1
|
Huang X, Yang J, Ho CT, Ke Q, Kou X. Functional flavor agents: enhancing health benefits and consumer preferences. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40338670 DOI: 10.1080/10408398.2025.2494297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Increasing health consciousness among consumers has significantly driven the demand for functional foods; however, market acceptance largely hinges on flavor profiles. Functional flavor agents, which simultaneously enhance taste and provide health benefits, meet the dual consumer demand for flavor and nutrition. This review classifies functional flavor agents into five categories based on their sensory characteristics. Their health benefits are explored with a focus on their potential roles in disease prevention and treatment, including improved energy metabolism, cardiovascular support, anti-tumor effects, modulation of gut microbiota, and enhancement of immune function. Emerging trends in the food industry are highlighted, underscoring the significant influence of these agents on product innovation. However, the integration of functional flavor agents into food products presents challenges, particularly in optimizing interactions to maximize both sensory appeal and health benefits. Innovative approaches are required to navigate the complex interplay between flavor agents and food components, enhancing flavor stability and sensory quality. Ultimately, the strategic application of functional flavor agents in food production holds promise for fostering a health-oriented market that aligns with consumer expectations for taste and nutrition.
Collapse
Affiliation(s)
- Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jiaqi Yang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
2
|
Amirinia F, Jabrodini A, Morovati H, Ardi P, Motamedi M. Fungal β-Glucans: Biological Properties, Immunomodulatory Effects, Diagnostic and Therapeutic Applications. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2025; 7:1-16. [PMID: 40225707 PMCID: PMC11991713 DOI: 10.36519/idcm.2025.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/11/2025] [Indexed: 04/15/2025]
Abstract
Research from the past to the present has shown that natural ingredients in the human daily diet play a crucial role in preventing various diseases. One well-known compound is β-glucan, a natural polysaccharide found in the cell walls of many fungi, yeasts, and some microorganisms, as well as in plants such as barley and wheat. β-glucans are widely recognized for their ability to lower cholesterol and blood glucose levels, thereby reducing the risk of cardiovascular disease and diabetes. In addition to their effects on lipid levels and glucose metabolism, these molecules exhibit antioxidant properties by eliminating reactive oxygen species. As a result, they help lower the risk of conditions such as atherosclerosis, cardiovascular disease, neurological disorders, diabetes, and cancer. Furthermore, β-glucans have been reported to possess immune-boosting and antitumor effects. By binding to specific receptors on the surface of immune cells, they stimulate immune activity. Additionally, β-glucans belong to a group of probiotics that promote the growth and activity of beneficial gut microbiota, preventing the proliferation of harmful pathogens. They play a vital role in maintaining gastrointestinal health, reducing inflammation, and lowering the risk of colon cancer. Further research on the health benefits of β-glucans may be key to improving overall well-being and preventing many chronic non-communicable diseases such as diabetes, high cholesterol, obesity, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Fatemeh Amirinia
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jabrodini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pegah Ardi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Motamedi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Eluppai Asthagiri Kumaraswamy N, Jayaramamurthy S, Martin CA, Srinivasan B. Unlocking the potential of beta-glucans: a comprehensive review from synthesis to drug delivery carrier potency. Drug Deliv Transl Res 2025; 15:483-507. [PMID: 39120791 DOI: 10.1007/s13346-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Modernization and lifestyle changes have resulted in a number of diseases, including cancer, that require complicated and thorough treatments. One of the most important therapies is the administration of antibiotics and medicines. This is known as chemotherapy for cancer, and it is a regularly utilised treatment plan in which the medications used have negative side effects. This has resulted in extensive research on materials capable of delivering pharmaceuticals to particular targets over an extended period of time. Biopolymers have often been preferred as effective drug delivery carriers. Of these, β-glucan, a natural polysaccharide, has not been extensively studied as a drug delivery carrier, despite its unique properties. This review discusses the sources, extraction techniques, structures, and characteristics of β-glucan to provide an overview. Furthermore, the different methods employed to encapsulate drugs into β-glucan and its role as an efficient drug, SiRNA and Plasmid DNA carrier have been elaborated in this article. The capacity of β-glucan-based to specifically target and alter tumour-associated macrophages, inducing an immune response ultimately resulting in tumour suppression has been elaborated. Finally, this study aims to stimulate further research on β-glucan by thoroughly describing its many characteristics and demonstrating its effectiveness as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Sivasankari Jayaramamurthy
- Department of Physics, B S Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Catherine Ann Martin
- Dr. Rela Institute and Medical Centre, National Foundation for Liver Research, Chromepet, Chennai, 600044, India
| | - Baskar Srinivasan
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai, 600089, India
| |
Collapse
|
4
|
de Pinho SS, Invenção MDCV, Silva AJD, de Macêdo LS, Espinoza BCF, Leal LRS, da Gama MATM, de Moura IA, Silva MEDS, de Souza DVS, Lara ML, Alves JNSA, de Freitas AC. Pichia pastoris-Derived β-Glucan Capsules as a Delivery System for DNA Vaccines. Vaccines (Basel) 2024; 12:1428. [PMID: 39772088 PMCID: PMC11728682 DOI: 10.3390/vaccines12121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast Pichia pastoris as a delivery system for DNA vaccines. METHODS The capsules were extracted from the yeast Pichia pastoris strain GS115, previously grown in a YPD medium. pVAX1 expression vector was adopted to evaluate the DNA vaccine insertion and delivery. Three encapsulation protocols were tested to identify the most effective in internalizing the plasmid. The presence of plasmids inside the capsules was confirmed by fluorescence microscopy, and the encapsulation efficiency was calculated by the difference between the initial concentration of DNA used for insertion and the concentration of unencapsulated DNA contained in the supernatant. The capsules were subjected to different temperatures to evaluate their thermostability and were co-cultured with macrophages for phagocytosis analysis. HEK-293T cells were adopted to assess the cytotoxicity levels by MTT assay. RESULTS The microscopy results indicated that the macrophages successfully phagocytosed the capsules. Among the protocols tested for encapsulation, the one with 2% polyethylenimine for internalization showed the highest efficiency, with an encapsulation rate above 80%. However, the vaccine capsules obtained with the protocol that used 5% NaCl showed better thermal stability and encapsulation efficiency above 63% without induction of cell viability loss in HEK 293T. CONCLUSIONS We successfully described a vaccine delivery system using yeast capsules derived from Pichia pastoris, demonstrating its potential for DNA vaccine delivery for the first time. Additional studies will be needed to characterize and improve this delivery strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (S.S.d.P.); (M.d.C.V.I.); (A.J.D.S.); (L.S.d.M.); (B.C.F.E.); (L.R.S.L.); (M.A.T.M.d.G.); (I.A.d.M.); (M.E.d.S.S.); (D.V.S.d.S.); (M.L.L.); (J.N.S.A.A.)
| |
Collapse
|
5
|
Söderhäll T, Kim SB, Choi GS, Kang KR, Ji JH, Lee BL, Kang JH. Protective effects of immunization with a novel 4 recombinant pore-forming toxoid combination vaccine in a rabbit model of systemic methicillin-resistant Staphylococcus aureus infection. Clin Exp Vaccine Res 2024; 13:338-347. [PMID: 39525673 PMCID: PMC11543794 DOI: 10.7774/cevr.2024.13.4.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Staphylococcus aureus is a Gram-positive bacterium that most frequently acquires antibiotic resistance. As an opportunistic pathogen, it can cause conditions such as bacteremia, sepsis, and myocarditis. Due to the social need for a vaccine against methicillin-resistant Staphylococcus aureus (MRSA), many research groups have been designing and studying vaccines for decades. In this study, we developed a multivalent vaccine and evaluated its efficacy by applying a novel adjuvant, β-glucan. Materials and Methods A vaccine composed of four pore-forming toxins from S. aureus was administered to rabbits 3 times, after which they were challenged with S. aureus USA 300 LAC strain. We measured changes in the rabbits' body weight to monitor systemic adverse reactions and analyzed the total immunoglobulin G antibody titer against the four antigens using enzyme-linked immunosorbent assay. For each rabbit, the number of abscesses and colony-forming units (CFU) in the kidneys were measured. Results In all vaccinated groups, strong antibody responses against the four antigens were observed. After challenging with MRSA, the vaccinated groups showed less weight change compared to the non-vaccinated groups (average 5.7% versus 13.5%). Additionally, the number of renal abscesses was significantly lower in the vaccinated groups, with three individuals in group 1 (four antigens adjuvanted with β-glucan_PK1) showing no abscess formation. The number of bacteria identified in the kidneys was also statistically significantly lower in the vaccinated group compared to the non-vaccinated group. Conclusion We demonstrated that the four toxoid antigens we selected can protect against S. aureus infection in a rabbit model and that β-glucan could be used as an immune enhancer. Overall, our study shows that new antigen combinations can induce protective immunity in animal models and that a toxin-based vaccine can help control bacterial colonization.
