1
|
T. B, D. S. Early detection of abiotic stress in plants through SNARE proteins using hybrid feature fusion model. PeerJ Comput Sci 2024; 10:e2149. [PMID: 39145217 PMCID: PMC11323173 DOI: 10.7717/peerj-cs.2149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/31/2024] [Indexed: 08/16/2024]
Abstract
Agriculture is the main source of livelihood for most of the population across the globe. Plants are often considered life savers for humanity, having evolved complex adaptations to cope with adverse environmental conditions. Protecting agricultural produce from devastating conditions such as stress is essential for the sustainable development of the nation. Plants respond to various environmental stressors such as drought, salinity, heat, cold, etc. Abiotic stress can significantly impact crop yield and development posing a major threat to agriculture. SNARE proteins play a major role in pathological processes as they are vital proteins in the life sciences. These proteins act as key players in stress responses. Feature extraction is essential for visualizing the underlying structure of the SNARE proteins in analyzing the root cause of abiotic stress in plants. To address this issue, we developed a hybrid model to capture the hidden structures of the SNAREs. A feature fusion technique has been devised by combining the potential strengths of convolutional neural networks (CNN) with a high dimensional radial basis function (RBF) network. Additionally, we employ a bi-directional long short-term memory (Bi-LSTM) network to classify the presence of SNARE proteins. Our feature fusion model successfully identified abiotic stress in plants with an accuracy of 74.6%. When compared with various existing frameworks, our model demonstrates superior classification results.
Collapse
Affiliation(s)
- Bhargavi T.
- School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
| | - Sumathi D.
- School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
| |
Collapse
|
2
|
Bakala HS, Devi J, Singh G, Singh I. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. PLANTA 2024; 259:123. [PMID: 38622376 DOI: 10.1007/s00425-024-04401-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
MAIN CONCLUSION Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.
Collapse
Affiliation(s)
- Harmeet Singh Bakala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jomika Devi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- Texas A&M University, AgriLife Research Center, Beaumont, TX, 77713, USA.
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
3
|
Dahiya P, Kumar P, Rani S, Dang AS, Suneja P. Draft genome sequence of halotolerant plant growth-promoting Bacillus paralicheniformis MHN12. Microbiol Resour Announc 2024; 13:e0113823. [PMID: 38436255 PMCID: PMC11008164 DOI: 10.1128/mra.01138-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Bacillus paralicheniformis MHN12 possesses a 4,245,453-base pair genome with 45.9% G + C content, including 1 CRISPR, 80 tRNA, 8 rRNA genes, and 4,418 predicted coding sequences . MHN12 exhibits high salinity tolerance and plant growth-promoting abilities, making it a promising bioinoculant for enhancing plant growth in saline soils.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
4
|
Tijjani SB, Qi J, Giri S, Lathrop R. Crop production and water quality under 1.5 °C and 2 °C warming: Plant responses and management options in the mid-Atlantic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167874. [PMID: 37858825 DOI: 10.1016/j.scitotenv.2023.167874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
The 2015 "Paris Agreement" aims to limit the global average temperature rise to significantly less than 2 °C, preferably within 1.5 °C above pre-industrial levels. A multitude of studies have focused on evaluating how different sectors respond to such levels of warming. Nonetheless, most of these studies fail to provide a clear roadmap to mitigate these impacts. A case in point is the anticipated decline in corn and soybean yields and increased phosphorus (P) and nitrogen (N) discharge into water bodies, a trend linked to past agricultural practices and climate change. In this research, we employ a novel assessment of how existing management practices under 1.5 °C and 2 °C global warming (GW) scenarios can affect nutrient availability in time and space as well as crop yield in a typical agricultural watershed in the Mid-Atlantic Region, specifically the Upper Maurice River Watershed (UMRW) in New Jersey. Using the Soil and Water Assessment Tool (SWAT) with multiple Global Climate Model (GCM) projections, we found that compared to 1.5 °C, a 2 °C GW scenario would exacerbate runoff, leading to amplified nutrient leaching. These losses decrease nutrient availability during the crop growing season. Moreover, a mismatch between the timing of fertilizer application and crop nutrient absorption caused nutrient-related stress. This nutrient and anticipated temperature stress resulted in a more significant decrease in crop yields under the 2 °C GW scenario than the 1.5 °C scenario. We have designed a management scenario to reduce future nutrient losses while increasing crop yields. The strategy involves altering the timing of planting/harvesting and the fertilizer application rate in response to a warming climate. This approach is projected to increase corn and soybean yields by +39 % (+21 %) and +2 % (+17 %), respectively, under the 1.5 °C (2.0 °C) GW scenario for the RCP-4.5 pathway. Simultaneously, it is expected to decrease the N and P loads at 1.5 °C (2.0 °C) GW. Comparable projections are also observed under the RCP-8.5 pathway.
