontitis and healthy periodontal tissues were screened and analyzed for GO, KEGG, and DO enrichment. Key DEGs were screened by two machine learning algorithms, LASSO regression and support vector machine-recursive feature elimination (SVM-RFE); then, the potential biomarkers were identified through validation. The infiltration of immune cells of periodontitis was calculated using the CIBERSORT algorithm, and the correlation between immune cells and potential biomarkers was specifically analyzed through the Spearman method. Results We obtained 36 ERS-related DEGs of periodontitis from the training set, from which 11 key DEGs were screened by further machine learning. SERPINA1, ERLEC1, and VWF showed high diagnostic values (AUC > 0.85), so they were considered as potential biomarkers for periodontitis. According to the results of the immune cell infiltration analysis, these three potential biomarkers showed marked correlations with plasma cells, neutrophils, resting dendritic cells, resting mast cells, and follicular helper T cells. Conclusions Three ERS-related genes, SERPINA1, ERLEC1, and VWF, showed valuable biomarker potential for periodontitis, which provide a target base for future studies on early diagnosis and treatment of periodontitis.
Collapse
|
17
|
Liu L, Lai Y, Zhan Z, Fu Q, Jiang Y. Identification of Ferroptosis-Related Molecular Clusters and Immune Characterization in Autism Spectrum Disorder. Front Genet 2022; 13:911119. [PMID: 36035135 PMCID: PMC9403309 DOI: 10.3389/fgene.2022.911119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with clinical presentation and prognostic heterogeneity. Ferroptosis is a regulated non-apoptotic cell death program implicated in the occurrence and progression of various diseases. Therefore, we aimed to explore ferroptosis-related molecular subtypes in ASD and further illustrate the potential mechanism. Methods: A total of 201 normal samples and 293 ASD samples were obtained from the Gene Expression Omnibus (GEO) database. We used the unsupervised clustering analysis to identify the molecular subtypes based on ferroptosis-related genes (FRGs) and evaluate the immune characteristics between ferroptosis subtypes. Ferroptosis signatures were identified using the least absolute shrinkage and selection operator regression (LASSO) and recursive feature elimination for support vector machines (SVM-RFE) machine learning algorithms. The ferroptosis scores based on seven selected genes were constructed to evaluate the ferroptosis characteristics of ASD. Results: We identified 16 differentially expressed FRGs in ASD children compared with controls. Two distinct molecular clusters associated with ferroptosis were identified in ASD. Analysis of immune infiltration revealed immune heterogeneity between the two clusters. Cluster2, characterized by a higher immune score and a larger number of infiltrated immune cells, exhibited a stronger immune response and was markedly enriched in immune response-related signaling pathways. Additionally, the ferroptosis scores model was capable of predicting ASD subtypes and immunity. Higher levels of ferroptosis scores were associated with immune activation, as seen in Cluster2. Lower ferroptosis scores were accompanied by relative immune downregulation, as seen in Cluster1. Conclusion: Our study systematically elucidated the intricate correlation between ferroptosis and ASD and provided a promising ferroptosis score model to predict the molecular clusters and immune infiltration cell profiles of children with ASD.
Collapse
Affiliation(s)
- Lichun Liu
- Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China
| | - Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhidong Zhan
- Department of Pediatric Intensive Care Unit, Fujian Children’s Hospital, Fuzhou, China
| | - Qingxian Fu
- Department of Pediatric Endocrinology, Fujian Children’s Hospital, Fuzhou, China
| | - Yuelian Jiang
- Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Yuelian Jiang,
| |
Collapse
|
18
|
Ouyang Y, Liu J, Wen S, Xu Y, Zhang Z, Pi Y, Chen D, Su Z, Liang Z, Wang Y, Guo L. Association between chronic obstructive pulmonary disease and periodontitis: The common role of innate immune cells? Cytokine 2022; 158:155982. [PMID: 35932499 DOI: 10.1016/j.cyto.2022.155982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Innate immune cells are of broad interest in a variety of diseases. These cells include neutrophils, macrophages, dendritic cells and mast cells, etc. Innate immune cells are often mentioned in inflammatory diseases as the first line of defense against pathogens' invasion. As chronic obstructive pulmonary disease and periodontitis are inflammatory diseases, innate immune cells play an important role in the development of both diseases. COPD and periodontitis are common epidemic diseases with a very high prevalence, thus affecting a large number of people and also reducing the quality of life of patients. In addition, epidemiological studies suggested a link between the two, creating a co-morbid burden, but the mechanism of the link is yet to be explained. This article discusses the possible mechanism of the link between the two diseases in terms of innate immune cells and discusses possible future targeted therapies that could alleviate the burden on patients.
Collapse
Affiliation(s)
- Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Siyi Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yixin Xu
- Department of Orthodontic, Stomatological Hospital, Southern Medical University, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yixing Pi
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yan Wang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China.
