1
|
Allen BS, Stewart JJ, Polutchko SK, Ocheltree TW, Gleason SM. Long-Term in vivo Observation of Maize Leaf Xylem Embolism, Transpiration and Photosynthesis During Drought and Recovery. PLANT, CELL & ENVIRONMENT 2025; 48:4114-4125. [PMID: 39901747 PMCID: PMC12050386 DOI: 10.1111/pce.15414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/14/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Plant water transport is essential to maintain turgor, photosynthesis and growth. Water is transported in a metastable state under large negative pressures, which can result in embolism, that is, the loss of function by the replacement of liquid xylem sap with gas, as a consequence of water stress. To avoid experimental artefacts, we used an optical vulnerability system to quantify embolism occurrence across six fully expanded maize leaves to characterize the sequence of physiological responses (photosynthesis, chlorophyll fluorescence, whole-plant transpiration and leaf inter-vein distance) in relation to declining water availability and leaf embolism during severe water stress. Additionally, we characterize the recovery of leaf function in the presence of sustained embolism during a 6-day recovery period. Embolism formation occurred after other physiological processes were substantially depressed and were irreversible upon rewatering. Recovery of transpiration, net CO2 assimilation and photosystem II efficiency were aligned with the severity of embolism, whereas these traits returned to near pre-stress levels in the absence of embolism. A better understanding of the relationships between embolism occurrence and downstream physiological processes during stress and recovery is critical for the improvement of crop productivity and resilience.
Collapse
Affiliation(s)
- Brendan S. Allen
- Water Management and Systems Research Unit, USDA‐ARSFort CollinsColoradoUSA
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Jared J. Stewart
- Water Management and Systems Research Unit, USDA‐ARSFort CollinsColoradoUSA
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Stephanie K. Polutchko
- Water Management and Systems Research Unit, USDA‐ARSFort CollinsColoradoUSA
- Department of Ecology & Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Sean M. Gleason
- Water Management and Systems Research Unit, USDA‐ARSFort CollinsColoradoUSA
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
2
|
Schell V, Kervroëdan L, Corso D, N'do DY, Faucon MP, Delzon S. Greater Resistance to Drought-Induced Embolism Is Linked to Higher Yield Maintenance in Soybean. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40232147 DOI: 10.1111/pce.15538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
With increasing drought events worldwide, crop breeding must focus on drought resistance to maintain crop yields. To ensure a high level of gas exchange and growth, plants need to maintain the integrity of their vascular system under drought conditions. While the impact of drought-induced vascular damage on tree species is well-documented, its effect on the yield of annual crops like soybean (Glycine max (L.) Merrill) remains unknown. We investigated xylem vulnerability to embolism of ten soybean cultivars with contrasting phylogenetic origins and phenology using the optical technique. With X-ray micro-tomography, we assessed xylem vulnerability across the plant vascular pathway to quantify the vulnerability segmentation. Our results revealed that soybean is moderately vulnerable to xylem embolism (mean leaf P50 = -1.85 MPa), with a significant Intraspecific variability with a difference of 1 MPa between the most extreme cultivars. Cultivars with higher leaf embolism resistance maintained higher yields in the field, particularly during dry years, highlighting the critical role of xylem hydraulic failure during drought in crop yield. This study provides new insights into the importance of hydraulic traits underlying drought tolerance in soybeans and their incorporation into breeding programmes for embolism resistance to improve yield resilience.
Collapse
Affiliation(s)
- Viviane Schell
- AGHYLE, Institut Polytechnique Unilasalle, Beauvais, Haut de France, France
- BIOGECO, University of Bordeaux, Pessac, Nouvelle Aquitaine, France
| | - Léa Kervroëdan
- AGHYLE, Institut Polytechnique Unilasalle, Beauvais, Haut de France, France
| | - Déborah Corso
- BIOGECO, University of Bordeaux, Pessac, Nouvelle Aquitaine, France
| | | | | | - Sylvain Delzon
- BIOGECO, University of Bordeaux, Pessac, Nouvelle Aquitaine, France
| |
Collapse
|
3
|
Stewart JJ, Allen BS, Polutchko SK, Ocheltree TW, Gleason SM. Xylem embolism refilling revealed in stems of a weedy grass. Proc Natl Acad Sci U S A 2025; 122:e2420618122. [PMID: 40112095 PMCID: PMC12002171 DOI: 10.1073/pnas.2420618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Plant hydraulic dysfunction by embolism formation can impair photosynthesis, growth, and reproduction and, in severe cases, lead to death. Embolism reversal, or "refilling," is a hypothesized adaptive process in which xylem functionality is rapidly and sustainably restored. This study investigated xylem embolism refilling during recovery from severe drought stress using entirely noninvasive measurements of the same plants. These results were considered in relation to functional traits to address long-standing gaps in understanding the consequences of severe drought stress. Leaf and stem xylem embolism as well as transpiration, photosynthesis, and stem water potential were characterized nondestructively on intact barnyard grass plants during an acute drought event. Plants were rewatered and returned to growth conditions for 10 d, during which time recovery of stem xylem embolism and transpiration were monitored. Leaf xylem embolism and declines in leaf gas exchange occurred mostly between -1.0 MPa and -2.0 MPa, whereas stem xylem embolism occurred mostly between -3.0 MPa and -4.0 MPa. In all measured plants, which included embolism levels up to 88%, stem xylem embolism reversed completely within 24 h after rewatering, and this refilling supported recovery of transpiration and growth after plants were returned to growth conditions. This study provides direct evidence of complete and functional stem xylem refilling. These results present a clear need to elucidate underlying mechanisms and the adaptive significance of this phenomenon as well as its prevalence in nature.
Collapse
Affiliation(s)
- Jared J. Stewart
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Brendan S. Allen
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Stephanie K. Polutchko
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - Troy W. Ocheltree
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Sean M. Gleason
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
4
|
Nadal M, Peguero‐Pina JJ, Sancho‐Knapik D, Gil‐Pelegrín E. Comparison of different methods to evaluate tissue damage in response to leaf dehydration in Quercus ilex L. and Q. faginea Lam. PHYSIOLOGIA PLANTARUM 2025; 177:e70178. [PMID: 40128144 PMCID: PMC11932967 DOI: 10.1111/ppl.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
Determination of the point of critical damage in plant organs is crucial to elucidate the causes of plant mortality, but the different methodologies to quantify such damage have not been previously compared under the same experimental conditions. Here, we tested different indicators to evaluate damage in leaves of Quercus faginea and Q. ilex; in the latter case, 1- and 2-year-old leaves were included. The damage indicators were relative electrolyte leakage (REL), rehydration capacity (evaluated as the percentage loss of rehydration capacity; PLRC), chlorophyll fluorescence (maximum quantum yield of PSII; Fv/Fm), and the viability marker triphenyltetrazolium chloride (TTC). These damage indicators were evaluated in different sets of detached leaves for each species and leaf age dehydrated on the lab bench. Electrolyte leakage and PLRC showed a gradual response to decreasing relative water content, whereas Fv/Fm and TTC showed a threshold-like response, especially in the case of Q. faginea. Electrolyte leakage and TTC did not show differences between species and/or leaf ages. Measurement of Fv/Fm in dehydrating leaves proved to be the most straightforward, rapid and precise method for damage quantification, allowing for the differentiation in dehydration tolerance between Q. ilex and Q. faginea.