Collapse
Affiliation(s)
- Sadiya B Tijjani
- Department of Geography, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Junyu Qi
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD 20740, USA
| | - Subhasis Giri
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Richard Lathrop
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
de Koning R, Daryanavard H, Garmyn J, Kiekens R, Toili MEM, Angenon G. Fine-tuning CRISPR/Cas9 gene editing in common bean ( Phaseolus vulgaris L.) using a hairy root transformation system and in silico prediction models. FRONTIERS IN PLANT SCIENCE 2023; 14:1233418. [PMID: 37929181 PMCID: PMC10623320 DOI: 10.3389/fpls.2023.1233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The stable transformation of common bean is a challenging and time-consuming process. Although CRISPR/Cas9 has revolutionized gene editing with its high efficiency and specificity, the performance of the system can be affected by multiple factors, such as sgRNA specificity and effectiveness, and the choice of promoter used to drive Cas9 expression. The use of a hairy root transformation system to initially check the efficiency of sgRNAs and the impact of different promoters could speed up this process and increase the chances of success. We initially tested three different transformation methods to induce hairy roots and selected a preferred method suitable for a variety of different common bean genotypes. This method involved inoculating a severed radicle with Rhizobium rhizogenes K599 and was fast, had a high transformation frequency of 42-48%, and resulted in numerous hairy roots. This method was further used for the transformation of explants using R. rhizogenes harboring different CRISPR/Cas9 constructs and evaluated the on-target activity of sgRNAs targeting raffinose family oligosaccharides biosynthetic genes and the impact of different promoters driving Cas9 on the gene editing efficiency. Additionally, we evaluated the reliability of the in silico tools, CRISPOR, CRISPR RGEN, and inDelphi to predict the sgRNA efficiencies and resulting mutations. Our results showed that the hairy root transformation system allows for rapid evaluation of multiple sgRNAs and promoters. We also identified several highly efficient sgRNAs that induced frameshift mutations at rates of up to 70% when a parsley ubiquitin promoter was driving Cas9 expression, providing valuable information for the selection of the most effective sgRNAs and promoters for future transformation experiments. Although most of the computational models used to predict the sgRNA efficiency did not match the in planta results, the Lindel model proved to be the most reliable for P. vulgaris, accurately predicting the sgRNA efficiency and the type of induced mutation in most hairy roots. Furthermore, the inDelphi algorithm could correctly predict deletions and single nucleotide insertions resulting from DNA double-strand breaks in common bean. These results offer promising implications for enhancing precise editing in plants because they provide the possibility of predicting repair outcomes.
Collapse
Affiliation(s)
- Ramon de Koning
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Daryanavard
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joyce Garmyn
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raphaël Kiekens
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Susmitha P, Kumar P, Yadav P, Sahoo S, Kaur G, Pandey MK, Singh V, Tseng TM, Gangurde SS. Genome-wide association study as a powerful tool for dissecting competitive traits in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1123631. [PMID: 37645459 PMCID: PMC10461012 DOI: 10.3389/fpls.2023.1123631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 08/31/2023]
Abstract
Legumes are extremely valuable because of their high protein content and several other nutritional components. The major challenge lies in maintaining the quantity and quality of protein and other nutritional compounds in view of climate change conditions. The global need for plant-based proteins has increased the demand for seeds with a high protein content that includes essential amino acids. Genome-wide association studies (GWAS) have evolved as a standard approach in agricultural genetics for examining such intricate characters. Recent development in machine learning methods shows promising applications for dimensionality reduction, which is a major challenge in GWAS. With the advancement in biotechnology, sequencing, and bioinformatics tools, estimation of linkage disequilibrium (LD) based associations between a genome-wide collection of single-nucleotide polymorphisms (SNPs) and desired phenotypic traits has become accessible. The markers from GWAS could be utilized for genomic selection (GS) to predict superior lines by calculating genomic estimated breeding values (GEBVs). For prediction accuracy, an assortment of statistical models could be utilized, such as ridge regression best linear unbiased prediction (rrBLUP), genomic best linear unbiased predictor (gBLUP), Bayesian, and random forest (RF). Both naturally diverse germplasm panels and family-based breeding populations can be used for association mapping based on the nature of the breeding system (inbred or outbred) in the plant species. MAGIC, MCILs, RIAILs, NAM, and ROAM are being used for association mapping in several crops. Several modifications of NAM, such as doubled haploid NAM (DH-NAM), backcross NAM (BC-NAM), and advanced backcross NAM (AB-NAM), have also been used in crops like rice, wheat, maize, barley mustard, etc. for reliable marker-trait associations (MTAs), phenotyping accuracy is equally important as genotyping. Highthroughput genotyping, phenomics, and computational techniques have advanced during the past few years, making it possible to explore such enormous datasets. Each population has unique virtues and flaws at the genomics and phenomics levels, which will be covered in more detail in this review study. The current investigation includes utilizing elite breeding lines as association mapping population, optimizing the choice of GWAS selection, population size, and hurdles in phenotyping, and statistical methods which will analyze competitive traits in legume breeding.
Collapse
Affiliation(s)
- Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Andhra Pradesh, India
| | - Pawan Kumar
- Department of Genetics and Plant Breeding, College of Agriculture, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Rajasthan, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, School of Agriculture, Gandhi Institute of Engineering and Technology (GIET) University, Odisha, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Manish K. Pandey
- Department of Genomics, Prebreeding and Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Sunil S. Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| |
Collapse
|
7
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
8
|
Jain D, Jones L, Roy S. Gene editing to improve legume-rhizobia symbiosis in a changing climate. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102324. [PMID: 36535148 DOI: 10.1016/j.pbi.2022.102324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the last three years, several gene editing techniques have been developed for both model and crop legumes. CRISPR-Cas9-based tools, in particular, are outpacing other comparable gene editing technologies used in legume hosts and their microbial symbionts to understand the molecular basis of symbiotic nitrogen-fixation. Gene editing has helped identify new gene functions, validate genetic screens, resolve gene redundancy, examine the role of tandemly duplicated genes, and investigate symbiotic signaling networks in non-model plants. In this review, we discuss the advances made in understanding the legume-rhizobia symbiosis through the use of gene editing and highlight studies conducted under varying environmental conditions. We reason that future climate-hardy legumes must be able to better integrate environmental signals with nitrogen fixation by fine-tuning long distance signaling, continuing to select efficient rhizobial partners, and adjusting their molecular circuitry to function optimally under variable light and nutrient availability and rising atmospheric carbon dioxide.
