1
|
Mehmood M, Tanveer NA, Joyia FA, Ullah I, Mohamed HI. Effect of high temperature on pollen grains and yield in economically important crops: a review. PLANTA 2025; 261:141. [PMID: 40374974 DOI: 10.1007/s00425-025-04714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/03/2025] [Indexed: 05/18/2025]
Abstract
MAIN CONCLUSION This review explores how climate change affects plant reproductive structures and causes significant yield loss, and discusses the effect of high temperatures on pollen viability, tube length, and germination percentage. Climate change-induced extreme heat and drought increasingly threaten plant growth and development, significantly impacting sexual reproduction. Heat and drought stress can disrupt key stages of plant sexual reproduction, including flowering time, gametophyte development, pollination, and seed formation, leading to infertility and substantial yield reductions in crops. A key consequence is compromised agricultural productivity and heightened food insecurity. The productivity in terms of crop yield is reduced due to a direct correlation between phenology and climate change. The reproductive organs of a plant and other parameters that define good fertility of a species are all affected by the increasing temperatures during their vegetative and reproductive phases of growth and development. This review dissects the detrimental effects of high temperatures on pollen grain viability, germination, and morphology, directly translating to yield reductions in major crops. It underscores the critical role of pollen viability and germination studies as potential tools for identifying heat-tolerant genotypes crucial for future food security. We delve into the intricate details of high-temperature stress's impact on pollen across various developmental stages, emphasizing the paramount importance of pollen studies as a criterion for heat tolerance in economically important crops within the context of climate change.
Collapse
Affiliation(s)
- Momna Mehmood
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| | - Nouraiz Ahmed Tanveer
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| | - Faiz Ahmad Joyia
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
2
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Luqman T, Hussain M, Ahmed SR, Ijaz I, Maryum Z, Nadeem S, Khan Z, Khan SMUD, Aslam M, Liu Y, Khan MKR. Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies. Front Genet 2025; 16:1553406. [PMID: 40171219 PMCID: PMC11959566 DOI: 10.3389/fgene.2025.1553406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Cotton is a vital fiber crop for the global textile industry, but rising temperatures due to climate change threaten its growth, fiber quality and yields. Heat stress disrupts key physiological and biochemical processes, affecting carbohydrate metabolism, hormone signaling, calcium and gene regulation and expression. This review article explores cotton's defense mechanism against heat stress, including epigenetic regulations and transgenic approaches, with a focus on genome editing tools. Given the limitations of traditional breeding, advanced omics technologies such as GWAS, transcriptomics, proteomics, ionomics, metabolomics, phenomics and CRISPR-Cas9 offer promising solutions for developing heat-resistant cotton varieties. This review highlights the need for innovative strategies to ensure sustainable cotton production under climate change.
Collapse
Affiliation(s)
- Tahira Luqman
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Manzoor Hussain
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Iram Ijaz
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sahar Nadeem
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Zafran Khan
- Department Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Mohammad Aslam
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
4
|
Dubey G, Phillips AL, Kemp DJ, Atwell BJ. Physiological and structural traits contribute to thermotolerance in wild Australian cotton species. ANNALS OF BOTANY 2025; 135:577-588. [PMID: 38980751 PMCID: PMC11897598 DOI: 10.1093/aob/mcae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND AIMS Five species of cotton (Gossypium) were exposed to 38 °C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (Gossypium australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS Plants were grown at daytime maxima of 30 or 38 °C for 25 days, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, in addition to electron transport rates and carboxylation efficiency in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape) were quantified, along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38 than at 30 °C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and the number of leaves both contributed to these contrasting growth responses, with fewer, smaller leaves at 38 °C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced electron transport rates and carboxylation efficiency in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Likewise, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38 °C.