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol 2000 2022; 89:41-50. [PMID: 35244951 DOI: 10.1111/prd.12428] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive research in humans and animal models has begun to unravel the complex mechanisms that drive the immunopathogenesis of periodontitis. Neutrophils mount an early and rapid response to the subgingival oral microbiome, producing destructive enzymes to kill microbes. Chemokines and cytokines are released that attract macrophages, dendritic cells, and T cells to the site. Dendritic cells, the focus of this review, are professional antigen-presenting cells on the front line of immune surveillance. Dendritic cells consist of multiple subsets that reside in the epithelium, connective tissues, and major organs. Our work in humans and mice established that myeloid dendritic cells are mobilized in periodontitis. This occurs in lymphoid and nonlymphoid oral tissues, in the bloodstream, and in response to Porphyromonas gingivalis. Moreover, the dendritic cells mature in situ in gingival lamina propria, forming immune conjugates with cluster of differentiation (CD) 4+ T cells, called oral lymphoid foci. At such foci, the decisions are made as to whether to promote bone destructive T helper 17 or bone-sparing regulatory T cell responses. Interestingly, dendritic cells lack potent enzymes and reactive oxygen species needed to kill and degrade endocytosed microbes. The keystone pathogen P. gingivalis exploits this vulnerability by invading dendritic cells in the tissues and peripheral blood using its distinct fimbrial adhesins. This promotes pathogen dissemination and inflammatory disease at distant sites, such as atherosclerotic plaques. Interestingly, our recent studies indicate that such P. gingivalis-infected dendritic cells release nanosized extracellular vesicles called exosomes, in higher numbers than uninfected dendritic cells do. Secreted exosomes and inflammasome-related cytokines are a key feature of the senescence-associated secretory phenotype. Exosomes communicate in paracrine with neighboring stromal cells and immune cells to promote and amplify cellular senescence. We have shown that dendritic cell-derived exosomes can be custom tailored to target and reprogram specific immune cells responsible for inflammatory bone loss in mice. The long-term goal of these immunotherapeutic approaches, ongoing in our laboratory and others, is to promote human health and longevity.
Collapse
Affiliation(s)
- Ahmed R El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ana C Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
20
|
Elashiry M, Elsayed R, Cutler CW. Exogenous and Endogenous Dendritic Cell-Derived Exosomes: Lessons Learned for Immunotherapy and Disease Pathogenesis. Cells 2021; 11:cells11010115. [PMID: 35011677 PMCID: PMC8750541 DOI: 10.3390/cells11010115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Immune therapeutic exosomes, derived exogenously from dendritic cells (DCs), the 'directors' of the immune response, are receiving favorable safety and tolerance profiles in phase I and II clinical trials for a growing number of inflammatory and neoplastic diseases. DC-derived exosomes (EXO), the focus of this review, can be custom tailored with immunoregulatory or immunostimulatory molecules for specific immune cell targeting. Moreover, the relative stability, small size and rapid uptake of EXO by recipient immune cells offer intriguing options for therapeutic purposes. This necessitates an in-depth understanding of mechanisms of EXO biogenesis, uptake and routing by recipient immune cells, as well as their in vivo biodistribution. Against this backdrop is recognition of endogenous exosomes, secreted by all cells, the molecular content of which is reflective of the metabolic state of these cells. In this regard, exosome biogenesis and secretion is regulated by cell stressors of chronic inflammation and tumorigenesis, including dysbiotic microbes, reactive oxygen species and DNA damage. Such cell stressors can promote premature senescence in young cells through the senescence associated secretory phenotype (SASP). Pathological exosomes of the SASP amplify inflammatory signaling in stressed cells in an autocrine fashion or promote inflammatory signaling to normal neighboring cells in paracrine, without the requirement of cell-to-cell contact. In summary, we review relevant lessons learned from the use of exogenous DC exosomes for immune therapy, as well as the pathogenic potential of endogenous DC exosomes.
Collapse
|
21
|
Cimões R, Pinho RCM, Gurgel BCDV, Borges SB, Marcantonio Júnior E, Marcantonio CC, Melo MARDC, Piattelli A, Shibli JA. Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation. Braz Oral Res 2021; 35:e101. [PMID: 34586215 DOI: 10.1590/1807-3107bor-2021.vol35.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
When periodontal disease is diagnosed, it is difficult to predict the clinical response of treatment of a tooth over time because the result of treatment is affected by several factors and will depend on the maintenance and support of periodontal treatment. Rehabilitation with removable dental prostheses, fixed prostheses, and dental implants makes it possible to restore the function and esthetics of patients with tooth loss due to periodontal disease. The predictive factors of tooth loss in periodontitis patients should be assessed by dentists to inform their clinical decision-making during dental treatment planning. This will provide detailed individualized information and level of risk of patients considered suitable for dental rehabilitation. Therefore, the aim of this article was to review the subject of "Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation" and the effect of fixed, removable, and implant-supported prostheses in periodontal patients.