Collapse
Affiliation(s)
- Miquel Nadal
- Université de Lorraine, AgroParisTech, INRAE, UMR SilvaNancyFrance
- Departamento de Sistemas Agrícolas, Forestales y Medio AmbienteCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain
| | - José Javier Peguero‐Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio AmbienteCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain
- Instituto Agroalimentario de Aragón ‐IA2‐ (CITA‐Universidad de Zaragoza)ZaragozaSpain
| | - Domingo Sancho‐Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio AmbienteCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain
- Instituto Agroalimentario de Aragón ‐IA2‐ (CITA‐Universidad de Zaragoza)ZaragozaSpain
| | - Eustaquio Gil‐Pelegrín
- Estación Experimental de Aula Dei (EEAD)Consejo Superior de Investigaciones Científicas (CSIC)ZaragozaSpain
| |
Collapse
|
5
|
Harrison Day BL, Johnson KM, Tonet V, Bourbia I, Blackman CJ, Brodribb TJ. A one-way ticket: Wheat roots do not functionally refill xylem emboli following rehydration. PLANT PHYSIOLOGY 2024; 196:2362-2373. [PMID: 39297870 PMCID: PMC11638109 DOI: 10.1093/plphys/kiae407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 12/14/2024]
Abstract
Understanding xylem embolism spread in roots is essential for predicting the loss of function across root systems during drought. However, the lasting relevance of root embolism to plant recovery depends on whether roots can refill xylem emboli and resume function after rehydration. Using MicroCT and optical and dye staining methods, we investigated embolism repair in rehydrated intact roots of wheat (Triticum aestivum L. 'Krichauff') exposed to a severe water deficit of -3.5 MPa, known to cause approximately 30% total root network embolism in this species. Air emboli in the xylem vessels of intact roots remained clearly observable using MicroCT after overnight rehydration. This result was verified by xylem staining of the root system and optical quantification of emboli, both of which indicated a lack of functional root xylem recovery 60 h following soil re-saturation. The absence of root xylem refilling in wheat has substantial implications for how we understand plant recovery after drought. Our findings suggest that xylem embolism causes irreversible damage to the soil-root hydraulic connection in affected parts of the root network.
Collapse
Affiliation(s)
| | - Kate M Johnson
- Plant Ecology Research Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8930 Birmensdorf, Switzerland
| | - Vanessa Tonet
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris J Blackman
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
6
|
Spitzer DB, Ocheltree TW, Gleason SM. Some unique anatomical scaling relationships among genera in the grass subfamily Pooideae. AOB PLANTS 2024; 16:plae059. [PMID: 39512791 PMCID: PMC11538577 DOI: 10.1093/aobpla/plae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Members of the grass family Poaceae have adapted to a wide range of habitats and disturbance regimes globally. The cellular structure and arrangements of leaves can help explain how plants survive in different climates, but these traits are rarely measured in grasses. Most studies are focussed on individual species or distantly related species within Poaceae. While this focus can reveal broad adaptations, it is also likely to overlook subtle adaptations within more closely related groups (subfamilies, tribes). This study, therefore, investigated the scaling relationships between leaf size, vein length area (VLA) and vessel size in five genera within the subfamily Pooideae. The scaling exponent of the relationship between leaf area and VLA was -0.46 (±0.21), which is consistent with previous studies. In Poa and Elymus, however, minor vein number and leaf length were uncorrelated, whereas in Festuca these traits were positively correlated (slope = 0.82 ± 0.8). These findings suggest there are broad-scale and fine-scale variations in leaf hydraulic traits among grasses. Future studies should consider both narrow and broad phylogenetic gradients.
Collapse
Affiliation(s)
- Daniel B Spitzer
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
| | - Troy W Ocheltree
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Fort Collins, CO 80523-1472, USA
| | - Sean M Gleason
- Department of Biological Sciences, Macquarie University, Building E8B, Eastern Road, North Ryde, NSW 2109, Australia
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, 2150 Center Ave, Build D, Suite 320, Fort Collins, CO 80526, USA
| |
Collapse
|
7
|
Simpson E, Haverroth EJ, Taggart M, Andrade MT, Villegas DA, Carbajal EM, Oliveira LA, Suchoff D, Milla-Lewis S, Cardoso AA. Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass. PHYSIOLOGIA PLANTARUM 2024; 176:e14622. [PMID: 39557073 DOI: 10.1111/ppl.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Irrigation of grasses dominates domestic water use across the globe, and better understanding of water use and drought resistance in grasses is of undeniable importance for water conservation. Breeding programs have released cultivars with improved drought resistance, but the underlying mechanisms remain unknown. We sought to characterize the mechanisms driving drought resistance in four zoysiagrass cultivars (Lobo, Zeon, Empire, and Meyer) reported to exhibit contrasting levels of drought resistance. A dry-down was performed through deficit irrigation until 70% decline in evapotranspiration. All cultivars exhibited similar drought avoidance as they dehydrated similarly throughout the drought. Lobo and Zeon, however, exhibited a 70% decline in evapotranspiration two to three days after Empire and Meyer, thus experiencing lower water potentials. Regarding drought tolerance, Lobo and Zeon maintained higher normalized difference vegetation index (NDVI) and lower perceived canopy mortality at higher dehydration levels than Empire and Meyer. We use "perceived" because visual assessments of canopy mortality are influenced by drought-induced leaf rolling. During the recovery, leaves rehydrated and unrolled, so the "actual" canopy mortality could be evaluated. All cultivars exhibited similar mortality on the first recovery day despite Lobo and Zeon experiencing more severe dehydration. Throughout the recovery, Lobo and Empire exhibited faster re-growth and showed the lowest canopy mortality, and Lobo exhibited the highest NDVI. The improved drought resistance of Lobo and Zeon results from greater dehydration tolerance rather than avoidance. This study has implications for lawn owners selecting the best cultivars and for breeding programs aiming at improving drought resistance of zoysiagrasses.
Collapse
Affiliation(s)
- Emma Simpson
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew Taggart
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Moab T Andrade
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Daniel A Villegas
- Centro de Tecnologías Nucleares para Ecosistemas Vulnerables, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Esdras M Carbajal
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - David Suchoff
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Susana Milla-Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
West AG, Atkins K, van Blerk JJ, Skelton RP. Assessing vulnerability to embolism and hydraulic safety margins in reed-like Restionaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:633-646. [PMID: 38588329 DOI: 10.1111/plb.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
The African Restionaceae (Poales), the dominant graminoid layer in the megadiverse Cape Floristic Region of South Africa, are distributed across a wide range of moisture availability, yet currently there is very little known about the underlying hydraulics of this group. We tested two methods for measuring culm vulnerability to embolism, the optical and pneumatic methods, in three species of Cannomois ranging in habitat from semi-riparian (Cannomois virgata) to dryland (Cannomois parviflora and C. congesta). Estimates of culm xylem vulnerability were coupled with measures of turgor loss point (ΨTLP) and minimum field water potential (ΨMD) to assess hydraulic safety margins. The optical and pneumatic methods produced similar estimates of P50, but differed for P12 and P88. All three species were quite vulnerable to embolism, with P50 of -1.9 MPa (C. virgata), -2.3 MPa (C. congesta), and -2.4 MPa (C. parviflora). Estimates of P50, ΨTLP and ΨMD aligned with habitat moisture stress, with highest values found in the semi-riparian C. virgata. Consistent differences in P50, ΨMD and ΨTLP between species resulted in consistent hydraulic safety margins across species of 0.96 ± 0.1 MPa between ΨMD and P50, with onset of embolism occurring 0.43 ± 0.04 MPa after ΨTLP for all three species. Our study demonstrates that restio occupancy of dry environments involves more than the evolution of highly resistant xylem, suggesting that other aspects of water relations are key to understanding trait-environment relationships in this group.
