1
|
Wadley AJ, Pradana F, Nijjar T, Drayson MT, Lucas SJE, Kinsella FAM, Cox PA. Intra-apheresis Cycling to Improve the Clinical Efficacy of Peripheral Blood Stem Cell Donations. Sports Med 2025; 55:1085-1096. [PMID: 40232588 DOI: 10.1007/s40279-025-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect haemopoietic stem cells (HSCs) for transplantation in individuals with haematological malignancies. More than 90,000 HSC transplants take place globally each year, and there is an increasing need to guarantee HSC mobilisation, improve tolerability to apheresis, and optimise immune reconstitution. Currently, mobilisation of HSCs depends upon pharmacological agents, with donors inactive during their subsequent apheresis. A successful yield of HSCs is not always achieved, and greater efficiency of collection procedures would improve the donors' safety and experience, along with the overall functioning of apheresis departments. The mobilisation of immune cells during bouts of exercise has been increasingly studied over the past 40 years. Exercise enriches peripheral blood with HSCs and immune cells such as cytolytic natural killer cells, and these may impact upon collection efficiency and patient outcomes following transplantation. Using exercise in conjunction with routine pharmaceutical agents may meet these needs. This article describes the impact of exercise on the quantity and engraftment potential of HSCs. Given that PBSC collections take on average 3-4 h per day per donor, and often consecutive days to complete, particular attention is paid to adopting interval exercise in this setting. Moreover, practical and safety considerations for allogeneic and autologous donors are discussed. 'Intra-apheresis cycling' is proposed as a feasible adjunctive strategy to evoke clinically significant improvements in the quality of the immune graft. Further research is needed to validate this concept in conjunction with routine mobilisation agents.
Collapse
Affiliation(s)
- Alex J Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Fendi Pradana
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Nutrition Study Program, Tadulako University, Palu, Indonesia
| | - Tarondeep Nijjar
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Francesca A M Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Birmingham Centre of Cellular Therapy and Transplantation, Queen Elizabeth Hospital, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Huang H, Huang G, Li R, Wei L, Yuan Z, Huang W. Exercise Training After Myocardial Infarction Enhances Endothelial Progenitor Cells Function via NRG-1 Signaling. Cardiovasc Toxicol 2025; 25:411-426. [PMID: 39893285 DOI: 10.1007/s12012-025-09967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Vascular regeneration after myocardial infarction (MI) is essential to improve myocardial ischemia, delay post-infarction ventricular remodeling, and improve the long-term prognosis of MI. Endothelial progenitor cells (EPCs) play important roles in the functional repair and homeostatic maintenance of the vascular endothelium. Exercise training stimulates EPC mobilization and increases the number of circulating EPCs, which has beneficial effects on the restoration of vascular integrity and hemodynamic reconstitution. After post-MI exercise training, cardiac function, the myocardial infarct area, and capillary density in the peri-infarct zone were measured. Bone marrow-derived EPCs were isolated from mice to measure the proliferation, migration, and in vitro angiogenesis of EPCs after myocardial infarction exercise. The expression of NRG-1/ErbB4 signaling factor and related proteins in downstream PI3K/AKT signaling pathway were detected, and the level of autocrine NRG-1 in EPCs was detected. Post-MI resistance training, aerobic exercise training, and combined exercise training increased EPC mobilization and proliferation, migration, and tube-forming capacity, promoted myocardial vascular regeneration, improved cardiac function, and reduced infarct size. Exercise training upregulated NRG-1 expression in EPCs, and NRG-1/ErbB4 signaling activated the downstream PI3K/Akt signaling pathway. Moreover, EPCs may have a positive feedback autocrine loop with NRG-1 to improve the function of EPCs and promote vascular repair and regeneration in mice with MI. Exercise training after MI promotes the function of bone marrow-derived EPCs through NRG-1/ErbB4/PI3K/AKT signaling, thus exerting a role in angiogenesis.