Collapse
Affiliation(s)
| | | | | | - Kyu-Ri Kang
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Bok Luel Lee
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan, Korea
| | - Jin-Han Kang
- Research Center, CLIPS BnC, Seoul, Korea
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Almeida P, Fernandes Â, Alves I, Pinho SS. "Glycans in Trained Immunity: Educators of innate immune memory in homeostasis and disease". Carbohydr Res 2024; 544:109245. [PMID: 39208605 DOI: 10.1016/j.carres.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Trained Immunity is defined as a biological process normally induced by exogenous or endogenous insults that triggers epigenetic and metabolic reprogramming events associated with long-term adaptation of innate immune cells. This trained phenotype confers enhanced responsiveness to subsequent triggers, resulting in an innate immune "memory" effect. Trained Immunity, in the past decade, has revealed important benefits for host defense and homeostasis, but can also induce potentially harmful outcomes associated with chronic inflammatory disorders or autoimmune diseases. Interestingly, evidence suggest that the "trainers" prompting trained immunity are frequently glycans structures. In fact, the exposure of different types of glycans at the surface of pathogens is a key driver of the training phenotype, leading to the reprogramming of innate immune cells through the recognition of those glycan-triggers by a variety of glycan-binding proteins (GBPs) expressed by the immune cells. β-glucan or mannose-enriched structures in Candida albicans are some of the examples that highlight the potential of glycans in trained immunity, both in homeostasis and in disease. In this review, we will discuss the relevance of glycans exposed by pathogens in establishing key immunological hubs with glycan-recognizing receptors expressed in immune cells, highlighting how this glycan-GBP network can impact trained immunity. Finally, we discuss the power of glycans and GBPs as potential targets in trained immunity, envisioning potential therapeutic applications.
Collapse
Affiliation(s)
- Pedro Almeida
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Ângela Fernandes
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Inês Alves
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Salomé S Pinho
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Rainer H, Goretzki A, Lin YJ, Schiller HR, Krause M, Döring S, Strecker D, Junker AC, Wolfheimer S, Toda M, Scheurer S, Schülke S. Characterization of the Immune-Modulating Properties of Different β-Glucans on Myeloid Dendritic Cells. Int J Mol Sci 2024; 25:9914. [PMID: 39337403 PMCID: PMC11433108 DOI: 10.3390/ijms25189914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In allergen-specific immunotherapy, adjuvants are explored for modulating allergen-specific Th2 immune responses to re-establish clinical tolerance. One promising class of adjuvants are β-glucans, which are naturally derived sugar structures and components of dietary fibers that activate C-type lectin (CLR)-, "Toll"-like receptors (TLRs), and complement receptors (CRs). We characterized the immune-modulating properties of six commercially available β-glucans, using immunological (receptor activation, cytokine secretion, and T cell modulating potential) as well as metabolic parameters (metabolic state) in mouse bone marrow-derived myeloid dendritic cells (mDCs). All tested β-glucans activated the CLR Dectin-1a, whereas TLR2 was predominantly activated by Zymosan. Further, the tested β-glucans differentially induced mDC-derived cytokine secretion and activation of mDC metabolism. Subsequent analyses focusing on Zymosan, Zymosan depleted, β-1,3 glucan, and β-1,3 1,6 glucan revealed robust mDC activation with the upregulation of the cluster of differentiation 40 (CD40), CD80, CD86, and MHCII to different extents. β-glucan-induced cytokine secretion was shown to be, in part, dependent on the activation of the intracellular Dectin-1 adapter molecule Syk. In co-cultures of mDCs with Th2-biased CD4+ T cells isolated from birch allergen Bet v 1 plus aluminum hydroxide (Alum)-sensitized mice, these four β-glucans suppressed allergen-induced IL-5 secretion, while only Zymosan and β-1,3 glucan significantly suppressed allergen-induced interferon gamma (IFNγ) secretion, suggesting the tested β-glucans to have distinct effects on mDC T cell priming capacity. Our experiments indicate that β-glucans have distinct immune-modulating properties, making them interesting adjuvants for future allergy treatment.
Collapse
Affiliation(s)
- Hannah Rainer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Alexandra Goretzki
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Hannah Ruth Schiller
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Maren Krause
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Sascha Döring
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Daniel Strecker
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Sonja Wolfheimer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Stephan Scheurer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
8
|
Krejčová G, Ruphuy G, Šalamúnová P, Sonntag E, Štěpánek F, Bajgar A. Inhibition of mevalonate pathway by macrophage-specific delivery of atorvastatin prevents their pro-inflammatory polarisation. INSECT MOLECULAR BIOLOGY 2024; 33:323-337. [PMID: 38367277 DOI: 10.1111/imb.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
Adjustment of the cellular metabolism of pro-inflammatory macrophages is essential for their bactericidal function; however, it underlies the development of many human diseases if induced chronically. Therefore, intervention of macrophage metabolic polarisation has been recognised as a potent strategy for their treatment. Although many small-molecule inhibitors affecting macrophage metabolism have been identified, their in vivo administration requires a tool for macrophage-specific delivery to limit their potential side effects. Here, we establish Drosophila melanogaster as a simple experimental model for in vivo testing of macrophage-specific delivery tools. We found that yeast-derived glucan particles (GPs) are suitable for macrophage-specific delivery of small-molecule inhibitors. Systemic administration of GPs loaded with atorvastatin, the inhibitor of hydroxy-methyl-glutaryl-CoA reductase (Hmgcr), leads to intervention of mevalonate pathway specifically in macrophages, without affecting HMGCR activity in other tissues. Using this tool, we demonstrate that mevalonate pathway is essential for macrophage pro-inflammatory polarisation and individual's survival of infection.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Gabriela Ruphuy
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Petra Šalamúnová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Erik Sonntag
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
10
|
Jesus S, Panão Costa J, Colaço M, Lebre F, Mateus D, Sebastião AI, Cruz MT, Alfaro-Moreno E, Borges O. Exploring the immunomodulatory properties of glucan particles in human primary cells. Int J Pharm 2024; 655:123996. [PMID: 38490404 DOI: 10.1016/j.ijpharm.2024.123996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The immunomodulatory properties of β-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of β-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of β-glucan-based delivery systems as future vaccine adjuvants.
Collapse
Affiliation(s)
- Sandra Jesus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - João Panão Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Mariana Colaço
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Filipa Lebre
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Daniela Mateus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Ana Isabel Sebastião
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Maria T Cruz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | | | - Olga Borges
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
11
|
Ciji A, Akhtar MS, Tripathi PH, Dubey MK, Sharma P. Higher intake of β-glucan impairs reproduction in a female teleost, Tor putitora (Hamilton, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:589-603. [PMID: 38175337 DOI: 10.1007/s10695-023-01292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Although the immuno-modulatory and stress-relieving properties of β-glucan is well elucidated in humans and other animal models, including fish, its role as a dietary supplement on reproduction is extremely scarce. Therefore, in this study, adult female fish were fed one of four test diets having 0 (control), 0.5, 1, and 1.5% β-D-glucan for 130 days and its effect on reproductive performance, ovarian and liver histology, sex hormones, and transcript abundance of selected reproduction-related genes was assessed. Low dietary intake of β-glucan improved fertilization and hatching rates (p<0.05). The relative fecundity and percentage of spawning females were higher (non-significant) in 0.5% β-glucan-fed groups. Surprisingly, even after 130 days, spawning did not occur in 1.5% β-glucan-fed individuals. Irrespective of β-glucan intake, all the brooders recorded similar plasma 17β-estradiol and maturation-inducing hormone (p>0.05). Higher intake of β-glucan (1.5%) upregulated aromatase genes without a parallel increase in 17β-estradiol. However, plasma vitellogenin increased with increasing β-glucan up to 1.0% then declined at 1.5% (p<0.05). The fish that received control, 0.5, and 1.5% β-glucan recorded similar vitellogenin levels in their plasma. Significantly higher plasma cortisol was evidenced in 1.5% β-glucan fed brooders (p<0.05). Histologically, higher follicular atresia and leaking of yolk material was evidenced in 1.5% β-glucan-fed group. Liver histology revealed the highest nutrient/lipid accumulation in fish that received 1.0% and 1.5% β-glucan. This study demonstrated the stimulatory effect of β-glucan intake at a lower dose (0.5%) on reproduction. However, higher intake (1.5%) could perturb normal reproductive function in a fish model and caused an increased number of atretic follicles leading to spawning/reproductive failure.