Collapse
Affiliation(s)
- Renata Cimões
- Universidade Federal de Pernambuco - UFPE, Health Sciences Centre, Department of Prosthesis and Oral and Maxillofacial Surgery, Recife, PE, Brazil
| | | | | | - Samuel Batista Borges
- Universidade Federal do Rio Grande do Norte - UFRN, Health Sciences Centre, Department of Dentistry, Natal, RN Brazil
| | - Elcio Marcantonio Júnior
- Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp, Faculdade de Odontologia de Araraquara, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - Camila Chierici Marcantonio
- Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp, Faculdade de Odontologia de Araraquara, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | | | - Adriano Piattelli
- University of Chieti, Dental School, Department of Medical, Oral and Biotechnological Sciences, Chieti, Italy
| | - Jamil Awad Shibli
- Universidade de Guarulhos - UnG, Dental Research Division, Department of Periodontology and Oral Implantology, Guarulhos, SP, Brazil
| |
Collapse
|
22
|
Abstract
Periodontitis is a multi-etiologic infection characterized clinically by pathologic loss of the periodontal ligament and alveolar bone. Herpesviruses and specific bacterial species are major periodontal pathogens that cooperate synergistically in producing severe periodontitis. Cellular immunity against herpesviruses and humoral immunity against bacteria are key periodontal host defenses. Genetic, epigenetic, and environmental factors are modifiers of periodontal disease severity. MicroRNAs are a class of noncoding, gene expression-based, posttranscriptional regulatory RNAs of great importance for maintaining tissue homeostasis. Aberrant expression of microRNAs has been associated with several medical diseases. Periodontal tissue cells and herpesviruses elaborate several microRNAs that are of current research interest. This review attempts to conceptualize the role of periodontal microRNAs in the pathogenesis of periodontitis. The diagnostic potential of salivary microRNAs is also addressed. Employment of microRNA technology in periodontics represents an interesting new preventive and therapeutic possibility.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jørgen Slots
- Department of Periodontology, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
23
|
Aziz J, Rahman MT, Vaithilingam RD. Dysregulation of metallothionein and zinc aggravates periodontal diseases. J Trace Elem Med Biol 2021; 66:126754. [PMID: 33831799 DOI: 10.1016/j.jtemb.2021.126754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontitis (PD) is a multifaceted inflammatory disease connected to bacterial infection that results in the destruction of tooth supporting structures and eventually tooth loss. Given their involvement in infection and inflammation, both metallothionein (MT) and zinc (Zn) might play vital roles in the development and progression of PD. More specifically, both MT and Zn are heavily involved in regulating immune functions, controlling bacterial infection, balancing inflammatory responses, and reducing oxidative stress, all of which are associated with the pathogenesis of PD. OBJECTIVE This review paper will explore the physiological functions of MT and Zn and hypothesise how dysregulation could negatively affect periodontal health, leading to PD. FINDINGS Bacterial lipopolysaccharide (LPS) derived from periodontal pathogens, namely P. gingivalis initiates the acute phase response, thus upregulating the expression of MT which leads to the subsequent deficiency of Zn, a hallmark of periodontal disease. This deficiency leads to ineffective NETosis, increases the permeability of the gingival epithelium, and disrupts the humoral immune response, collectively contributing to PD. In addition, the presence of LPS in Zn deficient conditions favours M1 macrophage polarisation and maturation of dendritic cells, and also inhibits the anti-inflammatory activity of regulatory T cells. Collectively, these observations could theoretically give rise to the chronic inflammation seen in PD. CONCLUSION A disrupted MT and Zn homeostasis is expected to exert an adverse impact on periodontal health and contribute to the development and progression of PD.
Collapse
Affiliation(s)
- Jazli Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Dept. of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
24
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
25
|
Elmanfi S, Yilmaz M, Ong WWS, Yeboah KS, Sintim HO, Gürsoy M, Könönen E, Gürsoy UK. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 2021; 10:675. [PMID: 34070809 PMCID: PMC8226932 DOI: 10.3390/pathogens10060675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Mustafa Yilmaz
- Department of Periodontology, Faculty of Dentistry, Biruni University, 34010 Istanbul, Turkey;
| | - Wilson W. S. Ong
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Kofi S. Yeboah
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
26
|
Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, Martínez-Pérez LA, Guzmán-Flores JM. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis 2021; 28:1441-1447. [PMID: 33884712 DOI: 10.1111/odi.13884] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Periodontal disease refers to inflammation of the tissues that support the tooth. It is of multifactorial etiology. Innate and adaptive immune cells participate jointly through the release of their molecules and mechanisms of action in order to maintain homeostasis in periodontal tissues, so the host's immune response plays an essential role in defense against microorganisms. However, bacterial persistence and the dysregulation of the immune system as an exaggerated response can lead to the worsening of periodontal disease, leading to loss of gingival tissue and alveolar bone and thereby loss of teeth. Therefore, a better understanding of the cellular mechanisms involved in the development of periodontal disease is necessary to design new treatments and prophylactic measures in order to decrease the prevalence of this disease that afflicts a large part of the world population.
Collapse
Affiliation(s)
- Julieta Saraí Becerra-Ruiz
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Celia Guerrero-Velázquez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Luz Andrea Martínez-Pérez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
27
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Jang HM, Park JY, Lee YJ, Kang MJ, Jo SG, Jeong YJ, Cho NP, Cho SD, Kim DJ, Park JH. TLR2 and the NLRP3 inflammasome mediate IL-1β production in Prevotella nigrescens-infected dendritic cells. Int J Med Sci 2021; 18:432-440. [PMID: 33390812 PMCID: PMC7757152 DOI: 10.7150/ijms.47197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Prevotella nigrescens is an oral pathogen that is frequently observed in the subgingival plaque of periodontitis patients. Interleukin-1β (IL-1β) is known to be involved in the immunopathology of periodontal diseases and has been implicated in the destruction of bone. In this study, we investigated the mechanism of IL-1β production by P. nigrescens in murine bone marrow-derived dendritic cells (BMDCs). Our results showed that a host receptor, Toll-like receptor 2 (TLR2), but not TLR4 is required for pro-IL-1β induction and nucleotide-binding oligomerization domain like receptor pyrin domain containing 3 (NLRP3) priming in BMDCs in response to P. nigrescens and activation of the NLRP3 inflammasome is necessary for processing of pro-IL-1β into mature IL-1β. In addition, an inhibitor assay revealed that production of reactive oxygen species, P2X7R activity, and release of cathepsin B are involved in IL-1β production in BMDCs in response to P. nigrescens.