Collapse
Affiliation(s)
- A G West
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - K Atkins
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - J J van Blerk
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - R P Skelton
- Fynbos Node, South African Environmental Observation Network, Newlands, South Africa
- Department of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
10
|
Li H, Liu Y, Zhen B, Lv M, Zhou X, Yong B, Niu Q, Yang S. Proline Spray Relieves the Adverse Effects of Drought on Wheat Flag Leaf Function. PLANTS (BASEL, SWITZERLAND) 2024; 13:957. [PMID: 38611486 PMCID: PMC11013815 DOI: 10.3390/plants13070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Drought stress is one of the key factors restricting crop yield. The beneficial effects of exogenous proline on crop growth under drought stress have been demonstrated in maize, rice, and other crops. However, little is known about its effects on wheat under drought stress. Especially, the water-holding capacity of leaves were overlooked in most studies. Therefore, a barrel experiment was conducted with wheat at two drought levels (severe drought: 45% field capacity, mild drought: 60% field capacity), and three proline-spraying levels (0 mM, 25 mM, and 50 mM). Meanwhile, a control with no stress and no proline application was set. The anatomical features, water-holding capacity, antioxidant capacity, and proline content of flag leaves as well as grain yields were measured. The results showed that drought stress increased the activity of catalase and peroxidase and the content of proline in flag leaves, lessened the content of chlorophyll, deformed leaf veins, and decreased the grain yield. Exogenous proline could regulate the osmotic-regulation substance content, chlorophyll content, antioxidant enzyme activity, water-holding capacity, and tissue structure of wheat flag leaves under drought stress, ultimately alleviating the impact of drought stress on wheat yield. The application of proline (25 mM and 50 mM) increased the yield by 2.88% and 10.81% under mild drought and 33.90% and 52.88% under severe drought compared to wheat without proline spray, respectively.
Collapse
Affiliation(s)
- Huizhen Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Yuan Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Bo Zhen
- Jiangsu Vocational College of Agriculture & Forestry, Jurong 212499, China;
| | - Mouchao Lv
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Xinguo Zhou
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Beibei Yong
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Qinglin Niu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Shenjiao Yang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| |
Collapse
|
11
|
Liu J, Wang Y, Chen X, Tang L, Yang Y, Yang Z, Sun R, Mladenov P, Wang X, Liu X, Jin S, Li H, Zhao L, Wang Y, Wang W, Deng X. Specific metabolic and cellular mechanisms of the vegetative desiccation tolerance in resurrection plants for adaptation to extreme dryness. PLANTA 2024; 259:47. [PMID: 38285274 DOI: 10.1007/s00425-023-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Yuanyuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxiu Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Petko Mladenov
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Agrobioinstitute, Agricultural Academy Bulgaria, Sofia, 1164, Bulgaria
| | - Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songsong Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing University of Agriculture, Beijing, 102206, China
| | - Wenhe Wang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
12
|
Huang R, Di N, Xi B, Yang J, Duan J, Li X, Feng J, Choat B, Tissue D. Herb hydraulics: Variation and correlation for traits governing drought tolerance and efficiency of water transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168095. [PMID: 37879470 DOI: 10.1016/j.scitotenv.2023.168095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Hydraulic traits dictate plant response to drought, thus enabling better understanding of community dynamics under global climate change. Despite being intensively documented in woody species, herbaceous species (graminoids and forbs) are largely understudied, hence the distribution and correlation of hydraulic traits in herbaceous species remains unclear. Here, we collected key hydraulic traits for 436 herbaceous species from published literature, including leaf hydraulic conductivity (Kleaf), water potential inducing 50 % loss of hydraulic conductivity (P50), stomatal closure (Pclose) and turgor loss (Ptlp). Trait variation of herbs was analyzed and contrasted with angiosperm woody species within the existing global hydraulic traits database, as well as between different growth forms within herbs. Furthermore, hydraulic traits coordination was also assessed for herbaceous species. We found that herbs showed overall more negative Pclose but less negative Ptlp compared with angiosperm woody species, while P50 did not differ between functional types, regardless of the organ (leaf and stem). In addition, correlations were found between Kleaf and P50 of leaf (P50leaf), as well as between Pclose, P50leaf and Kleaf. Within herbs, graminoids generally exhibited more negative P50 and Ptlp, but lower Kleaf, relative to forbs. Within herbs, no clear pattern regarding hydraulic traits-climate relationship was found. Our analysis provided insights into herb hydraulic, and highlighted the knowledge gaps need to be filled regarding the response of herbs to drought.
Collapse
Affiliation(s)
- Ruike Huang
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010020, People's Republic of China
| | - Nan Di
- Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010020, People's Republic of China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing 100083, People's Republic of China
| | - Jinyan Yang
- CSIRO Land and Water, Black Mountain, Australian Capital Territory 2601, Australia
| | - Jie Duan
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing 100083, People's Republic of China.
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China.
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
13
|
Sorek Y, Netzer Y, Cohen S, Hochberg U. Rapid leaf xylem acclimation diminishes the chances of embolism in grapevines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6836-6846. [PMID: 37659088 DOI: 10.1093/jxb/erad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
Under most conditions tight stomatal regulation in grapevines (Vitis vinifera) avoids xylem embolism. The current study evaluated grapevine responses to challenging scenarios that might lead to leaf embolism and consequential leaf damage. We hypothesized that embolism would occur if the vines experienced low xylem water potential (Ψx) shortly after bud break or later in the season under a combination of extreme drought and heat. We subjected vines to two potentially dangerous environments: (i) withholding irrigation from a vineyard grown in a heatwave-prone environment, and (ii) subjecting potted vines to terminal drought 1 month after bud break. In the field experiment, a heatwave at the beginning of August resulted in leaf temperatures over 45 °C. However, effective stomatal response maintained the xylem water potential (Ψx) well above the embolism threshold, and no leaf desiccation was observed. In the pot experiment, leaves of well-watered vines in May were relatively vulnerable to embolism with 50% embolism (P50) at -1.8 MPa. However, when exposed to drought, these leaves acclimated their leaf P50 by 0.65 MPa in less than a week and before reaching embolism values. When dried to embolizing Ψx, the leaf damage proportion matched (percentage-wise) the leaf embolism level. Our findings indicate that embolism and leaf damage are usually avoided by the grapevines' efficient stomatal regulation and rapid acclimation of their xylem vulnerability.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Netzer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
- Eastern R and D Center, Ariel 40700, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
14
|
Appiah M, Abdulai I, Schulman AH, Moshelion M, Dewi ES, Daszkowska-Golec A, Bracho-Mujica G, Rötter RP. Drought response of water-conserving and non-conserving spring barley cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1247853. [PMID: 37941662 PMCID: PMC10628443 DOI: 10.3389/fpls.2023.1247853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Introduction Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses. Methods We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering. Results Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields. Discussion Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.
Collapse
Affiliation(s)
- Mercy Appiah
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Issaka Abdulai
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Alan H. Schulman
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elvira S. Dewi
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara, Indonesia
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Gennady Bracho-Mujica
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Reimund P. Rötter
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023; 12:825. [PMID: 37375515 DOI: 10.3390/pathogens12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.