Collapse
Affiliation(s)
- Huai Huang
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guoqiang Huang
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Ruojun Li
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liqin Wei
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhu Yuan
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiqiang Huang
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Li W, Chen L, Mohammad Sajadi S, Baghaei S, Salahshour S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen Ther 2024; 27:464-481. [PMID: 38745840 PMCID: PMC11091462 DOI: 10.1016/j.reth.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Stem cells (SCs) play a crucial role in tissue repair, regeneration, and maintaining physiological homeostasis. Exercise mobilizes and enhances the function of SCs. This review examines the effects of acute and chronic aerobic and resistance exercise on the population of SCs in healthy and diseased individuals across different age groups. Both acute intense exercise and moderate regular training increase circulating precursor cells CD34+ and, in particular, the subset of angiogenic progenitor cells (APCs) CD34+/KDR+. Conversely, chronic exercise training has conflicting effects on circulating CD34+ cells and their function, which are likely influenced by exercise dosage, the health status of the participants, and the methodologies employed. While acute activity promotes transient mobilization, regular exercise often leads to an increased number of progenitors and more sustainable functionality. Short interventions lasting 10-21 days mobilize CD34+/KDR + APCs in sedentary elderly individuals, indicating the inherent capacity of the body to rapidly activate tissue-reparative SCs during activity. However, further investigation is needed to determine the optimal exercise regimens for enhancing SC mobilization, elucidating the underlying mechanisms, and establishing functional benefits for health and disease prevention. Current evidence supports the integration of intense exercise with chronic training in exercise protocols aimed at activating the inherent regenerative potential through SC mobilization. The physical activity promotes endogenous repair processes, and research on exercise protocols that effectively mobilize SCs can provide innovative guidelines designed for lifelong tissue regeneration. An artificial neural network (ANN) was developed to estimate the effects of modifying elderly individuals and implementing chronic resistance exercise on stem cell mobilization and its impact on individuals and exercise. The network's predictions were validated using linear regression and found to be acceptable compared to experimental results.
Collapse
Affiliation(s)
- Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lingzhen Chen
- Department of Sports and Arts, Zhejiang Gongshang University HangZhou College of Commerce, No. 66, South Huancheng Road, Tonglu, Hangzhou, China
| | | | - Sh. Baghaei
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
4
|
Günaştı Ö, Özdemir Ç, Özgünen KT, Çiftdal G, Gezgin E, Eryılmaz SK, Boyraz ÖC, Kılcı A, Adaş Ü, Antmen B, Kurdak SS. Changes in hematopoietic stem cell numbers following acute exercise in non-athlete marathon runners. Adv Med Sci 2024; 69:416-420. [PMID: 39284497 DOI: 10.1016/j.advms.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Hematopoietic stem cell (HSC) transplant is one of the curative methods for some patients with hematological malignancies. Granulocyte colony-stimulating factor (G-CSF) is the most common drug used to mobilize CD34+ cells, generally found in small numbers. Recent evidence showed that exercise causes transient mobilization in HSC. However, the type and intensity of exercise have not been fully revealed. We aimed to detect a significant increase in stem cell levels following 60 min of running at a personalized running pace. MATERIALS/METHODS Eighteen runners, 48.2 ± 1.9 years with peak oxygen consumption of 46.2 ± 1.4 ml/kg/min, were enrolled in the study. The cardiopulmonary exercise test was performed to determine the individual running pace, and the participants ran 60-min on a treadmill at an intensity close to their ventilatory threshold (VT). The blood sampling for HSC count was performed before, immediately after, at the 1st, 4th and 24th hour after the 60-min running. RESULTS The CD34+ HSCs were 13.9 ± 2.3 cells/μl before and significantly increased immediately after to 19.5 ± 3.6 cells/μl (p < 0.05). The consecutive HSC counts were 15.3 ± 2.2, 19.5 ± 4.8 and 15.1 ± 3.4 cells/μl at the 1st, 4th, and 24th hour, respectively. CONCLUSION The individual data showed that some runners had higher HSC levels than the transplantation limit before and after the 60-min running trail, which was maintained for 24 h. Pre-running high CD34+ HSCs may reflect an adaptive response to regular exercise, with a 60-min run near the VT further elevating HSCs. Individualized exercise may be a valuable tool to mobilize the CD34+ HSCs in peripheral blood for donors.
Collapse
Affiliation(s)
- Özgür Günaştı
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Çiğdem Özdemir
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Kerem T Özgünen
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Gizem Çiftdal
- Department of Pediatric Hematology, Acıbadem Adana Hospital, Adana, Turkey
| | - Ertuğrul Gezgin
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Selcen Korkmaz Eryılmaz
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Ömer Cumhur Boyraz
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Abdullah Kılcı
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Ümüt Adaş
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Bülent Antmen
- Department of Pediatric Hematology, Acıbadem Adana Hospital, Adana, Turkey
| | - Sanlı Sadi Kurdak
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey.
