1
|
Xu H, Chen H, Halford NG, RugenXu, He T, Yang B, Zhou L, HuiminGuo, ChenghongLiu. Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line. BMC PLANT BIOLOGY 2025; 25:52. [PMID: 39806297 PMCID: PMC11731160 DOI: 10.1186/s12870-024-06033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait. In a previous study, we developed a salt-tolerant barley doubled haploid (DH) line, designated as DH20, through mutagenesis combined with microspore culture, establishing it as an idea model for elucidating the mechanisms of salt tolerance. In this study, ion homeostasis, key osmotic agents, antioxidant enzyme activities and gene expression were compared between Hua30 (the original material used as a control) and DH20. The results indicated that under salt treatment, DH20 exhibited significantly higher shoot fresh and dry weight, relative plant height, shoot K+/Na+ ratio, improved stomatal guard cell function, and better retention of chloroplast ultrastructure compared to Hua30. Notably, the K+ efflux in DH20 was significantly lower while the Na+ and H+ efflux was significantly higher than those in Hua30 under salt stress in mesophyll cells. Furthermore, the activities of ascorbate peroxidase, superoxide dismutase, and peroxidase, along with the levels of proline, betaine, malondialdehyde, and soluble protein, were correlated with ion efflux and played a vital role in the response of DH20 to salt stress. Compared to Hua30, the relative expression levels of the HvSOS1, HvSOS2, HvSOS3, HvHKT1;3, HvNHX1, HvNHX2, and HvNHX3 genes, which showed a strong correlation with Na+, K+, and H+ efflux, exhibited significant differences at 24 h under salt stress in DH20. These findings suggest that ion homeostasis, key osmolytes, antioxidant enzyme activities, and associated gene expression are coordinated in the salt tolerance of DH20, with K+ retention and Na+ and H+ efflux serving as important mechanisms for coping with salt stress. These findings present new opportunities for enhancing salinity tolerance, not only in barley but in other cereals as well, including wheat and rice, by integrating this trait with other traditional mechanisms. Furthermore, MIFE measurements of NaCl-induced ion fluxes from leaf mesophyll provide plant breeders with an efficient method to screen germplasm for salinity stress tolerance in barley and potentially other crops. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Hongwei Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Hui Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | | | - RugenXu
- Yangzhou University, Yangzhou, 225009, China
| | - Ting He
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Bangwei Yang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - HuiminGuo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - ChenghongLiu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
2
|
Yuan G, Nong T, Hunpatin OS, Shi C, Su X, Xu F, Wang Y, Zhang Z, Ning Y, Liu H, Wang Q. Genome-wide identification of Shaker K + channel family in Nicotiana tabacum and functional analysis of NtSKOR1B in response to salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1378738. [PMID: 38660442 PMCID: PMC11039879 DOI: 10.3389/fpls.2024.1378738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Soil salinization poses a mounting global ecological and environmental threat. The identification of genes responsible for negative regulation of salt tolerance and their utilization in crop improvement through gene editing technologies emerges as a swift strategy for the effective utilization of saline-alkali lands. One efficient mechanism of plant salt tolerance is maintaining the proper intracellular K+/Na+ ratio. The Shaker K+ channels play a crucial role in potassium absorption, transport, and intracellular potassium homeostasis in plant cells. Here, the study presents the first genome-wide identification of Shaker K+ channels in Nicotiana tabacum L., along with a detailed bioinformatic analysis of the 20 identified members. Transcriptome analysis revealed a significant up-regulation of NtSKOR1B, an outwardly-rectifying member predominantly expressed in the root tissue of tobacco seedlings, in response to salt stress. This finding was then confirmed by GUS staining of ProNtSKOR1B::GUS transgenic lines and RT-qPCR analysis. Subsequently, NtSKOR1B knockout mutants (ntskor1) were then generated and subjected to salt conditions. It was found that ntskor1 mutants exhibit enhanced salt tolerance, characterized by increased biomass, higher K+ content and elevated K+/Na+ ratios in both leaf and root tissues, compared to wild-type plants. These results indicate that NtSKOR1B knockout inhibits K+ efflux in root and leaf tissues of tobacco seedlings under salt stress, thereby maintaining higher K+/Na+ ratios within the cells. Thus, our study identifies NtSKOR1B as a negative regulator of salt tolerance in tobacco seedlings.
Collapse
Affiliation(s)
- Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Su
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Fangzheng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yihui Wang
- China Tobacco Shandong Industrial Co., LTD Cigar Operation Center, Jinan, China
| | - Zhaoting Zhang
- Xuancheng City Xuanzhou District Tobacco Industry Development Center, Xuancheng, China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
3
|
Zhu L, Xu W, Yao X, Chen L, Li G, Gu J, Chen L, Li Z, Wu H. Cell Wall Pectin Content Refers to Favored Delivery of Negatively Charged Carbon Dots in Leaf Cells. ACS NANO 2023; 17:23442-23454. [PMID: 37991776 DOI: 10.1021/acsnano.3c05182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In this work, we systematically investigated how cell wall and cell wall components affect the delivery of charged carbon quantum dots (CDs, from -34 to +41 mV) to leaf cells of cucumber and Arabidopsis plants. Four different types of leaf cells in cucumber and Arabidopsis were used, i.e., protoplasts (without cell wall), isolated individual cells (cell wall hydrolyzed with pectinase), regenerated individual cells (cell wall regenerated from protoplast), and intact leaf cells (intact cell wall, in planta). Leaf cells were incubated with charged CDs (0.5 mg/mL) for 2 h. Confocal imaging results showed that protoplasts, regenerated individual cells, and leaf cells showed favored uptake of the negatively charged CDs (-34 mV) compared to the PEI (polyethylenimine) coated and positively charged carbon dots [PEI600-CDs (17 mV) and PEI10K-CDs (41 mV)], while in isolated individual cells, the trend is opposite. The results of the content of the cell wall components showed that no significant changes in the total cell wall content were found between isolated individual cells and regenerated individual cells (1.28 vs 1.11 mg/106 cells), while regenerated individual cells showed significant higher pectin content [water-soluble pectin (0.13 vs 0.06 mg/106 cells, P < 0.01), chelator-soluble pectin (0.04 vs 0.01 mg/106 cells, P < 0.01), and alkaline pectin (0.02 vs 0.01 mg/106 cells, P < 0.01)] and significant lower cellulose content (0.13 vs 0.32 mg/106 cells, P < 0.01) than the isolated individual cells. No difference of the hemicellulose content was found between isolated individual cells and regenerated individual cells (0.20 vs 0.21 mg/106 cells). Our results suggest that compared with cellulose and hemicellulose in the cell wall, the pectin is a more important factor referring to the favored uptake of negatively charged carbon dots in leaf cells. Overall, this work provides a method to study the role of cell wall components in the uptake of nanoparticles in plant cells and also points out the importance of understanding the interactions between cell barriers and nanoparticles to design nanoparticles for agricultural use.
Collapse
Affiliation(s)
- Lan Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Yao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangjiang Gu
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Woo JI, Injamum-Ul-Hoque M, Zainurin N, Shaffique S, Kwon EH, Gam HJ, Jeon JR, Lee IJ, Joo GJ, Kang SM. Gibberellin-Producing Bacteria Isolated from Coastal Soil Enhance Seed Germination of Mallow and Broccoli Plants under Saline Conditions. BIOTECH 2023; 12:66. [PMID: 38131678 PMCID: PMC10741878 DOI: 10.3390/biotech12040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Salinity hinders plant growth, posing a substantial challenge to sustainable agricultural yield maintenance. The application of plant growth-promoting rhizobacteria (PGPR) offers an emerging strategy to mitigate the detrimental effects of high salinity levels. This study aimed to isolate and identify gibberellin-producing bacteria and their impact on the seed germination of Malva verticillata (mallow) and Brassica oleracea var. italica (broccoli) under salt stress. In this study, seven bacterial isolates (KW01, KW02, KW03, KW04, KW05, KW06, and KW07) were used to assess their capacity for producing various growth-promoting traits and their tolerance to varying amounts of salinity (100 mM and 150 Mm NaCl). The findings revealed that KW05 and KW07 isolates outperformed other isolates in synthesizing indole-3-acetic acid, siderophores, and exopolysaccharides and in solubilizing phosphates. These isolates also enhanced phosphatase activity and antioxidant levels, including superoxide dismutase and catalase. Both KW05 and KW07 isolate highlight the growth-promoting effects of gibberellin by enhancing of growth parameters of Waito-C rice. Further, gas chromatography-mass spectrometry validation confirmed the ability of KW05 and KW07 to produce gibberellins (GAs), including GA1, GA3, GA4, and GA7. Seed germination metrics were enhanced due to the inoculation of KW05 and KW07. Moreover, inoculation with KW05 increased the fresh weight (FW) (7.82%) and total length (38.61%) of mallow under salt stress. Inoculation with KW07 increased the FW (32.04%) and shoot length of mallow under salt stress. A single inoculation of these two isolates increased broccoli plants' FW and shoot length under salt stress. Gibberellin-producing bacteria helps in plant growth promotion by improving salt tolerance by stimulating root elongation and facilitating enhanced absorption of water and nutrient uptake in salty environments. Based on these findings, they can play a role in boosting agricultural yield in salt-affected areas, which would help to ensure the long-term viability of agriculture in coastal regions.