Collapse
Affiliation(s)
- Garima Dubey
- Hawkesbury Institute for the Environment, University of Western Sydney, Sydney, NSW, Australia
| | - Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
| | - Darrell J Kemp
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Masoomi-Aladizgeh F, Atwell BJ, Bokshi AI, Thistlethwaite RJ, Khoddami A, Trethowan R, Tan DKY, Roberts TH. Pinpointing the timing of meiosis: a critical factor in evaluating the impact of abiotic stresses on the fertility of cereal crops. THE NEW PHYTOLOGIST 2025; 245:1341-1354. [PMID: 39578084 DOI: 10.1111/nph.20297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
The development of male gametes, vital to sexual reproduction in crops, requires meiosis followed by successive mitotic cell divisions of haploid cells. The formation of viable pollen is especially vulnerable to abiotic stress, with consequences both for yield and for grain quality. An understanding of key molecular responses when specific stages during pollen development are subjected to stress (e.g. heat) is possible only when sampling is carefully informed by developmental biology. Traditionally, morphological characteristics have been commonly used in cereals as 'indicators' of male reproductive stages. We argue that these morphological attributes are strongly influenced by genotype and genotype-environment interactions and cannot be used reliably to define developmental events during microsporogenesis and microgametogenesis. Furthermore, asynchronous development along the axis of a single inflorescence calls for selective sampling of individual florets to define specific reproductive stages accurately. We therefore propose guidelines to standardise the sampling of cells during male reproductive development, particularly when interrogating the impact of stress on susceptible meiosis. Improved knowledge of development will largely negate the variability imposed by genotype, environment and asynchronous development of florets. Highlighting the subtleties required for sampling and investigation of male reproductive stages will make the selection of abiotic stress-tolerant cereal genotypes more reliable.
Collapse
Affiliation(s)
- Farhad Masoomi-Aladizgeh
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Anowarul I Bokshi
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Rebecca J Thistlethwaite
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Narrabri, NSW, 2390, Australia
| | - Ali Khoddami
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Richard Trethowan
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Daniel K Y Tan
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Thomas H Roberts
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
6
|
Zheng Y, Cai Z, Wang Z, Maruza TM, Zhang G. The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects. PLANTS (BASEL, SWITZERLAND) 2025; 14:148. [PMID: 39861500 PMCID: PMC11768744 DOI: 10.3390/plants14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane. The deactivation of the photosystems, reduction in photosynthesis, and inactivation of Rubisco affect the production of photo-assimilates and their allocation, consequently resulting in reduced grain yield and quality. The development of thermo-tolerant wheat varieties is the most efficient and fundamental approach for coping with global warming. This review provides a comprehensive overview of various aspects related to heat stress tolerance in wheat, including damages caused by heat stress, mechanisms of heat stress tolerance, genes or QTLs regulating heat stress tolerance, and the methodologies of breeding wheat cultivars with high heat stress tolerance. Such insights are essential for developing thermo-tolerant wheat cultivars with high yield potential in response to an increasingly warmer environment.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.C.); (Z.W.); (T.M.M.)
| |
Collapse
|
7
|
Liu H, Li J, Xie L, Wu H, Han S, Hu L, Zhang F, Wang H. Quantitative proteomic analysis reveals hub proteins for high temperature-induced male sterility in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1426832. [PMID: 39290742 PMCID: PMC11405254 DOI: 10.3389/fpls.2024.1426832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
High-temperature (HT) stress can induce male sterility in wheat; however, the underlying mechanisms remain poorly understood. This study examined proteomic alterations across three developmental stages between normal and HT-induced male-sterile (HT-ms) anthers in wheat. Utilizing tandem mass tags-based proteomics, we identified 2532 differentially abundant proteins (DAPs): 27 in the tetrad stage, 157 in the binuclear stage, and 2348 in the trinuclear stage. Analyses through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways indicated significant enrichment of these DAPs in seven pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, starch and sucrose metabolism, response to heat, and response to reactive oxygen species (ROS). Our results indicated the downregulation of DAPs associated with phenylpropanoid biosynthesis and starch and sucrose metabolism, which aligns with anther indehiscence and the lack of starch in HT-ms anthers. By contrast, DAPs in the ROS pathway were upregulated, which aligns with excessive ROS accumulation in HT-ms anthers. Additionally, we conducted protein-protein interaction analysis for the DAPs of these pathways, identifying 15 hub DAPs. The abundance of these hub proteins was confirmed through qRT-PCR, assessing mRNA expression levels of the corresponding transcripts. Collectively, these results offer insights into the molecular mechanisms underlying HT-induced male sterility in wheat at the proteomic level, providing a valuable resource for further research in plant sexual reproduction.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinlei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hongxing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