| |
Collapse
|
5
|
Pradana F, Nijjar T, Cox PA, Morgan PT, Podlogar T, Lucas SJE, Drayson MT, Kinsella FAM, Wadley AJ. Brief cycling intervals incrementally increase the number of hematopoietic stem and progenitor cells in human peripheral blood. Front Physiol 2024; 15:1327269. [PMID: 39139483 PMCID: PMC11319260 DOI: 10.3389/fphys.2024.1327269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect hematopoietic stem and progenitor cells (HSPCs) for hematopoietic stem cell transplantation. Single bouts of exercise transiently enrich peripheral blood with HSPCs and cytolytic natural killer cells (CD56dim), which are important in preventing post-transplant complications. To provide a rationale to investigate the utility of exercise in a PBSC donation setting (≈3 h), this study aimed to establish whether interval cycling increased peripheral blood HSPC and CD56dim concentrations to a greater degree than continuous cycling. Methods In a randomised crossover study design, eleven males (mean ± SD: age 25 ± 7 years) undertook bouts of moderate intensity continuous exercise [MICE, 30 min, 65%-70% maximum heart rate (HRmax)], high-volume high intensity interval exercise (HV-HIIE, 4 × 4 min, 80%-85% HRmax) and low-volume HIIE (LV-HIIE, 4 × 2 min, 90%-95% HRmax). The cumulative impact of each interval on circulating HSPC (CD34+CD45dimSSClow) and CD56dim concentrations (cells/µL), and the bone marrow homing potential of HSPCs (expression of CXCR-4 and VLA-4) were determined. Results There was an increase in HSPC concentration after two intervals of LV-HIIE (Rest: 1.84 ± 1.55 vs. Interval 2: 2.94 ± 1.34, P = 0.01) and three intervals of HV-HIIE only (Rest: 2.05 ± 0.86 vs. Interval 3: 2.51 ± 1.05, P = 0.04). The concentration of all leukocyte subsets increased after each trial, with this greatest for CD56dim NK cells, and in HIIE vs. MICE (LV-HIIE: 4.77 ± 2.82, HV-HIIE: 4.65 ± 2.06, MICE: 2.44 ± 0.77, P < 0.0001). These patterns were observed for concentration, not frequency of CXCR-4+ and VLA-4+ HSPCs, which was unaltered. There was a marginal decrease in VLA-4, but not CXCR-4 expression on exercise-mobilised HSPCs after all trials (P < 0.0001). Discussion The results of the present study indicate that HIIE caused a more marked increase in HSPC and CD56dim NK cell concentrations than MICE, with mobilised HSPCs maintaining their bone marrow homing phenotype. LV-HIIE evoked an increase in HSPC concentration after just 2 × 2-minute intervals. The feasibility and clinical utility of interval cycling in a PBSC donation context should therefore be evaluated.
Collapse
Affiliation(s)
- Fendi Pradana
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Nutrition Study Program, Faculty of Public Health, Tadulako University, Palu, Indonesia
| | - Tarondeep Nijjar
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phoebe A. Cox
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul T. Morgan
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Tim Podlogar
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | - Francesca A. M. Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Alex J. Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Pax7 + Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis. Sports Med 2023; 53:457-480. [PMID: 36266373 DOI: 10.1007/s40279-022-01767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident muscle stem cells, commonly identified by Pax7+, which expediently donate nuclei to the regenerating multinucleated myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem cells (CD34+) permeating into the surrounding vascular system. OBJECTIVE The purpose of the study was to provide a quantitative estimate for the changes in Pax7+ muscle stem cells (satellite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating CD34+ bone marrow stem cells. A subgroup analysis of age was also performed. METHODS Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 2022. Pax7+ cells in human skeletal muscle were the primary outcome. Circulating CD34+ cells were the secondary outcome. The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise. RESULTS The final search identified 20 studies for Pax7+ cells comprising a total of 370 participants between the average age of 21 and 74 years and 26 studies for circulating CD34+ bone marrow stem cells comprising 494 participants between the average age of 21 and 67 years. Only one study assessed Pax7+ cells immediately after aerobic exercise and showed a 32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect on increasing Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001). Pax7+ cells increased to ~ 50% above pre-exercise level 24-72 h after resistance exercise. For a subgroup analysis of age, a large effect (SMD = 0.81, p < 0.001) was observed on increasing Pax7+ cells in exercised muscle among adults aged > 50 years, whereas adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise showed a medium overall effect in increasing circulating CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to the pre-exercise baseline level after exercise within 6 h. CONCLUSIONS An immediate depletion of Pax7+ cells in exercising skeletal muscle concurrent with a transient release of CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted Pax7+ cell expansion in the muscle can be observed during 24-72 h after resistance exercise. This result provides a scientific basis for exercise recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced Pax7+ cell expansion in muscle remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm whether Pax7+ cell increment can occur after aerobic exercise. CLINICAL TRIAL REGISTRATION Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [identification code CRD42021265457].