Collapse
Affiliation(s)
- Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Lauren Jones
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
9
|
Relevance of the Exocyst in Arabidopsis exo70e2 Mutant for Cellular Homeostasis under Stress. Int J Mol Sci 2022; 24:ijms24010424. [PMID: 36613868 PMCID: PMC9820329 DOI: 10.3390/ijms24010424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Plants must adapt to cope with adverse environmental conditions that affect their growth and development. To overcome these constraints, they can alter their developmental patterns by modulating cellular processes and activating stress-responsive signals. Alongside the activation of the antioxidant (AOX) system, a high number of genes are expressed, and proteins must be distributed to the correct locations within the cell. The endomembrane system and associated vesicles thus play an important role. Several pathways have been associated with adverse environmental conditions, which is the case for the exocyst-positive organelle-EXPO. The present work, using Arabidopsis mutants with T-DNA insertions in the gene EXO70, essential for EXPO vesicles formation, was designed to characterise the anatomical (morphology and root length), biochemical (quantification of stress markers and antioxidant system components), and molecular responses (gene expression) to abiotic stresses (saline, drought, oxidative, and metal-induced toxicity). The results obtained showed that mutant plants behave differently from the wild type (WT) plants. Therefore, in the exo70 mutant, morphological changes were more noticeable in plants under stress, and the non-enzymatic component of the antioxidant system was activated, with no alterations to the enzymatic component. Furthermore, other defence strategies, such as autophagy, did not show important changes. These results confirmed the EXPO as an important structure for tolerance/adaptation to stress.
Collapse
|
10
|
Crameri S, Fior S, Zoller S, Widmer A. A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (Dalbergia spp.) and the legume family (Fabaceae). Mol Ecol Resour 2022; 22:3087-3105. [PMID: 35689779 PMCID: PMC9796917 DOI: 10.1111/1755-0998.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Understanding the genetic changes associated with the evolution of biological diversity is of fundamental interest to molecular ecologists. The assessment of genetic variation at hundreds or thousands of unlinked genetic loci forms a sound basis to address questions ranging from micro- to macroevolutionary timescales, and is now possible thanks to advances in sequencing technology. Major difficulties are associated with (i) the lack of genomic resources for many taxa, especially from tropical biodiversity hotspots; (ii) scaling the numbers of individuals analysed and loci sequenced; and (iii) building tools for reproducible bioinformatic analyses of such data sets. To address these challenges, we developed target capture probes for genomic studies of the highly diverse, pantropically distributed and economically significant rosewoods (Dalbergia spp.), explored the performance of an overlapping probe set for target capture across the legume family (Fabaceae), and built the general purpose bioinformatic pipeline CaptureAl. Phylogenomic analyses of Malagasy Dalbergia species yielded highly resolved and well supported hypotheses of evolutionary relationships. Population genomic analyses identified differences between closely related species and revealed the existence of a potentially new species, suggesting that the diversity of Malagasy Dalbergia species has been underestimated. Analyses at the family level corroborated previous findings by the recovery of monophyletic subfamilies and many well-known clades, as well as high levels of gene tree discordance, especially near the root of the family. The new genomic and bioinformatic resources, including the Fabaceae1005 and Dalbergia2396 probe sets, will hopefully advance systematics and ecological genetics research in legumes, and promote conservation of the highly diverse and endangered Dalbergia rosewoods.
Collapse
Affiliation(s)
- Simon Crameri
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Stefan Zoller
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
- Genetic Diversity Centre (GDC)ETH ZurichZürichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| |
Collapse
|
11
|
Tefera AT, O’Leary GJ, Thayalakumaran T, Rao S, Silva-Perez V, Shunmugam ASK, Armstrong R, Rosewarne GM. Identification of agro-physiological traits of lentil that reduce risks of drought. FRONTIERS IN PLANT SCIENCE 2022; 13:1019491. [PMID: 36352869 PMCID: PMC9637959 DOI: 10.3389/fpls.2022.1019491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Ideotype breeding is an essential approach for selection of desired combination of plant traits for testing in crop growth model for potential yield gain in specific environments and management practices. Here we parameterized plant traits for untested lentil cultivars for the APSIM-lentil model in phenology, biomass, and seed yield. We then tested these against independent data and applied the model in an extrapolated analysis (i) to assess the impact of drought on productivity across different rainfall environments; (ii) to identify impactful plant traits and (iii) to design new lentil ideotypes with a combination of desirable traits that mitigate the impact of drought, in the context of various agronomic practices across a wide range of production environments. Desirable phenological and physiological traits related to yield were identified with RUE having the greatest effect on yield followed by HI rate. Leaf size significantly affected seed yield (p< 0.05) more than phenological phases. The physiological traits were integrated into four ideotype designs applied to two baseline cultivars (PBA Hallmark XT and PBA Jumbo2) providing eight ideotypes. We identified a combination of genetic traits that promises a yield advantage of around 10% against our current cultivars PBA Hallmark XT and PBA Jumbo2. Under drought conditions, our ideotypes achieved 5 to 25% yield advantages without stubble and 20 to 40% yield advantages with stubble residues. This shows the importance of genetic screening under realistic production conditions (e.g., stubble retention in particular environments). Such screening is aided by the employment of biophysical models that incorporate both genetic and agronomic variables that focus on successful traits in combination, to reduce the impact of drought in the development of new cultivars for various environments. Stubble retention was found to be a major agronomic contributor to high yield in water-limiting environments and this contribution declined with increasing growing season rainfall. In mid- and high-rainfall environments, the key drivers of yield were time of sowing, physiological traits and soil type. Overall, the agronomic practices, namely, early sowing, residue retention and narrow row spacing deceased the impact of drought when combined with improved physiological traits of the ideotypes based on long term climate data.