Collapse
Affiliation(s)
- Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
16
|
Barkaoui K, Volaire F. Drought survival and recovery in grasses: Stress intensity and plant-plant interactions impact plant dehydration tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1489-1503. [PMID: 36655754 DOI: 10.1111/pce.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Plant dehydration tolerance confers drought survival in grasses, but the mortality thresholds according to soil water content (SWC), vapour pressure deficit (VPD) and plant-plant interactions are little explored. We compared the dehydration dynamics of leaf meristems, which are the key surviving organs, plant mortality, and recovery of Mediterranean and temperate populations of two perennial grass species, Dactylis glomerata and Festuca arundinacea, grown in monocultures and mixtures under a low-VPD (1.5 kPa) versus a high-VPD drought (2.2 kPa). The lethal drought index (LD50 ), that is, SWC associated with 50% plant mortality, ranged from 2.87% (ψs = -1.68 MPa) to 2.19% (ψs = -4.47 MPa) and reached the lowest values under the low-VPD drought. Populations of D. glomerata were more dehydration-tolerant (lower LD50 ), survived and recovered better than F. arundinacea populations. Plant-plant interactions modified dehydration tolerance and improved post-drought recovery in mixtures compared with monocultures. Water content as low as 20.7%-36.1% in leaf meristems allowed 50% of plants to survive. We conclude that meristem dehydration causes plant mortality and that drought acclimation can increase dehydration tolerance. Genetic diversity, acclimation and plant-plant interactions are essential sources of dehydration tolerance variability to consider when predicting drought-induced mortality.
Collapse
Affiliation(s)
- Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, INRAE, Montpellier, France
| |
Collapse
|
17
|
Johnson KM, Brodribb TJ. Evidence for a trade-off between growth rate and xylem cavitation resistance in Callitris rhomboidea. TREE PHYSIOLOGY 2023:tpad037. [PMID: 36947141 DOI: 10.1093/treephys/tpad037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The ideal plant water transport system is one that features high efficiency and resistance to drought-induced damage (xylem cavitation), however species rarely possess both. This may be explained by trade-offs between traits, yet thus far, no proposed trade-off has offered a universal explanation for the lack water transport systems that are both highly drought-resistant and highly efficient. Here we find evidence for a new trade-off, between growth rate and resistance to xylem cavitation, in the canopies of a drought-resistant tree species (Callitris rhomboidea). Wide variation in cavitation resistance (P50) was found in distal branch tips (< 2 mm in diameter), converging to low variation in P50 in larger diameter stems (> 2 mm). We found a significant correlation between cavitation resistance and distal branchlet internode length across branch tips in C. rhomboidea canopies. Branchlets with long internodes (8 mm or longer) were significantly more vulnerable to drought-induced xylem cavitation than shorter internodes (4 mm or shorter). This suggests that varying growth rates, leading to differences in internode length, drive differences in cavitation resistance in C. rhomboidea trees. The only distinct anatomical difference found between internodes was the pith size, with the average pith to xylem area in long internodes, 5x greater than in short internodes. Understanding whether this trade-off exists within and between species will help us to uncover what drives and limits drought resistance across the world's flora.
Collapse
|
18
|
Tonet V, Carins-Murphy M, Deans R, Brodribb TJ. Deadly acceleration in dehydration of Eucalyptus viminalis leaves coincides with high-order vein cavitation. PLANT PHYSIOLOGY 2023; 191:1648-1661. [PMID: 36690460 PMCID: PMC10022613 DOI: 10.1093/plphys/kiad016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 05/17/2023]
Abstract
Xylem cavitation during drought is proposed as a major driver of canopy collapse, but the mechanistic link between hydraulic failure and leaf damage in trees is still uncertain. Here, we used the tree species manna gum (Eucalyptus viminalis) to explore the connection between xylem dysfunction and lethal desiccation in leaves. Cavitation damage to leaf xylem could theoretically trigger lethal desiccation of tissues by severing water supply under scenarios such as runaway xylem cavitation, or the local failure of terminal parts of the leaf vein network. To investigate the role of xylem failure in leaf death, we compared the timing of damage to the photosynthetic machinery (Fv/Fm decline) with changes in plant hydration and xylem cavitation during imposed water stress. The water potential at which Fv/Fm was observed to decline corresponded to the water potential marking a transition from slow to very rapid tissue dehydration. Both events also occurred simultaneously with the initiation of cavitation in leaf high-order veins (HOV, veins from the third order above) and the analytically derived point of leaf runaway hydraulic failure. The close synchrony between xylem dysfunction and the photosynthetic damage strongly points to water supply disruption as the trigger for desiccation of leaves in this hardy evergreen tree. These results indicate that runaway cavitation, possibly triggered by HOV network failure, is the tipping agent determining the vulnerability of E. viminalis leaves to damage during drought and suggest that HOV cavitation and runaway hydraulic failure may play a general role in determining canopy damage in plants.
Collapse
Affiliation(s)
- Vanessa Tonet
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Madeline Carins-Murphy
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Ross Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | |
Collapse
|
19
|
Mantova M, Cochard H, Burlett R, Delzon S, King A, Rodriguez-Dominguez CM, Ahmed MA, Trueba S, Torres-Ruiz JM. On the path from xylem hydraulic failure to downstream cell death. THE NEW PHYTOLOGIST 2023; 237:793-806. [PMID: 36305207 DOI: 10.1111/nph.18578] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Xylem hydraulic failure (HF) has been identified as a ubiquitous factor in triggering drought-induced tree mortality through the damage induced by the progressive dehydration of plant living cells. However, fundamental evidence of the mechanistic link connecting xylem HF to cell death has not been identified yet. The main aim of this study was to evaluate, at the leaf level, the relationship between loss of hydraulic function due to cavitation and cell death under drought conditions and discern how this relationship varied across species with contrasting resistances to cavitation. Drought was induced by withholding water from potted seedlings, and their leaves were sampled to measure their relative water content (RWC) and cell mortality. Vulnerability curves to cavitation at the leaf level were constructed for each species. An increment in cavitation events occurrence precedes the onset of cell mortality. A variation in cells tolerance to dehydration was observed along with the resistance to cavitation. Overall, our results indicate that the onset of cellular mortality occurs at lower RWC than the one for cavitation indicating the role of cavitation in triggering cellular death. They also evidenced a critical RWC for cellular death varying across species with different cavitation resistance.
Collapse
Affiliation(s)
- Marylou Mantova
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Régis Burlett
- Université Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Andrew King
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Gif-sur-Yvette cedex, France
| | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Mutez A Ahmed
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA, 95616, USA
| | | | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| |
Collapse
|
20
|
Verbeke S, Padilla-Díaz CM, Martínez-Arias C, Goossens W, Haesaert G, Steppe K. Mechanistic modeling reveals the importance of turgor-driven apoplastic water transport in wheat stem parenchyma during carbohydrate mobilization. THE NEW PHYTOLOGIST 2023; 237:423-440. [PMID: 36259090 DOI: 10.1111/nph.18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.