Collapse
|
7
|
Mitsiou G, Tokmakidis SP, Dinas PC, Smilios I, Nanas S. Endothelial progenitor cell mobilization based on exercise volume in patients with cardiovascular disease and healthy individuals: a systematic review and meta-analysis. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac078. [PMID: 36583078 PMCID: PMC9793853 DOI: 10.1093/ehjopen/oeac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) play a vital role in protecting endothelial dysfunction and cardiovascular disease (CVD). Physical exercise stimulates the mobilization of EPCs, and along with vascular endothelial growth factor (VEGF), promotes EPC differentiation, and contributes to vasculogenesis. The present meta-analysis examines the exercise-induced EPC mobilization and has an impact on VEGF in patients with CVD and healthy individuals. Database research was conducted (PubMed, EMBASE, Cochrane Library of Controlled Trials) by using an appropriate algorithm to indicate the exercise-induced EPC mobilization studies. Eligibility criteria included EPC measurements following exercise in patients with CVD and healthy individuals. A continuous random effect model meta-analysis (PROSPERO-CRD42019128122) was used to calculate mean differences in EPCs (between baseline and post-exercise values or between an experimental and control group). A total of 1460 participants (36 studies) were identified. Data are presented as standard mean difference (Std.MD) and 95% confidence interval (95% CI). Aerobic training stimulates the mobilization of EPCs and increases VEGF in patients with CVD (EPCs: Std.MD: 1.23, 95% CI: 0.70-1.76; VEGF: Std.MD: 0.76, 95% CI:0.16-1.35) and healthy individuals (EPCs: Std.MD: 1.11, 95% CI:0.53-1.69; VEGF: Std.MD: 0.75, 95% CI: 0.01-1.48). Acute aerobic exercise (Std.MD: 1.40, 95% CI: 1.00-1.80) and resistance exercise (Std.MD: 0.46, 95%CI: 0.10-0.82) enhance EPC numbers in healthy individuals. Combined aerobic and resistance training increases EPC mobilization (Std.MD:1.84, 95% CI: 1.03-2.64) in patients with CVD. Adequate exercise volume (>60%VO2max >30 min; P = 0.00001) yields desirable results. Our meta-analysis supports the findings of the literature. Exercise volume is required to obtain clinically significant results. Continuous exercise training of high-to-moderate intensity with adequate duration as well as combined training with aerobic and resistance exercise stimulates EPC mobilization and increases VEGF in patients with CVD and healthy individuals.
Collapse
Affiliation(s)
- Georgios Mitsiou
- Clinical Ergophysiology and Exercise Physiology Laboratory, Department of Physical Education and Sports Science, Democritus University of Thrace, 69100 Komotini, Greece
- 1st Critical Care Department, Evangelismos General Hospital, Department of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Savvas P Tokmakidis
- Clinical Ergophysiology and Exercise Physiology Laboratory, Department of Physical Education and Sports Science, Democritus University of Thrace, 69100 Komotini, Greece
- 1st Critical Care Department, Evangelismos General Hospital, Department of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Ilias Smilios
- Clinical Ergophysiology and Exercise Physiology Laboratory, Department of Physical Education and Sports Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Serafeim Nanas
- 1st Critical Care Department, Evangelismos General Hospital, Department of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| |
Collapse
|
8
|
Reichel T, Hacker S, Palmowski J, Boßlau TK, Frech T, Tirekoglou P, Weyh C, Bothur E, Samel S, Walscheid R, Krüger K. Neurophysiological Markers for Monitoring Exercise and Recovery Cycles in Endurance Sports. J Sports Sci Med 2022; 21:446-457. [PMID: 36157384 PMCID: PMC9459760 DOI: 10.52082/jssm.2022.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The current study analyzes the suitability and reliability of selected neurophysiological and vegetative nervous system markers as biomarkers for exercise and recovery in endurance sport. Sixty-two healthy men and women, endurance trained and moderately trained, performed two identical acute endurance tests (running trial 1 and running trial 2) followed by a washout period of four weeks. Exercise protocol consisted of an acute running trial lasting 60 minutes. An intensity corresponding to 95% of the heart rate at individual anaerobic threshold for 40 minutes was followed by 20 minutes at 110%. At pre-exercise, post-exercise, three hours post-exercise and 24 hours post-exercise, experimental diagnostics on Brain-derived neurotrophic factor (BDNF), heart rate variability (HRV), Stroop Color and Word Test (SCWT), and Short-Form McGill Pain Questionnaire (SF-MPQ) were performed. Significant changes over time were found for all parameters (p < .05). Furthermore, there was an approached statistical significance in the interaction between gender and training status in BDNF regulation (F(3) = 2.43; p = 0.06), while gender differences were found only for LF/HF-ratio (3hPoEx, F(3) = 3.40; p = 0.002). Regarding the reliability, poor ICC-values (< 0.5) were found for BDNF, Stroop sensitivity and pNN50, while all other parameters showed moderate ICC-values (0.5-0.75). Plasma-BDNF, SCWT performance, pain perception and all HRV parameters are suitable exercise-sensitive markers after an acute endurance exercise. Moreover, pain perception, SCWT reaction time and all HRV parameters show a moderate reliability, others rather poor. In summary, a selected neurophysiological and vegetative marker panel can be used to determine exercise load and recovery in endurance sports, but its repeatability is limited due to its vaguely reliability.