Collapse
Affiliation(s)
- Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Nazree Zainurin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
| | - Gil-Jae Joo
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (J.-I.W.); (M.I.-U.-H.); (N.Z.); (S.S.); (E.-H.K.); (H.-J.G.); (J.R.J.); (I.-J.L.)
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
5
|
Imtiaz K, Ahmed M, Annum N, Tester M, Saeed NA. AtCIPK16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1127311. [PMID: 37008481 PMCID: PMC10060804 DOI: 10.3389/fpls.2023.1127311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Globally, wheat is the major source of staple food, protein, and basic calories for most of the human population. Strategies must be adopted for sustainable wheat crop production to fill the ever-increasing food demand. Salinity is one of the major abiotic stresses involved in plant growth retardation and grain yield reduction. In plants, calcineurin-B-like proteins form a complicated network with the target kinase CBL-interacting protein kinases (CIPKs) in response to intracellular calcium signaling as a consequence of abiotic stresses. The AtCIPK16 gene has been identified in Arabidopsis thaliana and found to be significantly upregulated under salinity stress. In this study, the AtCIPK16 gene was cloned in two different plant expression vectors, i.e., pTOOL37 having a UBI1 promoter and pMDC32 having a 2XCaMV35S constitutive promoter transformed through the Agrobacterium-mediated transformation protocol, in the local wheat cultivar Faisalabad-2008. Based on their ability to tolerate different levels of salt stress (0, 50, 100, and 200 mM), the transgenic wheat lines OE1, OE2, and OE3 expressing AtCIPK16 under the UBI1 promoter and OE5, OE6, and OE7 expressing the same gene under the 2XCaMV35S promoter performed better at 100 mM of salinity stress as compared with the wild type. The AtCIPK16 overexpressing transgenic wheat lines were further investigated for their K+ retention ability in root tissues by utilizing the microelectrode ion flux estimation technique. It has been demonstrated that after 10 min of 100 mM NaCl application, more K+ ions were retained in the AtCIPK16 overexpressing transgenic wheat lines than in the wild type. Moreover, it could be concluded that AtCIPK16 functions as a positive elicitor in sequestering Na+ ions into the cell vacuole and retaining more cellular K+ under salt stress to maintain ionic homeostasis.
Collapse
Affiliation(s)
- Khadija Imtiaz
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nazish Annum
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nasir A. Saeed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
6
|
Hsieh C, Chen YH, Chang KC, Yang SY. Transcriptome analysis reveals the mechanisms for mycorrhiza-enhanced salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1072171. [PMID: 36600910 PMCID: PMC9806932 DOI: 10.3389/fpls.2022.1072171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
More than half of the global population relies on rice as a staple food, but salinization of soil presents a great threat to rice cultivation. Although previous studies have addressed the possible benefits of arbuscular mycorrhizal (AM) symbiosis for rice under salinity stress, the underlying molecular mechanisms are still unclear. In this study, we found that mycorrhizal rice had better shoot and reproductive growth and a significantly higher K+/Na+ ratio in the shoot. The reactive oxygen species (ROS) scavenging capacity in rice shoots was also improved by AM symbiosis. To elucidate the molecular mechanisms required for AM-improved salt tolerance, transcriptome analysis revealing the differentially expressed genes (DEGs) based on the response to AM symbiosis, salinity or specific tissue was performed. Thirteen percent of DEGs showed tissue-preferred responses to both AM symbiosis and salt stress and might be the key genes contributing to AM-enhanced salt tolerance. Gene Ontology (GO) enrichment analysis identified GO terms specifically appearing in this category, including cell wall, oxidoreductase activity, reproduction and ester-related terms. Interestingly, GO terms related to phosphate (Pi) homeostasis were also found, suggesting the possible role of the Pi-related signaling pathway involved in AM-enhanced salt tolerance. Intriguingly, under nonsaline conditions, AM symbiosis influenced the expression of these genes in a similar way as salinity, especially in the shoots. Overall, our results indicate that AM symbiosis may possibly use a multipronged approach to influence gene expression in a way similar to salinity, and this modification could help plants be prepared for salt stress.
Collapse
Affiliation(s)
- Chen Hsieh
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yun-Hsin Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Chieh Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Wu H, Li Z. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? PLANT COMMUNICATIONS 2022; 3:100346. [PMID: 35689377 PMCID: PMC9700125 DOI: 10.1016/j.xplc.2022.100346] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 05/15/2023]
Abstract
Nano-enabled agriculture is a topic of intense research interest. However, our knowledge of how nanoparticles enter plants, plant cells, and organelles is still insufficient. Here, we discuss the barriers that limit the efficient delivery of nanoparticles at the whole-plant and single-cell levels. Some commonly overlooked factors, such as light conditions and surface tension of applied nano-formulations, are discussed. Knowledge gaps regarding plant cell uptake of nanoparticles, such as the effect of electrochemical gradients across organelle membranes on nanoparticle delivery, are analyzed and discussed. The importance of controlling factors such as size, charge, stability, and dispersibility when properly designing nanomaterials for plants is outlined. We mainly focus on understanding how nanoparticles travel across barriers in plants and plant cells and the major factors that limit the efficient delivery of nanoparticles, promoting a better understanding of nanoparticle-plant interactions. We also provide suggestions on the design of nanomaterials for nano-enabled agriculture.
Collapse
Affiliation(s)
- Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Li Y, Hu J, Qi J, Zhao F, Liu J, Chen L, Chen L, Gu J, Wu H, Li Z. Improvement of leaf K + retention is a shared mechanism behind CeO 2 and Mn 3O 4 nanoparticles improved rapeseed salt tolerance. STRESS BIOLOGY 2022; 2:46. [PMID: 37676336 PMCID: PMC10441935 DOI: 10.1007/s44154-022-00065-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 09/01/2023]
Abstract
Salinity is a global issue limiting efficient agricultural production. Nanobiotechnology has been emerged as an effective approach to improve plant salt tolerance. However, little known is about the shared mechanisms between different nanomaterials-enabled plant salt tolerance. In this study, we found that both PNC [polyacrylic acid coated nanoceria (CeO2 nanoparticles)] and PMO (polyacrylic acid coated Mn3O4 nanoparticles) nanozymes improved rapeseed salt tolerance. PNC and PMO treated rapeseed plants showed significantly fresh weight, dry weight, higher chlorophyll content, Fv/Fm, and carbon assimilation rate than control plants under salt stress. Results from confocal imaging with reactive oxygen species (ROS) fluorescent dye and histochemical staining experiments showed that the ROS over-accumulation level in PNC and PMO treated rapeseed was significantly lower than control plants under salt stress. Confocal imaging results with K+ fluorescent dye showed that significantly higher cytosolic and vacuolar K+ signals were observed in PNC and PMO treated rapeseed than control plants under salt stress. This is further confirmed by leaf K+ content data. Furthermore, we found that PNC and PMO treated rapeseed showed significantly lower cytosolic Na+ signals than control plants under salt stress. While, compared with significantly higher vacuolar Na+ signals in PNC treated plants, PMO treated rapeseed showed significantly lower vacuolar Na+ signals than control plants under salt stress. These results are further supported by qPCR results of genes of Na+ and K+ transport. Overall, our results suggest that besides maintaining ROS homeostasis, improvement of leaf K+ retention could be a shared mechanism in nano-improved plant salt tolerance.
Collapse
Affiliation(s)
- Yanhui Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jie Qi
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiahao Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Linlin Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Lu Chen
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangjiang Gu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
9
|
Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843994. [PMID: 35392516 PMCID: PMC8981240 DOI: 10.3389/fpls.2022.843994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The area of salinized land is gradually expanding cross the globe. Salt stress seriously reduces the yield and quality of crops and endangers food supply to meet the demand of the increased population. The mechanisms underlying nano-enabled plant tolerance were discussed, including (1) maintaining ROS homeostasis, (2) improving plant's ability to exclude Na+ and to retain K+, (3) improving the production of nitric oxide, (4) increasing α-amylase activities to increase soluble sugar content, and (5) decreasing lipoxygenase activities to reduce membrane oxidative damage. The possible commonly employed mechanisms such as alleviating oxidative stress damage and maintaining ion homeostasis were highlighted. Further, the possible role of phytohormones and the molecular mechanisms in nano-enabled plant salt tolerance were discussed. Overall, this review paper aims to help the researchers from different field such as plant science and nanoscience to better understand possible new approaches to address salinity issues in agriculture.