Collapse
Affiliation(s)
| | - Garry J. O’Leary
- Agriculture Victoria Research, Grain Innovation Park, Horsham, VIC, Australia
- Centre for Agricultural Innovation, The University of Melbourne, Parkville, VIC, Australia
| | - Thabo Thayalakumaran
- Agriculture Victoria Research, Centre for Agri Bioscience, Melbourne, VIC, Australia
| | - Shiwangni Rao
- Agriculture Victoria Research, Grain Innovation Park, Horsham, VIC, Australia
| | | | | | - Roger Armstrong
- Agriculture Victoria Research, Grain Innovation Park, Horsham, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Garry M. Rosewarne
- Agriculture Victoria Research, Grain Innovation Park, Horsham, VIC, Australia
- Centre for Agricultural Innovation, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
13
|
Ambreen H, Oraon PK, Wahlang DR, Satyawada RR, Katiyar-Agarwal S, Agarwal M, Jagannath A, Kumar A, Budhwar R, Shukla RN, Goel S. Long-read-based draft genome sequence of Indian black gram IPU-94-1 'Uttara': Insights into disease resistance and seed storage protein genes. THE PLANT GENOME 2022; 15:e20234. [PMID: 35762493 DOI: 10.1002/tpg2.20234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Black gram [Vigna mungo (L.) Hepper var. mungo] is a warm-season legume highly prized for its protein content along with significant folate and iron proportions. To expedite the genetic enhancement of black gram, a high-quality draft genome from the center of origin of the crop is indispensable. Here, we established a draft genome sequence of an Indian black gram cultivar, 'Uttara' (IPU 94-1), known for its high resistance to mungbean yellow mosaic virus. Pacific Biosciences of California, Inc. (PacBio) single-molecule real-time (SMRT) and Illumina sequencing assembled a draft reference-guided assembly with a cumulative size of ∼454.4 Mb, of which, 444.4 Mb was anchored on 11 pseudomolecules corresponding to 11 chromosomes. Uttara assembly denotes features of a high-quality draft genome illustrated through high N50 value (42.88 Mb), gene completeness (benchmarking universal single-copy ortholog [BUSCO] score 94.17%) and low levels of ambiguous nucleotides (N) percent (0.0005%). Gene discovery using transcript evidence predicted 28,881 protein-coding genes, from which, ∼95% were functionally annotated. A global survey of genes associated with disease resistance revealed 119 nucleotide binding site-leucine rich repeat (NBS-LRR) proteins, while 23 genes encoding seed storage proteins (SSPs) were discovered in black gram. A large set of microsatellite loci were discovered for marker development in the crop. Our draft genome of an Indian black gram provides the foundational genomic resources for the improvement of important agronomic traits and ultimately will help in accelerating black gram breeding programs.
Collapse
Affiliation(s)
- Heena Ambreen
- Dep. of Botany, Univ. of Delhi, Delhi, 110007, India
| | | | - Daniel Regie Wahlang
- Dep. of Biotechnology & Bioinformatics, North-Eastern Hill Univ., Shillong, 793022, India
| | - Rama Rao Satyawada
- Dep. of Biotechnology & Bioinformatics, North-Eastern Hill Univ., Shillong, 793022, India
| | - Surekha Katiyar-Agarwal
- Dep. of Plant Molecular Biology, Univ. of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manu Agarwal
- Dep. of Botany, Univ. of Delhi, Delhi, 110007, India
| | | | - Amar Kumar
- Dep. of Botany, Univ. of Delhi, Delhi, 110007, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Limited, Bengaluru, 560043, India
| | | | | |
Collapse
|
14
|
Garmendia I, Rashidi S, Quezada-Salirrosas MR, Goicoechea N. Atmospheric CO 2 concentration affects the life cycle, yield, and fruit quality of early maturing edible legume cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3964-3971. [PMID: 34952971 DOI: 10.1002/jsfa.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Elevated CO2 usually reduces levels of proteins and essential micronutrients in crops. The adoption of early maturing varieties may minimize the deleterious effect of climate change on farming activities. Legumes stand out for their high nutritional quality, so the objective was to study whether the atmospheric CO2 concentration affected the growth, yield, and food quality of early maturing cultivars of peas, snap beans, and faba beans. Plants grew in greenhouses either at ambient (ACO2 , 392 μmol mol-1 ) or under elevated (ECO2 , 700 μmol mol-1 ) CO2 levels. Minerals, proteins, sugars, and phenolic compounds were measured in grains of peas and faba beans, and in pods of snap beans. RESULTS The effect of ECO2 depended on legume species, being more evident for food quality than for vegetative growth and yield. The ECO2 increased Fe and P in faba bean grains, and Ca in snap bean pods. Under ECO2 , grains of pea and faba bean increased levels of proteins and phenolics, respectively, and the sugars-to-protein ratio decreased in pods of snap beans. CONCLUSION Early maturing varieties of legumes appear to be an interesting tool to cope with the negative effects that a long exposure to rising CO2 can exert on food quality. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Idoia Garmendia
- Department of Environment and Earth Sciences, University of Alicante, Alicante, Spain
| | - Sakineh Rashidi
- Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
| | - Marilyn Ra Quezada-Salirrosas
- Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
| | - Nieves Goicoechea
- Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Ahmed M, Hayat R, Ahmad M, ul-Hassan M, Kheir AMS, ul-Hassan F, ur-Rehman MH, Shaheen FA, Raza MA, Ahmad S. Impact of Climate Change on Dryland Agricultural Systems: A Review of Current Status, Potentials, and Further Work Need. INTERNATIONAL JOURNAL OF PLANT PRODUCTION 2022; 16:341-363. [PMID: 35614974 PMCID: PMC9122557 DOI: 10.1007/s42106-022-00197-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2022] [Indexed: 05/28/2023]
Abstract
Dryland agricultural system is under threat due to climate extremes and unsustainable management. Understanding of climate change impact is important to design adaptation options for dry land agricultural systems. Thus, the present review was conducted with the objectives to identify gaps and suggest technology-based intervention that can support dry land farming under changing climate. Careful management of the available agricultural resources in the region is a current need, as it will play crucial role in the coming decades to ensure food security, reduce poverty, hunger, and malnutrition. Technology based regional collaborative interventions among Universities, Institutions, Growers, Companies etc. for water conservation, supplemental irrigation, foliar sprays, integrated nutrient management, resilient crops-based cropping systems, artificial intelligence, and precision agriculture (modeling and remote sensing) are needed to support agriculture of the region. Different process-based models have been used in different regions around the world to quantify the impacts of climate change at field, regional, and national scales to design management options for dryland cropping systems. Modeling include water and nutrient management, ideotype designing, modification in tillage practices, application of cover crops, insect, and disease management. However, diversification in the mixed and integrated crop and livestock farming system is needed to have profitable, sustainable business. The main focus in this work is to recommend different agro-adaptation measures to be part of policies for sustainable agricultural production systems in future.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, 46300 Pakistan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Rifat Hayat