Collapse
Affiliation(s)
- Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Sebastian Hacker
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Jana Palmowski
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Tim Konstantin Boßlau
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Torsten Frech
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Paulos Tirekoglou
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| | - Evita Bothur
- Medical Center for Laboratory Medicine and Microbiology, Koblenz-Mittelrhein, Germany
| | - Stefan Samel
- Medical Center for Laboratory Medicine and Microbiology, Koblenz-Mittelrhein, Germany
| | - Rüdiger Walscheid
- Medical Center for Laboratory Medicine and Microbiology, Koblenz-Mittelrhein, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
9
|
Vasconcelos ABS, Aragão-Santos JC, de Resende-Neto AG, Rodrigues LS, Corrêa CB, Schimieguel DM, Camargo EA, de Paula Ramos S, Da Silva-Grigoletto ME. Effects of functional and combined training on subsets of memory T cells and functional fitness of postmenopausal women: A randomized controlled trial. Exp Gerontol 2022; 167:111898. [PMID: 35863693 DOI: 10.1016/j.exger.2022.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
This study investigated the effects of functional (FT) and combined (CT) training on memory T cells and functional fitness of postmenopausal women. 108 participants were randomly allocated to the control (CG), FT and CT groups. Functional fitness was assessed through physical tests similar to daily activities, such as dressing on and taking off a t-shirt (DTTS), 10-meter walking and countermovement jump. The CCR7 and CD45RA surface markers were used to characterize the memory T cells. Regarding the frequency of memory T cells, both training protocols reduced the percentage of CD4+ Terminally Differentiated Effector Memory T Cells Re-Expressing CD45RA (TEMRA) (FT: -38.73 %, p = 0.0455; CT: -30.43 %, p = 0.0036) and CD8+ TEMRA cells (FT: -22.24 %, p < 0.0013; CT: -13.13 %, p = 0.0051). Also, both FT and CT increased the percentage of central memory (TCM) CD4+ (FT: +55.22 %, p = 0.0104; CT: +68.03 %, p = 0.0167) and CD8+ (FT: +142.00 %, p < 0.0001; CT: +83.76 %, p = 0.0001) T cells. Furthermore, FT and CT increased the percentages of CD8+ effector memory T cells (TEM) (FT: +63.58 %, p < 0.0001; CT: +14.12 %, p = 0.0041). Regarding functional fitness, both training protocols reduced the time required to perform the DTTS (FT: -19.71 %, p < 0.0001; CT: -14.69 %, p < 0.0001) and 10-m walk tests (FT: -13.05 %, p < 0.0001; CT: -12.83 %, p < 0.0001), in addition to improving jumping ability (FT: +29.97 %, p < 0.0001; CT: +20.00 %, p < 0.0001), both compared to the pre-test or to the CG. Therefore, both FT and CT seem to be equally effective alternatives for promoting the reduction of CD4+ and CD8+ TEMRA cells, increasing the frequency of TCM and TEM cells, and improving functional fitness of postmenopausal women.
Collapse
Affiliation(s)
- Alan Bruno Silva Vasconcelos
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - José Carlos Aragão-Santos
- Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Antônio Gomes de Resende-Neto
- Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Cristiane Bani Corrêa
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Enilton Aparecido Camargo
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Marzo Edir Da Silva-Grigoletto
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
10
|
Cavalcante S, Teixeira M, Duarte A, Ferreira M, Simões MI, Conceição M, Costa M, Ribeiro IP, Gonçalves AC, Oliveira J, Ribeiro F. Endothelial Progenitor Cell Response to Acute Multicomponent Exercise Sessions with Different Durations. BIOLOGY 2022; 11:biology11040572. [PMID: 35453771 PMCID: PMC9025950 DOI: 10.3390/biology11040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022]
Abstract
It is widely accepted that exercise training has beneficial effects on vascular health. Although a dose-dependent relation has been suggested, little is known about the effects of different exercise durations on endothelial markers. This study aimed to assess the effect of single exercise sessions with different durations in the circulating levels of endothelial progenitor cells (EPCs) and endothelial cells (CECs) among adults with cardiovascular risk factors. Ten participants performed two multicomponent exercise sessions, one week apart, lasting 30 and 45 min (main exercise phase). Before and after each exercise session, blood samples were collected to quantify EPCs and CECs by flow cytometry. The change in EPCs was significantly different between sessions by 3.0% (95% CI: 1.3 to 4.7), being increased by 1.8 ± 1.7% (p = 0.009) in the 30 min session vs. −1.2 ± 2.0% (p > 0.05) in the 45 min session. No significant change was observed in CECs [−2.0%, 95%CI: (−4.1 to 0.2)] between the sessions. In conclusion, a multicomponent exercise session of 30 min promotes an acute increase in the circulating levels of EPCs without increasing endothelial damage (measured by the levels of CECs) among adults with cardiovascular risk factors.