Collapse
Affiliation(s)
- Alexander Ciji
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| | - M S Akhtar
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India.
| | - Priyanka H Tripathi
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| | - Maneesh Kumar Dubey
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| | - Prakash Sharma
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| |
Collapse
|
12
|
Gambirasi M, Safa A, Vruzhaj I, Giacomin A, Sartor F, Toffoli G. Oral Administration of Cancer Vaccines: Challenges and Future Perspectives. Vaccines (Basel) 2023; 12:26. [PMID: 38250839 PMCID: PMC10821404 DOI: 10.3390/vaccines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer vaccines, a burgeoning strategy in cancer treatment, are exploring innovative administration routes to enhance patient and medical staff experiences, as well as immunological outcomes. Among these, oral administration has surfaced as a particularly noteworthy approach, which is attributed to its capacity to ignite both humoral and cellular immune responses at systemic and mucosal tiers, thereby potentially bolstering vaccine efficacy comprehensively and durably. Notwithstanding this, the deployment of vaccines through the oral route in a clinical context is impeded by multifaceted challenges, predominantly stemming from the intricacy of orchestrating effective oral immunogenicity and necessitating strategic navigation through gastrointestinal barriers. Based on the immunogenicity of the gastrointestinal tract, this review critically analyses the challenges and recent advances and provides insights into the future development of oral cancer vaccines.
Collapse
Affiliation(s)
- Marta Gambirasi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Amin Safa
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Idris Vruzhaj
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Aurora Giacomin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Franca Sartor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| |
Collapse
|
13
|
Ellefsen CF, Lindstad L, Klau LJ, Aachmann FL, Hiorth M, Samuelsen ABC. Investigation of the structural and immunomodulatory properties of alkali-soluble β-glucans from Pleurotus eryngii fruiting bodies. Carbohydr Polym 2023; 322:121367. [PMID: 37839837 DOI: 10.1016/j.carbpol.2023.121367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Fungal β-glucans have received a lot of interest due to their proinflammatory activity towards cells of the innate immune system. Although commonly described as (1➔3)-β-glucans with varying degree of (1➔6)-branching, the fungal β-glucans constitute a diverse polysaccharide class. In this study, the alkali-soluble β-glucans from the edible mushroom Pleurotus eryngii were extracted and characterized by GC, GC-MS and 2D NMR analyses. The extracts contain several structurally different polysaccharides, including a (1➔3)-β-d-glucan with single glucose units attached at O-6, and a (1➔6)-β-d-glucan, possibly branched at O-3. The immunomodulatory activities of the P. eryngii extracts were assessed by investigating their ability to bind to the receptor dectin-1, and their ability to induce production of the proinflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-differentiated THP-1 cells. Although the samples were able to bind to the dectin-1a receptor, they did not induce production of significant levels of cytokines in the THP-1 cells. Positive controls of yeast-derived (1➔3)-β-d-glucans with branches at O-6 induced cytokine production in the cells. Thus, it appears that the P. eryngii β-glucans are unable to induce production of proinflammatory cytokines in LPS-differentiated THP-1 cells, despite being able to activate the human dectin-1a receptor.
Collapse
Affiliation(s)
- Christiane F Ellefsen
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 1068 Blindern, NO-0371 Oslo, Norway.
| | - Linda Lindstad
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 1068 Blindern, NO-0371 Oslo, Norway
| | - Leesa J Klau
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Marianne Hiorth
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 1068 Blindern, NO-0371 Oslo, Norway
| | - Anne Berit C Samuelsen
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 1068 Blindern, NO-0371 Oslo, Norway
| |
Collapse
|
14
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Li L, Wang Y, Huang Z, Xu Z, Cao R, Li J, Wu B, Lu JR, Zhu H. An additive-free multifunctional β-glucan-peptide hydrogel participates in the whole process of bacterial-infected wound healing. J Control Release 2023; 362:577-590. [PMID: 37683733 DOI: 10.1016/j.jconrel.2023.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Bacterial infections and excessive inflammation can impede the healing of wounds. Hydrogels have emerged as a promising approach for dressing bacterial-infected injuries. However, some antibacterial hydrogels are complex, costly, and even require assistance with other instruments such as light, making them unsuitable for routine outdoor injuries. Here, we developed an in-situ generating hydrogel via hybridizing oxidized β-D-glucan with antimicrobial peptide C8G2 through the Schiff base reaction. This hydrogel is easily accessible and actively contributes to the whole healing process of bacterial-infected wounds, demonstrating remarkable antibacterial activity and biological compatibility. The pH-sensitive reversible imine bond enables the hydrogel to self-heal and sustainably release the antibacterial peptide, thereby improving its bioavailability and reducing toxicity. Meanwhile, the immunoregulating β-D-glucan inhibits the release of inflammatory factors while promoting the release of anti-inflammatory factors. In methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin wound models, the hybrid hydrogel showed superior antibacterial and anti-inflammatory activity, enhanced the M2 macrophage polarization, expedited wound closure, and regenerated epidermis tissue. These features make this hydrogel an appealing wound dressing for treating multi-drug-resistant bacteria-infected wounds.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Zhengjun Huang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Biyi Wu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
16
|
Kwong KWY, Xin Y, Lai NCY, Sung JCC, Wu KC, Hamied YK, Sze ETP, Lam DMK. Oral Vaccines: A Better Future of Immunization. Vaccines (Basel) 2023; 11:1232. [PMID: 37515047 PMCID: PMC10383709 DOI: 10.3390/vaccines11071232] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oral vaccines are gaining more attention due to their ease of administration, lower invasiveness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines, and their mechanisms for inducing an immune response. Procedures for regulatory approval and clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the potential to improve the effectiveness of oral vaccines.
