1
|
Fatima I, Wakade G, Ahmad N, Daniell H. Expression of endochitinase and exochitinase in lettuce chloroplasts increases plant biomass and kills fungal pathogen Candida albicans. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1437-1451. [PMID: 39967296 PMCID: PMC12018847 DOI: 10.1111/pbi.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
Lettuce (Lactuca sativa) is a popular leafy vegetable with global production of ~28 million Mt, cultivated >1 million hectares, with a market value of US$ 4 billion in 2022. However, lettuce is highly susceptible to fungal pathogens that drastically reduce biomass and quality due to spoilage/rot. Therefore, in this study, we investigated the expression of chitinase genes via the lettuce chloroplast genome to enhance biomass and disease resistance. Site-specific integration of the expression cassette into chloroplast genomes was confirmed using two sets of PCR primers. Homoplasmy in transplastomic lines was confirmed in Southern blots by the absence of untransformed genomes. Maternal inheritance of transgenes was confirmed by the lack of segregation when seedlings were germinated in the selection medium. Chitinases expressed in chloroplasts are active in a broad range of pH (5-9) and temperatures (20-50 °C). Exochitinase expression significantly increased the number of leaves, root or shoot length and biomass throughout the growth cycle. Endochitinase expression reduced root/shoot biomass at early stages but recovered in older plants. Plant extracts expressing endochitinase/exochitinase showed activities as high as purified commercial enzymes. Antifungal activity in Candida albicans cultures inhibited growth up to 87%. A novel Carbotrace 680™ Optotracer binding to the ß-1,4 linkages of chitin, evaluated for the first time in plant systems, is highly sensitive to measure chitinase activity. To the best of our knowledge, this is the first report of chitinase expression via the chloroplast genomes of an edible plant, to confer desired agronomic traits or for biomedical applications.
Collapse
Affiliation(s)
- Iqra Fatima
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS)FaisalabadPakistan
| | - Geetanjali Wakade
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS)FaisalabadPakistan
| | - Henry Daniell
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Occhialini A, Reed AC, Harbison SA, Sichterman MJ, Baumann A, Pfotenhauer AC, Li L, King G, Vincent AG, Wise-Mitchell AD, Stewart CN, Lenaghan SC. Next-generation marker-free transplastomic plants: engineering the chloroplast genome without integration of marker genes in Solanum tuberosum (potato). PLANT CELL REPORTS 2024; 43:290. [PMID: 39578272 DOI: 10.1007/s00299-024-03375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
KEY MESSAGE This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio-confinement from maternal inheritance, the absence of transgene positional effects and silencing, the ability to express transgenes in operons, and unparalleled production of heterologous proteins. While plastid engineering has had numerous successes in the production of high-value compounds, no transplastomic plants have been approved for use in agriculture. In order for transplastomic plants to be used in agriculture, the removal of antibiotic selection genes is required. In this work, we developed an optimized strategy to generate homoplasmic marker-free lines of potato (Solanum tuberosum) in a single transformation event. To achieve marker-free transplastomic lines, vectors were redesigned to enable integration of the transgene cassette into the plastid genome, while maintaining the selection cassette on the vector backbone. After an initial round of tissue culture with selection, the selective pressure was removed, leading to the elimination of the vector backbone, while retaining the integrated transgene cassette at homoplasmy. Marker-free transplastomic lines produced using this strategy had a normal phenotype, and transgene integration was stable across generations. The new vectors developed in this work for the generation of marker-free transplastomics will represent a valuable alternative platform for routine plastid genetic engineering in higher plants. It is also anticipated that this approach will contribute to speed the path to commercialization of these novel transplastomic plant varieties.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Plant Sciences, University of Tennessee, 301 Ag & Natural Resources Bldg., 2431 Joe Johnson Drive, Knoxville, TN, 37996, USA
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - Andrew C Reed
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA
| | - Stacee A Harbison
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - Megan J Sichterman
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA
| | - Aaron Baumann
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - Alexander C Pfotenhauer
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - Li Li
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - Gabriella King
- Department of Plant Sciences, University of Tennessee, 301 Ag & Natural Resources Bldg., 2431 Joe Johnson Drive, Knoxville, TN, 37996, USA
| | - Aaron G Vincent
- Department of Plant Sciences, University of Tennessee, 301 Ag & Natural Resources Bldg., 2431 Joe Johnson Drive, Knoxville, TN, 37996, USA
| | - Ashley D Wise-Mitchell
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 301 Ag & Natural Resources Bldg., 2431 Joe Johnson Drive, Knoxville, TN, 37996, USA
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, TN, 37996, USA.
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Briganti L, Manzine LR, de Mello Capetti CC, de Araújo EA, de Oliveira Arnoldi Pellegrini V, Guimaraes FEG, de Oliveira Neto M, Polikarpov I. Unravelling biochemical and structural features of Bacillus licheniformis GH5 mannanase using site-directed mutagenesis and high-resolution protein crystallography studies. Int J Biol Macromol 2024; 274:133182. [PMID: 38885857 DOI: 10.1016/j.ijbiomac.2024.133182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Glycoside hydrolase family 5 (GH5) encompasses enzymes with several different activities, including endo-1,4-β-mannosidases. These enzymes are involved in mannan degradation, and have a number of biotechnological applications, such as mannooligosaccharide prebiotics production, stain removal and dyes decolorization, to name a few. Despite the importance of GH5 enzymes, only a few members of subfamily 7 were structurally characterized. In the present work, biochemical and structural characterization of Bacillus licheniformis GH5 mannanase, BlMan5_7 were performed and the enzyme cleavage pattern was analyzed, showing that BlMan5_7 requires at least 5 occupied subsites to perform efficient hydrolysis. Additionally, crystallographic structure at 1.3 Å resolution was determined and mannoheptaose (M7) was docked into the active site to investigate the interactions between substrate and enzyme through molecular dynamic (MD) simulations, revealing the existence of a - 4 subsite, which might explain the generation of mannotetraose (M4) as an enzyme product. Biotechnological application of the enzyme in stain removal was investigated, demonstrating that BlMan5_7 addition to washing solution greatly improves mannan-based stain elimination.