Collapse
Affiliation(s)
- Zengqiang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
10
|
Yang Y, Yao Y, Li J, Zhang J, Zhang X, Hu L, Ding D, Bakpa EP, Xie J. Trehalose Alleviated Salt Stress in Tomato by Regulating ROS Metabolism, Photosynthesis, Osmolyte Synthesis, and Trehalose Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:772948. [PMID: 35360323 PMCID: PMC8963455 DOI: 10.3389/fpls.2022.772948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Trehalose plays a critical role in plant response to salinity but the involved regulatory mechanisms remain obscure. Here, this study explored the mechanism of exogenous trehalose-induced salt tolerance in tomato plants by the hydroponic test method. Our results indicated that 10 mM trehalose displayed remarkable plant biomass by improving growth physiology, which were supported by the results of chlorophyll fluorescence and rapid light-response curve. In the salinity environment, trehalose + NaCl treatment could greatly inhibit the decrease of malondialdehyde level, and it increases the contents of other osmotic substances, carbohydrates, K+, and K+/Na+ ratio. Meanwhile, trehalose still had similar effects after recovery from salt stress. Furthermore, trehalose pretreatment promoted trehalose metabolism; significantly increased the enzymatic activity of the trehalose metabolic pathway, including trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), and trehalase (TRE); and upregulated the expression of SlTPS1, SlTPS5, SlTPS7, SlTPPJ, SlTPPH, and SlTRE under saline conditions. However, the transcriptional levels of SlTPS1, SlTPS5, and SlTPS7 genes and the activity of TPS enzyme were reversed after recovery. In addition, we found that hydrogen peroxide (H2O2) and superoxide anion (O2 -) were accumulated in tomato leaves because of salt stress, but these parameters were all recovered by foliar-applied trehalose, and its visualization degree was correspondingly reduced. Antioxidant enzyme activities (SOD, POD, and CAT) and related gene expression (SlCu/Zn-SOD, SlFe-SOD, SlMn-SOD, SlPOD, and SlCAT) in salt-stressed tomato leaves were also elevated by trehalose to counteract salt stress. Collectively, exogenous trehalose appeared to be the effective treatment in counteracting the negative effects of salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Quamruzzaman M, Manik SMN, Shabala S, Cao F, Zhou M. Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:709-721. [PMID: 34797396 DOI: 10.1007/s00122-021-03996-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity is a major threat to crop productivity and quality worldwide. In order to reduce the negative effects of salinity stress, it is important to understand the genetic basis of salinity tolerance. Identifying new salinity tolerance QTL or genes is crucial for breeders to pyramid different tolerance mechanisms to improve crop adaptability to salinity. Being one of the major cereal crops, wheat is known as a salt-sensitive glycophyte and subject to substantial yield losses when grown in the presence of salt. In this study, both pot and tank experiments were conducted to investigate the genotypic variation present in 328 wheat varieties in their salinity tolerance at the vegetative stage. A Genome-Wide Association Studies (GWAS) were carried out to identify QTL conferring salinity tolerance through a mixed linear model. Six, five and eight significant marker-trait associations (MTAs) were identified from pot experiments, tank experiments and average damage scores, respectively. These markers are located on the wheat chromosomes 1B, 2B, 2D, 3A, 4B, and 5A. These tolerance alleles were additive in their effects and, when combined, increased tolerance to salinity. Candidate genes identified in these QTL regions encoded a diverse class of proteins involved in salinity tolerance in plants. A Na+/H+ exchanger and a potassium transporter on chromosome 5A (IWB30519) will be of a potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection programs. Some useful genotypes, which showed consistent tolerance in different trials, can also be effectively used in breeding programs.
Collapse
Affiliation(s)
- Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | | | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Chancheng, China
| | - Fangbin Cao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia.
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
12
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
13
|
Agarwal P, Baraiya BM, Joshi PS, Patel M, Parida AK, Agarwal PK. AlRab7 from Aeluropus lagopoides ameliorates ion toxicity in transgenic tobacco by regulating hormone signaling and reactive oxygen species homeostasis. PHYSIOLOGIA PLANTARUM 2021; 173:1448-1462. [PMID: 33934375 DOI: 10.1111/ppl.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The plants endomembrane system of the cellular compartments with its complex membrane trafficking network facilitates transport of macromolecules. The endomembrane dynamics are essential for maintaining basic and specific cellular functions including adaptation to the extracellular environment. The plant vacuole serves as a reservoir for nutrients and toxic metabolites and performs detoxification processes to maintain cellular homeostasis. The overexpression of AlRab7, a vesicle trafficking gene from Aeluropus lagopoides, improved germination and growth and reduced ionic and oxidative stress in transgenics. Moreover, the root and shoot of transgenic tobacco showed differential accumulation of phytohormone ABA and IAA with different ionic stresses. The improved growth (root and shoot length) can be co-related with higher IAA accumulation with NaCl stress. The low Na+ /K+ ratio with different NaCl stress treatments indicates better ion homeostasis in transgenics. Furthermore, the increased stomatal density and higher number of open stomata on both leaf surfaces in transgenics during NaCl stress suggest better gaseous exchange/functioning of guard cells. The maintained or increased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase antioxidative enzyme activities suggest that an extensive reactive oxygen species (ROS) scavenging system was triggered to detoxify cellular ROS, which remained at low levels in transgenics during the different stress treatments. Our results suggest that the AlRab7 transgenic tobacco ameliorates ionic stress by facilitating differential and selective ion transport at vacuolar membrane regulating hormone signaling, ROS homeostasis, stomatal development, and movement.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka S Joshi
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Monika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Nefissi Ouertani R, Abid G, Karmous C, Ben Chikha M, Boudaya O, Mahmoudi H, Mejri S, Jansen RK, Ghorbel A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AOB PLANTS 2021; 13:plab034. [PMID: 34316337 PMCID: PMC8309955 DOI: 10.1093/aobpla/plab034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/08/2021] [Indexed: 05/21/2023]
Abstract
Salt stress is considered one of the most devastating environmental stresses, affecting barley growth and leading to significant yield loss. Hence, there is considerable interest in investigating the most effective traits that determine barley growth under salt stress. The objective of this study was to elucidate the contribution of osmotic and oxidative stress components in leaves and roots growth under salt stress. Two distinct barley (Hordeum vulgare) salt-stress tolerant genotypes, Barrage Malleg (BM, tolerant) and Saouef (Sf, sensitive), were subjected to 200 mM NaCl at early vegetative stages. Stressed and control leaves and roots tissue were assessed for several growth traits, including fresh and dry weight and plant length, as well as the content of osmoprotectants proline and soluble sugars. In addition, malondialdehyde content and activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as their corresponding gene expression patterns, were investigated. The results showed better performance of BM over Sf for leaf dry weight (LDW), root dry weight (RDW) and root length (RL). The salt-tolerant genotype (BM) had better osmoprotection against salt stress compared with the salt-sensitive genotype (Sf), with a higher accumulation of proline and soluble sugars in leaves and roots and a stronger antioxidant system as evidenced by higher activities of SOD, CAT and APX and more abundant Cu/Zn-SOD transcripts, especially in roots. Stepwise regression analysis indicated that under salt stress the most predominant trait of barley growth was Cu/Zn-SOD gene expression level, suggesting that alleviating oxidative stress and providing cell homeostasis is the first priority.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
- Corresponding author’s e-mail address:
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding, National Institute of Agronomy of Tunisia, Carthage University, LR14 AGR01, 1082 Tunis, Tunisia
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Oumaima Boudaya
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, P.O. Box 14660, Al Ruwayyah 2, Academic City, Dubai, United Arab Emirates
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz, University (KAU), Jeddah 21589, Saudi Arabia
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
15
|
Sharmin S, Lipka U, Polle A, Eckert C. The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens). PLoS One 2021; 16:e0253228. [PMID: 34166404 PMCID: PMC8224899 DOI: 10.1371/journal.pone.0253228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing salinity is one of the major drawbacks for plant growth. Besides the ion itself being toxic to plant cells, it greatly interferes with the supply of other macronutrients like potassium, calcium and magnesium. However, little is known about how sodium affects the translocation of these nutrients from the root to the shoot. The major driving force of this translocation process is thought to be the water flow through the xylem driven by transpiration. To dissect the effects of transpiration from those of salinity we compared salt stressed, ABA treated and combined salt- and ABA treated poplars with untreated controls. Salinity reduced the root content of major nutrients like K+, Ca2+ and Mg2+. Less Ca2+ and Mg2+ in the roots resulted in reduced leaf Ca2+ and leaf Mg2+ levels due to reduced stomatal conductance and reduced transpiration. Interestingly, leaf K+ levels were positively affected in leaves under salt stress although there was less K+ in the roots under salt. In response to ABA, transpiration was also decreased and Mg2+ and Ca2+ levels decreased comparably to the salt stress treatment, while K+ levels were not affected. Thus, our results suggest that loading and retention of leaf K+ is enhanced under salt stress compared to merely transpiration driven cation supply.