Collapse
Affiliation(s)
- Hye-Mi Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea.,Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Yeon-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Jung Kang
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Gang Jo
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Yu-Jin Jeong
- Infectious disease Research Center, Korea research institute of bioscience & biotechnology, Daejeon, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seou, Republic of Korea
| | - Dong-Jae Kim
- Laboraotry Animal Resource Center, DGIST, Daegu, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
29
|
Zorba M, Melidou A, Patsatsi A, Ioannou E, Kolokotronis A. The possible role of oral microbiome in autoimmunity. Int J Womens Dermatol 2020; 6:357-364. [PMID: 33898698 PMCID: PMC8060669 DOI: 10.1016/j.ijwd.2020.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The human microbiome refers to the entire habitat, including microorganisms, their genomes and the surrounding environmental conditions of the microbial ecosystem. When the equilibrium between microbial habitats and host is disturbed, dysbiosis is caused. The oral microbiome (OMB) has been implicated in the manifestation of many intra- and extraoral diseases. Lately, there has been an intense effort to investigate and specify the relationship between microbial complexes, especially that of the oral cavity and intestine and autoimmunity. This study aimed to review the current literature about the possible role of the OMB in the pathogenesis of autoimmune diseases. METHODS We searched for published articles in English indexed in PubMed, Medline, Research Gate and Google Scholar using a search strategy that included terms for oral microbiome, autoimmune diseases, dysbiosis and next-generation sequencing. RESULTS An important number of articles were gathered and used for the description of the possible impact of dysbiosis of OMB in the pathogenesis of Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis, Behcet's disease, Crohn's disease and psoriasis. CONCLUSION This review article draws attention to the relationship between OMB and the triggering of a number of autoimmune diseases. Although this specific topic has been previously reviewed, herein, the authors review recent literature regarding the full list of nosological entities related to the OMB, point out the interaction between the microbiome and sex hormones with regard to their role in autoimmunity and discuss novel and promising therapeutic approaches for systemic autoimmune diseases. Furthermore, the question arises of whether the OMB is associated with oral bullous autoimmune diseases.
Collapse
Affiliation(s)
- Matina Zorba
- Department of Oral Medicine and Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Angeliki Melidou
- Department of Microbiology, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Aikaterini Patsatsi
- Second Dermatology Department of Papageorgiou General Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Eleftheria Ioannou
- Department of Biological Applications and Technology, Aristotle University of Thessaloniki, Greece
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
30
|
Sands RW, Verbeke CS, Ouhara K, Silva EA, Hsiong S, Kawai T, Mooney D. Tuning cytokines enriches dendritic cells and regulatory T cells in the periodontium. J Periodontol 2020; 91:1475-1485. [PMID: 32150760 PMCID: PMC7483931 DOI: 10.1002/jper.19-0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontal disease results from the pathogenic interactions between the tissue, immune system, and microbiota; however, standard therapy fails to address the cellular mechanism underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T cell fate, and biomaterials that recruit and program DC locally can direct T cell effector responses. We hypothesized that a biomaterial that recruited and programmed DC toward a tolerogenic phenotype could enrich regulatory T cells within periodontal tissue, with the eventual goal of attenuating T cell mediated pathology. METHODS The interaction of previously identified factors that could induce tolerance, granulocyte-macrophage colony stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP), with the periodontitis network was confirmed in silico. The effect of the cytokines on DC migration was explored in vitro using time-lapse imaging. Finally, regulatory T cell enrichment in the dermis and periodontal tissue in response to alginate hydrogels delivering TSLP and GM-CSF was examinedin vivo in mice using immunohistochemistry and live-animal imaging. RESULTS The GM-CSF and TSLP interactome connects to the periodontitis network. GM-CSF enhances DC migration in vitro. An intradermal injection of an alginate hydrogel releasing GM-CSF enhanced DC numbers and the addition of TSLP enriched FOXP3+ regulatory T cells locally. Injection of a hydrogel with GM-CSF and TSLP into the periodontal tissue in mice increased DC and FOXP3+ cell numbers in the tissue, FOXP3+ cells in the lymph node, and IL-10 in the tissue. CONCLUSION Local biomaterial-mediated delivery of GM-CSF and TSLP can enrich DC and FOXP3+ cells and holds promise for treating the pathologic inflammation of periodontal disease.
Collapse
Affiliation(s)
- R. Warren Sands
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
- University of Pittsburgh Medical Center, Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Pittsburgh, PA
| | - Catia S. Verbeke
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
| | - Kazuhisa Ouhara
- Hiroshima University, Department of Periodontal Medicine, Hiroshima, Japan
- Forsyth Institute, Boston, MA
| | - Eduardo A. Silva
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
- University of California, Davis, Department of Biomedical Engineering, Davis, CA
| | - Susan Hsiong
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
| | - Toshihisa Kawai
- Forsyth Institute, Boston, MA
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL
| | - David Mooney
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
| |
Collapse
|
31
|
Chandavarkar V, Mishra MN, Sangeetha R, Premalatha BR. The Current Understanding on Langerhans' Cells and Its Role in Oral Lesions. Contemp Clin Dent 2020; 11:211-216. [PMID: 33776345 PMCID: PMC7989755 DOI: 10.4103/ccd.ccd_4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Description of Langerhans' cells (LCs) as an important antigen-presenting cells responsible for detecting the antigens, recruiting T-cells, and thereby initiating the immune response. An adequate response of the mucosal immune system is essential to protect the mucosa against pathological conditions. Hence, a detailed review was planned about this unique antigen-presenting cell. METHODS A literature search of the electronic databases included the MEDLINE, EBSCOHOST, PUBMED, and hand searches of references retrieved were undertaken using the following MeSH terms "Langerhans cells," "LCs in Oral Lichen Planus," "Langerhans cell histiocytosis," "LCs and HIV," "LCs in Periodontitis." RESULTS LCs are present suprabasally in the epithelium of oral mucosa and in the epidermis of the skin. The role played by LCs though not fully elucidated, but several research studies indicate that these cells are involved in the pathogenesis of many oral diseases. In this article, the historical perspective, structure, function, origin, and phenotypic expressions of LCs are discussed in detail. The current understanding on the role of LCs in various oral lesions and its immunological characteristics are discussed. CONCLUSION LCs act as immune mediator cells, tumor cells, vectors of infected cells, and phagocytic cells. Further studies could bolster the knowledge about the role of Langerhans cells in the immune response of various oral diseases and thereby provide diagnostic tools and help for prognostic evaluation. This review illuminates the pivotal role of Langerhans cells and its immune surveillance as a "Sentinels" of the oral mucosa.