Collapse
Affiliation(s)
- Lorenzo Briganti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Livia R Manzine
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Evandro Ares de Araújo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, São Paulo, Brazil
| | | | - Francisco Eduardo Gontijo Guimaraes
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Jr. s/n, Botucatu 18618-000, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
4
|
Abdella MAA, Ahmed NE, Hasanin MS. Green ecofriendly enhancement of cellulase productivity using agricultural wastes by Aspergillus terreus MN901491: statistical designs and detergent ability on cotton fabrics. Microb Cell Fact 2024; 23:109. [PMID: 38609920 PMCID: PMC11015618 DOI: 10.1186/s12934-024-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.
Collapse
Affiliation(s)
- Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Nehad E Ahmed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
5
|
Ikbal MS, Tisha FA, Asheque AI, Hasnat E, Uddin MA. Eco-friendly biopolishing of cotton fabric through wasted sugarcane bagasse-derived enzymes. Heliyon 2024; 10:e26346. [PMID: 38404776 PMCID: PMC10884504 DOI: 10.1016/j.heliyon.2024.e26346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Enzymatic processing has been a suitable bio-based sustainable application for the textile industry, mitigates the use of harsh chemicals, and minimises environmental impact. Among these enzymes, cellulase enzymes have been extensively used for biopolishing applications. This study introduces an eco-friendly biopolishing of cotton fabric that has been developed by using enzymes extracted from wasted sugarcane bagasse waste in an aqueous medium. Various extraction conditions were explored, and experiments were conducted under diverse time, pH, and temperature settings. The qualitative BUTEXDCE2022C01 testing method was used to assess the biopolishing effects, resulting in a considerable reduction in fabric weight (up to 5.26%) and strength (up to 10.54%). The optimum biopolishing condition was identified to be 1 h at pH 4.8, 55 °C from the fermented solution on day three, indicating the presence of acid cellulase enzyme. The viability of cellulase enzymes has been verified through comparative analysis with commercial samples that had undergone enzyme-biopolishing. Extracted and filtered enzymes exhibited pH stability at room temperature and proved equally effective as industrial enzymes. As textile industries pursue eco-friendly solutions, extracting cellulase from wasted sugarcane bagasse could be a sustainable and alternative option, which also can be sourced locally. Therefore, these findings have wider implications for sustainable enzyme extraction methods and contributions to environmental conservation.
Collapse
Affiliation(s)
- Md. Shah Ikbal
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Fahmida Akter Tisha
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Abdullah Ibn Asheque
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Enamul Hasnat
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Mohammad Abbas Uddin
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| |
Collapse
|
6
|
Cai Y, Yang G. Enzyme cocktail with hyperactive lipase through solid-state fermentation by the novel strain Penicillium sp. Y-21. Sci Rep 2023; 13:14527. [PMID: 37667063 PMCID: PMC10477218 DOI: 10.1038/s41598-023-41912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Lipase is a kind of industrial enzyme preparation with various catalytic abilities and is widely used in food, energy, medicine and other fields. To increase lipase and enzyme cocktail activity through solid-state fermentation, the novel strain Penicillium sp. Y-21 was obtained through ethyl methanesulfonate (EMS) mutation from the novel strain Y, which was isolated from soils. Solid-state fermentation by strain Y-21 using agricultural byproducts was carried out in tray bioreactors. The optimum culture composition for enzyme cocktail fermentation was soybean meal 20 g, 3% (w/w) glucose, 1% (w/w) peptone, 5% (w/w) lard, 0.04% (w/w) CaCl2, 0.04% (w/w) FeCl3, 28 °C for 72 h. The enzyme cocktail produced by strain Y-21 is a kind of multienzyme complex, containing xylanase, glucanase, acidic protease, pectinase, cellulase and lipase, and their enzymatic activities (unit: U g-1) were 8000, 6000, 8000, 2000, 3000 and 120, respectively. During the fermentation process, the lipase coding genes pel, pha, and p12 were also studied and amplified from the RNA of Penicillium sp. Y-21 by RT-PCR. The results showed that the pel gene played an important role in enzyme production. Afterwards, an enzyme cocktail can be added to chicken feed as an additive, which improves animal growth and feed efficiency.
Collapse
Affiliation(s)
- Yang Cai
- College of Food Science and Technology, Nanjing Agricultural University, Weigang #1, Nanjing, 210095, Jiangsu Province, China
| | - Guanghua Yang
- College of Biological and Food Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu Province, China.
| |
Collapse
|
7
|
dos Santos LN, Perna RF, Vieira AC, de Almeida AF, Ferreira NR. Trends in the Use of Lipases: A Systematic Review and Bibliometric Analysis. Foods 2023; 12:3058. [PMID: 37628057 PMCID: PMC10453403 DOI: 10.3390/foods12163058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Scientific mapping using bibliometric data network analysis was applied to analyze research works related to lipases and their industrial applications, evaluating the current state of research, challenges, and opportunities in the use of these biocatalysts, based on the evaluation of a large number of publications on the topic, allowing a comprehensive systematic data analysis, which had not yet been conducted in relation to studies specifically covering lipases and their industrial applications. Thus, studies involving lipase enzymes published from 2018 to 2022 were accessed from the Web of Science database. The extracted records result in the analysis of terms of bibliographic compatibility among the articles, co-occurrence of keywords, and co-citation of journals using the VOSviewer algorithm in the construction of bibliometric maps. This systematic review analysis of 357 documents, including original and review articles, revealed studies inspired by lipase enzymes in the research period, showing that the development of research, together with different areas of knowledge, presents good results related to the applications of lipases, due to information synchronization. Furthermore, this review showed the main challenges in lipase applications regarding increased production and operational stability; establishing well-defined evaluation criteria, such as cultivation conditions, activity, biocatalyst stability, type of support and reactor; thermodynamic studies; reuse cycles; and it can assist in defining goals for the development of successful large-scale applications, showing several points for improvement of future studies on lipase enzymes.