8
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
9
|
Begcy K, Mendes MA, De Storme N. Editorial: Plant reproduction under environmental stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1369070. [PMID: 38469324 PMCID: PMC10926368 DOI: 10.3389/fpls.2024.1369070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Affiliation(s)
- Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, Heverlee, KU Leuven, Belgium
| |
Collapse
|
10
|
Bollier N, Micol-Ponce R, Dakdaki A, Maza E, Zouine M, Djari A, Bouzayen M, Chevalier C, Delmas F, Gonzalez N, Hernould M. Various tomato cultivars display contrasting morphological and molecular responses to a chronic heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1278608. [PMID: 37965003 PMCID: PMC10642206 DOI: 10.3389/fpls.2023.1278608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Climate change is one of the biggest threats that human society currently needs to face. Heat waves associated with global warming negatively affect plant growth and development and will increase in intensity and frequency in the coming years. Tomato is one of the most produced and consumed fruit in the world but remarkable yield losses occur every year due to the sensitivity of many cultivars to heat stress (HS). New insights into how tomato plants are responding to HS will contribute to the development of cultivars with high yields under harsh temperature conditions. In this study, the analysis of microsporogenesis and pollen germination rate of eleven tomato cultivars after exposure to a chronic HS revealed differences between genotypes. Pollen development was either delayed and/or desynchronized by HS depending on the cultivar considered. In addition, except for two, pollen germination was abolished by HS in all cultivars. The transcriptome of floral buds at two developmental stages (tetrad and pollen floral buds) of five cultivars revealed common and specific molecular responses implemented by tomato cultivars to cope with chronic HS. These data provide valuable insights into the diversity of the genetic response of floral buds from different cultivars to HS and may contribute to the development of future climate resilient tomato varieties.
Collapse
Affiliation(s)
- N. Bollier
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | | | - A. Dakdaki
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - E. Maza
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - M. Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - A. Djari
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - M. Bouzayen
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - C. Chevalier
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - F. Delmas
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - N. Gonzalez
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - M. Hernould
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| |
Collapse
|
11
|
Savani KR, Gajera HP, Hirpara DG, Savaliya DD, Kandoliya UK. Salicylic acid-functionalised chitosan nanoparticles restore impaired sucrose metabolism in the developing anther of cotton ( Gossypium hirsutum) under heat stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:736-751. [PMID: 37536348 DOI: 10.1071/fp22309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
Nanotechnology provides tremendous potential in agriculture, mitigating climate change impact and improving abiotic stress management strategy. Chitosan nanoparticles (NCS) were synthesised using the ion gelation method and characterised for size (75.5nm in particle size analyser), shape (spherical under scanning electron microscopy) and stability (132.2mV zeta potential). Further, salicylic acid was incorporated into NCS to craft salicylic acid-functionalised chitosan nanoparticles (SA-NCS) and illustrated for size (517nm), shape (spherical) and stability (197.1mV). The influence of the exogenous application of SA-NCS (0.08%) was studied at the reproductive stage of three genotypes of cotton (Gossypium hirsutum ): (1) heat-tolerant Solar-651 BGII; (2) moderately heat-tolerant Solar-701 BGII; and (3) heat-susceptible Solar-805 BGII, exposed to different temperature regimes: (1) H1 (optimal), 32/20±2°C; (2) H2 (sub-optimal), 38/24±2°C; H3 (supra-optimal), 45/30±2°C. Heat stress significantly reduces carbon-fixing Rubisco, enzymes related to sucrose metabolism and pollen tube length. Considering three genotypes and reproductive stages (sepal and anther tissues), activities of Rubisco (sepals), invertase (sepals), sucrose phosphate synthase (anthers), sucrose content (sepals) and pollen tube length were elevated under high-temperature regimes, signifying better source to sink transposition of sucrose influenced by SA-NCS. The study provides new insights into SA-NCS to improve source-sink imbalance and restore sucrose metabolism for better growth of reproductive structure under heat stress in cotton.