Collapse
Affiliation(s)
- Sarah Verbeke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Carmen María Padilla-Díaz
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
21
|
Gleason SM, Barnard DM, Green TR, Mackay S, Wang DR, Ainsworth EA, Altenhofen J, Brodribb TJ, Cochard H, Comas LH, Cooper M, Creek D, DeJonge KC, Delzon S, Fritschi FB, Hammer G, Hunter C, Lombardozzi D, Messina CD, Ocheltree T, Stevens BM, Stewart JJ, Vadez V, Wenz J, Wright IJ, Yemoto K, Zhang H. Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. PLANT, CELL & ENVIRONMENT 2022; 45:2554-2572. [PMID: 35735161 DOI: 10.1111/pce.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
Collapse
Affiliation(s)
- Sean M Gleason
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Dave M Barnard
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Timothy R Green
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Scott Mackay
- Department of Geography & Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA
| | - Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth A Ainsworth
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, Illinois, USA
| | - Jon Altenhofen
- Northern Colorado Water Conservancy District, Berthoud, Colorado, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Tasmania Node, Hobart, Tasmania, Australia
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Louise H Comas
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Danielle Creek
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kendall C DeJonge
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, cedex, France
| | - Felix B Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Cameron Hunter
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Danica Lombardozzi
- National Center for Atmospheric Research (NCAR), Climate & Global Dynamics Lab, Boulder, Colorado, USA
| | - Carlos D Messina
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Troy Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Bo Maxwell Stevens
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Jared J Stewart
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | | | - Joshua Wenz
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Western Sydney University Node, Penrith, New South Wales, Australia
| | - Kevin Yemoto
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Huihui Zhang
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| |
Collapse
|
22
|
Sorek Y, Greenstein S, Hochberg U. Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. PHYSIOLOGIA PLANTARUM 2022; 174:e13785. [PMID: 36151946 PMCID: PMC9828144 DOI: 10.1111/ppl.13785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 05/20/2023]
Abstract
Embolism resistance is often viewed as seasonally stable. Here we examined the seasonality in the leaf xylem vulnerability curve (VC) and turgor loss point (ΨTLP ) of nine deciduous species that originated from Mediterranean, temperate, tropical, or sub-tropical habitats and were growing on the Volcani campus, Israel. All four Mediterranean/temperate species exhibited a shift of their VC to lower xylem pressures (Ψx ) along the dry season, in addition to two of the five tropical/sub-tropical species. In three of the species that exhibited VC seasonality, it was critical for avoiding embolism in the leaf. In total, seven out of the nine species avoided embolism. The seasonal VC adjustment was over two times higher as compared with the seasonal adjustment of ΨTLP , resulting in improved hydraulic safety as the season progressed. The results suggest that seasonality in the leaf xylem vulnerability is common in species that originate from Mediterranean or temperate habitats that have large seasonal environmental changes. This seasonality is advantageous because it enables a gradual seasonal reduction in the Ψx without increasing the danger of embolism. The results also highlight that measuring the minimal Ψx and the VC at different times can lead to erroneous estimations of the hydraulic safety margins. Changing the current hydraulic dogma into a seasonal dynamic in the vulnerability of the xylem itself should enable physiologists to understand plants' responses to their environment better.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
23
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
24
|
Cardoso AA, Kane CN, Rimer IM, McAdam SAM. Seeing is believing: what visualising bubbles in the xylem has revealed about plant hydraulic function. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:759-772. [PMID: 35718950 DOI: 10.1071/fp21326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K ) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ian M Rimer
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Wagner Y, Feng F, Yakir D, Klein T, Hochberg U. In situ, direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution. THE NEW PHYTOLOGIST 2022; 235:1344-1350. [PMID: 35514143 PMCID: PMC9541785 DOI: 10.1111/nph.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Xylem embolism impairs hydraulic conductivity in trees and drives drought-induced mortality. While embolism has been monitored in vivo in potted plants, and research has revealed evidence of embolism in field-grown trees, continuous in situ monitoring of cavitation in forests is lacking. Seasonal patterns of embolism were monitored in branchlets of Aleppo pine (Pinus halepensis) trees growing in a dry Mediterranean forest. Optical visualization (OV) sensors were installed on terminal branches, in addition to monthly sampling for micro computed tomography scans. We detected 208 cavitation events among four trees, which represented an embolism increase from zero to c. 12% along the dry season. Virtually all the cavitation events occurred during daytime hours, with 77% occurring between 10:00 and 17:00 h. The probability for cavitation in a given hour increased as vapor pressure deficit (VPD) increased, up to a probability of 42% for cavitation when VPD > 5 kPa. The findings uniquely reveal the instantaneous environmental conditions that lead to cavitation. The increased likelihood of cavitation events under high VPD in water-stressed pines is the first empirical support for this long hypothesized relationship. Our observations suggest that low levels of embolism are common in Aleppo pine trees at the dry edge of their distribution.
Collapse
Affiliation(s)
- Yael Wagner
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovot7610001Israel
| | - Feng Feng
- Institute of Soil, Water and Environmental SciencesVolcani CenterARORishon Lezion7505101Israel
| | - Dan Yakir
- Earth and Planetary Science DepartmentWeizmann Institute of ScienceRehovot7610001Israel
| | - Tamir Klein
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovot7610001Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental SciencesVolcani CenterARORishon Lezion7505101Israel
| |
Collapse
|
26
|
Jacob V, Choat B, Churchill AC, Zhang H, Barton CVM, Krishnananthaselvan A, Post AK, Power SA, Medlyn BE, Tissue DT. High safety margins to drought-induced hydraulic failure found in five pasture grasses. PLANT, CELL & ENVIRONMENT 2022; 45:1631-1646. [PMID: 35319101 DOI: 10.1111/pce.14318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.
Collapse
Affiliation(s)
- Vinod Jacob
- Western Sydney University, Penrith, New South Wales, Australia
| | - Brendan Choat
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - Haiyang Zhang
- Western Sydney University, Penrith, New South Wales, Australia
| | | | | | - Alison K Post
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally A Power
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - David T Tissue
- Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
27
|
Gauthey A, Peters JMR, Lòpez R, Carins-Murphy MR, Rodriguez-Dominguez CM, Tissue DT, Medlyn BE, Brodribb TJ, Choat B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. PLANT, CELL & ENVIRONMENT 2022; 45:1216-1228. [PMID: 35119114 DOI: 10.1111/pce.14265] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Environmental Sciences Division, Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Rosana Lòpez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Syndey University, Richmond, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
28
|
Liu X, Wang X, Liu P, Bao X, Hou X, Yang M, Zhen W. Rehydration Compensation of Winter Wheat Is Mediated by Hormone Metabolism and De-Peroxidative Activities Under Field Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:823846. [PMID: 35283926 PMCID: PMC8908233 DOI: 10.3389/fpls.2022.823846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Water deficit and rehydration frequently occur during wheat cultivation. Previous investigations focused on the water deficit and many drought-responsive genes have been identified in winter wheat. However, the hormone-related metabolic responses and de-peroxidative activities associated with rehydration are largely unknown. In this study, leaves of two winter wheat cultivars, "Hengguan35" (HG, drought-tolerant cultivar) and "Shinong086" (SN, drought-sensitive cultivar), were used to investigate water deficit and the post-rehydration process. Rehydration significantly promoted wheat growth and postponed spike development. Quantifications of antioxidant enzymes, osmotic stress-related substances, and phytohormones revealed that rehydration alleviated the peroxidation and osmotic stress caused by water deficit in both cultivars. The wheat cultivar HG showed a better rehydration-compensation phenotype than SN. Phytohormones, including abscisic acid, gibberellin (GA), jasmonic acid (JA), and salicylic acid (SA), were detected using high-performance liquid chromatography and shown to be responsible for the rehydration process. A transcriptome analysis showed that differentially expressed genes related to rehydration were enriched in hormone metabolism- and de-peroxidative stress-related pathways. Suppression of genes associated with abscisic acid signaling transduction were much stronger in HG than in SN upon rehydration treatment. HG also kept a more balanced expression of genes involved in reactive oxygen species pathway than SN. In conclusion, we clarified the hormonal changes and transcriptional profiles of drought-resistant and -sensitive winter wheat cultivars in response to drought and rehydration, and we provided insights into the molecular processes involved in rehydration compensation.