Collapse
Affiliation(s)
- Lucely Nogueira dos Santos
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas 37715-400, Brazil; (R.F.P.); (A.C.V.)
| | - Ana Carolina Vieira
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas 37715-400, Brazil; (R.F.P.); (A.C.V.)
| | - Alex Fernando de Almeida
- Engineering of Bioprocesses and Biotechnology, Federal University of Tocantins (UFT-TO), Gurupi 77402-970, Brazil;
| | - Nelson Rosa Ferreira
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| |
Collapse
|
8
|
Daniell H, Singh R, Mangu V, Nair SK, Wakade G, Balashova N. Affordable oral proinsulin bioencapsulated in plant cells regulates blood sugar levels similar to natural insulin. Biomaterials 2023; 298:122142. [PMID: 37148757 PMCID: PMC10219636 DOI: 10.1016/j.biomaterials.2023.122142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Diabetes Mellitus is a silent epidemic affecting >500 million, which claimed 6.7 million lives in 2021, a projected increase of >670% in <20 years old in the next two decades but insulin is unaffordable for the large majority of the globe. Therefore, we engineered proinsulin in plant cells to facilitate oral delivery. Stability of the proinsulin gene and expression in subsequent generations, after removal of the antibiotic-resistance gene, was confirmed using PCR, Southern and western blots. Proinsulin expression was high (up to 12 mg/g DW or 47.5% of total leaf protein), stable up to one year after storage of freeze-dried plant cells at ambient temperature and met FDA regulatory requirements of uniformity, moisture content and bioburden. GM1 receptor binding, required for uptake via gut epithelial cells was confirmed by pentameric assembly of CTB-Proinsulin. IP insulin injections (without C peptide) in STZ mice rapidly decreased blood glucose level leading to transient hypoglycemia, followed by hepatic glucose compensation. On the other hand, other than the 15-min lag period of oral proinsulin (transit time required to reach the gut), the kinetics of blood sugar regulation of oral CTB-Proinsulin in STZ mice was very similar to naturally secreted insulin in healthy mice (both contain C-peptide), without rapid decrease or hypoglycemia. Elimination of expensive fermentation, purification and cold storage/transportation should reduce cost and increase other health benefits of plant fibers. The recent approval of plant cell delivery of therapeutic proteins by FDA and approval of CTB-ACE2 for phase I/II human clinical studies augur well for advancing oral proinsulin to the clinic.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata Mangu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Smruti K Nair
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Geetanjali Wakade
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nataliya Balashova
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Khan SS, Verma V, Rasool S. Purification and characterization of lipase enzyme from endophytic Bacillus pumilus WSS5 for application in detergent industry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Peng R, Zhang W, Wang Y, Deng Y, Wang B, Gao J, Li Z, Wang L, Fu X, Xu J, Han H, Tian Y, Yao Q. Genetic engineering of complex feed enzymes into barley seed for direct utilization in animal feedstuff. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:560-573. [PMID: 36448454 PMCID: PMC9946151 DOI: 10.1111/pbi.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff. We co-expressed three commonly used feed enzymes (phytase, β-glucanase, and xylanase) in barley seeds using the Agrobacterium-mediated transformation method and generated a new barley germplasm. The results showed that these enzymes were stable and had no effect on the development of the seeds. Supplementation of the basal diet of laying hens with only 8% of enzyme-containing seeds decreased the quantities of indigestible carbohydrates, improved the availability of phosphorus, and reduced the impact of animal production on the environment to an extent similar to directly adding exogenous enzymes to the feed. Feeding enzyme-containing seeds to layers significantly increased the strength of the eggshell and the weight of the eggs by 10.0%-11.3% and 5.6%-7.7% respectively. The intestinal microbiota obtained from layers fed with enzyme-containing seeds was altered compared to controls and was dominated by Alispes and Rikenella. Therefore, the transgenic barley seeds produced in this study can be used as an ideal feedstuff for use in animal feed.
Collapse
Affiliation(s)
- Ri‐He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Wen‐Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jian‐Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Zhen‐Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Li‐Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Xiao‐Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Hong‐Juan Han
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Quan‐Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| |
Collapse
|
11
|
Wakade G, Lin S, Saha P, Kumari U, Daniell H. Abatement of microfibre pollution and detoxification of textile dye - Indigo by engineered plant enzymes. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:302-316. [PMID: 36208023 PMCID: PMC9884014 DOI: 10.1111/pbi.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Microfibres (diameter <5 mm) and textile dyes released from textile industries are ubiquitous, cause environmental pollution, and harm aquatic flora, fauna, animals and human life. Therefore, enzymatic abatement of microfibre pollution and textile dye detoxification is essential. Microbial enzymes for such application present major challenges of scale and affordability to clean up large scale pollution. Therefore, enzymes required for the biodegradation of microfibres and indigo dye were expressed in transplastomic tobacco plants through chloroplast genetic engineering. Integration of laccase and lignin peroxidase genes into the tobacco chloroplast genomes and homoplasmy was confirmed by Southern blots. Decolorization (up to 86%) of samples containing indigo dye (100 mg/L) was obtained using cp-laccase (0.5% plant enzyme powder). Significant (8-fold) reduction in commercial microbial cellulase cocktail was achieved in pretreated cotton fibre hydrolysis by supplementing cost effective cellulases (endoglucanases, ß-glucosidases) and accessory enzymes (swollenin, xylanase, lipase) and ligninases (laccase lignin peroxidase) expressed in chloroplasts. Microfibre hydrolysis using cocktail of Cp-cellulases and Cp-accessory enzymes along with minimal dose (0.25% and 0.5%) of commercial cellulase blend (Ctec2) showed 88%-89% of sugar release from pretreated cotton and microfibres. Cp-ligninases, Cp-cellulases and Cp-accessory enzymes were stable in freeze dried leaves up to 15 and 36 months respectively at room temperature, when protected from light. Use of plant powder for decolorization or hydrolysis eliminated the need for preservatives, purification or concentration or cold chain. Evidently, abatement of microfibre pollution and textile dye detoxification using Cp-enzymes is a novel and cost-effective approach to prevent their environmental pollution.