Collapse
Affiliation(s)
- Suiane Cavalcante
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal; (S.C.); (J.O.)
| | - Manuel Teixeira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Duarte
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Miriam Ferreira
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Maria I. Simões
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Maria Conceição
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Mariana Costa
- Câmara Municipal de Oliveira do Bairro—Projeto Não Fique Parado, 3800-120 Aveiro, Portugal;
| | - Ilda P. Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal;
- Institute for Clinical and Biomedical Research (iCBR), Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Institute for Clinical and Biomedical Research (iCBR)—Group of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal;
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - José Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal; (S.C.); (J.O.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Fernando Ribeiro
- Institute of Biomedicine—iBiMED, School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
11
|
The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur J Appl Physiol 2022; 122:1589-1625. [PMID: 35305142 PMCID: PMC9197818 DOI: 10.1007/s00421-022-04921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. OBJECTIVES to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials, respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4 min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype.
Collapse
|
12
|
Tan AYW, Hamzah SH, Huang CY, Kuo CH. Pre-exercise Carbohydrate Drink Adding Protein Improves Post-exercise Fatigue Recovery. Front Physiol 2021; 12:765473. [PMID: 34880778 PMCID: PMC8647857 DOI: 10.3389/fphys.2021.765473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose: This study aimed to assess the requirement of protein in pre-exercise carbohydrate drinks for optimal endurance performance at high intensity and post-exercise fatigue recovery. Methods: Endurance performance at 85% V.O2peak of young men (age 20 ± 0.9 years, V.2peak 49.3 ± 0.3 L/min) was measured for two consecutive days using cycling time to exhaustion and total work exerted 2 h after three isocaloric supplementations: RICE (50 g, protein: 1.8 g), n = 7; SOY + RICE (50 g, protein: 4.8 g), n = 7; and WHEY + RICE (50 g, protein: 9.2 g), n = 7. Results: Endurance performance was similar for the three supplemented conditions. Nevertheless, maximal cycling time and total exerted work from Day 1 to Day 2 were improved in the WHEY + RICE (+21%, p = 0.05) and SOY-RICE (+16%, p = 0.10) supplemented conditions, not the RICE supplemented condition. Increases in plasma interleukin-6 (IL-6) were observed 1 h after exercise regardless of supplemented conditions. Plasma creatine kinase remained unchanged after exercise for all three supplemented conditions. Increases in ferric reducing antioxidant power (FRAP) after exercise were small and similar for the three supplemented conditions. Conclusion: Adding protein into carbohydrate drinks provides no immediate benefit in endurance performance and antioxidant capacity yet enhances fatigue recovery for the next day. Soy-containing carbohydrate drink, despite 50% less protein content, shows similar fatigue recovery efficacy to the whey protein-containing carbohydrate drink. These results suggest the importance of dietary nitrogen sources in fatigue recovery after exercise.
Collapse
Affiliation(s)
- Albert Yi-Wey Tan
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Sareena-Hanim Hamzah
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| |
Collapse
|
13
|
Ueda N, Musashi M, Shimoda T, Kawaguchi Y, Ohkubo I, Nakagawa Y. Involvement of G-CSF, IL-6, and cortisol in transient neutrophilia after marathon races. Eur J Haematol 2021; 107:583-591. [PMID: 34342052 DOI: 10.1111/ejh.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to clarify the mechanisms of the transient increase in neutrophils after running standard marathon races by measurement of cytokines involved in the production and survival of neutrophils, and cortisol. METHODS Fourteen male runners who participated in the Hokkaido Marathon, which is the sole marathon race held in summer in Japan, and finished the standard marathon were analyzed sequentially from the start until a maximum of 8 days after the finish. RESULTS Neutrophilia was observed in all runners just after they reached the goal (mean neutrophils: 13 226/μL). IL-6, G-CSF, and cortisol, but not GM-CSF, increased at the same time. Time-course studies with complete blood counts, biochemical markers, cytokines, and cortisol showed transient increases in neutrophils, monocytes, myoglobin, high-sensitivity C-reactive protein (hsCRP), G-CSF, IL-6, and cortisol. The increase in hsCRP was delayed 6 hours from the first increase in neutrophils. Correlations were observed between the neutrophil count and G-CSF, IL-6, and cortisol (G-CSF; r = .667, IL-6; r = .667, cortisol; r = .623). CONCLUSION These results suggest that G-CSF is directly involved, and IL-6 is involved via cortisol in the transient neutrophilia that occurs after marathon races.