Collapse
Affiliation(s)
- Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Ying Xin
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Nelson Cheuk-Yin Lai
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Dominic Man-Kit Lam
- DrD Novel Vaccines Limited, Hong Kong, China
- Torsten Wiesel International Research Institute, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Afrin H, Esquivel SV, Kumar R, Zahid MI, Oporeza B, Rahman MF, Boland T, Nurunnabi M. β-Glucan-Mediated Oral Codelivery of 5FU and Bcl2 siRNA Attenuates Stomach Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32188-32200. [PMID: 37350332 PMCID: PMC10787598 DOI: 10.1021/acsami.3c03528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Based on cancer-related deaths, stomach cancer is ranked fifth, and first among Hispanics. Lack of technologies for early diagnosis and unavailability of target-specific therapeutics are largely the causes of the poor therapeutic outcomes from existing chemotherapeutics. Currently available therapeutic modalities are invasive and require systemic delivery, although the cancer is localized in the stomach at its early stage. Therefore, we hypothesize that an oral local delivery approach can extend the retention duration of the therapeutics modalities within the stomach and thereby enhance therapeutic efficacy. To accomplish this, we have developed a ß-glucan (BG)-based oral delivery vehicle that can adhere to the mucus lining of the stomach for an extended period while controlling the release of Bcl2 siRNA and 5-fluorouracil (5FU) payload for over 6 h. We found that Bcl2 siRNA selectively knocked down the Bcl2 gene in a C57BL/6 stomach cancer mouse model followed by upregulation of apoptosis and remission of cancer. BG was found to be very effective in maintaining the stability of siRNA for at least 6 h, when submerged in simulated gastric juice tested in vitro. To investigate the potential therapeutic effects in vivo, we used a stomach cancer mouse model, where C57BL/6 mice were treated with 5FU, BG/5FU, siRNA, BG/siRNA, and BG/5FU/siRNA. Higher inhibition of Bcl2 and therapeutic efficacy were observed in mice treated with BG/5FU/siRNA confirmed with Western blotting and a TUNEL assay. Significant reduction in the tumor region was observed with histology (H&E) and immunohistochemistry (Ki67, TUNEL, and Bcl2) analyses. Overall, the oral formulation shows improved efficacy with nonsignificant side effects compared to the conventional treatment tested in the gastric cancer mouse model.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Stephanie Vargas Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Aerospace & Mechanical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Md Ikhtiar Zahid
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Beu Oporeza
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Md Fashiar Rahman
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Thomas Boland
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79965, United States
| |
Collapse
|
18
|
Yang L, Chaves L, Kutscher HL, Karki S, Tamblin M, Kenney P, Reynolds JL. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front Bioeng Biotechnol 2023; 11:1095926. [PMID: 37304141 PMCID: PMC10249870 DOI: 10.3389/fbioe.2023.1095926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: A nanoparticle composed of a poly (lactic-co-glycolic acid) (PLGA) core and a chitosan (CS) shell with surface-adsorbed 1,3 β-glucan (β-glucan) was synthesized. The exposure response of CS-PLGA nanoparticles (0.1 mg/mL) with surface-bound β-glucan at 0, 5, 10, 15, 20, or 25 ng or free β-glucan at 5, 10, 15, 20, or 25 ng/mL in macrophage in vitro and in vivo was investigated. Results: In vitro studies demonstrate that gene expression for IL-1β, IL-6, and TNFα increased at 10 and 15 ng surface-bound β-glucan on CS-PLGA nanoparticles (0.1 mg/mL) and at 20 and 25 ng/mL of free β-glucan both at 24 h and 48 h. Secretion of TNFα protein and ROS production increased at 5, 10, 15, and 20 ng surface-bound β-glucan on CS-PLGA nanoparticles and at 20 and 25 ng/mL of free β-glucan at 24 h. Laminarin, a Dectin-1 antagonist, prevented the increase in cytokine gene expression induced by CS-PLGA nanoparticles with surface-bound β-glucan at 10 and 15 ng, indicating a Dectin-1 receptor mechanism. Efficacy studies showed a significant reduction in intracellular accumulation of mycobacterium tuberculosis (Mtb) in monocyte-derived macrophages (MDM) incubated with on CS-PLGA (0.1 mg/ml) nanoparticles with 5, 10, and 15 ng surface-bound β-glucan or with 10 and 15 ng/mL of free β-glucan. β-glucan-CS-PLGA nanoparticles inhibited intracellular Mtb growth more than free β-glucan alone supporting the role of β-glucan-CS-PLGA nanoparticles as stronger adjuvants than free β-glucan. In vivo studies demonstrate that oropharyngeal aspiration (OPA) of CS-PLGA nanoparticles with nanogram concentrations of surface-bound β-glucan or free β-glucan increased TNFα gene expression in alveolar macrophages and TNFα protein secretion in bronchoalveolar lavage supernatants. Discussion: Data also demonstrate no damage to the alveolar epithelium or changes in the murine sepsis score following exposure to β-glucan-CS-PLGA nanoparticles only, indicating safety and feasibility of this nanoparticle adjuvant platform to mice by OPA.
Collapse
Affiliation(s)
- Luona Yang
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Lee Chaves
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hilliard L. Kutscher
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Shanta Karki
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Maria Tamblin
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Patrick Kenney
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jessica L. Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
19
|
Mishra V, Tripathi V, Yadav P, Singh MP. Beta glucan as an immune stimulant in tumor microenvironment - Insight into lessons and promises from past decade. Int J Biol Macromol 2023; 234:123617. [PMID: 36758755 DOI: 10.1016/j.ijbiomac.2023.123617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Cancer is characterized by a perturbed immune landscape. Inside tumor microenvironment, immune system is reprogrammed to facilitate tumor growth and survival rather than eliminating it. This immune evasive mechanism needs to be reversed to normal for effective anticancer therapeutic strategy. Immunotherapy has emerged as a novel strategy for redeployment of immune cells against cancer. However, they suffer in their efficacy, response rate and side effects. This necessitated us to turn toward natural repertoires which can act as a substitute to conventional immunotherapeutics. Beta glucan, a polysaccharide derived from mushroom, serves the role of immunomodulator inside tumor microenvironment. It acts as pathogen associated molecular pattern and bind to various pattern recognition receptors expressed on surface of immune cells thereby facilitating their activation and crosstalk. This result in resurgence of suppressed immune surveillance in the tumor milieu. In this review, we highlight in brief the advances and limitation of cancer immunotherapy. Alongside, we have discussed the detailed mechanistic principle and recent advances underlying restoration of immune functionality by beta glucan.
Collapse
Affiliation(s)
- Vartika Mishra
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Priyanka Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India.
| |
Collapse
|
20
|
Abbasi A, Rahbar Saadat T, Rahbar Saadat Y. Microbial exopolysaccharides-β-glucans-as promising postbiotic candidates in vaccine adjuvants. Int J Biol Macromol 2022; 223:346-361. [PMID: 36347372 DOI: 10.1016/j.ijbiomac.2022.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
The urgent task of creating new, enhanced adjuvants is closely related to our comprehension of their mechanisms of action. A few adjuvants have shown sufficient efficacy and low toxicity to be allowed for use in human vaccines, despite the fact that they have a long history and an important function. Adjuvants have long been used without a clear understanding of how precisely they augment the immune response. The rational production of stronger and safer adjuvants has been impeded by this lack of information, which necessitates more mechanistic research to support the development of vaccines. Carbohydrate structures-polygalactans, fructans, β-D-glucans, α-D-glucans, D-galactose, and D-glucose-are desirable candidates for the creation of vaccine adjuvants and immunomodulators because they serve important functions in nature and are often biocompatible, safe, and well tolerated. In this review, we have discussed recent advances in microbial-derived carbohydrate-based adjuvants, their immunostimulatory activity, and the implications of this for vaccine development, along with the critical view on the microbial sources, chemical composition, and biosynthetic pathways.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yalda Rahbar Saadat
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
23
|
Klingel L, Siebert N, Troschke-Meurer S, Zumpe M, Ehlert K, Huber S, Loibner H, Mutschlechner O, Lode HN. Immune Response and Outcome of High-Risk Neuroblastoma Patients Immunized with Anti-Idiotypic Antibody Ganglidiomab: Results from Compassionate-Use Treatments. Cancers (Basel) 2022; 14:cancers14235802. [PMID: 36497290 PMCID: PMC9735439 DOI: 10.3390/cancers14235802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: High-risk neuroblastoma (HR-NB) is associated with a poor prognosis despite a multimodal high-intensity treatment regimen, including immunotherapy with anti-GD2 monoclonal antibodies (mAb). Here, we investigated the effects of an anti-idiotypic vaccine based on the mAb ganglidiomab that structurally mimics GD2. (2) Methods: Patients with HR-NB treated with anti-GD2 mAb dinutuximab beta and who achieved complete remission after frontline or salvage therapy were offered the vaccine (0.5 mg ganglidiomab adsorbed to Alhydrogel®). Side effects (CTCAE v4.03) and immune responses were determined on each visit. We also evaluated the time to relapse or progression until the last follow-up. (3) Results: Seven HR-NB patients (five frontlines, two relapsed) received 6-22 subcutaneous injections every two weeks. Six of the seven patients showed an immune response. The non-responding patient had a haploidentical stem cell transplantation as part of the previous treatment. No fever, pain, neuropathy, or toxicities ≥ grade 3 occurred during or post-treatment. All immunized patients did not experience relapses or progressions of their neuroblastoma. (4) Conclusions: This is the first-in-man use of the ganglidiomab vaccine, which was well-tolerated, and all patients not pre-treated by haploidentical transplantation developed vaccine-specific immune responses. These findings provide an important basis for the design of prospective clinical trials.