Collapse
Affiliation(s)
- Geetanjali Wakade
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shina Lin
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Prasenjit Saha
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Uma Kumari
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
14
|
Cold-Active Enzymes and Their Potential Industrial Applications-A Review. Molecules 2022; 27:molecules27185885. [PMID: 36144621 PMCID: PMC9501442 DOI: 10.3390/molecules27185885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
More than 70% of our planet is covered by extremely cold environments, nourishing a broad diversity of microbial life. Temperature is the most significant parameter that plays a key role in the distribution of microorganisms on our planet. Psychrophilic microorganisms are the most prominent inhabitants of the cold ecosystems, and they possess potential cold-active enzymes with diverse uses in the research and commercial sectors. Psychrophiles are modified to nurture, replicate, and retain their active metabolic activities in low temperatures. Their enzymes possess characteristics of maximal activity at low to adequate temperatures; this feature makes them more appealing and attractive in biotechnology. The high enzymatic activity of psychrozymes at low temperatures implies an important feature for energy saving. These enzymes have proven more advantageous than their mesophilic and thermophilic counterparts. Therefore, it is very important to explore the efficiency and utility of different psychrozymes in food processing, pharmaceuticals, brewing, bioremediation, and molecular biology. In this review, we focused on the properties of cold-active enzymes and their diverse uses in different industries and research areas. This review will provide insight into the areas and characteristics to be improved in cold-active enzymes so that potential and desired enzymes can be made available for commercial purposes.
Collapse
|
15
|
Occhialini A, Pfotenhauer AC, Li L, Harbison SA, Lail AJ, Burris JN, Piasecki C, Piatek AA, Daniell H, Stewart CN, Lenaghan SC. Mini-synplastomes for plastid genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:360-373. [PMID: 34585834 PMCID: PMC8753362 DOI: 10.1111/pbi.13717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Alexander C. Pfotenhauer
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Li Li
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Stacee A. Harbison
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Andrew J. Lail
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jason N. Burris
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | | | | | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - C. Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Scott C. Lenaghan
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| |
Collapse
|
16
|
Arnold J, Chapman J, Arnold M, Dinu CZ. Hyaluronic Acid Allows Enzyme Immobilization for Applications in Biomedicine. BIOSENSORS 2022; 12:bios12010028. [PMID: 35049657 PMCID: PMC8773612 DOI: 10.3390/bios12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as for detergent, textile, and food production and preservation industries respectively. Challenges regarding the transposition of enzymes from their natural purpose and environment into synthetic practice are discussed. For example, temperature and pH-induced enzyme fragilities, short shelf life, low-cost efficiency, poor user-controllability, and subsequently insufficient catalytic activity were shown to decrease pertinence and profitability in large-scale production considerations. Enzyme immobilization was shown to improve and expand upon enzyme usage within a profit and impact-oriented commercial world and through enzyme-material and interfaces integration. With particular focus on the growing biomedical market, examples of enzyme immobilization within or onto hyaluronic acid (HA)-based complexes are discussed as a definable way to improve upon and/or make possible the next generation of medical undertakings. As a polysaccharide formed in every living organism, HA has proven beneficial in biomedicine for its high biocompatibility and controllable biodegradability, viscoelasticity, and hydrophilicity. Complexes developed with this molecule have been utilized to selectively deliver drugs to a desired location and at a desired rate, improve the efficiency of tissue regeneration, and serve as a viable platform for biologically accepted sensors. In similar realms of enzyme immobilization, HA’s ease in crosslinking allows the molecule to user-controllably enhance the design of a given platform in terms of both chemical and physical characteristics to thus best support successful and sustained enzyme usage. Such examples do not only demonstrate the potential of enzyme-based applications but further, emphasize future market trends and accountability.
Collapse
Affiliation(s)
- Jackie Arnold
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
| | - Jordan Chapman
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
| | - Myra Arnold
- Department of Sociology and Anthropology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV 26505, USA;
- Department of Business Incubator, John Chambers College of Business and Economics, West Virginia University, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
- Correspondence:
| |
Collapse
|
17
|
Srinivasan A, Herzog RW, Khan I, Sherman A, Bertolini T, Wynn T, Daniell H. Preclinical development of plant-based oral immune modulatory therapy for haemophilia B. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1952-1966. [PMID: 33949086 PMCID: PMC8486253 DOI: 10.1111/pbi.13608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 05/03/2023]
Abstract
Anti-drug antibody (ADA) formation is a major complication in treatment of the X-linked bleeding disorder haemophilia B (deficiency in coagulation factor IX, FIX). Current clinical immune tolerance protocols are often not effective due to complications such as anaphylactic reactions against FIX. Plant-based oral tolerance induction may address this problem, as illustrated by the recent first regulatory approval of orally delivered plant cells to treat peanut allergy. Our previous studies showed that oral delivery of plant cells expressing FIX fused to the transmucosal carrier CTB (cholera toxin subunit B) in chloroplasts suppressed ADA in animals with haemophilia B. We report here creation of the first lettuce transplastomic lines expressing a coagulation factor, in the absence of antibiotic resistance gene. Stable integration of the CTB-FIX gene and homoplasmy (transformation of ˜10 000 copies in each cell) were maintained in both T1 and T2 generation marker-free plants. CTB-FIX expression in lyophilized leaves of T1 and T2 marker-free plants was 1.0-1.5 mg/g dry weight, confirming that the marker excision did not affect antigen levels. Oral administration of CTB-FIX to Sprague Dawley rats at 0.25, 1 or 2.5 mg/kg did not produce overt adverse effects or toxicity. The no-observed-adverse-effect level (NOAEL) is at least 2.5 mg/kg for a single oral administration in rats. Oral administration of CTB-FIX at 0.3 or 1.47 mg/kg either mixed in food or as an oral suspension to Beagle dogs did not produce any observable toxicity. These toxicology studies should facilitate filing of regulatory approval documents and evaluation in haemophilia B patients.