Collapse
Affiliation(s)
- Vidyadevi Chandavarkar
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mithilesh N. Mishra
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - R. Sangeetha
- Department of Oral Pathology, Dayananda Sagar College of Dental Sciences, Bengaluru, Karnataka, India
| | - B. R. Premalatha
- Department of Oral Pathology and Microbiology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
32
|
Su X, Zhang J, Qin X. CD40 up-regulation on dendritic cells correlates with Th17/Treg imbalance in chronic periodontitis in young population. Innate Immun 2020; 26:482-489. [PMID: 32345091 PMCID: PMC7491239 DOI: 10.1177/1753425920917731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We aimed to discover the influence of age on the development of chronic periodontitis and illustrate the molecular mechanism in this process. Blood samples were collected from 63 chronic periodontitis patients and 30 healthy controls. Th17 cell/Foxp3+ regulatory T cell (Treg) ratio and expression of costimulatory molecules in dendritic cells (DCs) were analyzed by flow cytometry. The serum levels of soluble CD40 ligand (CD40L) and IL-17 were examined by ELISA. In young chronic periodontitis patients, the Th17/Treg ratio was significantly higher than that in old patients. CD40 on DCs and serum levels of CD40L and IL-17 were all higher in young chronic periodontitis patients. Mature DCs with high CD40 expression level elevated the Th17/Treg ratio in vitro. During the pathogenesis of chronic periodontitis, young patients had higher Th17/Treg ratio than old patients and this phenomenon was in line with the differential expression levels of CD40 in DCs.
Collapse
Affiliation(s)
- Xin Su
- Department of Stomatology, Fourth Affiliated Hospital of Harbin Medical University, China
| | - Jiahui Zhang
- Department of Stomatology, Fourth Affiliated Hospital of Harbin Medical University, China
| | - Xue Qin
- Department of Stomatology, Fourth Affiliated Hospital of Harbin Medical University, China
| |
Collapse
|
33
|
Elsayed R, Kurago Z, Cutler CW, Arce RM, Gerber J, Celis E, Sultan H, Elashiry M, Meghil M, Sun C, Auersvald CM, Awad ME, Zeitoun R, Elsayed R, Eldin M Elshikh M, Isales C, Elsalanty ME. Role of dendritic cell-mediated immune response in oral homeostasis: A new mechanism of osteonecrosis of the jaw. FASEB J 2020; 34:2595-2608. [PMID: 31919918 DOI: 10.1096/fj.201901819rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/11/2022]
Abstract
Dendritic cells are an important link between innate and adaptive immune response. The role of dendritic cells in bone homeostasis, however, is not understood. Osteoporosis medications that inhibit osteoclasts have been associated with osteonecrosis, a condition limited to the jawbone, thus called medication-related osteonecrosis of the jaw. We propose that disruption of the local immune response renders the oral microenvironment conducive to osteonecrosis. We tested whether zoledronate (Zol) treatment impaired dendritic cell (DC) functions and increased bacterial load in alveolar bone in vivo and whether DC inhibition alone predisposed the animals to osteonecrosis. We also analyzed the role of Zol in impairment of differentiation and function of migratory and tissue-resident DCs, promoting disruption of T-cell activation in vitro. Results demonstrated a Zol induced impairment in DC functions and an increased bacterial load in the oral cavity. DC-deficient mice were predisposed to osteonecrosis following dental extraction. Zol treatment of DCs in vitro caused an impairment in immune functions including differentiation, maturation, migration, antigen presentation, and T-cell activation. We conclude that the mechanism of Zol-induced osteonecrosis of the jaw involves disruption of DC immune functions required to clear bacterial infection and activate T cell effector response.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Zoya Kurago
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.,Biochemistry and Molecular Biology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Jennifer Gerber
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Esteban Celis
- Biochemistry and Molecular Biology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hussein Sultan
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Mahmoud Elashiry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.,Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed Meghil
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.,Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Christina Sun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Caroline M Auersvald
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Rana Zeitoun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Riham Elsayed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Mohey Eldin M Elshikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Carlos Isales
- Department of neuroscience and regenerative medicine, Augusta University, Augusta, GA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
34
|
Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J Clin Med 2019; 8:jcm8081135. [PMID: 31370168 PMCID: PMC6723779 DOI: 10.3390/jcm8081135] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is an infection-driven inflammatory disease in which the composition of biofilms plays a significant role. Dental plaque accumulation at the gingival margin initiates an inflammatory response that, in turn, causes microbial alterations and may lead to drastic consequences in the periodontium of susceptible individuals. Chronic inflammation affects the gingiva and can proceed to periodontitis, which characteristically results in irreversible loss of attachment and alveolar bone. Periodontitis appears typically in adult-aged populations, but young individuals can also experience it and its harmful outcome. Advanced disease is the major cause of tooth loss in adults. In addition, periodontitis is associated with many chronic diseases and conditions affecting general health.