Collapse
Affiliation(s)
- Shayla Sharmin
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Pal KK, Dey R, Sherathia DN, Devidayal, Mangalassery S, Kumar A, Rupapara RB, Mandaliya M, Rawal P, Bhadania RA, Thomas M, Patel MB, Maida P, Nawade BD, Ahmad S, Dash P, Radhakrishnan T. Alleviation of Salinity Stress in Peanut by Application of Endophytic Bacteria. Front Microbiol 2021; 12:650771. [PMID: 33936008 PMCID: PMC8079962 DOI: 10.3389/fmicb.2021.650771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 01/24/2023] Open
Abstract
The development of salinity affects 7% of the world’s land surface, acting as a major constraint to crop productivity. This study attempted to use the co-evolving endophytes of peanut to alleviate salinity stress and enhance the yield of peanut. Diverse and different tissue colonizing endophytes were isolated from peanut and screened in vitro by seed germination bioassay imposing gradients of salinity, with two cultivars TG37A (susceptible) and GG2 (moderately resistant), in potted conditions using saline irrigation water. Finally, nine endophytes capable of producing IAA and ACC-deaminase, promoting root growth and yield in potted conditions were selected for further evaluation in field conditions. They were evaluated with saline water (1.5–2.0 dS/m) in saline soil with susceptible cultivar TG37A. Simultaneously, three endophytes (Bacillus firmus J22N; Bacillus tequilensis SEN15N; and Bacillus sp. REN51N) were evaluated with two cultivars, GG2 and TG37A, during rainy and post-rainy seasons with elevated salinity. The application of endophytes like Bacillus firmus J22N and Bacillus sp. REN51N enhanced the pod and haulm yield of peanuts by 14–19% across cultivars, salinity, and seasons. In addition, there was significant modulation in parameters like relative water content; production of enzymes like superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX), lipid peroxidase (POD), and H2O2 content in leaf; and uptake of potassium. The activities of the enzymes involved in scavenging reactive oxygen species (ROS) increased with salinity, and further increased with endophytes like Bacillus firmus J22N, Bacillus tequilensis SEN15N, and Bacillus sp. REN51N. There was an enhanced accumulation of proline, reduced level of phenol and H2O2, and enhanced uptake of potassium with the inoculation of endophytes. This improved scavenging capacity of plants by endophytic modulation of ROS scavengers, uptake of K, production of ACC deaminase and IAA, root and biomass growth, modulation in relative water content, and enhanced accumulation of osmoprotectant might be the reasons of alleviation of salinity stress. Endophytes could have alleviated salinity stress in peanuts, indicating the mechanisms and potential of peanuts at the field level. These endophytes could be applied to bring agricultural sustainability to salinity-affected areas in the future. Furthermore, few genera viz. Kocuria, Brevundimonas, Agrococcus, Dietzia, and Kytococcus were observed in peanut tissue for the first time.
Collapse
Affiliation(s)
- Kamal K Pal
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Rinku Dey
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Dharmesh N Sherathia
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Devidayal
- ICAR-Central Arid Zone Research Institute, Kukma, India
| | | | - Arvind Kumar
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Rupal B Rupapara
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Mona Mandaliya
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Priya Rawal
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Roshani A Bhadania
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Manesh Thomas
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Mili B Patel
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Priyanka Maida
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Bhagwat D Nawade
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Suhail Ahmad
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Pitabas Dash
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| | - T Radhakrishnan
- Section of Microbiology, ICAR-Directorate of Groundnut Research, Junagadh, India
| |
Collapse
|
17
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
18
|
Santander C, Aroca R, Cartes P, Vidal G, Cornejo P. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:396-409. [PMID: 33248899 DOI: 10.1016/j.plaphy.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
The aim was to identify the effects of AM symbiosis on the expression patterns of genes associated with K+ and Na+ compartmentalization and translocation and on K+/Na+ homeostasis in some lettuce (Lactuca sativa) cultivars as well as the effects of the relative abundance of plant AQPs on plant water status. Two AM fungi species (Funneliformis mosseae and Claroideoglomus lamellosum) isolated from the hyper-arid Atacama Desert (northern Chile) were inoculated to two lettuce cultivars (Grand Rapids and Lollo Bionda), and watered with 0 and 60 mM NaCl. At 60 days of plant growth, the AM symbiotic development, biomass production, nutrient content (Pi, Na+, K+), physiological parameters, gene expressions of ion channels and transporters (NHX and HKT1), and aquaporins proteins abundance (phosphorylated and non-phosphorylated) were evaluated. Salinity increased the AM root colonization by both inocula. AM lettuce plants showed an improved growth, increased relative water content and improved of K/Na ratio in root. In Grand Rapids cultivar, the high efficiency of photosystem II was higher than Lollo Bionda cultivar; on the contrary, stomatal conductance was higher in Lollo Bionda. Nevertheless, both parameters were increased by AM colonization. In the same way, LsaHKT1;1, LsaHKT1;6, LsaNHX2, LsaNHX4, LsaNHX6 and LsaNHX8 genes and aquaporins PIP2 were up-regulated differentially by both AM fungi. The improved plant growth was closely related to a higher water status due to increased PIP2 abundance, as well as to the upregulation of LsaNHX gene expression, which concomitantly improved plant nutrition and K+/Na+ homeostasis maintenance.
Collapse
Affiliation(s)
- Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Universidad Arturo Prat, Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Vivar 493 2nd floor, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Paula Cartes
- Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
19
|
Cao JF, Huang JQ, Liu X, Huang CC, Zheng ZS, Zhang XF, Shangguan XX, Wang LJ, Zhang YG, Wendel JF, Grover CE, Chen ZW. Genome-wide characterization of the GRF family and their roles in response to salt stress in Gossypium. BMC Genomics 2020; 21:575. [PMID: 32831017 PMCID: PMC7444260 DOI: 10.1186/s12864-020-06986-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) is the most important world-wide fiber crop but salt stress limits cotton production in coastal and other areas. Growth regulation factors (GRFs) play regulatory roles in response to salt stress, but their roles have not been studied in cotton under salt stress. RESULTS We identified 19 GRF genes in G. raimondii, 18 in G. arboreum, 34 in G. hirsutum and 45 in G. barbadense, respectively. These GRF genes were phylogenetically analyzed leading to the recognition of seven GRF clades. GRF genes from diploid cottons (G. raimondii and G. arboreum) were largely retained in allopolyploid cotton, with subsequent gene expansion in G. barbadense relative to G. hirsutum. Most G. hirsutum GRF (GhGRF) genes are preferentially expressed in young and growing tissues. To explore their possible role in salt stress, we used qRT-PCR to study expression responses to NaCl treatment, showing that five GhGRF genes were down-regulated in leaves. RNA-seq experiments showed that seven GhGRF genes exhibited decreased expression in leaves under NaCl treatment, three of which (GhGRF3, GhGRF4, and GhGRF16) were identified by both RNA-seq and qRT-PCR. We also identified six and three GRF genes that exhibit decreased expression under salt stress in G. arboreum and G. barbadense, respectively. Consistent with its lack of leaf withering or yellowing under the salt treatment conditions, G. arboreum had better salt tolerance than G. hirsutum and G. barbadense. Our results suggest that GRF genes are involved in salt stress responses in Gossypium. CONCLUSION In summary, we identified candidate GRF genes that were involved in salt stress responses in cotton.
Collapse
Affiliation(s)
- Jun-Feng Cao
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- Plant Stress Biology Center, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xia Liu
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Chao-Chen Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Zi-Shou Zheng
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiu-Fang Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yu-Gao Zhang
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhi-Wen Chen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009 China
| |
Collapse
|
20
|
Comparative Study of the Effects of Salinity on Growth, Gas Exchange, N Accumulation and Stable Isotope Signatures of Forage Oat ( Avena sativa L.) Genotypes. PLANTS 2020; 9:plants9081025. [PMID: 32823617 PMCID: PMC7464733 DOI: 10.3390/plants9081025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
Identifying suitable salt stress-tolerant phenotypes based on their agronomic and physiological traits remains a herculean task in forage-type oat (Avena sativa L.) breeding. This study examined the responses of six forage-type oat cultivars under four levels of saline stress over the vegetative growth cycle. Crop growth, water status-related traits and nitrogen status-related traits were analyzed in different plant parts to evaluate effective approaches for identifying salt tolerance. Plant biomass, height, tiller number and culm thickness changed substantially during salinity, but they were not precise enough for use in estimating genotypic salinity tolerance during long-term stress. Genotypes bearing larger numbers of tillers showed greater sensitivity to salinity due to its effects on biomass loss. Tolerant genotypes exhibited higher relative shoot biomass together with higher water use efficiency. The concentrations of Na+, K+ and their ratio, combined with the δ13C in shoots and roots were effective indicators for estimating tolerant genotypes through better water maintenance. N concentrations of shoots were the most efficient for evaluating genotypic tolerance. Low nitrate reductase (NR) and glutamine synthetase (GS) activity might be key factors limiting N accumulation. Chlorophyll (Chl) content and net photosynthetic rate, as well as stomatal conductance and evaporation, were useful for identifying salinity tolerance physiological mechanisms, but the effectiveness was low for genotypic tolerance testing for forage type oats due to the interaction between genotypes and salinity levels. The selection of high salinity-tolerant genotypes should focus on genotypes with photosynthetic resilience to salt, followed by high N metabolism (higher NR and GS activities) to ensure accumulation of more N in the shoot dry matter.