Collapse
Affiliation(s)
- Xuejing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaodong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyuan Bao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
29
|
Sakoda K, Taniyoshi K, Yamori W, Tanaka Y. Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions. PHYSIOLOGIA PLANTARUM 2022; 174:e13603. [PMID: 34807462 DOI: 10.1111/ppl.13603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is a major limiting factor for crop growth and yield. Water availability in the field can cyclically change between drought and rewatering conditions, depending on precipitation patterns. Concurrently, light intensity under field conditions can fluctuate, inducing dynamic photosynthesis and transpiration during the crop growth period. The present study aimed to characterize carbon gain and water use in fluctuating light under drought and rewatering conditions in two major crops, namely rice and soybean. We conducted gas exchange measurements under fluctuating light conditions with rice and soybean plants exposed to drought treatment (9-13 days) imposed by withholding water and subsequent rewatering treatment (8-9 days). Drought stress significantly reduced the maximum CO2 assimilation rate (A) in soybean but not in rice. Under drought conditions, A increased after a step increase in light and then gradually decreased in both crops, resulting in the significant reduction of steady-state A in rice and soybean. Moreover, drought stress delayed photosynthetic induction in both crops even when it had relatively small impact on maximum A. These results suggest that the drought effects on photosynthesis should be evaluated based on induction, maximum, and steady states. The delayed photosynthetic induction under drought owing to the reduced gas diffusional conductance via stomata resulted in a substantial loss of leaf carbon gain under fluctuating light conditions. Meanwhile, rewatering, after drought, completely recovered photosynthesis under fluctuating light in both crops. Therefore, the stability of photosynthetic induction can be a promising target to improve drought tolerance during crop breeding in the future.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Kazuki Taniyoshi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
30
|
Johnson KM, Lucani C, Brodribb TJ. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. THE NEW PHYTOLOGIST 2022; 233:207-218. [PMID: 34625973 DOI: 10.1111/nph.17786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants in vivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage in vivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored in vivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher Lucani
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
31
|
Brodribb T, Brodersen CR, Carriqui M, Tonet V, Rodriguez Dominguez C, McAdam S. Linking xylem network failure with leaf tissue death. THE NEW PHYTOLOGIST 2021; 232:68-79. [PMID: 34164816 DOI: 10.1111/nph.17577] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Global warming is expected to dramatically accelerate forest mortality as temperature and drought intensity increase. Predicting the magnitude of this impact urgently requires an understanding of the process connecting atmospheric drying to plant tissue damage. Recent episodes of forest mortality worldwide have been widely attributed to dry conditions causing acute damage to plant vascular systems. Under this scenario vascular embolisms produced by water stress are thought to cause plant death, yet this hypothetical trajectory has never been empirically demonstrated. Here we provide foundational evidence connecting failure in the vascular network of leaves with tissue damage caused during water stress. We observe a catastrophic sequence initiated by water column breakage under tension in leaf veins which severs local leaf tissue water supply, immediately causing acute cellular dehydration and irreversible damage. By highlighting the primacy of vascular network failure in the death of leaves exposed to drought or evaporative stress our results provide a strong mechanistic foundation upon which models of plant damage in response to dehydration can be confidently structured.
Collapse
Affiliation(s)
- Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Marc Carriqui
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - Vanessa Tonet
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - Celia Rodriguez Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avda. Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
32
|
Sun Q, Gilgen AK, Signarbieux C, Klaus VH, Buchmann N. Cropping systems alter hydraulic traits of barley but not pea grown in mixture. PLANT, CELL & ENVIRONMENT 2021; 44:2912-2924. [PMID: 33763869 DOI: 10.1111/pce.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Extreme events such as drought and heatwaves are among the biggest challenges to agricultural production and food security. However, the effects of cropping systems on drought resistance of arable crops via their hydraulic behaviour remain unclear. We investigated how hydraulic traits of a field-grown pea-barley (Pisum sativum L. and Hordeum vulgare L.) mixture were affected by different cropping systems, that is, organic and conventional farming with intensive or conservation tillage. Xylem vulnerability to cavitation of both species was estimated by measuring the pressure inducing 50% loss of hydraulic conductivity (P50 ), while the water stress plants experienced in the field were assessed using native percentage loss of hydraulic conductivity (nPLC). Pea and barley showed contrasting hydraulic behaviours: pea was less vulnerable to xylem cavitation and less stressed than barley; cropping systems affected the xylem vulnerability of barley, but not of pea. Barley grown under conventional farming with no tillage was more vulnerable and stressed than under organic farming with intensive tillage. nPLC proved to be a valuable indicator for plant water stress. Our results highlight the impact of cropping systems on crop xylem vulnerability and drought resistance, thus plant hydraulic traits, for protecting food security under future climate.
Collapse
Affiliation(s)
- Qing Sun
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna K Gilgen
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Constant Signarbieux
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Ecological Systems Laboratory (ECOS), Lausanne, Switzerland
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Degraeve S, De Baerdemaeker NJF, Ameye M, Leroux O, Haesaert GJW, Steppe K. Acoustic Vulnerability, Hydraulic Capacitance, and Xylem Anatomy Determine Drought Response of Small Grain Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:599824. [PMID: 34113357 PMCID: PMC8186553 DOI: 10.3389/fpls.2021.599824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/12/2021] [Indexed: 06/01/2023]
Abstract
Selection of high-yielding traits in cereal plants led to a continuous increase in productivity. However, less effort was made to select on adaptive traits, favorable in adverse and harsh environments. Under current climate change conditions and the knowledge that cereals are staple foods for people worldwide, it is highly important to shift focus to the selection of traits related to drought tolerance, and to evaluate new tools for efficient selection. Here, we explore the possibility to use vulnerability to drought-induced xylem embolism of wheat cultivars Excalibur and Hartog (Triticum aestivum L.), rye cultivar Duiker Max (Secale cereale L.), and triticale cultivars Dublet and US2014 (x Triticosecale Wittmack) as a proxy for their drought tolerance. Multiple techniques were combined to underpin this hypothesis. During bench-top dehydration experiments, acoustic emissions (AEs) produced by formation of air emboli were detected, and hydraulic capacitances quantified. By only looking at the AE50 values, one would classify wheat cultivar Excalibur as most tolerant and triticale cultivar Dublet as most vulnerable to drought-induced xylem embolism, though Dublet had significantly higher hydraulic capacitances, which are essential in terms of internal water storage to temporarily buffer or delay water shortage. In addition, xylem anatomical traits revealed that both cultivars have a contrasting trade-off between hydraulic safety and efficiency. This paper emphasizes the importance of including a cultivar's hydraulic capacitance when evaluating its drought response and vulnerability to drought-induced xylem embolism, instead of relying on the AE50 as the one parameter.