Collapse
Affiliation(s)
- Naho Ueda
- Master Course, Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Manabu Musashi
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Taeko Shimoda
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Yuichi Kawaguchi
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Iwao Ohkubo
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Yukie Nakagawa
- Division of Nutrition Management, Graduate School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| |
Collapse
|
14
|
Individuals with controlled hypertension show endothelial integrity following a bout of moderate-intensity exercise: randomized clinical trial. Sci Rep 2021; 11:8528. [PMID: 33879820 PMCID: PMC8058090 DOI: 10.1038/s41598-021-87990-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/07/2021] [Indexed: 01/30/2023] Open
Abstract
To examine the acute effects of aerobic exercise (AE), resistance exercise (RE) or combined exercise (CE) on flow-mediated dilation (FMD), progenitor cells (PCs), endothelial progenitor cells (EPCs), oxidative stress markers and endothelial-cell derived microvesicles (EMVs) in patients with hypertension. This is a randomized, parallel-group clinical trial involving an intervention of one session of three different modalities of exercise. Thirty-three males (43 ± 2y) were randomly divided into three groups: a session of AE (n = 11, 40 min, cycle ergometer, 60% HRR); a session of RE (n = 11, 40 min, 4 × 12 lower limb repetitions, 60% 1-RM); or a session of CE (n = 11, 20-min RE + 20-min AE). FMD was assessed 10 min before and 10, 40 and 70 min post-intervention. Blood samples were collected at the same time points (except 40 min). FMD were similar in all groups and from baseline (within each group) after a single exercise bout (AE, RE or CE). At 70 min, RE group showed higher levels of PCs compared to the AE (81%) and CE group (60%). PC levels were reduced from baseline in all groups (AE: 32%, p = 0.037; RE: 15%, p = 0.003; CE: 17%, p = 0.048). The levels of EPCs, EMVs and oxidative stress were unchanged. There were no acute effects of moderate-intensity exercise on FMD, EPCs, EMVs and oxidative stress, but PCs decreased regardless of the exercise modality. Individuals with controlled hypertension do not seem to have impaired vascular function in response to a single exercise bout.
Collapse
|
15
|
Schmid M, Kröpfl JM, Spengler CM. Changes in Circulating Stem and Progenitor Cell Numbers Following Acute Exercise in Healthy Human Subjects: a Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 17:1091-1120. [PMID: 33389632 PMCID: PMC8316227 DOI: 10.1007/s12015-020-10105-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Despite of the increasing number of investigations on the effects of acute exercise on circulating stem and progenitor cell (SC) numbers, and in particular on respective subgroups, i.e. endothelial (ESC), hematopoietic (HSC), and mesenchymal (MSC) stem and progenitor cells, a consensus regarding mechanisms and extent of these effects is still missing. The aim of this meta-analysis was to systematically evaluate the overall-effects of acute exercise on the different SC-subgroups and investigate possible subject- and intervention-dependent factors affecting the extent of SC-mobilization in healthy humans. Trials assessing SC numbers before and at least one timepoint after acute exercise, were identified in a systematic computerized search. Compared to baseline, numbers were significantly increased for early and non-specified SCs (enSCs) until up to 0.5 h after exercise (0–5 min: +0.64 [Standardized difference in means], p < 0.001; 6–20 min: +0.42, p < 0.001; 0.5 h: +0.29, p = 0.049), for ESCs until 12–48 h after exercise (0–5 min: +0.66, p < 0.001; 6–20 min: +0.43 p < 0.001; 0.5 h: +0.43, p = 0.002; 1 h: +0.58, p = 0.001; 2 h: +0.50, p = 0.002; 3–8 h: +0.70, p < 0.001; 12–48 h: +0.38, p = 0.003) and for HSCs at 0–5 min (+ 0.47, p < 0.001) and at 3 h after exercise (+ 0.68, p < 0.001). Sex, intensity and duration of the intervention had generally no influence. The extent and kinetics of the exercise-induced mobilization of SCs differ between SC-subpopulations. However, also definitions of SC-subpopulations are non-uniform. Therefore, finding a consensus with a clear definition of cell surface markers defining ESCs, HSCs and MSCs is a first prerequisite for understanding this important topic. ![]()
Collapse
Affiliation(s)