Collapse
Affiliation(s)
- Khyati R Savani
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - Disha D Savaliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - U K Kandoliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| |
Collapse
|
12
|
Weng Z, Deng Y, Tang F, Zhao L, Zhao L, Wang Y, Dai X, Zhou Z, Cao Q. Screening and optimisation of in vitro pollen germination medium for sweetpotato (Ipomoea batatas). PLANT METHODS 2023; 19:93. [PMID: 37644497 PMCID: PMC10463589 DOI: 10.1186/s13007-023-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Sweetpotato is an important vegetable and food crop that is bred through sexual crosses and systematic selection. The use of in vitro germination of sweetpotato pollen to test its viability has important theoretical and practical implications for improving the efficiency of sweetpotato crossbreeding by controlling pollination and conducting research on sweetpotato pollen biology. RESULTS In this study, we observed the morphological structure of sweetpotato pollen under a scanning electron microscope (SEM), developed an effective method for the in vitro germination of sweetpotato pollen, and examined the viability of sweetpotato pollen after treating plants at different temperatures before blossoming. Sweetpotato pollen grains are spherical, with an average diameter of 87.07 ± 3.27 μm (excluding spines), with multiple germination pores and reticulate pollen surface sculpture. We applied numerous media to sweetpotato pollen germination in vitro to screen the initial medium and optimised the medium components through single-factor design. The most effective liquid medium for in vitro sweetpotato pollen germination contained 50 g/L Sucrose, 50 g/L Polyethylene glycol 4000 (PEG4000), 100 mg/L Boric acid and 300 mg/L Calcium nitrate, with a pH = 6.0. The optimum growth temperature for pollen development in sweetpotato was from 25 to 30 °C. Neither staining nor in situ germination could accurately determine the viability of sweetpotato pollen. CONCLUSIONS In vitro germination can be used to effectively determine sweetpotato pollen viability. The best liquid medium for in vitro germination of sweetpotato pollen contained 50 g/L Sucrose, 50 g/L Polyethylene glycol 4000 (PEG4000), 100 mg/L Boric acid and 300 mg/L Calcium nitrate, with the pH adjusted to 6.0. This study provides a reliable medium for the detection of sweetpotato pollen viability, which can provide a theoretical reference for sweetpotato genetics and breeding.
Collapse
Affiliation(s)
- Zongkuan Weng
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Yitong Deng
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Fen Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Lukuan Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Lingxiao Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Yuan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Xibin Dai
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China.
| |
Collapse
|
13
|
Rose T, Lowe C, Miret JA, Walpole H, Halsey K, Venter E, Urban MO, Buendia HF, Kurup S, O'Sullivan DM, Beebe S, Heuer S. High Temperature Tolerance in a Novel, High-Quality Phaseolus vulgaris Breeding Line Is Due to Maintenance of Pollen Viability and Successful Germination on the Stigma. PLANTS (BASEL, SWITZERLAND) 2023; 12:2491. [PMID: 37447054 DOI: 10.3390/plants12132491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The common bean (Phaseolus vulgaris L.) is an important nutritional source globally but is sensitive to high temperatures and thus particularly vulnerable to climate change. Derived from a breeding program at CIAT (Colombia), a heat-tolerant breeding line, named heat-tolerant Andean-type 4 (HTA4), was developed by a series of crosses of parents with a small-bean tepary genotype (Phaseolus acutifolius L.) in their pedigree, which might be the donor of heat stress (HS) tolerance. Importantly, in HTA4, the large, commercially desirable Andean-type beans was restored. To assess underlying tolerance mechanisms, HTA4, together with a heat-sensitive Colombian variety (Calima), was exposed to HS (31 °C/24 °C HS vs. 26 °C/19 °C day/night) under controlled environment conditions. Vegetative growth and photosynthetic performance were not negatively impacted by HS in either genotype, although senescence was delayed in Calima. HS during the reproductive stage caused an increase in pod number in Calima but with few fully developed seeds and many pods aborted and/or abscised. In contrast, HTA4 maintained a similar filled pod number under HS and a higher seed weight per plant. Pollen showed high sterility in Calima, with many non-viable pollen grains (24.9% viability compared to 98.4% in control) with a thicker exine and fewer starch granules under HS. Calima pollen failed to adhere to the stigma and germinate under HS. In HTA4, pollen viability was significantly higher than in Calima (71.1% viability compared to 95.4% under control), and pollen successfully germinated and formed pollen tubes in the style under HS. It is concluded that HTA4 is heat tolerant and maintains a high level of reproductive output due to its ability to produce healthy pollen that is able to adhere to the stigma.