Collapse
Affiliation(s)
- Aparajitha Srinivasan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland W. Herzog
- Department of PediatricsHerman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Imran Khan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Alexandra Sherman
- Department of PediatricsHerman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Thais Bertolini
- Department of PediatricsHerman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Tung Wynn
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
| | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
18
|
Singh R, Ren Z, Shi Y, Lin S, Kwon K, Balamurugan S, Rai V, Mante F, Koo H, Daniell H. Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2113-2125. [PMID: 34076337 PMCID: PMC8486246 DOI: 10.1111/pbi.13643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 05/09/2023]
Abstract
Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome. Antibiotic resistance gene used to engineer foreign genes into the chloroplast genome were subsequently removed using direct repeats flanking the aadA gene and enzymes were successfully expressed in marker-free lettuce transplastomic lines. Equivalent enzyme units of plant-derived lipase performed better than purified commercial enzymes against biofilms, specifically targeting fungal hyphae formation. Combination of lipase with dextranase and mutanase suppressed biofilm development by degrading the biofilm matrix, with concomitant reduction of bacterial and fungal accumulation. In chewing gum tablets formulated with freeze-dried plant cells, expressed protein was stable up to 3 years at ambient temperature and was efficiently released in a time-dependent manner using a mechanical chewing simulator device. Development of edible plant cells expressing enzymes eliminates the need for purification and cold-chain transportation, providing a potential translatable therapeutic approach. Biofilm disruption through plant enzymes and chewing gum-based delivery offers an effective and affordable dental biofilm control at home particularly for populations with minimal oral care access.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Zhi Ren
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yao Shi
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shina Lin
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kwang‐Chul Kwon
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shanmugaraj Balamurugan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Francis Mante
- Department of Preventive and Restorative DentistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hyun Koo
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
19
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
20
|
Marker-Free Transplastomic Plants by Excision of Plastid Marker Genes Using Directly Repeated DNA Sequences. Methods Mol Biol 2021. [PMID: 34028764 DOI: 10.1007/978-1-0716-1472-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Excision of marker genes using DNA direct repeats makes use of the efficient native homologous recombination pathway present in the plastids of algae and plants. The method is simple, efficient, and widely applicable to plants and green algae. Marker excision frequency is dependent on the length and number of directly repeated sequences. When two repeats are used a repeat size of greater than 600 bp promotes efficient excision of the marker gene. A wide variety of sequences can be used to make the direct repeats. Only a single round of transformation is required and there is no requirement to introduce site-specific recombinases by retransformation or sexual crosses. Selection is used to maintain the marker and ensure homoplasmy of transgenic plastid genomes (plastomes). Release of selection allows the accumulation of marker-free plastomes generated by marker excision, which is a spontaneous and unidirectional process. Cytoplasmic sorting allows the segregation of cells with marker-free transgenic plastids. The marker-free shoots resulting from direct repeat mediated excision of marker genes have been isolated by vegetative propagation of shoots in the T0 generation. Alternatively, accumulation of marker-free plastomes during growth, development and flowering of T0 plants allows for the collection of seeds that give rise to a high proportion of marker-free T1 seedlings. The procedure enables precise plastome engineering involving insertion of transgenes, point mutations and deletion of genes without the inclusion of any extraneous DNA. The simplicity and convenience of direct repeat excision facilitates its widespread use to isolate marker-free crops.
Collapse
|
21
|
Farias CBB, Almeida FC, Silva IA, Souza TC, Meira HM, Soares da Silva RDCF, Luna JM, Santos VA, Converti A, Banat IM, Sarubbo LA. Production of green surfactants: Market prospects. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
22
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Kant Bhatia S, Vivek N, Kumar V, Chandel N, Thakur M, Kumar D, Yang YH, Pugazendhi A, Kumar G. Molecular biology interventions for activity improvement and production of industrial enzymes. BIORESOURCE TECHNOLOGY 2021; 324:124596. [PMID: 33440311 DOI: 10.1016/j.biortech.2020.124596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Metagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Meenu Thakur
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan 173212, Himachal Pradesh, India
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Arivalagan Pugazendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho ChiMinh City, Viet Nam
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
24
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
25
|
Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci Rep 2020; 10:21144. [PMID: 33273600 PMCID: PMC7713401 DOI: 10.1038/s41598-020-78237-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chloroplast biotechnology is a route for novel crop metabolic engineering. The potential bio-confinement of transgenes, the high protein expression and the possibility to organize genes into operons represent considerable advantages that make chloroplasts valuable targets in agricultural biotechnology. In the last 3 decades, chloroplast genomes from a few economically important crops have been successfully transformed. The main bottlenecks that prevent efficient transformation in a greater number of crops include the dearth of proven selectable marker gene-selection combinations and tissue culture methods for efficient regeneration of transplastomic plants. The prospects of increasing organelle size are attractive from several perspectives, including an increase in the surface area of potential targets. As a proof-of-concept, we generated Solanum tuberosum (potato) macro-chloroplast lines overexpressing the tubulin-like GTPase protein gene FtsZ1 from Arabidopsis thaliana. Macro-chloroplast lines exhibited delayed growth at anthesis; however, at the time of harvest there was no significant difference in height between macro-chloroplast and wild-type lines. Macro-chloroplasts were successfully transformed by biolistic DNA-delivery and efficiently regenerated into homoplasmic transplastomic lines. We also demonstrated that macro-chloroplasts accumulate the same amount of heterologous protein than wild-type organelles, confirming efficient usage in plastid engineering. Advantages and limitations of using enlarge compartments in chloroplast biotechnology are discussed.