Collapse
|
35
|
Serotype a of Aggregatibacter actinomycetemcomitans down-regulates the increased serotype b-induced cytokine and chemokine production in dendritic cells. Arch Oral Biol 2018; 93:155-162. [DOI: 10.1016/j.archoralbio.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
|
36
|
Heyman O, Koren N, Mizraji G, Capucha T, Wald S, Nassar M, Tabib Y, Shapira L, Hovav AH, Wilensky A. Impaired Differentiation of Langerhans Cells in the Murine Oral Epithelium Adjacent to Titanium Dental Implants. Front Immunol 2018; 9:1712. [PMID: 30158922 PMCID: PMC6103475 DOI: 10.3389/fimmu.2018.01712] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Peri-implantitis is a destructive inflammatory process affecting tissues surrounding dental implants and it is considered a new global health concern. Human studies have suggested that the frequencies of Langerhans cells (LCs), the main antigen-presenting cells (APCs) of the oral epithelium, are dysregulated around the implants. Since LCs play a role in regulating oral mucosal homeostasis, we studied the impact of dental titanium implants on LC differentiation using a novel murine model. We demonstrate that whereas the percentage of LC precursors (CD11c+MHCII+) increased in the peri-implant epithelium, the frequencies of LCs (CD11c+MHCII+EpCAM+langerin+) were significantly reduced. Instead, a population of partially developed LCs expressing CD11c+MHCII+EpCAM+ but not langerin evolved in the peri-implant mucosa, which was also accompanied by a considerable leukocyte infiltrate. In line with the increased levels of LC precursors, expression of CCL2 and CCL20, chemokines mediating their translocation to the epithelium, was elevated in the peri-implant epithelium. However, expression of TGF-β1, the major cytokine driving final differentiation of LCs, was reduced in the epithelium. Further analysis revealed that while the expression of the TGF-β1 canonical receptor activing-like kinase (ALK)5 was upregulated, expression of its non-canonical receptor ALK3 was decreased. Since titanium ions releasing from implants were proposed to alter APC function, we next analyzed the impact of such ions on TGF-β1-induced LC differentiation cultures. Concurring with the in vivo studies, the presence of titanium ions resulted in the generation of partially developed LCs that express CD11c+MHCII+EpCAM+ but failed to upregulate langerin expression. Collectively, these findings suggest that titanium dental implants have the capacity to impair the development of oral LCs and might subsequently dysregulate immunity in the peri-implant mucosa.
Collapse
Affiliation(s)
- Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Noam Koren
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.,Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Tal Capucha
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Sharon Wald
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Maria Nassar
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Yaara Tabib
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Avi-Hai Hovav
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
37
|
MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci 2018; 10:24. [PMID: 30078842 PMCID: PMC6080405 DOI: 10.1038/s41368-018-0025-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15a, miR-29b, miR-125a, miR-146a, miR-148/148a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.
Collapse
|
38
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
39
|
Papadakou P, Bletsa A, Yassin MA, Karlsen TV, Wiig H, Berggreen E. Role of Hyperplasia of Gingival Lymphatics in Periodontal Inflammation. J Dent Res 2017; 96:467-476. [PMID: 28081372 DOI: 10.1177/0022034516681762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lymphatic vessels are important for maintenance of tissue fluid homeostasis and afferent antigen transport. In chronic inflammation, lymphangiogenesis takes place and is characterized by lymphatic endothelial cell proliferation and lymphatic hyperplasia. Vascular endothelial growth factor C (VEGFC) is the main known lymphangiogenic growth factor, and its expression is increased in periodontitis, a common chronic infectious disease that results in tissue destruction and alveolar bone loss. The role of lymphangiogenesis during development of periodontitis is unknown. Here, we test if transgenic overexpression of epithelial VEGFC in a murine model is followed by hyperplasia of lymphatic vessels in oral mucosa and if the lymphatic drainage capacity is altered. We also test if lymphatic hyperplasia protects against periodontal disease development. Transgenic keratin 14 (K14)-VEGFC mice had significant hyperplasia of lymphatics in oral mucosa, including gingiva, without changes in blood vessel vasculature. The basal lymph flow was normal but slightly lower than in wild-type mice when oral mucosa was challenged with lipopolysaccharide from Porphyromonas gingivalis. Under normal conditions, K14-VEGFC mice exhibited an increased number of neutrophils in gingiva, demonstrated enhanced phagocyte recruitment in the cervical lymph nodes, and had more alveolar bone when compared with their wild-type littermates. After induction of periodontitis, no strain differences were observed in the periodontal tissues with respect to granulocyte recruitment, bone resorption, angiogenesis, cytokines, and bone-related protein expressions or in draining lymph node immune cell proportions and vascularization. We conclude that overexpression of VEGFC results in hyperplastic lymphatics, which do not enhance lymphatic drainage capacity but facilitate phagocyte transport to draining lymph nodes. Hyperplasia of lymphatics does not protect against development of ligature-induced periodontitis.
Collapse
Affiliation(s)
- P Papadakou
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - A Bletsa
- 2 Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - M A Yassin
- 2 Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - T V Karlsen
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - H Wiig
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - E Berggreen
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Wilensky A, Mizraji G, Tabib Y, Sharawi H, Hovav AH. Analysis of Leukocytes in Oral Mucosal Tissues. Methods Mol Biol 2017; 1559:267-278. [PMID: 28063050 DOI: 10.1007/978-1-4939-6786-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The oral mucosa is constantly exposed to an immense amount of microorganisms, while some colonize the various anatomical niches existing in the oral cavity. To deal with such a complex challenge, the oral mucosal immune system must tolerate commensal microorganisms but prevent invasion of pathogens. Such activity is likely to be achieved by a wide range of mechanisms that could be similar or different to those employed by other mucosal tissues. The dental biofilm represents a unique challenge to the mucosal immune system, and inadequate immune responses might lead to periodontal diseases and the associated adverse systemic complications. It is thus crucial to study the mechanisms by which the oral mucosal immune system maintains homeostasis, and also induces protective immune responses against pathogens. To facilitate probing oral mucosal immunity, we describe here methods allowing immunological analysis of murine oral tissues using flow cytometry and immunofluorescence techniques.