Collapse
Affiliation(s)
| | | | - Javier A Miret
- Department of Crop Science, University of Reading, Whiteknights P.O. Box 217, Reading, Berkshire RG6 6AH, UK
| | | | | | | | - Milan O Urban
- Centro Internacional de Agricultura Tropical (CIAT), Kilometro 17, Recta Cali-Palmira, Apartado Aereo, Cali 6713, Colombia
| | - Hector Fabio Buendia
- Centro Internacional de Agricultura Tropical (CIAT), Kilometro 17, Recta Cali-Palmira, Apartado Aereo, Cali 6713, Colombia
| | | | - Donal Martin O'Sullivan
- Department of Crop Science, University of Reading, Whiteknights P.O. Box 217, Reading, Berkshire RG6 6AH, UK
| | - Steve Beebe
- Centro Internacional de Agricultura Tropical (CIAT), Kilometro 17, Recta Cali-Palmira, Apartado Aereo, Cali 6713, Colombia
| | - Sigrid Heuer
- National Institute of Agricultural Botany (NIAB), Lawrence Weaver Road, Cambridge CB3 0LE, UK
| |
Collapse
|
14
|
Habibpourmehraban F, Wu Y, Masoomi-Aladizgeh F, Amirkhani A, Atwell BJ, Haynes PA. Pre-Treatment of Rice Plants with ABA Makes Them More Tolerant to Multiple Abiotic Stress. Int J Mol Sci 2023; 24:ijms24119628. [PMID: 37298579 DOI: 10.3390/ijms24119628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.
Collapse
Affiliation(s)
- Fatemeh Habibpourmehraban
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Farhad Masoomi-Aladizgeh
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ardeshir Amirkhani
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
15
|
Guo Y, Chen Q, Qu Y, Deng X, Zheng K, Wang N, Shi J, Zhang Y, Chen Q, Yan G. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton. Gene 2023; 874:147486. [PMID: 37196889 DOI: 10.1016/j.gene.2023.147486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Heat stress significantly affect plant growth and development, which is an important factor contributing to crop yield loss. However, heat shock proteins (HSPs) in plants can effectively alleviate cell damage caused by heat stress. In order to rapidly and accurately cultivate heat-tolerant cotton varieties, this study conducted correlation analysis between heat tolerance index and insertion/deletion (In/Del) sites of GhHSP70-26 promoter in 39 cotton materials, so as to find markers related to heat tolerance function of cotton, which can be used in molecular marker-assisted breeding. The results showed the natural variation allele (Del22 bp) type at -1590 bp upstream of GhHSP70-26 promoter (haplotype2, Hap2) in cotton (Gossypium spp.) promoted GhHSP70-26 expression under heat stress. The relative expression level of GhHSP70-26 of M-1590-Del22 cotton materials were significantly higher than that of M-1590-In type cotton materials under heat stress (40 ℃). Also, M-1590-Del22 material had lower conductivity and less cell damage after heat stress, indicating that it is a heat resistant cotton material. The Hap1 (M-1590-In) promoter was mutated into Hap1del22, and Hap1 and Hap1del22 were fused with GUS to transform Arabidopsis thaliana. Furthermore, Hap1del22 promoter had higher induction activity than Hap1 under heat stress and abscisic acid (ABA) treatment in transgenic Arabidopsis thaliana. Further analysis confirmed that M-1590-Del22 was the dominant heat-resistant allele. In summary, these results identify a key and previously unknown natural variation in GhHSP70-26 with respect to heat tolerance, providing a valuable functional molecular marker for genetic breeding of cotton and other crops with heat tolerance.
Collapse
Affiliation(s)
- Yaping Guo
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China; College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Ning Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianbin Shi
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yinbin Zhang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
16
|
Goel K, Kundu P, Sharma P, Zinta G. Thermosensitivity of pollen: a molecular perspective. PLANT CELL REPORTS 2023; 42:843-857. [PMID: 37029819 DOI: 10.1007/s00299-023-03003-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
A current trend in climate comprises adverse weather anomalies with more frequent and intense temperature events. Heatwaves are a serious threat to global food security because of the susceptibility of crop plants to high temperatures. Among various developmental stages of plants, even a slight rise in temperature during reproductive development proves detrimental, thus making sexual reproduction heat vulnerable. In this context, male gametophyte or pollen development stages are the most sensitive ones. High-temperature exposure induces pollen abortion, reducing pollen viability and germination rate with a concomitant effect on seed yield. This review summarizes the ultrastructural, morphological, biochemical, and molecular changes underpinning high temperature-induced aberrations in male gametophytes. Specifically, we highlight the temperature sensing cascade operating in pollen, involving reactive oxygen species (ROS), heat shock factors (HSFs), a hormones and transcriptional regulatory network. We also emphasize integrating various omics approaches to decipher the molecular events triggered by heat stress in pollen. The knowledge of genes, proteins, and metabolites conferring thermotolerance in reproductive tissues can be utilized to breed/engineer thermotolerant crops to ensure food security.