Collapse
|
26
|
Daniell H. From conception to COVID-19: an arduous journey of tribulations of racism and triumphs. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2147-2154. [PMID: 32799416 PMCID: PMC7460971 DOI: 10.1111/pbi.13468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/07/2023]
Abstract
Growing up in a densely wooded tropical forest enhanced my curiosity in plants and reading biography of Marie Curie profoundly influenced pursuit of my research career. Early in my career, I developed in vitro functional chloroplasts, capable of expressing foreign genes and this laid the foundation for the chloroplast genetic engineering field. Four decades of research has advanced chloroplast bioreactors for production of industrial enzymes or biopharmaceuticals by small or large companies. Because I experienced firsthand horrors of expensive vaccines or medicines, I devoted most of my career to develop affordable therapeutics. During this long journey, I suffered institutional racial discrimination but was rescued by several guardian angels. This biography gives readers a glimpse of tribulations and triumphs of my journey and recognizes important contributions made by my mentees.
Collapse
Affiliation(s)
- Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
27
|
Hefferon K, Cantero-Tubilla B, Badar U, Wilson DW. Plant-Based Cellulase Assay Systems as Alternatives for Synthetic Substrates. Appl Biochem Biotechnol 2020; 192:1318-1330. [PMID: 32734581 DOI: 10.1007/s12010-020-03395-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022]
Abstract
Dissociative enzymes such as cellulases are greatly desired for a variety of applications in the food, fuel, and fiber industries. Cellulases and other cell wall-degrading enzymes are currently being engineered with improved traits for application in the breakdown of lignocellulosic biomass. Biochemical assays using these "designer" enzymes have traditionally been carried out using synthetic substrates such as crystalline bacterial microcellulose (BMCC). However, the use of synthetic substrates may not reflect the actual action of these cellulases on real plant biomass. We examined the potential of suspension cell walls from several plant species as possible alternatives for synthetic cellulose substrates. Suspension cells grow synchronously; hence, their cell walls are more uniform than those derived from mature plants. This work will help to establish a new assay system that is more genuine than using synthetic substrates. In addition to this, we have demonstrated that it is feasible to produce cellulases inexpensively and at high concentrations and activities in plants using a recombinant plant virus expression system. Our long-term goals are to use this system to develop tailored cocktails of cellulases that have been engineered to function optimally for specific tasks (i.e., the conversion of biomass into biofuel or the enhancement of nutrients available in livestock feed). The broad impact would be to provide a facile and economic system for generating industrial enzymes that offer green solutions to valorize biomass in industrialized communities and specifically in developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Borja Cantero-Tubilla
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Uzma Badar
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David W Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
28
|
Govindjee G, Briskin DP, Benning C, Daniell H, Kolossov V, Scheer H, Rebeiz M. From δ-aminolevulinic acid to chlorophylls and every step in between: in memory of Constantin (Tino) A. Rebeiz, 1936-2019. PHOTOSYNTHESIS RESEARCH 2020; 145:71-82. [PMID: 32458186 PMCID: PMC7250271 DOI: 10.1007/s11120-020-00750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 05/21/2023]
Abstract
Constantin A. (Tino) Rebeiz, a pioneer in the field of chlorophyll biosynthesis, and a longtime member of the University of Illinois community of plant biologists, passed away on July 25, 2019. He came to the USA at a time that was difficult for members of minority groups to be in academia. However, his passion for the complexity of the biochemical origin of chlorophylls drove a career in basic sciences which extended into applied areas of environmentally friendly pesticides and treatment for skin cancer. He was a philanthropist; in retirement, he founded the Rebeiz Foundation for Basic Research which recognized excellence and lifetime achievements of selected top scientists in the general area of photosynthesis research. His life history, scientific breakthroughs, and community service hold important lessons for the field.
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University (JNU), New Delhi, 110067 India
| | - Donald P. Briskin
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology- Plant Biology, Plant Research Laboratory, MSU-DOE, East Lansing, MI 48824 USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Vladimir Kolossov
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hugo Scheer
- Department of Biology- Botany, Ludwig-Maximilians-University, 80638 Munich, Germany
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
29
|
Kumar SRP, Wang X, Avuthu N, Bertolini TB, Terhorst C, Guda C, Daniell H, Herzog RW. Role of Small Intestine and Gut Microbiome in Plant-Based Oral Tolerance for Hemophilia. Front Immunol 2020; 11:844. [PMID: 32508814 PMCID: PMC7251037 DOI: 10.3389/fimmu.2020.00844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Fusion proteins, which consist of factor VIII or factor IX and the transmucosal carrier cholera toxin subunit B, expressed in chloroplasts and bioencapsulated within plant cells, initiate tolerogenic immune responses in the intestine when administered orally. This approach induces regulatory T cells (Treg), which suppress inhibitory antibody formation directed at hemophilia proteins induced by intravenous replacement therapy in hemophilia A and B mice. Further analyses of Treg CD4+ lymphocyte sub-populations in hemophilia B mice reveal a marked increase in the frequency of CD4+CD25-FoxP3-LAP+ T cells (but not of CD4+CD25+FoxP3+ T cells) in the lamina propria of the small but not large intestine. The adoptive transfer of very small numbers of CD4+CD25-LAP+ Treg isolated from the spleen of tolerized mice was superior in suppression of antibodies directed against FIX when compared to CD4+CD25+ T cells. Thus, tolerance induction by oral delivery of antigens bioencapsulated in plant cells occurs via the unique immune system of the small intestine, and suppression of antibody formation is primarily carried out by induced latency-associated peptide (LAP) expressing Treg that likely migrate to the spleen. Tolerogenic antigen presentation in the small intestine requires partial enzymatic degradation of plant cell wall by commensal bacteria in order to release the antigen. Microbiome analysis of hemophilia B mice showed marked differences between small and large intestine. Remarkably, bacterial species known to produce a broad spectrum of enzymes involved in degradation of plant cell wall components were found in the small intestine, in particular in the duodenum. These were highly distinct from populations of cell wall degrading bacteria found in the large intestine. Therefore, FIX antigen presentation and Treg induction by the immune system of the small intestine relies on activity of a distinct microbiome that can potentially be augmented to further enhance this approach.