Collapse
Affiliation(s)
- Szanne Degraeve
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels J. F. De Baerdemaeker
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Qi M, Liu X, Li Y, Song H, Yin Z, Zhang F, He Q, Xu Z, Zhou G. Photosynthetic resistance and resilience under drought, flooding and rewatering in maize plants. PHOTOSYNTHESIS RESEARCH 2021; 148:1-15. [PMID: 33661466 DOI: 10.1007/s11120-021-00825-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/08/2021] [Indexed: 05/29/2023]
Abstract
Abnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasseling than pre-tasseling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodi Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibo Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuotian Yin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qijin He
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Schenk HJ, Jansen S, Hölttä T. Positive pressure in xylem and its role in hydraulic function. THE NEW PHYTOLOGIST 2021; 230:27-45. [PMID: 33206999 DOI: 10.1111/nph.17085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/13/2020] [Indexed: 05/29/2023]
Abstract
Although transpiration-driven transport of xylem sap is well known to operate under absolute negative pressure, many terrestrial, vascular plants show positive xylem pressure above atmospheric pressure on a seasonal or daily basis, or during early developmental stages. The actual location and mechanisms behind positive xylem pressure remain largely unknown, both in plants that show seasonal xylem pressure before leaf flushing, and those that show a diurnal periodicity of bleeding and guttation. Available evidence shows that positive xylem pressure can be driven based on purely physical forces, osmotic exudation into xylem conduits, or hydraulic pressure in parenchyma cells associated with conduits. The latter two mechanisms may not be mutually exclusive and can be understood based on a similar modelling scenario. Given the renewed interest in positive xylem pressure, this review aims to provide a constructive way forward by discussing similarities and differences of mechanistic models, evaluating available evidence for hydraulic functions, such as rehydration of tissues, refilling of water stores, and embolism repair under positive pressure, and providing recommendations for future research, including methods that avoid or minimise cutting artefacts.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA, 92834, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland
| |
Collapse
|
36
|
Cardoso AA, Billon LM, Fanton Borges A, Fernández-de-Uña L, Gersony JT, Güney A, Johnson KM, Lemaire C, Mrad A, Wagner Y, Petit G. New developments in understanding plant water transport under drought stress. THE NEW PHYTOLOGIST 2020; 227:1025-1027. [PMID: 32662102 DOI: 10.1111/nph.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Amanda A Cardoso
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lise-Marie Billon
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Ana Fanton Borges
- Yale School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| | | | - Jess T Gersony
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Aylin Güney
- Institute of Botany, University of Hohenheim, Garbenstr 30, D-70599, Stuttgart, Germany
- Department of Biology, Faculty of Science, Akdeniz University, 07058, Antalya, Turkey
| | - Kate M Johnson
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Yael Wagner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Giai Petit
- Department TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
37
|
Zhu L, Cernusak LA, Song X. Dynamic responses of gas exchange and photochemistry to heat interference during drought in wheat and sorghum. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:611-627. [PMID: 32393434 DOI: 10.1071/fp19242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Drought and heat stress significantly affect crop growth and productivity worldwide. It is unknown how heat interference during drought affects physiological processes dynamically in crops. Here we focussed on gas exchange and photochemistry in wheat and sorghum in response to simulated heat interference via +15°C of temperature during ~2 week drought and re-watering. Results showed that drought decreased net photosynthesis (Anet), stomatal conductance (gs), maximum velocity of ribulose-1, 5-bisphosphate carboxylase/oxygenase carboxylation (Vcmax) and electron transport rate (J) in both wheat and sorghum. Heat interference did not further reduce Anet or gs. Drought increased non-photochemical quenching (Φnpq), whereas heat interference decreased Φnpq. The δ13C of leaf, stem and roots was higher in drought-treated wheat but lower in drought-treated sorghum. The results suggest that (1) even under drought conditions wheat and sorghum increased or maintained gs for transpirational cooling to alleviate negative effects by heat interference; (2) non-photochemical quenching responded differently to drought and heat stress; (3) wheat and sorghum responded in opposing patterns in δ13C. These findings point to the importance of stomatal regulation under heat crossed with drought stress and could provide useful information on development of better strategies to secure crop production for future climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Xin Song
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Corresponding author.
| |
Collapse
|
38
|
Corso D, Delzon S, Lamarque LJ, Cochard H, Torres-Ruiz JM, King A, Brodribb T. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. PLANT, CELL & ENVIRONMENT 2020; 43:854-865. [PMID: 31953855 DOI: 10.1111/pce.13722] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 05/24/2023]
Abstract
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs ) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf ), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.
Collapse
Affiliation(s)
- Déborah Corso
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Laurent J Lamarque
- BIOGECO, INRA, Univ. Bordeaux, Pessac, France
- EGFV, INRA, Univ. Bordeaux, Villenave d'Ornon, France
| | - Hervé Cochard
- INRA, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette cedex, France
| | - Timothy Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
39
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
40
|
Lamarque LJ, Delzon S, Toups H, Gravel AI, Corso D, Badel E, Burlett R, Charrier G, Cochard H, Jansen S, King A, Torres-Ruiz JM, Pouzoulet J, Cramer GR, Thompson AJ, Gambetta GA. Over-accumulation of abscisic acid in transgenic tomato plants increases the risk of hydraulic failure. PLANT, CELL & ENVIRONMENT 2020; 43:548-562. [PMID: 31850535 DOI: 10.1111/pce.13703] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
Climate change threatens food security, and plant science researchers have investigated methods of sustaining crop yield under drought. One approach has been to overproduce abscisic acid (ABA) to enhance water use efficiency. However, the concomitant effects of ABA overproduction on plant vascular system functioning are critical as it influences vulnerability to xylem hydraulic failure. We investigated these effects by comparing physiological and hydraulic responses to water deficit between a tomato (Solanum lycopersicum) wild type control (WT) and a transgenic line overproducing ABA (sp12). Under well-watered conditions, the sp12 line displayed similar growth rate and greater water use efficiency by operating at lower maximum stomatal conductance. X-ray microtomography revealed that sp12 was significantly more vulnerable to xylem embolism, resulting in a reduced hydraulic safety margin. We also observed a significant ontogenic effect on vulnerability to xylem embolism for both WT and sp12. This study demonstrates that the greater water use efficiency in the tomato ABA overproducing line is associated with higher vulnerability of the vascular system to embolism and a higher risk of hydraulic failure. Integrating hydraulic traits into breeding programmes represents a critical step for effectively managing a crop's ability to maintain hydraulic conductivity and productivity under water deficit.
Collapse
Affiliation(s)
- Laurent J Lamarque
- BIOGECO, INRA, Univ. Bordeaux, Pessac, France
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| | | | - Haley Toups
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | | | | | - Eric Badel
- INRA, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | | | | | - Hervé Cochard
- INRA, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Andrew King
- Synchrotron SOLEIL, Gif-sur-Yvette Cedex, France
| | | | - Jérôme Pouzoulet
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Andrew J Thompson
- Cranfield Soil an Agrifood Institute, Cranfield University, Bedfordshire, UK
| | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| |
Collapse
|
41
|
Smith‐Martin CM, Skelton RP, Johnson KM, Lucani C, Brodribb TJ. Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary Biology Columbia University New York NY USA
| | - Robert Paul Skelton
- South African Environmental Observation NetworkKirstenbosch Botanical Gardens Cape Town South Africa
| | - Kate M. Johnson
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Christopher Lucani
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | | |
Collapse
|
42
|
Du T, Meng P, Huang J, Peng S, Xiong D. Fast photosynthesis measurements for phenotyping photosynthetic capacity of rice. PLANT METHODS 2020; 16:6. [PMID: 31998402 PMCID: PMC6979334 DOI: 10.1186/s13007-020-0553-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Over the past decades, the structural and functional genomics of rice have been deeply studied, and high density of molecular genetic markers have been developed. However, the genetic variation in leaf photosynthesis, the most important trait for rice yield improvement, was rarely studied. The lack of photosynthesis phenotyping tools is one of the bottlenecks, as traditional direct photosynthesis measurements are very low-throughput, and recently developed high-throughput methods are indirect measurements. Hence, there is an urgent need for a fast, accurate and direct measurement approach. RESULT We reported a fast photosynthesis measurement (FPM) method for phenotyping photosynthetic capacity of rice, which measures photosynthesis of excised tillers in environment-controlled lab conditions. The light response curves measured using FPM approach coped well with that the curves measured using traditional gas exchange approach. Importantly, the FPM technique achieved an average throughput of 5.4 light response curves per hour, which was 3 times faster than the 1.8 light response curves per hour using the traditional method. Tillers sampled at early morning had the highest photosynthesis, stomatal conductance and the lowest variability. In addition, even 12 h after sampling, there was no significant difference of photosynthesis rate between excised tillers and in situ. We finally investigated the genetic variations of photosynthetic traits across 568 F2 lines using the FPM technique and discussed the logistics of screening several hundred samples per day per instrumental unit using FPM to generate a wealth of photosynthetic phenotypic data, which might help to improve the selection power in large populations of rice with the ultimate aim of improving yield through improved photosynthesis. CONCLUSIONS Here we developed a high-throughput method that can measure the rice leaf photosynthetic capacity approximately 10 times faster than traditional gas exchange approaches. Importantly, this method can overcome measurement errors caused by environmental heterogeneity under field conditions, and it is possible to measure 12 or more hours per day under lab conditions.