- Department of Soil Science and Soil Water Conservation, PMAS Arid Agriculture University, Rawalpindi, 46300 Pakistan
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University , Rawalpindi, 46300 Pakistan
| | - Mahmood ul-Hassan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University , Rawalpindi, 46300 Pakistan
| | - Ahmed M. S. Kheir
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Soils, Water and Environment Research Institute, Agricultural Research Center, 9 Cairo University Street, Giza, Egypt
| | - Fayyaz ul-Hassan
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, 46300 Pakistan
| | - Muhammad Habib ur-Rehman
- Institute of Crop Science and Resource Conservation, INRES) University, 53115 Bonn, Germany
- Department of Agronomy, Muhammad Nawaz Shareef Agriculture University, Multan, 60800 Pakistan
| | - Farid Asif Shaheen
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi, 46300 Pakistan
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Shakeel Ahmad
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| |
Collapse
|
16
|
Sampaio M, Neves J, Cardoso T, Pissarra J, Pereira S, Pereira C. Coping with Abiotic Stress in Plants-An Endomembrane Trafficking Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030338. [PMID: 35161321 PMCID: PMC8838314 DOI: 10.3390/plants11030338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 05/30/2023]
Abstract
Plant cells face many changes through their life cycle and develop several mechanisms to cope with adversity. Stress caused by environmental factors is turning out to be more and more relevant as the human population grows and plant cultures start to fail. As eukaryotes, plant cells must coordinate several processes occurring between compartments and combine different pathways for protein transport to several cellular locations. Conventionally, these pathways begin at the ER, or endoplasmic reticulum, move through the Golgi and deliver cargo to the vacuole or to the plasma membrane. However, when under stress, protein trafficking in plants is compromised, usually leading to changes in the endomembrane system that may include protein transport through unconventional routes and alteration of morphology, activity and content of key organelles, as the ER and the vacuole. Such events provide the tools for cells to adapt and overcome the challenges brought on by stress. With this review, we gathered fragmented information on the subject, highlighting how such changes are processed within the endomembrane system and how it responds to an ever-changing environment. Even though the available data on this subject are still sparse, novel information is starting to untangle the complexity and dynamics of protein transport routes and their role in maintaining cell homeostasis under harsh conditions.
Collapse
Affiliation(s)
- Miguel Sampaio
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| | - João Neves
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (J.N.); (T.C.)
| | - Tatiana Cardoso
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (J.N.); (T.C.)
| | - José Pissarra
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| | - Susana Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| | - Cláudia Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| |
Collapse
|
17
|
Popoola JO, Aworunse OS, Ojuederie OB, Adewale BD, Ajani OC, Oyatomi OA, Eruemulor DI, Adegboyega TT, Obembe OO. The Exploitation of Orphan Legumes for Food, Income, and Nutrition Security in Sub-Saharan Africa. FRONTIERS IN PLANT SCIENCE 2022; 13:782140. [PMID: 35665143 PMCID: PMC9156806 DOI: 10.3389/fpls.2022.782140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/19/2022] [Indexed: 05/17/2023]
Abstract
Poverty, food, and nutrition insecurity in sub-Saharan Africa (SSA) have become major concerns in recent times. The effects of climate change, drought, and unpredictable rainfall patterns threaten food production and sustainable agriculture. More so, insurgency, youth restiveness, and politico-economic instability amidst a burgeoning population requiring a sufficient and healthy diet remain front-burner issues in the region. Overdependence on only a few major staple crops is increasingly promoting the near extinction of many crops, especially orphan legumes, which possess immense potentials as protein and nutritional security crops. The major staple crops are declining in yield partly to their inability to adapt to the continuously changing climatic conditions. Remarkably, the orphan legumes are climate-smart crops with enormous agronomic features which foster sustainable livelihood. Research efforts on these crops have not attained a reasonable comparative status with most commercial crops. Though many research organizations and scientists have made efforts to promote the improvement and utilization of these orphan legumes, there is still more to be done. These legumes' vast genetic resources and economic utility are grossly under-exploited, but their values and promising impacts are immeasurable. Given the United Nations sustainable development goals (SDGs) of zero hunger, improved nutrition, health, and sustainable agriculture, the need to introduce these crops into food systems in SSA and other poverty-prone regions of the world is now more compelling than ever. This review unveils inherent values in orphan legumes needing focus for exploitation viz-a-viz cultivation, commercialization, and social acceptance. More so, this article discusses some of the nutraceutical potentials of the orphan legumes, their global adaptability, and modern plant breeding strategies that could be deployed to develop superior phenotypes to enrich the landraces. Advanced omics technologies, speed breeding, as well as the application of genome editing techniques, could significantly enhance the genetic improvement of these useful but underutilized legumes. Efforts made in this regard and the challenges of these approaches were also discussed.