Collapse
Affiliation(s)
- Sandeep R. P. Kumar
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, IN, United States
| | - Xiaomei Wang
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thais B. Bertolini
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, IN, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Daniell H, Mangu V, Yakubov B, Park J, Habibi P, Shi Y, Gonnella PA, Fisher A, Cook T, Zeng L, Kawut SM, Lahm T. Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension. Biomaterials 2020; 233:119750. [PMID: 31931441 PMCID: PMC7045910 DOI: 10.1016/j.biomaterials.2019.119750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly and uncurable disease characterized by remodeling of the pulmonary vasculature and increased pulmonary artery pressure. Angiotensin Converting Enzyme 2 (ACE2) and its product, angiotensin-(1-7) [ANG-(1-7)] were expressed in lettuce chloroplasts to facilitate affordable oral drug delivery. Lyophilized lettuce cells were stable up to 28 months at ambient temperature with proper folding, assembly of CTB-ACE2/ANG-(1-7) and functionality. When the antibiotic resistance gene was removed, Ang1-7 expression was stable in subsequent generations in marker-free transplastomic lines. Oral gavage of monocrotaline-induced PAH rats resulted in dose-dependent delivery of ANG-(1-7) and ACE2 in plasma/tissues and PAH development was attenuated with decreases in right ventricular (RV) hypertrophy, RV systolic pressure, total pulmonary resistance and pulmonary artery remodeling. Such attenuation correlated well with alterations in the transcription of Ang-(1-7) receptor MAS and angiotensin II receptor AGTRI as well as IL-1β and TGF-β1. Toxicology studies showed that both male and female rats tolerated ~10-fold ACE2/ANG-(1-7) higher than efficacy dose. Plant cell wall degrading enzymes enhanced plasma levels of orally delivered protein drug bioencapsulated within plant cells. Efficient attenuation of PAH with no toxicity augurs well for clinical advancement of the first oral protein therapy to prevent/treat underlying pathology for this disease.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Venkata Mangu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Jiyoung Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peyman Habibi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yao Shi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Lily Zeng
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
31
|
Park J, Yan G, Kwon KC, Liu M, Gonnella PA, Yang S, Daniell H. Oral delivery of novel human IGF-1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials 2020; 233:119591. [PMID: 31870566 PMCID: PMC6990632 DOI: 10.1016/j.biomaterials.2019.119591] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
Human insulin-like growth factor-1 (IGF-1) plays important roles in development and regeneration of skeletal muscles and bones but requires daily injections or surgical implantation. Current clinical IGF-1 lacks e-peptide and is glycosylated, reducing functional efficacy. In this study, codon-optimized Pro-IGF-1 with e-peptide (fused to GM1 receptor binding protein CTB or cell penetrating peptide PTD) was expressed in lettuce chloroplasts to facilitate oral delivery. Pro-IGF-1 was expressed at high levels in the absence of the antibiotic resistance gene in lettuce chloroplasts and was maintained in subsequent generations. In lyophilized plant cells, Pro-IGF-1 maintained folding, assembly, stability and functionality up to 31 months, when stored at ambient temperature. CTB-Pro-IGF-1 stimulated proliferation of human oral keratinocytes, gingiva-derived mesenchymal stromal cells and mouse osteoblasts in a dose-dependent manner and promoted osteoblast differentiation through upregulation of ALP, OSX and RUNX2 genes. Mice orally gavaged with the lyophilized plant cells significantly increased IGF-1 levels in sera, skeletal muscles and was stable for several hours. When bioencapsulated CTB-Pro-IGF-1 was gavaged to femoral fractured diabetic mice, bone regeneration was significantly promoted with increase in bone volume, density and area. This novel delivery system should increase affordability and patient compliance, especially for treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- J Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - G Yan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K-C Kwon
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Liu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - H Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Al-Ghanayem AA, Joseph B. Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biotechnol 2020; 104:2871-2882. [PMID: 32037467 DOI: 10.1007/s00253-020-10429-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Advanced developments in the field of enzyme technology have increased the use of enzymes in industrial applications, especially in detergents. Enzymes as detergent additives have been extensively studied and the demand is considerably increasing due to its distinct properties and potential applications. Enzymes from microorganisms colonized at various geographical locations ranging from extreme hot to cold are explored for compatibility studies as detergent additives. Especially psychrophiles growing at cold conditions have cold-active enzymes with high catalytic activity and their stability under extreme conditions makes it as an appropriate eco-friendly and cost-effective additive in detergents. Adequate number of reports are available on cold-active enzymes such as proteases, lipases, amylases, and cellulases with high efficiency and exceptional features. These enzymes with increased thermostability and alkaline stability have become the premier choice as detergent additives. Modern approaches in genomics and proteomics paved the way to understand the compatibility of cold-active enzymes as detergent additives in broader dimensions. The molecular techniques such as gene coding, amino acid sequencing, and protein engineering studies helped to solve the mysteries related to alkaline stability of these enzymes and their chemical compatibility with oxidizing agents. The present review provides an overview of cold-active enzymes used as detergent additives and molecular approaches that resulted in development of these enzymes as commercial hit in detergent industries. The scope and challenges in using cold-active enzymes as eco-friendly and sustainable detergent additive are also discussed.