Collapse
Affiliation(s)
- Komal Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pravesh Kundu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Paras Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
17
|
Sarwar M, Saleem MF, Ullah N, Ali A, Collins B, Shahid M, Munir MK, Chung SM, Kumar M. Superior leaf physiological performance contributes to sustaining the final yield of cotton ( Gossypium hirsutum L.) genotypes under terminal heat stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:739-753. [PMID: 37363422 PMCID: PMC10284769 DOI: 10.1007/s12298-023-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
This study aimed to optimize methods for identifying heat-tolerant and heat-susceptible cotton plants by examining the relationship between leaf physiology and cotton yield. Cotton accessions were exposed to elevated temperatures through staggered sowing and controlled growth conditions in a glasshouse. Based on their yield performance, leaf physiology, cell biochemistry, and pollen germination, the accessions were categorized as heat-tolerant, moderately tolerant, or susceptible. High temperatures had a significant impact on various leaf physiological and biochemical factors, such as cell injury, photosynthetic rate, stomatal conductance, transpiration rate, leaf temperature, chlorophyll fluorescence, and enzyme activities. The germination of flower pollen and seed cotton yield was also affected. The study demonstrated that there was a genetic variability for heat tolerance among the tested cotton accessions, as indicated by the interaction between accession and environment. Leaf gas exchange, cell biochemistry, pollen germination, and cotton yield were strongly associated with heat-sensitive accessions, but this association was negligible in tolerant accessions. Principal component analysis was used to classify the accessions based on their performance under heat stress conditions. The findings suggest that leaf physiological traits, cell biochemistry, pollen germination, and cotton yield can be effective indicators for selecting heat-tolerant cotton lines. Future research could explore additional genetic traits for improved selection and development of heat-tolerant accessions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01322-8.
Collapse
Affiliation(s)
- Muhammad Sarwar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asjad Ali
- Queensland Department of Agriculture and Fisheries, PO Box 1054, Mareeba, QLD 4880 Australia
| | - Brian Collins
- College of Science and Engineering, James Cook University, Townsville, QLD 4814 Australia
| | | | - Muhammad Kashif Munir
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, 10326 Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, 10326 Korea
| |
Collapse
|
18
|
Chen L, Liang Z, Xie S, Liu W, Wang M, Yan J, Yang S, Jiang B, Peng Q, Lin Y. Responses of differential metabolites and pathways to high temperature in cucumber anther. FRONTIERS IN PLANT SCIENCE 2023; 14:1131735. [PMID: 37123826 PMCID: PMC10140443 DOI: 10.3389/fpls.2023.1131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Cucumber is one of the most important vegetable crops, which is widely planted all over the world. Cucumber always suffers from high-temperature stress in South China in summer. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis was used to study the differential metabolites of cucumber anther between high-temperature (HT) stress and normal condition (CK). After HT, the pollen fertility was significantly reduced, and abnormal anther structures were observed by the paraffin section. In addition, the metabolomics analysis results showed that a total of 125 differential metabolites were identified after HT, consisting of 99 significantly upregulated and 26 significantly downregulated metabolites. Among these differential metabolites, a total of 26 related metabolic pathways were found, and four pathways showed significant differences, namely, porphyrin and chlorophyll metabolism; plant hormone signal transduction; amino sugar and nucleotide sugar metabolism; and glycine, serine, and threonine metabolism. In addition, pollen fertility was decreased by altering the metabolites of plant hormone signal transduction and amino acid and sugar metabolism pathway under HT. These results provide a comprehensive understanding of the metabolic changes in cucumber anther under HT.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Shuyan Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
19
|
Li W, Mi X, Jin X, Zhang D, Zhu G, Shang X, Zhang D, Guo W. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:374-390. [PMID: 35506325 DOI: 10.1111/tpj.15793] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Global climate changes cause an increase of abiotic and biotic stresses that tremendously threaten the world's crop security. However, studies on broad-spectrum response pathways involved in biotic and abiotic stresses are relatively rare. Here, by comparing the time-dependent transcriptional changes and co-expression analysis of cotton (Gossypium hirsutum) root tissues under abiotic and biotic stress conditions, we discovered the common stress-responsive genes and stress metabolism pathways under different stresses, which included the circadian rhythm, thiamine and galactose metabolism, carotenoid, phenylpropanoid, flavonoid, and zeatin biosynthesis, and the mitogen-activated protein kinase signaling pathway. We found that thiamine metabolism was an important intersection between abiotic and biotic stresses; the key thiamine synthesis