Collapse
Affiliation(s)
- Jacob Olagbenro Popoola
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- *Correspondence: Jacob Olagbenro Popoola, , orcid.org/0000-0001-5302-4856
| | | | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Babasola Daniel Adewale
- Department of Crop Science and Horticulture, Federal University Oye-Ekiti, Ikole-Ekiti, Nigeria
| | | | - Olaniyi Ajewole Oyatomi
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Taofeek Tope Adegboyega
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Rafin Kura, Kaduna, Nigeria
| | - Olawole Odun Obembe
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Department of Biological Sciences, Covenant University, PMB, Ota, Nigeria
- Olawole Odun Obembe, , orcid.org/0000-0001-9050-8198
| |
Collapse
|
18
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
19
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
20
|
Neves J, Sampaio M, Séneca A, Pereira S, Pissarra J, Pereira C. Abiotic Stress Triggers the Expression of Genes Involved in Protein Storage Vacuole and Exocyst-Mediated Routes. Int J Mol Sci 2021; 22:ijms221910644. [PMID: 34638986 PMCID: PMC8508612 DOI: 10.3390/ijms221910644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Adverse conditions caused by abiotic stress modulate plant development and growth by altering morphological and cellular mechanisms. Plants’ responses/adaptations to stress often involve changes in the distribution and sorting of specific proteins and molecules. Still, little attention has been given to the molecular mechanisms controlling these rearrangements. We tested the hypothesis that plants respond to stress by remodelling their endomembranes and adapting their trafficking pathways. We focused on the molecular machinery behind organelle biogenesis and protein trafficking under abiotic stress conditions, evaluating their effects at the subcellular level, by looking at ultrastructural changes and measuring the expression levels of genes involved in well-known intracellular routes. The results point to a differential response of the endomembrane system, showing that the genes involved in the pathway to the Protein Storage Vacuole and the exocyst-mediated routes are upregulated. In contrast, the ones involved in the route to the Lytic Vacuole are downregulated. These changes are accompanied by morphological alterations of endomembrane compartments. The data obtained demonstrate that plants’ response to abiotic stress involves the differential expression of genes related to protein trafficking machinery, which can be connected to the activation/deactivation of specific intracellular sorting pathways and lead to alterations in the cell ultrastructure.
Collapse
Affiliation(s)
- João Neves
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal; (J.N.); (M.S.); (A.S.); (S.P.); (J.P.)
| | - Miguel Sampaio
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal; (J.N.); (M.S.); (A.S.); (S.P.); (J.P.)
- GreenUPorto-Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Ana Séneca
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal; (J.N.); (M.S.); (A.S.); (S.P.); (J.P.)
- GreenUPorto-Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Susana Pereira
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal; (J.N.); (M.S.); (A.S.); (S.P.); (J.P.)
- GreenUPorto-Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - José Pissarra
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal; (J.N.); (M.S.); (A.S.); (S.P.); (J.P.)
- GreenUPorto-Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Cláudia Pereira
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal; (J.N.); (M.S.); (A.S.); (S.P.); (J.P.)
- GreenUPorto-Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
21
|
Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021; 11:502. [PMID: 34072447 PMCID: PMC8228855 DOI: 10.3390/life11060502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura P. Bag 1020, Zimbabwe
| | - Songtao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
22
|
Cortinovis G, Oppermann M, Neumann K, Graner A, Gioia T, Marsella M, Alseekh S, Fernie AR, Papa R, Bellucci E, Bitocchi E. Towards the Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Common Bean. Curr Protoc 2021; 1:e133. [PMID: 34004060 DOI: 10.1002/cpz1.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The optimal use of legume genetic resources represents a key prerequisite for coping with current agriculture-related societal challenges, including conservation of agrobiodiversity, agricultural sustainability, food security, and human health. Among legumes, the common bean (Phaseolus vulgaris) is the most economically important for human consumption, and its evolutionary trajectories as a species have been crucial to determining the structure and level of its present and available genetic diversity. Genomic advances are considerably enhancing the characterization and assessment of important genetic variants. For this purpose, the development and availability of, and access to, well-described and efficiently managed genetic resource collections that comprise pure lines derived by single-seed-descent cycles will be paramount for the use of the reservoir of common bean variability and for the advanced breeding of legume crops. This is one of the main aims of the new and challenging European project INCREASE, which is the implementation of Intelligent Collections with appropriate standardized protocols that must be characterized, maintained, and made available, along with the related data, to users such as breeders and researchers. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterizing common bean seeds for seed trait descriptors Basic Protocol 2: Bean seed imaging Basic Protocol 3: Characterizing bean lines for plant trait descriptors specific for common bean Primary Seed Increase.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Markus Oppermann
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kerstin Neumann
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Graner
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Marco Marsella
- International Treaty on Plant Genetic Resources for Food and Agriculture (FAO), Rome, Italy
| | - Saleh Alseekh
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology, Plovdiv, Bulgaria
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
23
|
Chadalavada K, Kumari BDR, Kumar TS. Sorghum mitigates climate variability and change on crop yield and quality. PLANTA 2021; 253:113. [PMID: 33928417 DOI: 10.1007/s00425-021-03631-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Global food insecurity concerns due to climate change, emphasizes the need to focus on the sensitivity of sorghum to climate change and potential crop improvement strategies available, which is discussed in the current review to promote climate-smart agriculture. Climate change effects immensely disturb the global agricultural systems by reducing crop production. Changes in extreme weather and climate events such as high-temperature episodes and extreme rainfalls events, droughts, flooding adversely affect the production of staple food crops, posing threat to ecosystem resilience. The resulting crop losses lead to food insecurity and poverty and question the sustainable livelihoods of small farmer communities, particularly in developing countries. In view of this, it is essential to focus and adapt climate-resilient food crops which need lower inputs and produce sustainable yields through various biotic and abiotic stress-tolerant traits. Sorghum, "the camel of cereals", is one such climate-resilient food crop that is less sensitive to climate change vulnerabilities and also an important staple food in many parts of Asia and Africa. It is a rainfed crop and provides many essential nutrients. Understanding sorghum's sensitivity to climate change provides scope for improvement of the crop both in terms of quantity and quality and alleviates food and feed security in future climate change scenarios. Thus, the current review focused on understanding the sensitivity of sorghum crop to various stress events due to climate change and throws light on different crop improvement strategies available to pave the way for climate-smart agriculture.