Collapse
Affiliation(s)
- Leah Klingel
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Sascha Troschke-Meurer
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Maxi Zumpe
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Karoline Ehlert
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefanie Huber
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hans Loibner
- Anyxis Immuno-Oncology GmbH, 1230 Vienna, Austria
| | | | - Holger N. Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
- Anyxis Immuno-Oncology GmbH, 1230 Vienna, Austria
- Correspondence: ; Tel.: +49-3834-86-6300
| |
Collapse
|
24
|
Oral administration of a whole glucan particle (WGP)-based therapeutic cancer vaccine targeting macrophages inhibits tumor growth. Cancer Immunol Immunother 2022; 71:2007-2028. [DOI: 10.1007/s00262-021-03136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
25
|
Chowdhury AS, Geetha Bai R, Islam T, Abir M, Narayan M, Khatun Z, Nurunnabi M. Bile acid linked β-glucan nanoparticles for liver specific oral delivery of biologics. Biomater Sci 2022; 10:2929-2939. [PMID: 35471198 PMCID: PMC9949325 DOI: 10.1039/d2bm00316c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral delivery remains one of the most convenient routes for drug administration compared to intravenous, intramuscular, and via suppositories. However, due to the risk of degradation, and proteolysis of molecules in the acidic gastric medium, as well as the difficulty of transporting large molecules through the intestinal membrane, more than half of the therapeutic molecules are prohibited for oral administration. Moreover, most of the large molecules and biological therapeutics are not available in oral dosage form due to their instability in the stomach and inability of intestinal absorption. To achieve expected bioavailability, an orally administered therapeutic molecule must be protected within the stomach, and transportation facilitated via the small intestine. In this project, we have introduced a hybrid carrier, composed of Taurocholic Acid (TA) and β-Glucan (TAG), that is shown to be effective for the simultaneous protection of the biologics in acidic buffer and simulated gastric juice as well as facilitate enhanced absorption and transportation via the small intestine. In this project, we have used an eGFP encoded plasmid as a model biologic to prepare particles mediated with TAG. TAG show the potential of enhancing transfection and expression of eGFP as we have observed two fold higher expression in the cell upon coincubation for 4 h. In vivo studies on orally dosed mice showed that eGFP expression in the liver was significantly higher in TAG containing particles compared to particles without TAG. The findings suggest that the TAG carrier is capable of not only preserving biologics but also transporting them more efficiently to the liver. As a result, this strategy can be employed for a variety of liver-targeted therapeutic delivery to treat a variety of liver diseases.
Collapse
Affiliation(s)
- Ayreen S Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
- Department of Bioscience, School of Science and Technology, Nottingham Trent university, Nottingham, NG11 8NS, UK
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Tamanna Islam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
| | - Muhammad Abir
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79965, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El paso, TX 79965, USA
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79965, USA
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX 79965, USA
| |
Collapse
|
26
|
Oliveira-Brito PKM, de Campos GY, Guimarães JG, Serafim da Costa L, Silva de Moura E, Lazo-Chica JE, Roque-Barreira MC, da Silva TA. Adjuvant Curdlan Contributes to Immunization against Cryptococcus gattii Infection in a Mouse Strain-Specific Manner. Vaccines (Basel) 2022; 10:vaccines10040620. [PMID: 35455369 PMCID: PMC9030172 DOI: 10.3390/vaccines10040620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
The low efficacy and side effects associated with antifungal agents have highlighted the importance of developing immunotherapeutic approaches to treat Cryptococcus gattii infection. We developed an immunization strategy that uses selective Dectin-1 agonist as an adjuvant. BALB/c or C57BL/6 mice received curdlan or β-glucan peptide (BGP) before immunization with heat-killed C. gattii, and the mice were infected with viable C. gattii on day 14 post immunization and euthanized 14 days after infection. Adjuvant curdlan restored pulmonary tumor necrosis factor- α (TNF-α) levels, as induced by immunization with heat-killed C. gattii. The average area and relative frequency of C. gattii titan cells in the lungs of curdlan-treated BALB/c mice were reduced. However, this did not reduce the pulmonary fungal burden or decrease the i0,nflammatory infiltrate in the pulmonary parenchyma of BALB/c mice. Conversely, adjuvant curdlan induced high levels of interferon-γ (IFN-γ) and interleukin (IL)-10 and decreased the C. gattii burden in the lungs of C57BL/6 mice, which was not replicated in β-glucan peptide-treated mice. The adjuvant curdlan favors the control of C. gattii infection depending on the immune response profile of the mouse strain. This study will have implications for developing new immunotherapeutic approaches to treat C. gattii infection.
Collapse
Affiliation(s)
- Patrícia Kellen Martins Oliveira-Brito
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Gabriela Yamazaki de Campos
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Júlia Garcia Guimarães
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Letícia Serafim da Costa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 14049-900, SP, Brazil;
| | - Edanielle Silva de Moura
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Javier Emílio Lazo-Chica
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-189, MG, Brazil;
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Thiago Aparecido da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
- Thiago Aparecido da Silva, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
27
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
28
|
Song H, Zhang S, Yang B, Liu Y, Kang Y, Li Y, Qian A, Yuan Z, Cong B, Shan X. Effects of four different adjuvants separately combined with Aeromonas veronii inactivated vaccine on haematoimmunological state, enzymatic activity, inflammatory response and disease resistance in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2022; 120:658-673. [PMID: 34500055 DOI: 10.1016/j.fsi.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The purpose of the current study was to explore the immunomodulatory effects of different adjuvants combined with inactivated vaccines under Aeromonas veronii TH0426 infection in crucian carp. This study explored the best conditions for A. veronii as an inactivated vaccine, and included an animal safety test. Furthermore, we expressed the flagellin FlaA of the A. veronii TH0426 strain for use as an adjuvant supplemented in the diet. Crucian carp were fed 12 different experimental diets for 35 days, including the administration of 10 different adjuvants and inactivated vaccine combinations (50% aluminum hydroxide gel and inactivated vaccine combination, and inactivated vaccine with 20%, 30%, or 50% glucan, astragalus polysaccharide or flagellin), inactivated vaccine alone, and PBS control without adjuvant and inactivated vaccine. After the 42 day feeding trials, the fish were challenged with A. veronii TH0426, and the survival rate over 14 days was recorded. In addition, flagellin FlaA can be expressed normally in large amounts. All experimental groups produced higher levels of IgM serum titres than the control group in the different feeding cycles. Moreover, the activity of serum ACP, AKP, SOD, and LZM, and the expression of inflammatory factors were significantly increased in the experimental groups compared with the control group. The results of qRT-PCR analysis showed that the transcription levels of the IL-10, IL-1β, IFN-γ and TNF-α genes in heart, liver, spleen and kidney tissues were significantly enhanced by adjuvant treatment, indicating that the addition of adjuvants can significantly promote the body's inflammatory response. In addition, the phagocytic activity of leukocytes in each adjuvant treated group was significantly enhanced compared to that in the groups without adjuvant. After the A. veronii challenge, the survival rate of all adjuvant-treated groups was significantly higher than that of the control group, and the 50% flagellin adjuvant group had the highest rate of 78.37%. Overall, our findings strongly indicate that adjuvants not only significantly improve the body's immunity, but also exhibit a strong anti-infection ability. Importantly, this work provides a new perspective for the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Haichao Song
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Siqi Zhang
- Dunhua Agricultural and Rural Bureau, Dunhua, Jilin, China
| | - Bintong Yang
- Marine College, Shandong University, Weihai, China
| | - Yanhui Liu
- Jilin Academy of Sciences, Changchun, Jilin, China
| | | | - Ying Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhonghua Yuan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Bo Cong
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, Jilin, China.
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
29
|
Ross P, Farrell MP. The Road to Structurally Defined β-Glucans. CHEM REC 2021; 21:3178-3193. [PMID: 34010496 PMCID: PMC9109639 DOI: 10.1002/tcr.202100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Indexed: 01/28/2023]
Abstract
β-glucans are polymers of glucose that have been isolated from a variety of organisms. Isolated β-glucans have been used for medical purposes for centuries; however, efforts to define the biological activities of β-glucans experimentally were initiated in the 1940's. The diversity of structure associated with isolated β-glucans has impeded said investigations, and efforts to leverage the biological activity of β-glucans for clinical applications. In recognition of the need for defined β-glucans that retain the biological activity of isolated β-glucans, considerable investment has been made to facilitate the synthesis of structurally defined β-glucans. Here, we review the different approaches that have been applied to prepare β-glucans. In addition, we summarize the approaches that have been utilized to conjugate β-glucans to proteins.