genes, GhTHIC and GhTHI1, were highly induced at the early stage of stresses. We confirmed that thiamine was crucial and necessary for cotton growth and development, and its deficiency could be recovered by exogenous thiamine supplement. Furthermore, we revealed that exogenous thiamine enhanced stress tolerance in cotton via increasing calcium signal transduction and activating downstream stress-responsive genes. Overall, our studies demonstrated that thiamine played a crucial role in the tradeoff between plant health and stress resistance. The thiamine deficiency caused by stresses could transiently induce upregulation of thiamine biosynthetic genes in vivo, while it could be totally salvaged by exogenous thiamine application, which could significantly improve cotton broad-spectrum stress tolerance and enhance plant growth and development.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Daiwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Masoomi‐Aladizgeh F, Kamath KS, Haynes PA, Atwell BJ. Genome survey sequencing of wild cotton (Gossypium robinsonii) reveals insights into proteomic responses of pollen to extreme heat. PLANT, CELL & ENVIRONMENT 2022; 45:1242-1256. [PMID: 35092006 PMCID: PMC9415111 DOI: 10.1111/pce.14268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Heat stress specifically affects fertility by impairing pollen viability but cotton wild relatives successfully reproduce in hot savannas where they evolved. An Australian arid-zone cotton (Gossypium robinsonii) was exposed to heat events during pollen development then mature pollen was subjected to deep proteomic analysis using 57 023 predicted genes from a genomic database we assembled for the same species. Three stages of pollen development, including tetrads (TEs), uninucleate microspores (UNs) and binucleate microspores (BNs) were exposed to 36°C or 40°C for 5 days and the resulting mature pollen was collected at anthesis (p-TE, p-UN and p-BN, respectively). Using the sequential windowed acquisition of all theoretical mass spectra proteomic analysis, 2704 proteins were identified and quantified across all pollen samples analysed. Proteins predominantly decreased in abundance at all stages in response to heat, particularly after exposure of TEs to 40°C. Functional enrichment analyses demonstrated that extreme heat increased the abundance of proteins that contributed to increased messenger RNA splicing via spliceosome, initiation of cytoplasmic translation and protein refolding in p-TE40. However, other functional categories that contributed to intercellular transport were inhibited in p-TE40, linked potentially to Rab proteins. We ascribe the resilience of reproductive processes in G. robinsonii at temperatures up to 40°C, relative to commercial cotton, to a targeted reduction in protein transport.
Collapse
Affiliation(s)
| | | | - Paul A. Haynes
- School of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Brian J. Atwell
- School of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
21
|
Han S, Jiang S, Xiong R, Shafique K, Zahid KR, Wang Y. Response and tolerance mechanism of food crops under high temperature stress: a review. BRAZ J BIOL 2022; 82:e253898. [PMID: 35107484 DOI: 10.1590/1519-6984.253898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023] Open
Abstract
High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.
Collapse
Affiliation(s)
- S Han
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - S Jiang
- Zhengzhou Normal University, Bioengineering Research Center, Zhengzhou, Henan, P.R. China
| | - R Xiong
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - K R Zahid
- Shenzhen University, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen, Guangdong, China
| | - Y Wang
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| |
Collapse
|
22
|
Masoomi-Aladizgeh F, McKay MJ, Asar Y, Haynes PA, Atwell BJ. Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:965-979. [PMID: 34837283 DOI: 10.1111/tpj.15608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Reproductive performance in plants is impaired as maximum temperatures consistently approach 40°C. However, the timing of heatwaves critically affects their impact. We studied the molecular responses during pollen maturation in cotton to investigate the vulnerability to high temperature. Tetrads (TEs), uninucleate and binucleate microspores, and mature pollen were subjected to SWATH-MS and RNA-seq analyses after exposure to 38/28°C (day/night) for 5 days. The results indicated that molecular signatures were downregulated progressively in response to heat during pollen development. This was even more evident in leaves, where three-quarters of differentially changed proteins decreased in abundance during heat. Functional analysis showed that translation of genes increased in TEs after exposure to heat; however, the reverse pattern was observed in mature pollen and leaves. For example, proteins involved in transport were highly abundant in TEs whereas in later stages of pollen formation and leaves, heat suppressed synthesis of proteins involved in cell-to-cell communication. Moreover, a large number of heat shock proteins were identified in heat-affected TEs, but these proteins were less abundant in mature pollen and leaves. We speculate that the sensitivity of TE cells to heat is related to high rates of translation targeted to pathways that might not be essential for thermotolerance. Molecular signatures during stages of pollen development after heatwaves could provide markers for future genetic improvement.