Collapse
Affiliation(s)
- Keerthi Chadalavada
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India.
| | - B D Ranjitha Kumari
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - T Senthil Kumar
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
24
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
25
|
do Rosário Rosa V, Farias Dos Santos AL, Alves da Silva A, Peduti Vicentini Sab M, Germino GH, Barcellos Cardoso F, de Almeida Silva M. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:228-243. [PMID: 33218845 DOI: 10.1016/j.plaphy.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/05/2020] [Indexed: 05/01/2023]
Abstract
To meet the growing demand for soybean it is necessary to increase crop yield, even in low water availability conditions. To circumvent the negative effects of water deficit, application of biostimulants with anti-stress effect has been adopted, including products based on fulvic acids and Ascophyllum nodosum (L.) seaweed extracts. In this study, we determined which formulation and dosage of a biostimulant is more efficient in promoting the recovery of soybean plants after stress due to water deficit. The experiment was conducted in a greenhouse, in a double-factorial randomized block design with two additional factors, four repetitions and eleven treatments consisting of three biostimulant formulations (F1, F2 and F3), and three dosages (0.25; 0.50 and 1.0 kg ha-1); a control with water deficit and a control without water deficit. Soybean plants were kept at 50% of the pot's water capacity for three days, then rehydrated and submitted to the application of treatments with biostimulant. After two days of recovery, growth, physiological, biochemical and yield parameters were evaluated. All plants that received the application of the biostimulant produced more than the water-stressed control plants. The biostimulant provided higher photosynthetic rates, more efficient mechanisms for dissipating excess energy and higher activities of antioxidant enzymes. Plants treated with biostimulant were more efficient in the recovery of the metabolic activities after rewatering, resulting in increased soybean tolerance to water deficit and reduced yield losses. The best result obtained was through the application of formulation 2 of the biostimulant at a dosage of 0.25 kg ha-1.
Collapse
Affiliation(s)
- Vanessa do Rosário Rosa
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Anna Luiza Farias Dos Santos
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Adinan Alves da Silva
- Laboratory of Ecophysiology and Crop Production, Federal Goianian Institute (IF Goiano), Campus Rio Verde, GO, Brazil.
| | - Mariana Peduti Vicentini Sab
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Gabriel Henrique Germino
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | | | - Marcelo de Almeida Silva
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
26
|
Xia J, Wang J, Niu S. Research challenges and opportunities for using big data in global change biology. GLOBAL CHANGE BIOLOGY 2020; 26:6040-6061. [PMID: 32799353 DOI: 10.1111/gcb.15317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Global change biology has been entering a big data era due to the vast increase in availability of both environmental and biological data. Big data refers to large data volume, complex data sets, and multiple data sources. The recent use of such big data is improving our understanding of interactions between biological systems and global environmental changes. In this review, we first explore how big data has been analyzed to identify the general patterns of biological responses to global changes at scales from gene to ecosystem. After that, we investigate how observational networks and space-based big data have facilitated the discovery of emergent mechanisms and phenomena on the regional and global scales. Then, we evaluate the predictions of terrestrial biosphere under global changes by big modeling data. Finally, we introduce some methods to extract knowledge from big data, such as meta-analysis, machine learning, traceability analysis, and data assimilation. The big data has opened new research opportunities, especially for developing new data-driven theories for improving biological predictions in Earth system models, tracing global change impacts across different organismic levels, and constructing cyberinfrastructure tools to accelerate the pace of model-data integrations. These efforts will uncork the bottleneck of using big data to understand biological responses and adaptations to future global changes.