Collapse
Affiliation(s)
- Patrick Ross
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Mark P Farrell
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
30
|
Lin M, Dong L, Chen Q, Xu H, Han X, Luo R, Pu X, Qi S, Nie W, Ma M, Wang Y, Gao F, Zhang J. Lentinan-Based Oral Nanoparticle Loaded Budesonide With Macrophage-Targeting Ability for Treatment of Ulcerative Colitis. Front Bioeng Biotechnol 2021; 9:702173. [PMID: 34513811 PMCID: PMC8429481 DOI: 10.3389/fbioe.2021.702173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 01/26/2023] Open
Abstract
Ulcerative colitis (UC) is a global, chronic, and refractory disease. Corticosteroids are first-line drugs for the treatment of UC but also cause adverse side effects. Budesonide (BUD), a corticosteroid with relatively low side effects, has been approved by the Food and Drug Administration for use as enteric capsules (Entocort EC) for the treatment of inflammatory bowel disease (IBD). However, this formulation lacks specific targeting ability to UC lesions. Herein, we describe the development of an advanced macrophage-targeted oral lentinan (LNT)–based nanoparticles (NPs) loaded BUD for treatment of UC. Briefly, LNT was used as a food source and natural carrier to load BUD by a simple solvent evaporation method to form LNT/BUD-NPs. LNT showed good loading capacity with high encapsulation and loading efficiencies to BUD of approximately 92.19 and 9.58%, respectively. Evaluation of the gastric stability of LNT/BUD-NPs indicated that LNT could effectively protect BUD from gastric acid and digestive enzymes. The release behavior and transmission electron microscopy image of LNT/BUD-NPs in the intestinal content of mice confirmed that intestinal flora can promote BUD release from LNT. Moreover, evaluation of cellular uptake showed that LNT/BUD-NPs could specifically target macrophages and enhance their uptake rate via the Dectin-1 receptor. In biodistribution studies, LNT/BUD-NPs were able to efficiently accumulate in the inflamed colon of mice. As expected, LNT/BUD-NPs could significantly alleviate inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Therefore, LNT/BUD-NPs have the advantages of good gastric stability, release mediated by mouse intestinal content, macrophage-targeting, and anti-UC effects. These advantages indicate LNT-based NPs are a promising oral drug delivery system for UC therapy.
Collapse
Affiliation(s)
- Meisi Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Sichuan Provincial Acupuncture School, Chengdu, China
| | - Lingling Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiulan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yitao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Zhu L, Lei Z, Xia X, Zhang Y, Chen Y, Wang B, Li J, Li G, Yang G, Cao G, Yin Z. Yeast Shells Encapsulating Adjuvant AS04 as an Antigen Delivery System for a Novel Vaccine against Toxoplasma Gondii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40415-40428. [PMID: 34470103 DOI: 10.1021/acsami.1c12366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Toxoplasma gondii (T. gondii) infection causes severe zoonotic toxoplasmosis, which threatens the safety of almost one-third of the human population globally. However, there is no effective protective vaccine against human toxoplasmosis. This necessitates anti-T. gondii vaccine development, which is a main priority of public health. In this study, we optimized the adjuvant system 04 (AS04), a vaccine adjuvant constituted by 3-O-desacyl-4'-monophosphoryl lipid A (a TLR4 agonist) and aluminum salts, by packing it within natural extracts of β-glucan particles (GPs) from Saccharomyces cerevisiae to form a GP-AS04 hybrid adjuvant system. Through a simple mixing procedure, we loaded GP-AS04 particles with the total extract (TE) of T. gondii lysate, forming a novel anti-T. gondii vaccine GP-AS04-TE. Results indicated that the hybrid adjuvant can efficiently and stably load antigens, mediate antigen delivery, facilitate the dendritic uptake of antigens, boost dendritic cell maturation and stimulation, and increase the secretion of pro-inflammatory cytokines. In the mouse inoculation model, GP-AS04-TE significantly stimulated the function of dendritic cells, induced a very strong TE-specific humoral and cellular immune response, and finally showed a strong and effective protection against toxoplasma chronic and acute infections. This work proves the potential of GP-AS04 for exploitation as a vaccine against a range of pathogens.
Collapse
Affiliation(s)
- Leqing Zhu
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhiwei Lei
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Xichun Xia
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yingying Zhang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jiawei Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Guangqiang Li
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guangchao Cao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Gudej S, Filip R, Harasym J, Wilczak J, Dziendzikowska K, Oczkowski M, Jałosińska M, Juszczak M, Lange E, Gromadzka-Ostrowska J. Clinical Outcomes after Oat Beta-Glucans Dietary Treatment in Gastritis Patients. Nutrients 2021; 13:nu13082791. [PMID: 34444949 PMCID: PMC8400320 DOI: 10.3390/nu13082791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of gastritis in humans is constantly growing and a prediction of an increase in this health problem is observed in many countries. For this reason, effective dietary therapies are sought that can alleviate the course of this disease. The objective of this study was to determine the effect of chemically pure oat beta-glucan preparations with different molar masses, low or high, used for 30 days in patients with histologically diagnosed chronic gastritis. The study enrolled 48 people of both genders of different ages recruited from 129 patients with a gastritis diagnosis. Before and after the therapy, hematological, biochemical, immunological and redox balance parameters were determined in the blood and the number of lactic acid bacteria and SCFA concentrations in the feces. Our results demonstrated a beneficial effect of oat beta-glucans with high molar mass in chronic gastritis in humans, resulting in reduced mucosal damage and healthy changes in SCFA fecal concentration and peripheral blood serum glutathione metabolism and antioxidant defense parameters. This fraction of a highly purified oat beta-glucan is safe for humans. Its action is effective after 30 days of use, which sheds new light on the nutritional treatment of chronic gastritis.
Collapse
Affiliation(s)
- Sylwia Gudej
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159c, 02-776 Warsaw, Poland; (K.D.); (M.O.); (E.L.); (J.G.-O.)
- Correspondence: (S.G.); (J.H.)
| | - Rafał Filip
- Department of Gastroenterology with IBD Unit, Faculty of Medicine, University of Rzeszow, Kopisto 2A Str., 35-315 Rzeszow, Poland;
| | - Joanna Harasym
- Adaptive Food Systems Accelerator—Research Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
- Correspondence: (S.G.); (J.H.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159c, 02-776 Warsaw, Poland; (K.D.); (M.O.); (E.L.); (J.G.-O.)
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159c, 02-776 Warsaw, Poland; (K.D.); (M.O.); (E.L.); (J.G.-O.)
| | - Małgorzata Jałosińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Małgorzata Juszczak
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Ewa Lange
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159c, 02-776 Warsaw, Poland; (K.D.); (M.O.); (E.L.); (J.G.-O.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159c, 02-776 Warsaw, Poland; (K.D.); (M.O.); (E.L.); (J.G.-O.)
| |
Collapse
|
33
|
Laue C, Stevens Y, van Erp M, Papazova E, Soeth E, Pannenbeckers A, Stolte E, Böhm R, Gall SL, Falourd X, Ballance S, Knutsen SH, Pinheiro I, Possemiers S, Ryan PM, Ross RP, Stanton C, Wells JM, van der Werf S, Mes JJ, Schrezenmeir J. Adjuvant Effect of Orally Applied Preparations Containing Non-Digestible Polysaccharides on Influenza Vaccination in Healthy Seniors: A Double-Blind, Randomised, Controlled Pilot Trial. Nutrients 2021; 13:2683. [PMID: 34444843 PMCID: PMC8400163 DOI: 10.3390/nu13082683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023] Open
Abstract
Senior individuals can suffer from immunosenescence and novel strategies to bolster the immune response could contribute to healthy ageing. In this double-blind, randomised, controlled pilot trial, we investigated the ability of non-digestible polysaccharide (NPS) preparations to enhance the immune response in a human vaccination model. In total, 239 subjects (aged 50-79 years) were randomised to consume one of five different NPS (yeast β-glucan (YBG), shiitake β-glucan (SBG), oat β-glucan (OBG), arabinoxylan (AX), bacterial exopolysaccharide (EPS)) or control (CTRL) product daily for five weeks. After two weeks of intervention, subjects were vaccinated with seasonal influenza vaccine. The post-vaccination increases in haemagglutination inhibition antibody titres and seroprotection rate against the influenza strains were non-significantly enhanced in the NPS intervention groups compared to CTRL. Specifically, a trend towards a higher mean log2 fold increase was observed in the AX group (uncorrected p = 0.074) combined with a trend for an increased seroprotection rate, AX group (48.7%) compared to CTRL (25.6%) (uncorrected p = 0.057), for the influenza A H1N1 strain. Subjects consuming AX also had a reduced incidence of common colds compared to CTRL (1 vs. 8; p = 0.029 in Fisher exact test). No adverse effects of NPS consumption were reported. The findings of this pilot study warrant further research to study AX as an oral adjuvant to support vaccine efficacy.