Collapse
Affiliation(s)
| | - Matthew J McKay
- Australian Proteome Analysis Facility, Department of Molecular Sciences, Macquarie University, NSW, Australia
| | - Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, NSW, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
23
|
Kim HJ, Kato N, Ndathe R, Thyssen GN, Jones DC, Ratnayaka HH. Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS One 2021; 16:e0259562. [PMID: 34898615 PMCID: PMC8668099 DOI: 10.1371/journal.pone.0259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Don C. Jones
- Cotton Incorporated, Cary, NC, United States of America
| | - Harish H. Ratnayaka
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| |
Collapse
|
24
|
Jagadish SVK, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. PLANT, CELL & ENVIRONMENT 2021; 44:1987-1991. [PMID: 33987846 DOI: 10.1111/pce.14082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
25
|
Browne RG, Li SF, Iacuone S, Dolferus R, Parish RW. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress. PLANTA 2021; 254:4. [PMID: 34131818 DOI: 10.1007/s00425-021-03656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
Transcriptomic analyses identified anther-expressed genes in wheat likely to contribute to heat tolerance and hence provide useful genetic markers. The genes included those involved in hormone biosynthesis, signal transduction, the heat shock response and anther development. Pollen development is particularly sensitive to high temperature heat stress. In wheat, heat-tolerant and heat-sensitive cultivars have been identified, although the underlying genetic causes for these differences are largely unknown. The effects of heat stress on the developing anthers of two heat-tolerant and two heat-sensitive wheat cultivars were examined in this study. Heat stress (35 °C) was found to disrupt pollen development in the two heat-sensitive wheat cultivars but had no visible effect on pollen or anther development in the two heat-tolerant cultivars. The sensitive anthers exhibited a range of developmental abnormalities including an increase in unfilled and clumped pollen grains, abnormal pollen walls and a decrease in pollen viability. This subsequently led to a greater reduction in grain yield in the sensitive cultivars following heat stress. Transcriptomic analyses of heat-stressed developing wheat anthers of the four cultivars identified a number of key genes which may contribute to heat stress tolerance during pollen development. Orthologs of some of these genes in Arabidopsis and rice are involved in regulation of the heat stress response and the synthesis of auxin, ethylene and gibberellin. These genes constitute candidate molecular markers for the breeding of heat-tolerant wheat lines.
Collapse
Affiliation(s)
- Richard G Browne
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Song F Li
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Sylvana Iacuone
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- Melbourne Polytechnic, Epping, VIC, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Roger W Parish
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
26
|
Chen L, Yun M, Cao Z, Liang Z, Liu W, Wang M, Yan J, Yang S, He X, Jiang B, Peng Q, Lin Y. Phenotypic Characteristics and Transcriptome of Cucumber Male Flower Development Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:758976. [PMID: 34745192 PMCID: PMC8570340 DOI: 10.3389/fpls.2021.758976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 05/16/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop, which is thermophilic not heat resistant. High-temperature stress always results in sterility at reproductive stage. In the present study, we evaluate the male flower developmental changes under normal (CK) and heat stress (HS) condition. After HS, the activities of peroxidase (POD) and superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were increased. In addition, the pollen fertility was significantly decreased; and abnormal tapetum and microspore were observed by paraffin section. Transcriptome analysis results presented that total of 5828 differentially expressed genes (DEGs) were identified after HS. Among these DEGs, 20 DEGs were found at four stages, including DNA binding transcription factor, glycosyltransferase, and wound-responsive family protein. The gene ontology term of carbohydrate metabolic process was significantly enriched in all anther stages, and many saccharides and starch synthase-related genes, such as invertase, sucrose synthase, and starch branching enzyme, were significantly different expressed in HS compared with CK. Furthermore, co-expression network analysis showed a module (midnightblue) strongly consistent with HS, and two hub genes (CsaV3_6G004180 and CsaV3_5G034860) were found with a high degree of connectivity to other genes. Our results provide comprehensive understandings on male flower development in cucumber under HS.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Maomao Yun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|