Collapse
|
21
|
Tada Y, Ohnuma A. Comparative Functional Analysis of Class II Potassium Transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on Ionic Transport and Salt Tolerance in Transgenic Arabidopsis. PLANTS 2020; 9:plants9060786. [PMID: 32585860 PMCID: PMC7356169 DOI: 10.3390/plants9060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
Abstract
Class II high-affinity potassium transporters (HKT2s) mediate Na+–K+ cotransport and Na+/K+ homeostasis under K+-starved or saline conditions. Their functions have been studied in yeast and X. laevis oocytes; however, little is known about their respective properties in plant cells. In this study, we characterized the Na+ and K+ transport properties of SvHKT2;1, SvHKT2;2 and HvHKT2;1 in Arabidopsis under different ionic conditions. The differences were detected in shoot K+ accumulation and root K+ uptake under salt stress conditions, K+ accumulation in roots and phloem sap under K+-starved conditions, and shoot and root Na+ accumulation under K+-starved conditions among the HKT2s transgenic lines and WT plants. These results indicate the diverse ionic transport properties of these HKT2s in plant cells, which could not be detected using yeast or X. laevis oocytes. Furthermore, Arabidopsis expressing HKT2s showed reduced salt tolerance, while over-expression of HvHKT2;1 in barley, which has the ability to sequestrate Na+, showed enhanced salt tolerance by accumulating Na+ in the shoots. These results suggest that the coordinated enhancement of Na+ accumulation and sequestration mechanisms in shoots could be a promising strategy to confer salt tolerance to glycophytes.
Collapse
|
22
|
Khan I, Mohamed S, Regnault T, Mieulet D, Guiderdoni E, Sentenac H, Véry AA. Constitutive Contribution by the Rice OsHKT1;4 Na + Transporter to Xylem Sap Desalinization and Low Na + Accumulation in Young Leaves Under Low as High External Na + Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:1130. [PMID: 32849692 PMCID: PMC7406799 DOI: 10.3389/fpls.2020.01130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 05/03/2023]
Abstract
HKT Na+ transporters correspond to major salt tolerance QTLs in different plant species and are targets of great interest for breeders. In rice, the HKT family is composed of seven or eight functional genes depending on cultivars. Three rice HKT genes, OsHKT1;1, OsHKT1;4 and OsHKT1;5, are known to contribute to salt tolerance by reducing Na+ accumulation in shoots upon salt stress. Here, we further investigate the mechanisms by which OsHKT1;4 contributes to this process and extend this analysis to the role of this transporter in plants in presence of low Na+ concentrations. By analyzing transgenic rice plants expressing a GUS reporter gene construct, we observed that OsHKT1;4 is mainly expressed in xylem parenchyma in both roots and leaves. Using mutant lines expressing artificial microRNA that selectively reduced OsHKT1;4 expression, the involvement of OsHKT1;4 in retrieving Na+ from the xylem sap in the roots upon salt stress was evidenced. Since OsHKT1;4 was found to be also well expressed in the roots in absence of salt stress, we extended the analysis of its role when plants were subjected to non-toxic Na+ conditions (0.5 and 5 mM). Our finding that the transporter, expressed in Xenopus oocytes, displayed a relatively high affinity for Na+, just above 1 mM, provided first support to the hypothesis that OsHKT1;4 could have a physiological role at low Na+ concentrations. We observed that progressive desalinization of the xylem sap along its ascent to the leaf blades still occurred in plants grown at submillimolar Na+ concentration, and that OsHKT1;4 was involved in reducing xylem sap Na+ concentration in roots in these conditions too. Its contribution to tissue desalinization from roots to young mature leaf blades appeared to be rather similar in the whole range of explored external Na+ concentrations, from submillimolar to salt stress conditions. Our data therefore indicate that HKT transporters can be involved in controlling Na+ translocation from roots to shoots in a much wider range of Na+ concentrations than previously thought. This asks questions about the roles of such a transporter-mediated maintaining of tissue Na+ content gradients in non-toxic conditions.
Collapse
Affiliation(s)
- Imran Khan
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Sonia Mohamed
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Thomas Regnault
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Delphine Mieulet
- CIRAD, UMR AGAP, Montpellier, France
- Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP, Montpellier, France
- Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Hervé Sentenac
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Anne-Aliénor Véry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Anne-Aliénor Véry,
| |
Collapse
|
23
|
Li J, Yue Y, Wang Z, Zhou Q, Fan L, Chai Z, Song C, Dong H, Yan S, Gao X, Xu Q, Yao J, Wang Z, Wang X, Hou P, Huang L. Illumination/Darkness-Induced Changes in Leaf Surface Potential Linked With Kinetics of Ion Fluxes. FRONTIERS IN PLANT SCIENCE 2019; 10:1407. [PMID: 31787996 PMCID: PMC6854870 DOI: 10.3389/fpls.2019.01407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
A highly reproducible plant electrical signal-light-induced bioelectrogenesis (LIB) was obtained by means of periodic illumination/darkness stimulation of broad bean (Vicia faba L.) leaves. By stimulating the same position of the same leaf with different concentrations of NaCl, we observed that the amplitude and waveform of the LIB was correlated with the intensity of stimulation. This method allowed us to link dynamic ion fluxes induced by periodic illumination/darkness to salt stress. The self-referencing ion electrode technique was used to explore the ionic mechanisms of the LIB. Fluxes of H+, Ca2+, K+, and Cl- showed periodic changes under periodic illumination/darkness before and after 50 mM NaCl stimulation. Gray relational analysis was used to analyze correlations between each of these ions and LIB. The results showed that different ions are involved in surface potential changes at different stages under periodic illumination/darkness. The gray relational grade reflected the contribution of each ion to the change in surface potential at a certain time period. The ion fluxes data obtained under periodic illumination/darkness stimulation will contribute to the future development of a dynamic model for interpretation of electrophysiological events in plant cells.
Collapse
Affiliation(s)
- Jinhai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Yang Yue
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Ziyang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Lifeng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Zhiqiang Chai
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Chao Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Hongtu Dong
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shixian Yan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xinyu Gao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Qiang Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Jiepeng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Zhongyi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
24
|
Chakraborty K, Chattaopadhyay K, Nayak L, Ray S, Yeasmin L, Jena P, Gupta S, Mohanty SK, Swain P, Sarkar RK. Ionic selectivity and coordinated transport of Na + and K + in flag leaves render differential salt tolerance in rice at the reproductive stage. PLANTA 2019; 250:1637-1653. [PMID: 31399792 DOI: 10.1007/s00425-019-03253-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.
Collapse
Affiliation(s)
| | | | - Lopamudra Nayak
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Soham Ray
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Lucina Yeasmin
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Priyanka Jena
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sunanda Gupta
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sangram K Mohanty
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Padmini Swain
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ramani K Sarkar
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
25
|
Duba A, Goriewa-Duba K, Wachowska U, Głowacka K, Wiwart M. The Associations between Leaf Morphology, Phenylalanine Ammonia Lyase Activity, Reactive Oxygen Species, and Fusarium Resistance in Selected Species of Wheat with Different Ploidy Levels. PLANTS 2019; 8:plants8100360. [PMID: 31547501 PMCID: PMC6843448 DOI: 10.3390/plants8100360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/21/2019] [Indexed: 11/16/2022]
Abstract
In wheat, resistance to Fusarium is conditioned by anatomical, morphological, and physiological traits. The aim of this study was to evaluate selected elements of constitutive barriers in common wheat, spelt, Polish wheat, emmer, and einkorn. The activity of the phenylalanine ammonia-lyase (PAL) enzyme and rate of reactive oxygen species (ROS) production were evaluated in the tissues of common wheat and spelt inoculated with Fusarium culmorum. Most of the relict wheat species were more abundant in morphological barriers than common wheat. F. culmorum penetrated constitutive barriers, which increased PAL activity and intensified ROS production 24 h after inoculation in wheat tissues. The lowest increase in PAL activity after inoculation was observed in cv. Sumai3, which resistance is based on limiting the spread of F. culmorum within the spike. Spelt line Tas 581 glumes were characterized by the highest concentration of ROS 24 h after inoculation. The ROS content remained high for five days. The results of this study indicate that high trichome density plays a key role in resistance to pathogens. In the resistant spelt line with effective constitutive barriers, PAL activity and ROS content were higher than those observed in susceptible wheats after inoculation with F. culmorum.
Collapse
Affiliation(s)
- Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| | - Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland.
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland.
| | - Marian Wiwart
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland.
| |
Collapse
|
26
|
Pandey A, Khan MK, Hakki EE, Gezgin S, Hamurcu M. Combined Boron Toxicity and Salinity Stress-An Insight into Its Interaction in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E364. [PMID: 31547605 PMCID: PMC6843824 DOI: 10.3390/plants8100364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name "BorSal" for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.