Collapse
Affiliation(s)
- Christiane Laue
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Yala Stevens
- BioActor, Brightlands Health Campus, 6229 GS Maastricht, The Netherlands; (Y.S.); (M.v.E.)
| | - Monique van Erp
- BioActor, Brightlands Health Campus, 6229 GS Maastricht, The Netherlands; (Y.S.); (M.v.E.)
| | - Ekaterina Papazova
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Edlyn Soeth
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Angelika Pannenbeckers
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Ellen Stolte
- Host-Microbe Interactomics, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (E.S.); (J.M.W.)
| | - Ruwen Böhm
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| | - Sophie Le Gall
- UR1268 BIA, INRA, 44316 Nantes, France; (S.L.G.); (X.F.)
| | - Xavier Falourd
- UR1268 BIA, INRA, 44316 Nantes, France; (S.L.G.); (X.F.)
| | - Simon Ballance
- Nofima, Norwegian Institute of Food Fisheries & Aquaculture Research , 1433 Ås, Norway; (S.B.); (S.H.K.)
| | - Svein H. Knutsen
- Nofima, Norwegian Institute of Food Fisheries & Aquaculture Research , 1433 Ås, Norway; (S.B.); (S.H.K.)
| | - Iris Pinheiro
- Prodigest, Technologiepark-Zwijnaarde, 9052 Ghent, Belgium; (I.P.); (S.P.)
| | - Sam Possemiers
- Prodigest, Technologiepark-Zwijnaarde, 9052 Ghent, Belgium; (I.P.); (S.P.)
| | - Paul M. Ryan
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (P.M.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (P.M.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (E.S.); (J.M.W.)
| | | | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Juergen Schrezenmeir
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, 24118 Kiel, Germany; (E.P.); (E.S.); (A.P.); (R.B.); (J.S.)
| |
Collapse
|
34
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
36
|
Chaudhari V, Buttar HS, Bagwe-Parab S, Tuli HS, Vora A, Kaur G. Therapeutic and Industrial Applications of Curdlan With Overview on Its Recent Patents. Front Nutr 2021; 8:646988. [PMID: 34262922 PMCID: PMC8273257 DOI: 10.3389/fnut.2021.646988] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Curdlan is an exopolysaccharide, which is composed of glucose linked with β-(1,3)-glycosidic bond and is produced by bacteria, such as Alcaligenes spp., Agrobacterium spp., Paenibacillus spp., Rhizobium spp., Saccharomyces cerevisiae, Candida spp., and fungal sources like Aureobasidium pullulan, Poria cocos, etc. Curdlan has been utilized in the food and pharmaceutical industries for its prebiotic, viscosifying, and water-holding properties for decades. Recently, the usefulness of curdlan has been further explored by the pharmaceutical industry for its potential therapeutic applications. Curdlan has exhibited immunoregulatory and antitumor activity in preclinical settings. It was observed that curdlan can prevent the proliferation of malarial merozoites in vivo; therefore, it may be considered as a promising therapy for the treatment of end-stage malaria. In addition, curdlan has demonstrated potent antiviral effects against human immunodeficiency virus (HIV) and Aedes aegypti virus. It has been suggested that the virucidal properties of curdlans should be extended further for other deadly viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2/COVID-19). The prebiotic property of curdlan would confer beneficial effects on the host by promoting the growth of healthy microbiota in the gut and consequently help to reduce gastrointestinal disorders. Therefore, curdlan can be employed in the manufacture of prebiotics for the management of various gastrointestinal dysbiosis problems. Studies on the mechanism of action of curdlan-induced suppression in microbial and tumor cells at the cellular and molecular levels would not only enhance our understanding regarding the therapeutic effectiveness of curdlan but also help in the discovery of new drugs and dietary supplements. The primary focus of this review is to highlight the therapeutic interventions of curdlan as an anticancer, anti-malaria, antiviral, and antibacterial agent in humans. In addition, our review provides the latest information about the chemistry and biosynthesis of curdlan and its applications for making novel dairy products, functional foods, and nutraceuticals and also details about the recent patents of curdlan and its derivatives.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
37
|
Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol 2021; 181:877-889. [PMID: 33864864 DOI: 10.1016/j.ijbiomac.2021.04.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
β-glucans are polysaccharides which can be obtained from different sources, and which have been described as potential prebiotics. The beneficial effects associated with β-glucan intake are that they reduce energy intake, lower cholesterol levels and support the immune system. Nevertheless, the mechanism(s) of action underpinning these health effects related to β-glucans are still unclear, and the precise impact of β-glucans on the gut microbiota has been subject to debate and revision. In this review, we summarize the most recent advances involving structurally different types of β-glucans as fermentable substrates for Bacteroidetes (mainly Bacteroides) and Bifidobacterium species as glycan degraders. Bacteroides is one of the most abundant bacterial components of the human gut microbiota, while bifidobacteria are widely employed as a probiotic ingredient. Both are generalist glycan degraders capable of using a wide range of substrates: Bacteroides spp. are specialized as primary degraders in the metabolism of complex carbohydrates, whereas Bifidobacterium spp. more commonly metabolize smaller glycans, in particular oligosaccharides, sometimes through syntrophic interactions with Bacteroides spp., in which they act as secondary degraders.
Collapse
Affiliation(s)
- Pedro J Fernandez-Julia
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Ireland University College Cork, Cork, Ireland.
| |
Collapse
|
38
|
Ikewaki N, Iwasaki M, Kurosawa G, Rao KS, Lakey-Beitia J, Preethy S, Abraham SJ. β-glucans: wide-spectrum immune-balancing food-supplement-based enteric (β-WIFE) vaccine adjuvant approach to COVID-19. Hum Vaccin Immunother 2021; 17:2808-2813. [PMID: 33651967 PMCID: PMC7938654 DOI: 10.1080/21645515.2021.1880210] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conventional vaccines to combat COVID-19 through different approaches are at various stages of development. The complexity of COVID-19 such as the potential mutations of the virus leading to antigenic drift and the uncertainty on the duration of the immunity induced by the vaccine have hampered the efforts to control the COVID-19 pandemic. Thus, we suggest an alternative interim treatment strategy based on biological response modifier glucans such as the Aureobasidium pullulans AFO-202-derived β-glucan, which has been reported to induce trained immunity, akin to that induced by the Bacille Calmette-Guérin vaccine, by epigenetic modifications at the central level in the bone marrow. These β-glucans act as pathogen-associated molecular patterns, activating mucosal immunity by binding with specific pathogen recognition receptors such as dectin-1 and inducing both the adaptive and innate immunity by reaching distant lymphoid organs. β-Glucans have also been used as immune adjuvants for vaccines such as the influenza vaccine. Therefore, until a conventional vaccine is widely available, an orally consumable vaccine adjuvant that acts like biosimilars, termed as the wide-spectrum immune-balancing food-supplement-based enteric (β-WIFE) vaccine adjuvant approach, with well-reported safety is worth in-depth investigation and can be considered for a clinical trial.