Collapse
Affiliation(s)
- Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.,Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, 12272, Jerusalem, 91120, Israel
| | - Yaara Tabib
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, 12272, Jerusalem, 91120, Israel
| | - Hafez Sharawi
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, 12272, Jerusalem, 91120, Israel
| | - Avi-Hai Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, 12272, Jerusalem, 91120, Israel.
| |
Collapse
|
41
|
Straka M, Polák Š, Straková Trapezanlidis M, Varga I. What we know about the cellular microenvironment of clinically healthy human gingiva? An immunohistochemical and histological study. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
da Motta RJG, Tirapelli C, Juns da Silva R, Villafuerte KRV, Almeida LY, Ribeiro-Silva A, León JE. Immature, but Not Mature, Dendritic Cells Are More Often Present in Aggressive Periodontitis Than Chronic Periodontitis: An Immunohistochemical Study. J Periodontol 2016; 87:1499-1507. [PMID: 27389962 DOI: 10.1902/jop.2016.150729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dendritic cells (DCs) form a key link between innate and adaptive immune responses. The aim of this study is to analyze presence and distribution of immature (im) and mature (m) DCs in gingival tissue samples obtained from patients diagnosed with aggressive periodontitis (AgP), chronic periodontitis (CP), and clinically healthy periodontium (control group). METHODS Gingival tissue samples obtained from patients with: 1) AgP (aged <35 years); 2) CP (aged ≥35 years); and 3) control group (aged >18 years) (n = 10 per group) were collected. Two-way analysis of variance and posterior Fisher least significant difference test were used to observe differences between the means of cells positively marked for imDC (S100, CD1a, and CD207) and mDC (CD208) immunomarkers. RESULTS imDCs were more numerous in AgP than CP and control groups, being statistically significant only for S100+ cells. Conversely, mDCs were visualized in higher numbers in CP than AgP and control groups (both P <0.05). Considering frequency of immunostained cells, the number of S100+ cells was greater than CD207+ and CD1a+ cells, followed by a lesser number of CD208+ cells, in all groups. CONCLUSIONS Considering that the ability of DCs to regulate immunity is dependent on DC maturation, results suggest that predominance of imDCs appears to be involved in AgP pathogenesis, probably due to lack of ability to induce immune cell activation. Further studies are necessary to elucidate the role of DC maturation in regulating immune responses in periodontal disease.
Collapse
Affiliation(s)
- Raphael J G da Motta
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Tirapelli
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Juns da Silva
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly R V Villafuerte
- Department of Oral and Maxillofacial Surgery and Periodontology, University of São Paulo
| | - Luciana Y Almeida
- Department of Diagnosis and Surgery, Araraquara Dental School, University Estadual Paulista, São Paulo, Brazil
| | | | - Jorge E León
- Department of Stomatology, University of São Paulo
| |
Collapse
|
43
|
Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, Missaghian N, Vafa R, Cabrera-Ortega AA, Rossa C, Graves DT. Effect of Aging on Periodontal Inflammation, Microbial Colonization, and Disease Susceptibility. J Dent Res 2016; 95:460-6. [PMID: 26762510 PMCID: PMC4802783 DOI: 10.1177/0022034515625962] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by a biofilm that forms on the tooth surface. Increased periodontal disease is associated with aging. We investigated the effect of aging on challenge by oral pathogens, examining the host response, colonization, and osteoclast numbers in aged versus young mice. We also compared the results with mice with lineage-specific deletion of the transcription factor FOXO1, which reduces dendritic cell (DC) function. Periodontitis was induced by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in young (4 to 5 mo) and aged (14 to 15 mo) mice. Aged mice as well as mice with reduced DC function had decreased numbers of DCs in lymph nodes, indicative of a diminished host response. In vitro studies suggest that reduced DC numbers in lymph nodes of aged mice may involve the effect of advanced glycation end products on DC migration. Surprisingly, aged mice but not mice with genetically altered DC function had greater production of antibody to P. gingivalis, greater IL-12 expression, and more plasma cells in lymph nodes following oral inoculation as compared with young mice. The greater adaptive immune response in aged versus young mice was linked to enhanced levels of P. gingivalis and reduced bacterial diversity. Thus, reduced bacterial diversity in aged mice may contribute to increased P. gingivalis colonization following inoculation and increased periodontal disease susceptibility, reflected by higher TNF levels and osteoclast numbers in the periodontium of aged versus young mice.
Collapse
Affiliation(s)
- Y Wu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Dong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - F Miao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Shanxi Province People's Hospital, Taiyuan, China
| | - A Syverson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N Missaghian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Vafa
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A A Cabrera-Ortega
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - C Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - D T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Shin C, Kim M, Han JA, Choi B, Hwang D, Do Y, Yun JH. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells. J Periodontal Res 2016; 52:135-146. [PMID: 27021598 DOI: 10.1111/jre.12378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells (PDLSCs) from the periodontal ligament tissue were recently identified as mesenchymal stem cells (MSCs). The capabilities of PDLSCs in periodontal tissue or bone regeneration have been reported, but their immunomodulatory role in T-cell immune responses via dendritic cells (DCs), known as the most potent antigen-presenting cell, has not been studied. The aim of this study is to understand the immunological function of homogeneous human STRO-1+ CD146+ PDLSCs in DC-mediated T-cell immune responses to modulate the periodontal disease process. MATERIAL AND METHODS We utilized highly purified (> 95%) human STRO-1+ CD146+ PDLSCs and human bone marrow mesenchymal stem cells (BMSCs). Each stem cell was co-cultured with human monocyte-derived DCs in the presence of lipopolysaccharide isolated from Porphyromonas gingivalis, a major pathogenic bacterium responsible for periodontal disease, in vitro to examine the immunological effect of each stem cell on DCs and DC-mediated T-cell proliferation. RESULTS We discovered that STRO-1+ CD146+ PDLSCs, as well as BMSCs, significantly decreased the level of non-classical major histocompatibility complex glycoprotein CD1b on DCs, resulting in defective T-cell proliferation, whereas most human leukocyte antigens and the co-stimulatory molecules CD80 and CD86 in/on DCs were not significantly affected by the presence of BMSCs or STRO-1+ CD146+ PDLSCs. CONCLUSIONS This study unveiled an immunomodulatory role of STRO-1+ CD146+ PDLSCs in negatively regulating DC-mediated T-cell immune responses, demonstrating their potential to be utilized in promising new stem cell therapies.