Collapse
Affiliation(s)
- Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Erdogan Esref Hakki
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| |
Collapse
|
27
|
Role of putrescine (Put) in imparting salt tolerance through modulation of put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp. Symbiosis 2019. [DOI: 10.1007/s13199-019-00621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Zhang X, Wu H, Chen L, Wang N, Wei C, Wan X. Mesophyll cells' ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:196-203. [PMID: 30685699 DOI: 10.1016/j.plaphy.2019.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Tea plant is an important economic crop and is vulnerable to drought. A good understanding of tea drought tolerance mechanisms is required for breeding robust drought tolerant tea varieties. Previous studies showed mesophyll cells' ability to maintain K+ is associated with its stress tolerance. Here, in this study, 12 tea varieties were used to investigate the role of mesophyll K+ retention ability towards tea drought stress tolerance. A strong and negative correlation (R2 = 0.8239, P < 0.001) was found between PEG (mimic drought stress)-induced K+ efflux from tea mesophyll cells and overall drought tolerance in 12 tea varieties. In agreement with this, a significantly higher retained leaf K+ content was found in drought tolerant than the sensitive tea varieties. Furthermore, exogenous applied K+ (5 mM) significantly alleviated drought-induced symptom in tea plants, further supporting our finding that mesophyll K+ retention is an important component for drought tolerance mechanisms in tea plants. Moreover, pharmacological experiments showed that the contribution of K+ outward rectifying channels and non-selective cation channels in controlling PEG-induced K+ efflux from mesophylls cells are varied between drought tolerant and sensitive tea varieties.
Collapse
Affiliation(s)
- Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, 92521, USA; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linmu Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ningning Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
29
|
Isayenkov SV, Maathuis FJM. Plant Salinity Stress: Many Unanswered Questions Remain. FRONTIERS IN PLANT SCIENCE 2019; 10:80. [PMID: 30828339 PMCID: PMC6384275 DOI: 10.3389/fpls.2019.00080] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
Salinity is a major threat to modern agriculture causing inhibition and impairment of crop growth and development. Here, we not only review recent advances in salinity stress research in plants but also revisit some basic perennial questions that still remain unanswered. In this review, we analyze the physiological, biochemical, and molecular aspects of Na+ and Cl- uptake, sequestration, and transport associated with salinity. We discuss the role and importance of symplastic versus apoplastic pathways for ion uptake and critically evaluate the role of different types of membrane transporters in Na+ and Cl- uptake and intercellular and intracellular ion distribution. Our incomplete knowledge regarding possible mechanisms of salinity sensing by plants is evaluated. Furthermore, a critical evaluation of the mechanisms of ion toxicity leads us to believe that, in contrast to currently held ideas, toxicity only plays a minor role in the cytosol and may be more prevalent in the vacuole. Lastly, the multiple roles of K+ in plant salinity stress are discussed.
Collapse
Affiliation(s)
- Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | | |
Collapse
|
30
|
Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, Cseh A. Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS One 2018; 13:e0206248. [PMID: 30395616 PMCID: PMC6218033 DOI: 10.1371/journal.pone.0206248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Interspecific hybridization between bread wheat (Triticum aestivum, 2n = 42) and related species allows the transfer of agronomic and quality traits, whereby subsequent generations comprise an improved genetic background and can be directly applied in wheat breeding programmes. While wild relatives are frequently used as sources of agronomically favourable traits, cultivated species can also improve wheat quality and stress resistance. A salt-tolerant 'Asakaze'/'Manas' 7H disomic addition line (2n = 44) with elevated β-glucan content, but with low fertility and an unstable genetic background was developed in an earlier wheat-barley prebreeding programme. The aim of the present study was to take this hybridization programme further and transfer the favourable barley traits into a more stable genetic background. Taking advantage of the breakage-fusion mechanism of univalent chromosomes, the 'Rannaya' winter wheat 7B monosomic line was used as female partner to the 7H addition line male, leading to the development of a compensating wheat/barley Robertsonian translocation line (7BS.7HL centric fusion, 2n = 42) exhibiting higher salt tolerance and elevated grain β-glucan content. Throughout the crossing programme, comprising the F1-F4 generations, genomic in situ hybridization, fluorescence in situ hybridization and chromosome-specific molecular markers were used to trace and identify the wheat and barley chromatin. Investigations on salt tolerance during germination and on the (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) content of the seeds confirmed the salt tolerance and elevated grain MLG content of the translocation line, which can be directly applied in current wheat breeding programmes.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marianna Rakszegi
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - István Molnár
- Maize Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - András Cseh
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
32
|
|
33
|
Adem GD, Roy SJ, Huang Y, Chen ZH, Wang F, Zhou M, Bowman JP, Holford P, Shabala S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1147-1159. [PMID: 32480640 DOI: 10.1071/fp17133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 06/11/2023]
Abstract
Salinity is a global problem affecting agriculture that results in an estimated US$27 billion loss in revenue per year. Overexpression of vacuolar ATPase subunits has been shown to be beneficial in improving plant performance under saline conditions. Most studies, however, have not shown whether overexpression of genes encoding ATPase subunits results in improvements in grain yield, and have not investigated the physiological mechanisms behind the improvement in plant growth. In this study, we constitutively expressed Arabidopsis Vacuolar ATPase subunit C (AtVHA-C) in barley. Transgenic plants were assessed for agronomical and physiological characteristics, such as fresh and dry biomass, leaf pigment content, stomatal conductance, grain yield, and leaf Na+ and K+ concentration, when grown in either 0 or 300mM NaCl. When compared with non-transformed barley, AtVHA-C expressing barley lines had a smaller reduction in both biomass and grain yield under salinity stress. The transgenic lines accumulated Na+ and K+ in leaves for osmotic adjustment. This in turn saves energy consumed in the synthesis of organic osmolytes that otherwise would be needed for osmotic adjustment.
Collapse
Affiliation(s)
- Getnet D Adem
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feifei Wang
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - John P Bowman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Paul Holford
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
34
|
Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:731-744. [PMID: 29158624 PMCID: PMC5671444 DOI: 10.1007/s12298-017-0462-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Plants are confronted with a variety of environmenmtal stresses resulting in enhanced production of ROS. Plants require a threshold level of ROS for vital functions and any change in their concentration alters the entire physiology of plant. Delicate balance of ROS is maintained by an efficient functioning of intriguing indigenous defence system called antioxidant system comprising enzymatic and non enzymatic components. Down regulation of antioxidant system leads to ROS induced oxidative stress causing damage to important cellular structures and hence anomalies in metabolism. Proper mineral nutrition, in addition to other agricultural practices, forms an important part for growth and hence the yield. Potassium (K) is a key macro-element regulating growth and development through alterations in physiological and biochemical attributes. K has been reported to result into accumulation of osmolytes and augmentation of antioxidant components in the plants exposed to water and salt stress. In the present review an effort has been made to revisit the old findings and the current advances in research regarding the role of optimal, suboptimal and deficient K soil status on growth under normal and stressful conditions. Effect of K deficiency and sufficiency is discussed and the information about the K mediated antioxidant regulation and plant response is highlighted.
Collapse
Affiliation(s)
| | - Nisha Singh Tomar
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - Megha Tittal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - Surendra Argal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - R. M. Agarwal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| |
Collapse
|
35
|
Hafsi C, Falleh H, Saada M, Ksouri R, Abdelly C. Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:609-617. [PMID: 28800521 DOI: 10.1016/j.plaphy.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 05/29/2023]
Abstract
Salinity and K+ deficiency are two environmental constraints that generally occur simultaneously under field conditions, resulting in severe limitation of plant growth and productivity. The present study aimed at investigating the effects of salinity, either separately applied or in combination with K+ deficiency, on growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa. Seedlings were grown hydroponically under sufficient (6000 μM) or low (60 μM) K+ supply with 100 mM NaCl (C + S and D + S treatments, respectively). Either alone or combined with K+ deficiency, salinity significantly restricted the plant growth. K+ deficiency further increased salt impact on the photosynthetic activity of S. carnosa, but this species displayed mechanisms that play a role in protecting photosynthetic machinery (including non photochemical quenching and antioxidant activity). In contrast to plants subjected to salt stress alone, higher accumulation of phenolic compounds was likely related to antioxidative defence mechanism in plants grown under combined effects of two stresses. As a whole, these data suggest that K+ deficiency increases the deleterious effects of salt stress. The quantitative and qualitative alteration of phenolic composition and the enhancement of related antioxidant capacity may be of crucial significance for S. carnosa plants growing under salinity and K+ deficient conditions.
Collapse
Affiliation(s)
- Chokri Hafsi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia.
| | - Hanen Falleh
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Mariem Saada
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
36
|
Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW. The Role of Na + and K + Transporters in Salt Stress Adaptation in Glycophytes. Front Physiol 2017; 8:509. [PMID: 28769821 PMCID: PMC5513949 DOI: 10.3389/fphys.2017.00509] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022] Open
Abstract
Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity) and post-translational modifications (phosphorylation) account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM) potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1 expression and activity in the stele, and haem oxygenase involvement in stabilizing membrane potential by activating H+-ATPase activity, favorable for K+ uptake through HAK/AKT1, have been shown and are discussed.