Collapse
Affiliation(s)
- Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Japan.,Institute of Immunology, Junsei Educational Institute, Nobeoka, Miyazaki, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | - Gene Kurosawa
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Aichi, Japan
| | - Kosagi-Sharaf Rao
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Johant Lakey-Beitia
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Samuel Jk Abraham
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India.,Edogawa Evolutionary Laboratory of Science (EELS), Edogawa Hospital, Tokyo, Japan.,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India.,Biomaterials and Cell Biology Division, JBM Inc, Tokyo, Japan.,Immune Systems R & D Division, GN Corporation Co. Ltd, Kofu, Japan
| |
Collapse
|
39
|
Hermans L, De Pelsmaeker S, Denaeghel S, Cox E, Favoreel HW, Devriendt B. β-Glucan-Induced IL-10 Secretion by Monocytes Triggers Porcine NK Cell Cytotoxicity. Front Immunol 2021; 12:634402. [PMID: 33679785 PMCID: PMC7933222 DOI: 10.3389/fimmu.2021.634402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-glucans are naturally occurring polysaccharides present in cell walls of fungi, yeast, bacteria, cereals, seaweed, and algae. These microbe-associated molecular patterns (MAMPs) possess immunomodulatory properties. In human, it has been suggested that NK cells can be activated by β-glucans. Here, we aimed to elucidate whether β-glucans modulate porcine NK cell responses in vitro and if so, how these effects are mediated. We investigated the effect of two β-glucans, Macrogard and Curdlan, which differ in solubility and structure. Direct addition of β-glucans to purified porcine NK cells did not affect cytotoxicity of these cells against K562 target cells. However, when using PBMC instead of purified NK cells, β-glucan addition significantly increased NK cell-mediated cytotoxicity. This effect depended on factors secreted by CD14+ monocytes upon β-glucan priming. Further analysis showed that monocytes secrete TNF-α, IL-6, and IL-10 upon β-glucan addition. Of these, IL-10 turned out to play a critical role in β-glucan-triggered NK cell cytotoxicity, since depletion of IL-10 completely abrogated the β-glucan-induced increase in cytotoxicity. Furthermore, addition of recombinant IL-10 to purified NK cells was sufficient to enhance cytotoxicity. In conclusion, we show that β-glucans trigger IL-10 secretion by porcine monocytes, which in turn leads to increased NK cell cytotoxicity, and thereby identify IL-10 as a potent stimulus of porcine NK cell cytotoxicity.
Collapse
Affiliation(s)
- Leen Hermans
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steffi De Pelsmaeker
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Denaeghel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman W Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
40
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
41
|
Wolf MA, Boehm DT, DeJong MA, Wong TY, Sen-Kilic E, Hall JM, Blackwood CB, Weaver KL, Kelly CO, Kisamore CA, Bitzer GJ, Bevere JR, Barbier M, Damron FH. Intranasal Immunization with Acellular Pertussis Vaccines Results in Long-Term Immunity to Bordetella pertussis in Mice. Infect Immun 2021; 89:e00607-20. [PMID: 33318136 PMCID: PMC8097269 DOI: 10.1128/iai.00607-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Bordetella pertussis colonizes the respiratory mucosa of humans, inducing an immune response seeded in the respiratory tract. An individual, once convalescent, exhibits long-term immunity to the pathogen. Current acellular pertussis (aP) vaccines do not induce the long-term immune response observed after natural infection in humans. In this study, we evaluated the durability of protection from intranasal (i.n.) pertussis vaccines in mice. Mice that convalesced from B. pertussis infection served as a control group. Mice were immunized with a mock vaccine (phosphate-buffered saline [PBS]), aP only, or an aP base vaccine combined with one of the following adjuvants: alum, curdlan, or purified whole glucan particles (IRI-1501). We utilized two study designs: short term (challenged 35 days after priming vaccination) and long term (challenged 6 months after boost). The short-term study demonstrated that immunization with i.n. vaccine candidates decreased the bacterial burden in the respiratory tract, reduced markers of inflammation, and induced significant serum and lung antibody titers. In the long-term study, protection from bacterial challenge mirrored the results observed in the short-term challenge study. Immunization with pertussis antigens alone was surprisingly protective in both models; however, the alum and IRI-1501 adjuvants induced significant B. pertussis-specific IgG antibodies in both the serum and lung and increased numbers of anti-B. pertussis IgG-secreting plasma cells in the bone marrow. Our data indicate that humoral responses induced by the i.n. vaccines correlated with protection, suggesting that long-term antibody responses can be protective.
Collapse
Affiliation(s)
- M Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Megan A DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Catherine B Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly L Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Claire O Kelly
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Caleb A Kisamore
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
42
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
43
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
44
|
Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J Fungi (Basel) 2020; 6:E356. [PMID: 33322069 PMCID: PMC7770584 DOI: 10.3390/jof6040356] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
β-glucans are complex polysaccharides that are found in several plants and foods, including mushrooms. β-glucans display an array of potentially therapeutic properties. β-glucans have metabolic and gastro-intestinal effects, modulating the gut microbiome, altering lipid and glucose metabolism, reducing cholesterol, leading to their investigation as potential therapies for metabolic syndrome, obesity and diet regulation, gastrointestinal conditions such as irritable bowel, and to reduce cardiovascular and diabetes risk. β-glucans also have immune-modulating effects, leading to their investigation as adjuvant agents for cancers (solid and haematological malignancies), for immune-mediated conditions (e.g., allergic rhinitis, respiratory infections), and to enhance wound healing. The therapeutic potential of β-glucans is evidenced by the fact that two glucan isolates were licensed as drugs in Japan as immune-adjuvant therapy for cancer in 1980. Significant challenges exist to further clinical testing and translation of β-glucans. The diverse range of conditions for which β-glucans are in clinical testing underlines the incomplete understanding of the diverse mechanisms of action of β-glucans, a key knowledge gap. Furthermore, important differences appear to exist in the effects of apparently similar β-glucan preparations, which may be due to differences in sources and extraction procedures, another poorly understood issue. This review will describe the biology, potential mechanisms of action and key therapeutic targets being investigated in clinical trials of β-glucans and identify and discuss the key challenges to successful translation of this intriguing potential therapeutic.
Collapse
Affiliation(s)
- Emma J. Murphy
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
| | - Emanuele Rezoagli
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, H91 CF50 Galway, Ireland
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, H91 YR71 Galway, Ireland
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland;
| | - Neil J. Rowan
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
| | - John G. Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, H91 CF50 Galway, Ireland
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, H91 YR71 Galway, Ireland
| |
Collapse
|
45
|
Immunological Evaluation In Vitro of Nanoparticulate Impurities Isolated From Pharmaceutical-Grade Sucrose. J Pharm Sci 2020; 110:952-958. [PMID: 33220239 DOI: 10.1016/j.xphs.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Sucrose is a commonly used stabilizing excipient in protein formulations. However, recent studies have indicated the presence of nanoparticulate impurities (NPIs) in the size range of 100-200 nm in pharmaceutical-grade sucrose. Furthermore, isolated NPIs have been shown to induce protein aggregation when added to monoclonal antibody formulations. Moreover, nanoparticles are popular vaccine delivery systems used to increase the immunogenicity of antigens. Therefore, we hypothesized that NPIs may have immunostimulatory properties. In this study, we evaluated the immunomodulatory effects of NPIs in presence and absence of trastuzumab in vitro with monocyte-derived dendritic cells (moDCs). Exposure of trastuzumab, the model IgG used in this study, to NPIs led to an increase in concentration of proteinaceous particles in the sub-micron range. When added to moDCs, the NPIs alone or in presence of trastuzumab did not affect cell viability or cytotoxicity. Moreover, no significant effect on the expression of surface markers, and cytokine and chemokine production was observed. Our findings showed, surprisingly, no evidence of any immunomodulatory activity of NPIs. As this study was limited to a single IgG formulation and to in vitro immunological read-outs, further work is required to fully understand the immunogenic potential of NPIs.
Collapse
|
46
|
Del Cornò M, Gessani S, Conti L. Shaping the Innate Immune Response by Dietary Glucans: Any Role in the Control of Cancer? Cancers (Basel) 2020; 12:cancers12010155. [PMID: 31936360 PMCID: PMC7016572 DOI: 10.3390/cancers12010155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
β-glucans represent a heterogeneous group of naturally occurring and biologically active polysaccharides found in many kinds of edible mushrooms, baker’s yeast, cereals and seaweeds, whose health-promoting effects have been known since ancient times. These compounds can be taken orally as food supplements or as part of daily diets, and are safe to use, nonimmunogenic and well tolerated. A main feature of β-glucans is their capacity to function as biological response modifiers, exerting regulatory effects on inflammation and shaping the effector functions of different innate and adaptive immunity cell populations. The potential to interfere with processes involved in the development or control of cancer makes β-glucans interesting candidates as adjuvants in antitumor therapies as well as in cancer prevention strategies. Here, the regulatory effects of dietary β-glucans on human innate immunity cells are reviewed and their potential role in cancer control is discussed.
Collapse
|