Collapse
Affiliation(s)
- Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jing Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Uddin ME, Kebreab E. Review: Impact of Food and Climate Change on Pastoral Industries. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.543403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Cortinovis G, Di Vittori V, Bellucci E, Bitocchi E, Papa R. Adaptation to novel environments during crop diversification. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:203-217. [PMID: 32057695 DOI: 10.1016/j.pbi.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In the context of the global challenge of climate change, mitigation strategies are needed to adapt crops to novel environments. The main goal to address this is an understanding of the genetic basis of crop adaptation to different agro-ecological conditions. The movement of crops during the Colombian Exchange that started with the travels of Columbus in 1492 is an example of rapid adaptation to novel environments. Many diversification-related traits have been characterised in multiple crop species, and association-mapping analyses have identified loci involved in these. Here, we present an overview of current knowledge regarding the molecular basis related to the complex patterns of crop adaptation and dissemination, particularly outside their centres of origin. Investigation of the genomic basis of crop expansion offers a powerful contribution to the development of tools to identify and exploit valuable genetic diversity and to improve and design novel resilient crop varieties.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Valerio Di Vittori
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
29
|
van Zonneveld M, Turmel MS, Hellin J. Decision-Making to Diversify Farm Systems for Climate Change Adaptation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
30
|
Bueno PP, Lopes NP. Metabolomics to Characterize Adaptive and Signaling Responses in Legume Crops under Abiotic Stresses. ACS OMEGA 2020; 5:1752-1763. [PMID: 32039310 PMCID: PMC7003242 DOI: 10.1021/acsomega.9b03668] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 05/07/2023]
Abstract
Legume species are an important source of protein and other nutrients for human and livestock consumption, playing a central role in food security. Besides, legumes benefit agriculture because of their ability to establish symbiotic interactions with nitrogen-fixing bacteria, providing nitrogen for subsequent crops, which is very much appreciated for sustainable agricultural practices. However, like other food crops, legumes are highly vulnerable to climate variations, water stresses being the main constraint that negatively affects both crop quality and productivity. Because of this, the development of strategies to improve the tolerance of such cultivars against water stresses, as well as the study of effective approaches to monitor these improvements, have gained special attention during the last years. Among these strategies, metabolomics has been considered one of the most promising approaches for the detection and/or quantification of primary and secondary stress-responsive metabolites in abiotic stresses. In plant science, many research groups have been using metabolomics to evaluate the success of genetic modifications by the analysis of chemical markers that can be altered in breeding programs. In addition, metabolomics is a powerful tool for the evaluation and selection of wild specimens with desirable traits that can be used in the development of improved new cultivars. Therefore, the aim of the present paper is to review the recent progress made in the field of metabolomics and plant breeding, especially concerning the adaptive responses of legume species to abiotic stresses as well as to point out the key primary and secondary metabolites involved in the adaptation and sensing mechanisms.
Collapse
Affiliation(s)
- Paula
C. P. Bueno
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto (FCFRP-USP), Department
of Physics and Chemistry, University of
São Paulo, Avenida do Cafe′ s/n, 14040-903 Ribeirão Preto/SP, Brazil
- Max-Planck
Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Norberto P. Lopes
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto (FCFRP-USP), Department
of Physics and Chemistry, University of
São Paulo, Avenida do Cafe′ s/n, 14040-903 Ribeirão Preto/SP, Brazil
- E-mail:
| |
Collapse
|
31
|
Kinzner MC, Gamisch A, Hoffmann AA, Seifert B, Haider M, Arthofer W, Schlick-Steiner BC, Steiner FM. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133753. [PMID: 31425981 DOI: 10.1016/j.scitotenv.2019.133753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Climate warming is threatening biodiversity worldwide. Climate specialists such as alpine species are especially likely to be vulnerable. Adaptation by rapid evolution is the only long-term option for survival of many species, but the adaptive evolutionary potential of heat resistance has not been assessed in an alpine invertebrate. Here, we show that the alpine fly Drosophila nigrosparsa cannot readily adapt to heat stress. Heat-exposed flies from a regime with increased ambient temperature and a regime with increased temperature plus artificial selection for heat tolerance were less heat tolerant than the control group. Increased ambient temperature affected negatively both fitness and competitiveness. Ecological niche models predicted the loss of three quarters of the climatically habitable areas of this fly by the end of this century. Our findings suggest that, alongside with other climate specialists, species from mountainous regions are highly vulnerable to climate warming and unlikely to adapt through evolutionary genetic changes.
Collapse
Affiliation(s)
| | - Alexander Gamisch
- Department of Ecology, University of Innsbruck, Innsbruck, Austria; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Brigitta Seifert
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marlene Haider
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
32
|
Eisenach C. How plants respond to climate change: A new Virtual Special Issue of Plant, Cell & Environment. PLANT, CELL & ENVIRONMENT 2019; 42:2537-2539. [PMID: 31256418 DOI: 10.1111/pce.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
|
33
|
Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E34. [PMID: 30704089 PMCID: PMC6409995 DOI: 10.3390/plants8020034] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO₂ or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xuekun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
34
|
Foyer CH, Nguyen H, Lam HM. Legumes-The art and science of environmentally sustainable agriculture. PLANT, CELL & ENVIRONMENT 2019; 42:1-5. [PMID: 30575076 DOI: 10.1111/pce.13497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Symbiotic nitrogen fixation, which is carried out by the legume-rhizobia partnership, is a major source of nitrogen acquisition in natural ecosystems and in agriculture. The benefits to the plant gained through the rhizobial-legume symbiosis can be further enhanced by associations of the legume with arbuscular mycorrhiza. The progressive engagement of the legume host with the rhizobial bacteria and mycorrhizal fungi requires an extensive exchange of signalling molecules. These signals alter the transcriptional profiles of the partners, guiding and enabling extensive microbial and fungal proliferation in the roots. Such interactions and associations are greatly influenced by environmental stresses, which also severely limit the productivity of legume crops. Part II of the Special Issue on Legumes provides new insights into the mechanisms that underpin sustainable symbiotic partnerships, as well as the effects of abiotic stresses, such as drought, waterlogging, and salinity on legume biology. The requirement for germplasm and new breeding methods is discussed as well as the future of legume production in the face of climate change.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Henry Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
35
|
Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov DA, Hane JK, Edwards D, Erskine W, Nelson MN. The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2543-2554. [PMID: 30225643 PMCID: PMC6244526 DOI: 10.1007/s00122-018-3171-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/25/2018] [Indexed: 05/21/2023]
Abstract
This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication. The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today's crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.
Collapse
Affiliation(s)
- Mahsa Mousavi-Derazmahalleh
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Philipp E Bayer
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - James K Hane
- CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - William Erskine
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Matthew N Nelson
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.
| |
Collapse
|
36
|
Abstract
Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big “omics” data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution.
Collapse
|