Collapse
Affiliation(s)
- Dekoum V. M. Assaha
- Department of Biology, College of Science, Sultan Qaboos UniversityMuscat, Oman
| | - Akihiro Ueda
- Graduate School of Biosphere Science, Hiroshima UniversityHiroshima, Japan
| | - Hirofumi Saneoka
- Graduate School of Biosphere Science, Hiroshima UniversityHiroshima, Japan
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos UniversityMuscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos UniversityMuscat, Oman
| |
Collapse
|
37
|
Hasanuzzaman M, Davies NW, Shabala L, Zhou M, Brodribb TJ, Shabala S. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC PLANT BIOLOGY 2017; 17:107. [PMID: 28629324 PMCID: PMC5477354 DOI: 10.1186/s12870-017-1054-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/06/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. RESULTS Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. CONCLUSIONS Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, -1207 Bangladesh
| | - Noel W. Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tas 7001 Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
| | - Tim J. Brodribb
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, Tas 7001 Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
| |
Collapse
|
38
|
Rahman MM, Rahman MA, Miah MG, Saha SR, Karim MA, Mostofa MG. Mechanistic Insight into Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, Tissue Tolerance, and Na + Exclusion. FRONTIERS IN PLANT SCIENCE 2017; 8:155. [PMID: 28421081 PMCID: PMC5378810 DOI: 10.3389/fpls.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that A. auriculiformis efficiently adopted these two mechanisms to address higher salinity levels. Our results conclude that the adaptability of A. auriculiformis to salinity is closely associated with ion selectivity, increased accumulation of osmoprotectants, efficient Na+ retention in roots, anatomical adjustments, Na+ exclusion and tissue tolerance mechanisms.
Collapse
Affiliation(s)
- Md. M. Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Md. A. Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Md. G. Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Satya R. Saha
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - M. A. Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
- *Correspondence: Mohammad G. Mostofa,
| |
Collapse
|
39
|
Wan H, Chen L, Guo J, Li Q, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:593. [PMID: 28491067 PMCID: PMC5405135 DOI: 10.3389/fpls.2017.00593] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/31/2017] [Indexed: 05/02/2023]
Abstract
Soil salinity is a serious threat to agriculture sustainability worldwide. Salt tolerance at the seedling stage is crucial for plant establishment and high yield in saline soils; however, little information is available on rapeseed (Brassica napus L.) salt tolerance. We evaluated salt tolerance in different rapeseed accessions and conducted a genome-wide association study (GWAS) to identify salt tolerance-related quantitative trait loci (QTL). A natural population comprising 368 B. napus cultivars and inbred lines was genotyped with a Brassica 60K Illumina Infinium SNP array. The results revealed that 75 single-nucleotide polymorphisms (SNPs) distributed across 14 chromosomes were associated with four salt tolerance-related traits. These SNPs integrated into 25 QTLs that explained 4.21-9.23% of the phenotypic variation in the cultivars. Additionally, 38 possible candidate genes were identified in genomic regions associated with salt tolerance indices. These genes fell into several functional groups that are associated with plant salt tolerance, including transcription factors, aquaporins, transporters, and enzymes. Thus, salt tolerance in rapeseed involves complex molecular mechanisms. Our results provide valuable information for studying the genetic control of salt tolerance in B. napus seedlings and may facilitate marker-based breeding for rapeseed salt tolerance.
Collapse
|
40
|
Percey WJ, Shabala L, Wu Q, Su N, Breadmore MC, Guijt RM, Bose J, Shabala S. Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:346-354. [PMID: 27810674 DOI: 10.1016/j.plaphy.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 05/22/2023]
Abstract
Soil salinity remains a major threat to global food security, and the progress in crop breeding for salinity stress tolerance may be achieved only by pyramiding key traits mediating plant adaptive responses to high amounts of dissolved salts in the rhizosphere. This task may be facilitated by studying natural variation in salinity tolerance among plant species and, specifically, exploring mechanisms of salinity tolerance in halophytes. The aim of this work was to establish the causal link between mesophyll ion transport activity and plant salt tolerance in a range of evolutionary contrasting halophyte and glycophyte species. Plants were grown under saline conditions in a glasshouse, followed by assessing their growth and photosynthetic performance. In a parallel set of experiments, net K+ and H+ transport across leaf mesophyll and their modulation by light were studied in control and salt-treated mesophyll segments using vibrating non-invasive ion selective microelectrode (the MIFE) technique. The reported results show that mesophyll cells in glycophyte species loses 2-6 fold more K+ compared with their halophyte counterparts. This decline was reflected in a reduced maximum photochemical efficiency of photosystem II, chlorophyll content and growth observed in the glasshouse experiments. In addition to reduced K+ efflux, the more tolerant species also exhibited reduced H+ efflux, which is interpreted as an energy-saving strategy allowing more resources to be redirected towards plant growth. It is concluded that the ability of mesophyll to retain K+ without a need to activate plasma membrane H+-ATPase is an essential component of salinity tolerance in halophytes and halophytic crop plants.
Collapse
Affiliation(s)
- William J Percey
- School of Land and Food, University of Tasmania, Hobart, Tas 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tas 7001, Australia
| | - Qi Wu
- School of Land and Food, University of Tasmania, Hobart, Tas 7001, Australia; College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nana Su
- School of Land and Food, University of Tasmania, Hobart, Tas 7001, Australia; College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart, Tas 7001, Australia
| | - Rosanne M Guijt
- School of Pharmacy, University of Tasmania, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Hobart, Tas 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tas 7001, Australia.
| |
Collapse
|
41
|
Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD. Tissue tolerance: an essential but elusive trait for salt-tolerant crops. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1103-1113. [PMID: 32480530 DOI: 10.1071/fp16187] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/20/2016] [Indexed: 05/20/2023]
Abstract
For a plant to persist in saline soil, osmotic adjustment of all plant cells is essential. The more salt-tolerant species accumulate Na+ and Cl- to concentrations in leaves and roots that are similar to the external solution, thus allowing energy-efficient osmotic adjustment. Adverse effects of Na+ and Cl- on metabolism must be avoided, resulting in a situation known as 'tissue tolerance'. The strategy of sequestering Na+ and Cl- in vacuoles and keeping concentrations low in the cytoplasm is an important contributor to tissue tolerance. Although there are clear differences between species in the ability to accommodate these ions in their leaves, it remains unknown whether there is genetic variation in this ability within a species. This viewpoint considers the concept of tissue tolerance, and how to measure it. Four conclusions are drawn: (1) osmotic adjustment is inseparable from the trait of tissue tolerance; (2) energy-efficient osmotic adjustment should involve ions and only minimal organic solutes; (3) screening methods should focus on measuring tolerance, not injury; and (4) high-throughput protocols that avoid the need for control plants and multiple Na+ or Cl- measurements should be developed. We present guidelines to identify useful genetic variation in tissue tolerance that can be harnessed for plant breeding of salt tolerance.
Collapse
Affiliation(s)
- Rana Munns
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Richard A James
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Australia
| | - Timothy J Flowers
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy D Colmer
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
42
|
Percey WJ, McMinn A, Bose J, Breadmore MC, Guijt RM, Shabala S. Salinity effects on chloroplast PSII performance in glycophytes and halophytes. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1003-1015. [PMID: 32480522 DOI: 10.1071/fp16135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/12/2016] [Indexed: 06/11/2023]
Abstract
The effects of NaCl stress and K+ nutrition on photosynthetic parameters of isolated chloroplasts were investigated using PAM fluorescence. Intact mesophyll cells were able to maintain optimal photosynthetic performance when exposed to salinity for more than 24h whereas isolated chloroplasts showed declines in both the relative electron transport rate (rETR) and the maximal photochemical efficiency of PSII (Fv/Fm) within the first hour of treatment. The rETR was much more sensitive to salt stress compared with Fv/Fm, with 40% inhibition of rETR observed at apoplastic NaCl concentration as low as 20mM. In isolated chloroplasts, absolute K+ concentrations were more essential for the maintenance of the optimal photochemical performance (Fv/Fm values) rather than sodium concentrations per se. Chloroplasts from halophyte species of quinoa (Chenopodium quinoa Willd.) and pigface (Carpobrotus rosii (Haw.) Schwantes) showed less than 18% decline in Fv/Fm under salinity, whereas the Fv/Fm decline in chloroplasts from glycophyte pea (Pisum sativum L.) and bean (Vicia faba L.) species was much stronger (31 and 47% respectively). Vanadate (a P-type ATPase inhibitor) significantly reduced Fv/Fm in both control and salinity treated chloroplasts (by 7 and 25% respectively), whereas no significant effects of gadolinium (blocker of non-selective cation channels) were observed in salt-treated chloroplasts. Tetraethyl ammonium (TEA) (K+ channel inhibitor) and amiloride (inhibitor of the Na+/H+ antiporter) increased the Fv/Fm of salinity treated chloroplasts by 16 and 17% respectively. These results suggest that chloroplasts' ability to regulate ion transport across the envelope and thylakoid membranes play a critical role in leaf photosynthetic performance under salinity.