Collapse
Affiliation(s)
- C Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - M Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - J-A Han
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - B Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - D Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea.,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Y Do
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - J-H Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
45
|
Díaz-Zúñiga J, Monasterio G, Alvarez C, Melgar-Rodríguez S, Benítez A, Ciuchi P, García M, Arias J, Sanz M, Vernal R. Variability of the dendritic cell response triggered by different serotypes of Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis is toll-like receptor 2 (TLR2) or TLR4 dependent. J Periodontol 2016; 86:108-19. [PMID: 25224175 DOI: 10.1902/jop.2014.140326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Different serotypes of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis have been shown to induce differential dendritic cell (DC) responses. This study investigates whether cytokine and CC-chemokine receptor (CCR) production by DCs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is Toll-like receptor 2 (TLR2) and/or TLR4 dependent. METHODS DCs were obtained from healthy individuals and primed at a multiplicity of infection (MOI) of 10(2) with different A. actinomycetemcomitans or P. gingivalis serotypes in the presence or absence of anti-TLR2 or anti-TLR4 blocking antibodies. TLR2 and TLR4 expression, CCR5 and CCR6 expression, and interleukin (IL)-1β, IL-10, IL-12, and IL-23 expression and secretion were quantified by flow cytometry, real-time reverse-transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS When DCs were stimulated with serotype b of A. actinomycetemcomitans or serotype K1 of P. gingivalis, higher levels of TLR2 or TLR4, respectively, were detected compared to DCs stimulated with the other serotypes. Similarly, higher levels of cytokines and CCRs were detected in serotype b- or serotype K1-primed DCs compared to the others, and these increased levels positively correlated with levels of TLR2 or TLR4. When TLR2 signaling was blocked using a specific anti-TLR2 monoclonal antibody, serotype b-induced cytokine and CCR expression was inhibited; when TLR4 signaling was blocked, serotype K1-induced response was inhibited. CONCLUSIONS These results demonstrate that the variability of secretion of cytokines and expression of CCRs detected in DCs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is TLR2 or TLR4 dependent, respectively.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Dental School, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gürsoy UK, Yildiz Çiftlikli S, Könönen E, Gürsoy M, Doğan B. Salivary interleukin-17 and tumor necrosis factor-α in relation to periodontitis and glycemic status in type 2 diabetes mellitus. J Diabetes 2015; 7:681-8. [PMID: 25327309 DOI: 10.1111/1753-0407.12228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Poorly-controlled glycemic status in type 2 diabetes mellitus (T2DM) is suggested to play a role in the periodontal inflammatory process by aggregating the local cytokine response. Our objectives were to profile salivary interleukin (IL)-17 and tumor necrosis factor (TNF)-α levels in subjects with T2DM and to examine their relevance for the periodontal health status and glycemic control levels. METHODS Unstimulated whole saliva samples, together with full-mouth periodontal recordings (plaque index [PI], bleeding on probing [BOP %], gingival index [GI], probing pocket depth [PPD], and clinical attachment level [CAL]), were collected from 123 subjects with T2DM. Additionally, demographic and general health parameters, including fasting blood glucose, glycated hemoglobin (HbA1c), were collected. Salivary IL-17 and TNF-α concentrations were analyzed using the Luminex®-xMAP™ technique. RESULTS Subjects with poorly-controlled T2DM (HbA1c ≥ 7) had elevated serum triglyceride (P < 0.001) concentration as well as elevated scores of BOP % (P = 0.014), PI (P = 0.048), GI (P = 0.033), and CAL (P = 0.003) in comparison to those of well-controlled T2DM (HbA1c < 7). When the subjects with detectable salivary IL-17 were categorized in tertiles, the scores of PPD and BOP%, and salivary TNF-α concentrations were significantly elevated in the highest (P = 0.007, P = 0.002 and P < 0.001, respectively) and middle (P = 0.052, P = 0.022, and P = 0.003, respectively) tertiles compared to subjects with non-detectable salivary IL-17. The adjusted association between PPD measurements and salivary IL-17 concentrations was significant (P = 0.008). CONCLUSIONS Poorly-controlled glycemic status relates to the severity of periodontal disease in T2DM. The association between PPD and IL-17 in saliva, however, is independent from the effect of glycemic status.
Collapse
Affiliation(s)
| | | | - Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gürsoy
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Başak Doğan
- Faculty of Dentistry, University of Marmara, Istanbul, Turkey
| |
Collapse
|
47
|
Díaz-Zúñiga J, Yáñez JP, Alvarez C, Melgar-Rodríguez S, Hernández M, Sanz M, Vernal R. Serotype-dependent response of human dendritic cells stimulated withAggregatibacter actinomycetemcomitans. J Clin Periodontol 2013; 41:242-51. [DOI: 10.1111/jcpe.12205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Juan Pablo Yáñez
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory; Department of Pathology; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group; Universidad Complutense de Madrid; Madrid Spain
| | - Rolando Vernal
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| |
Collapse
|