Collapse
Affiliation(s)
- Tingting Du
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ping Meng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
43
|
Fuenzalida TI, Bryant CJ, Ovington LI, Yoon HJ, Oliveira RS, Sack L, Ball MC. Shoot surface water uptake enables leaf hydraulic recovery in Avicennia marina. THE NEW PHYTOLOGIST 2019; 224:1504-1511. [PMID: 31419324 DOI: 10.1111/nph.16126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/11/2019] [Indexed: 05/08/2023]
Abstract
The significance of shoot surface water uptake (SSWU) has been debated, and it would depend on the range of conditions under which it occurs. We hypothesized that the decline of leaf hydraulic conductance (Kleaf ) in response to dehydration may be recovered through SSWU, and that the hydraulic conductance to SSWU (Ksurf ) declines with dehydration. We quantified effects of leaf dehydration on Ksurf and effects of SSWU on recovery of Kleaf in dehydrated leaves of Avicennia marina. SSWU led to overnight recovery of Kleaf , with recovery retracing the same path as loss of Kleaf in response to dehydration. SSWU declined with dehydration. By contrast, Ksurf declined with rehydration time but not with dehydration. Our results showed a role of SSWU in the recovery of leaf hydraulic conductance and revealed that SSWU is sensitive to leaf hydration status. The prevalence of SSWU in vegetation suggests an important role for atmospheric water sources in maintenance of leaf hydraulic function, with implications for plant responses to changing environments.
Collapse
Affiliation(s)
- Tomás I Fuenzalida
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Callum J Bryant
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Leuwin I Ovington
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hwan-Jin Yoon
- Statistical Consulting Unit, The Australian National University, Acton, ACT, 2601, Australia
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP 6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
44
|
McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC. A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. PLANT, CELL & ENVIRONMENT 2019; 42:2789-2807. [PMID: 31273812 DOI: 10.1111/pce.13607] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
Collapse
Affiliation(s)
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| |
Collapse
|
45
|
McDowell NG, Brodribb TJ, Nardini A. Hydraulics in the 21 st century. THE NEW PHYTOLOGIST 2019; 224:537-542. [PMID: 31545889 DOI: 10.1111/nph.16151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | - Timothy J Brodribb
- School of Biological Science, University of Tasmania, Hobart, TAS, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| |
Collapse
|
46
|
Kiorapostolou N, Da Sois L, Petruzzellis F, Savi T, Trifilò P, Nardini A, Petit G. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. TREE PHYSIOLOGY 2019; 39:1675-1684. [PMID: 31211372 DOI: 10.1093/treephys/tpz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2019] [Accepted: 05/17/2019] [Indexed: 05/26/2023]
Abstract
Understanding which structural and functional traits are linked to species' vulnerability to embolism formation (P50) may provide fundamental knowledge on plant strategies to maintain an efficient water transport. We measured P50, wood density (WD), mean conduit area, conduit density, percentage areas occupied by vessels, parenchyma cells (PATOT) and fibers (FA) on branches of angiosperm and gymnosperm species. Moreover, we compiled a dataset of published hydraulic and anatomical data to be compared with our results. Species more vulnerable to embolism had lower WD. In angiosperms, the variability in WD was better explained by PATOT and FA, which were highly correlated. Angiosperms with a higher P50 (less negative) had a higher amount of PATOT and total amount of nonstructural carbohydrates. Instead, in gymnosperms, P50 vs PATOT was not significant. The correlation between PATOT and P50 might have a biological meaning and also suggests that the causality of the commonly observed relationship of WD vs P50 is indirect and dependent on the parenchyma fraction. Our study suggests that angiosperms have a potential active embolism reversal capacity in which parenchyma has an important role, while in gymnosperms this might not be the case.
Collapse
Affiliation(s)
- Natasa Kiorapostolou
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy
| | - Luca Da Sois
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Tadeja Savi
- Institute for Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, Tulln, Vienna, 3430, Austria
| | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy
| |
Collapse
|
47
|
Brodribb TJ, Cochard H, Dominguez CR. Measuring the pulse of trees; using the vascular system to predict tree mortality in the 21st century. CONSERVATION PHYSIOLOGY 2019; 7:coz046. [PMID: 31423313 PMCID: PMC6691484 DOI: 10.1093/conphys/coz046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 06/01/2023]
Abstract
Tree mortality during hot and dry conditions presents a stark reminder of the vulnerability of plant species to climatic extremes. The current global warming trend makes predicting the impacts of hot/dry events on species survival an urgent task; yet, the standard tools for this purpose lack a physiological basis. This review examines a diversity of recent evidence demonstrating how physiological attributes of plant vascular systems can explain not only why trees die during drought, but also their distributional limits according to rainfall. These important advances in the science of plant water transport physiology provide the basis for new hydraulic models that can provide credible predictions of not only how but when, where and which species will be impacted by changes in rainfall and temperature in the future. Applying a recently developed hydraulic model using realistic parameters, we show that even apparently safe mesic forest in central France is predicted to experience major forest mortality before the end of the century.
Collapse
Affiliation(s)
- Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Bag 55 ,Hobart, Tasmania, Australia
| | | | | |
Collapse
|
48
|
Zhong S, Xu Y, Meng B, Loik ME, Ma JY, Sun W. Nitrogen Addition Increases the Sensitivity of Photosynthesis to Drought and Re-watering Differentially in C 3 Versus C 4 Grass Species. FRONTIERS IN PLANT SCIENCE 2019; 10:815. [PMID: 31333687 PMCID: PMC6616207 DOI: 10.3389/fpls.2019.00815] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 05/03/2023]
Abstract
Global change factors, such as variation in precipitation regimes and nitrogen (N) deposition, are likely to occur simultaneously and may have profound impacts on the relative abundance of grasses differing in functional traits, such as C3 and C4 species. We conducted an extreme drought and re-watering experiment to understand differences in the resistance and recovery abilities of C3 and C4 grasses under different N deposition scenarios. A C3 perennial grass (Leymus chinensis) and two C4 grasses (annual species Chloris virgata and perennial species Hemarthria altissima) that co-occur in Northeast China were selected as experimental plants. For both C3 and C4 grasses, N addition caused a strong increase in biomass and resulted in more severe drought stress, leading to a change in the dominant photosynthetic limitation during the drought periods. Although N addition increased antioxidant enzyme activities and protective solute concentrations, the carbon fixing capacity did not fully recover to pre-drought levels by the end of the re-watering period. N addition resulted in lower resilience under the drought conditions and lower resistance at the end of the re-watering. However, N addition led to faster recovery of photosynthesis, especially in the C3 grass, which indicate that the effect of N addition on photosynthesis during drought was asymmetric, especially in the plants with different photosynthetic nitrogen use efficiency (PNUE). These findings demonstrated that nitrogen deposition may significant alter the susceptibility of C3 and C4 grass species to drought stress and re-watering, highlighting the asymmetry between resistance and resilience and to improve our understanding about plant responses to climate change.
Collapse
Affiliation(s)
- Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yueqiao Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bo Meng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jian-Ying Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|