Collapse
Affiliation(s)
- William J Percey
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS) and School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Rosanne M Guijt
- School of Medicine and Australian Centre for Research on Separation Science, University of Tasmania, Private Bag 34, Hobart 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia
| |
Collapse
|
43
|
Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution. MYCORRHIZA 2016; 26:673-84. [PMID: 27113587 DOI: 10.1007/s00572-016-0704-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.
Collapse
Affiliation(s)
- Rosa Porcel
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain
| | - Rosario Azcon
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.
| |
Collapse
|
44
|
Chakraborty K, Bose J, Shabala L, Eyles A, Shabala S. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species. PHYSIOLOGIA PLANTARUM 2016; 158:135-51. [PMID: 27062083 DOI: 10.1111/ppl.12447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 05/20/2023]
Abstract
Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs.
Collapse
Affiliation(s)
- Koushik Chakraborty
- Department of Plant Physiology, ICAR-Directorate of Groundnut Research, Junagadh 362 001, India
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7001, Australia
| | - Jayakumar Bose
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7001, Australia
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7001, Australia
| | - Alieta Eyles
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7001, Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7001, Australia.
| |
Collapse
|
45
|
Pandolfi C, Azzarello E, Mancuso S, Shabala S. Acclimation improves salt stress tolerance in Zea mays plants. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:1-8. [PMID: 27372277 DOI: 10.1016/j.jplph.2016.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot.
Collapse
Affiliation(s)
- Camilla Pandolfi
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia; Department of Agrifood and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, FI, Italy.
| | - Elisa Azzarello
- Department of Agrifood and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Mancuso
- Department of Agrifood and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, FI, Italy
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
46
|
Garcia-Abellan JO, Fernandez-Garcia N, Lopez-Berenguer C, Egea I, Flores FB, Angosto T, Capel J, Lozano R, Pineda B, Moreno V, Olmos E, Bolarin MC. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity. PHYSIOLOGIA PLANTARUM 2015; 155:296-314. [PMID: 25582191 DOI: 10.1111/ppl.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.
Collapse
Affiliation(s)
- José O Garcia-Abellan
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Nieves Fernandez-Garcia
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Carmen Lopez-Berenguer
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Trinidad Angosto
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Juan Capel
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Rafael Lozano
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Benito Pineda
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vicente Moreno
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Camino de Vera s/n, 46022, Valencia, Spain
| | - Enrique Olmos
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Maria C Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| |
Collapse
|
47
|
Wu H, Shabala L, Zhou M, Stefano G, Pandolfi C, Mancuso S, Shabala S. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. PLANTA 2015; 242:847-57. [PMID: 25991439 DOI: 10.1007/s00425-015-2317-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/29/2015] [Indexed: 05/07/2023]
Abstract
Leaf tissue tolerance was strongly and positively correlated with overall salt tolerance in barley, but not in wheat where the inability of sensitive varieties to exclude Na(+) is compensated by their better ability to handle Na(+) accumulated in the shoot via tissue tolerance mechanisms. A new high-throughput assay was developed to use the excised leaves to eliminate the confounding contribution of sodium exclusion mechanisms and evaluate genetic variability in salinity tissue tolerance in a large number of wheat (Triticum aestivum and Triticum turgidum ssp. durum) and barley (Hordeum vulgare) accessions. The changes in relative chlorophyll content (measured as chlorophyll content index, CCI) in excised leaves exposed to 50 mM NaCl for 48 h were found to be a reliable indicator of leaf tissue tolerance. In both wheat and barley, relative CCI correlated strongly with the overall plant salinity tolerance (evaluated in glasshouse experiments). To a large extent, this tissue tolerance was related to more efficient vacuolar Na(+) sequestration in leaf mesophyll, as revealed by fluorescent Na(+) dye imaging experiments. However, while in barley this correlation was positive, tissue tolerance in wheat correlated negatively with overall salinity tolerance. As a result, more salt-sensitive durum wheat genotypes possessed higher tissue tolerance than bread wheat plants, and this negative correlation was present within each of bread and durum wheat clusters as well. Overall, these results indicate that the lack of effective Na(+) exclusion ability in sensitive wheat varieties is compensated by their better ability to handle Na(+) accumulated in the shoot via tissue tolerance mechanisms. Implications of these findings for plant breeding for salinity tolerance are discussed.
Collapse
Affiliation(s)
- Honghong Wu
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, TAS, 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Ma Y, Shabala S, Li C, Liu C, Zhang W, Zhou M. Quantitative Trait Loci for Salinity Tolerance Identified under Drained and Waterlogged Conditions and Their Association with Flowering Time in Barley (Hordeum vulgare. L). PLoS One 2015; 10:e0134822. [PMID: 26247774 PMCID: PMC4527667 DOI: 10.1371/journal.pone.0134822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Salinity is one of the major abiotic stresses affecting crop production via adverse effects of osmotic stress, specific ion toxicity, and stress-related nutritional disorders. Detrimental effects of salinity are also often exacerbated by low oxygen availability when plants are grown under waterlogged conditions. Developing salinity-tolerant varieties is critical to overcome these problems, and molecular marker assisted selection can make breeding programs more effective. METHODS In this study, a double haploid (DH) population consisting of 175 lines, derived from a cross between a Chinese barley variety Yangsimai 1 (YSM1) and an Australian malting barley variety Gairdner, was used to construct a high density molecular map which contained more than 8,000 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphism (SNP) markers. Salinity tolerance of parental and DH lines was evaluated under drained (SalinityD) and waterlogged (SalinityW) conditions at two different sowing times. RESULTS Three quantitative trait loci (QTL) located on chromosome 1H, single QTL located on chromosomes 1H, 2H, 4H, 5H and 7H, were identified to be responsible for salinity tolerance under different environments. Waterlogging stress, daylight length and temperature showed significant effects on barley salinity tolerance. The QTL for salinity tolerance mapped on chromosomes 4H and 7H, QSlwd.YG.4H, QSlwd.YG.7H and QSlww.YG.7H were only identified in winter trials, while the QTL on chromosome 2H QSlsd.YG.2H and QSlsw.YG.2H were only detected in summer trials. Genes associated with flowering time were found to pose significant effects on the salinity QTL mapped on chromosomes 2H and 5H in summer trials. Given the fact that the QTL for salinity tolerance QSlsd.YG.1H and QSlww.YG.1H-1 reported here have never been considered in the literature, this warrants further investigation and evaluation for suitability to be used in breeding programs.
Collapse
Affiliation(s)
- Yanling Ma
- Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Chunji Liu
- CSIRO Plant Industry, 306 Carmody Road, St. Lucia, QLD, 4067, Australia
| | - Wenying Zhang
- School of Agriculture, Yangtze University, Jingzhou, 434025, P.R. China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia
- School of Agriculture, Yangtze University, Jingzhou, 434025, P.R. China
| |
Collapse
|
49
|
Muralidhar A, Shabala L, Broady P, Shabala S, Garrill A. Mechanisms underlying turgor regulation in the estuarine alga Vaucheria erythrospora (Xanthophyceae) exposed to hyperosmotic shock. PLANT, CELL & ENVIRONMENT 2015; 38:1514-1527. [PMID: 25546818 DOI: 10.1111/pce.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor-regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em ) measurements. Turgor recovery was inhibited by Gd(3+) , tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl-induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na(+) but not K(+) and Cl(-) in the incubation media. Na(+) uptake was strongly decreased by amiloride and changes in net Na(+) and H(+) fluxes were oppositely directed. This suggests active uptake of Na(+) in V. erythrospora mediated by an antiport Na(+) /H(+) system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K(+) efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.
Collapse
Affiliation(s)
- Abishek Muralidhar
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Paul Broady
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| |
Collapse
|
50
|
Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL. The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. PLANT MOLECULAR BIOLOGY 2015; 87:317-27. [PMID: 25549607 DOI: 10.1007/s11103-014-0278-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/16/2014] [Indexed: 05/02/2023]
Abstract
Previous studies have shown that TaNHX2 transgenic alfalfa (Medicago sativa L.) accumulated more K(+) and less Na(+) in leaves than did the wild-type plants. To investigate whether the increased K(+) accumulation in transgenic plants is attributed to TaNHX2 gene expression and whether the compartmentalization of Na(+) into vacuoles or the intracellular compartmentalization of potassium is the critical mechanism for TaNHX2-dependent salt tolerance in transgenic alfalfa, aerated hydroponic culture was performed under three different stress conditions: control condition (0.1 mM Na(+) and 6 mM K(+) inside culture solution), K(+)-sufficient salt stress (100 mM NaCl and 6 mM K(+)) and K(+)-insufficient salt stress (100 mM NaCl and 0.1 mM K(+)). The transgenic alfalfa plants had lower K(+) efflux through specific K(+) channels and higher K(+) absorption through high-affinity K(+) transporters than did the wild-type plants. Therefore, the transgenic plants had greater K(+) contents and [K(+)]/[Na(+)] ratios in leaf tissue and cell sap. The intracellular compartmentalization of potassium is critical for TaNHX2-induced salt tolerance in transgenic alfalfa.
Collapse
Affiliation(s)
- Yan-Min Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China,
| | | | | | | | | | | |
Collapse
|