Collapse
Affiliation(s)
- Abdullah A Al-Ghanayem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia.
| |
Collapse
|
33
|
Fumagalli M, Gerace D, Faè M, Iadarola P, Leelavathi S, Reddy VS, Cella R. Molecular, biochemical, and proteomic analyses of transplastomic tobacco plants expressing an endoglucanase support chloroplast-based molecular farming for industrial scale production of enzymes. Appl Microbiol Biotechnol 2019; 103:9479-9491. [PMID: 31701198 DOI: 10.1007/s00253-019-10186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
Abstract
The successful production of recombinant enzymes by tobacco transplastomic plants must maintain compatibility of the heterologous enzyme with chloroplast metabolism and its long-time enzyme stability. Based on previous reports, it has been taken for granted that following biolistic-transformation, homoplasticity could be obtained from the initially heteroplastic state following successive rounds of selection in the presence of the selection agent. However, several studies indicated that this procedure does not always ensure the complete elimination of unmodified wild-type plastomes. The present study demonstrates that CelK1 transplastomic plants, which were photosyntetically as active as untransformed ones, remain heteroplastomic even after repeated selection steps and that this state does not impair the relatively high-level production of the recombinant enzyme. In fact, even in the heteroplastomic state, the recombinant protein represented about 6% of the total soluble proteins (TSP). Moreover, our data also show that, while the recombinant endoglucanase undergoes phosphorylation, this post-translation modification does not have any significant impact on the enzymatic activity. Biomass storage might be required whenever the enzyme extraction process could not be performed immediately following the harvest of tobacco mature plants. In this respect, we have observed that enzyme activity in the detached leaves stored at 4 °C is maintained up to 20 weeks without significant loss of activity. These findings may have major implications in the future of chloroplast genetic engineering-based molecular farming to produce industrial enzymes in transplastomic plants.
Collapse
Affiliation(s)
- M Fumagalli
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - D Gerace
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - M Faè
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - P Iadarola
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - S Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - V S Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
34
|
Darwesh OM, Ali SS, Matter IA, Elsamahy T, Mahmoud YA. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods Enzymol 2019; 630:481-502. [PMID: 31931999 DOI: 10.1016/bs.mie.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enzymes as specific natural biocatalysts are present in all living organisms and they play a key role in the biochemical reactions inside, as outside the cell. Despite the wide range of environmental, medical, agricultural, and food applications, the high cost, non-reusability, and limited stability of soluble (non-immobilized) enzymes are considered barriers to their commercial application. Immobilization techniques are an effective strategy for solving problems associated with free enzymes in terms of improving the efficiency and stability of catalytic enzymes, as well as enhancing their separation and reusability in continuous industrial applications. Out of different supporting materials, magnetic nanoparticles are considered as the future trend for enzyme immobilization due to their exceptional properties regarding stabilization, easy recovery and reuse. Some recent techniques of enzyme immobilization on magnetic nanoparticles will be detailed hereafter in the chapter.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agriculture Microbiology Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ibrahim A Matter
- Agriculture Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yehia A Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
Anuar NFSK, Wahab RA, Huyop F, Halim KBA, Hamid AAA. In silico mutation on a mutant lipase from Acinetobacter haemolyticus towards enhancing alkaline stability. J Biomol Struct Dyn 2019; 38:4493-4507. [DOI: 10.1080/07391102.2019.1683074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nurul Fatin Syamimi Khairul Anuar
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota Kuantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota Kuantan, Malaysia
| |
Collapse
|
36
|
Daniell H, Kulis M, Herzog RW. Plant cell-made protein antigens for induction of Oral tolerance. Biotechnol Adv 2019; 37:107413. [PMID: 31251968 PMCID: PMC6842683 DOI: 10.1016/j.biotechadv.2019.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
The gut associated lymphoid tissue has effective mechanisms in place to maintain tolerance to food antigens. These can be exploited to induce antigen-specific tolerance for the prevention and treatment of autoimmune diseases and severe allergies and to prevent serious immune responses in protein replacement therapies for genetic diseases. An oral tolerance approach for the prevention of peanut allergy in infants proved highly efficacious and advances in treatment of peanut allergy have brought forth an oral immunotherapy drug that is currently awaiting FDA approval. Several other protein antigens made in plant cells are in clinical development. Plant cell-made proteins are protected in the stomach from acids and enzymes after their oral delivery because of bioencapsulation within plant cell wall, but are released to the immune system upon digestion by gut microbes. Utilization of fusion protein technologies facilitates their delivery to the immune system, oral tolerance induction at low antigen doses, resulting in efficient induction of FoxP3+ and latency-associated peptide (LAP)+ regulatory T cells that express immune suppressive cytokines such as IL-10. LAP and IL-10 expression represent potential biomarkers for plant-based oral tolerance. Efficacy studies in hemophilia dogs support clinical development of oral delivery of bioencapsulated antigens to prevent anti-drug antibody formation. Production of clinical grade materials in cGMP facilities, stability of antigens in lyophilized plant cells for several years when stored at ambient temperature, efficacy of oral delivery of human doses in large animal models and lack of toxicity augur well for clinical advancement of this novel drug delivery concept.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael Kulis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roland W Herzog
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|