- M Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Schmid M, Gruber HJ, Kröpfl JM, Spengler CM. Acute Exercise-Induced Oxidative Stress Does Not Affect Immediate or Delayed Precursor Cell Mobilization in Healthy Young Males. Front Physiol 2020; 11:577540. [PMID: 33192581 PMCID: PMC7606978 DOI: 10.3389/fphys.2020.577540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Exercise is known to acutely and transiently mobilize precursor cells to the peripheral blood. To date, the underlying mechanisms have not yet been fully elucidated and we hypothesized that exercise-induced oxidative stress could be a mobilizing agent, either directly or via circulating apoptotic cells as mediators. The aim of the study was to assess the effect of acute exercise-induced oxidative stress on numbers of circulating angiogenic precursor cells (CACs), circulating non-angiogenic precursor cells (nCACs), mesenchymal precursor cells (MPCs), mature endothelial cells (ECs), and mononuclear cells (MNCs), as well as their apoptotic subsets. Healthy, young males (n = 18, age: 24.2 ± 3.5 years) completed two identical, standardized incremental cycling tests. The first, un-supplemented control test was followed by a 7-day-long supplementation of vitamin C (1,000 mg/day) and E (400 I.U./day), immediately preceding the second test. Blood samples were collected before, directly after, 30, 90, 180, and 270 min after exercise, and aforementioned circulating cell numbers were determined by flow cytometry and a hematology analyzer. Additionally, total oxidative capacity (TOC) and total antioxidative capacity (TAC) were measured in serum at all timepoints. Antioxidative supplementation abolished the exercise-induced increase in the oxidative stress index (TOC/TAC), and reduced baseline concentrations of TOC and TOC/TAC. However, it did not have any effect on CACs, nCACs, and MPC numbers or the increase in apoptotic MNCs following exercise. Our results indicate that exercise-induced oxidative stress is neither a main driver of lymphocyte and monocyte apoptosis, nor one of the mechanisms involved in the immediate or delayed mobilization of precursor cells.
Collapse
Affiliation(s)
- Michelle Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Ghanimati R, Rajabi H, Ramezani F, Ramez M, Bapiran M, Nasirinezhad F. The effect of preconditioning with high-intensity training on tissue levels of G-CSF, its receptor and C-kit after an acute myocardial infarction in male rats. BMC Cardiovasc Disord 2020; 20:75. [PMID: 32046645 PMCID: PMC7011373 DOI: 10.1186/s12872-020-01380-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/06/2020] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Exercise training is known as a practical way to increase cardioprotection against stress, and it seems that stem cell recruitment is one of its mechanisms. The purpose of the present study was to investigate the effect of preconditioning with High-intensity interval training (HIIT) on tissue levels of G-CSF, its receptor and C-Kit following acute myocardial infarction in male rats. METHODS Twenty Male Wistar rats were randomly divided into 4 groups of control, MI, HIIT, and HIIT+MI. Training groups performed 2 weeks of high intensity interval training in 4 sections. The first section consisted training in 3 days and 2 sessions in each day (4 × 2 min with 35-40 m/min and 3 × 2 min with 25-30 m/min between high intervals. The second part included 2 days of training (4 × 2 min with 40 to 45 m/min and 3 × 2 min with 28 to 32 m /min). The third part was performed in 3 days with one more repetition. The fourth section consisted 2 days of training and with one more repetition compared to section 3. For induction of myocardial infarction, subcutaneous injection of isoprenaline was used. CK, total CK, LDH, and troponin T were measured in serum and G-CSF, G-CSFR and C-Kit proteins were measured by the Western Blot method in the heart tissue. RESULTS The results of this study showed that enzymes of CK, total CK, LDH, troponin T had a significant increase in both MI and HIIT+MI groups compared to the other two groups (P < 0.001) and these indices in the MI group were significantly higher than the HIIT+MI group. Also, the results demonstrated that G-CSF, G-CSFR and C-Kit protein expression in the heart tissue significantly increased after MI. As well as, 2 weeks of HIIT training significantly increased G-CSF and C-kit in the training group compared to the control group, but the training caused that these proteins does not increase in HIIT+MI group as much as MI group. CONCLUSIONS Along with other protective pathways, high intensity interval training can increase cardioprotection and decrease heart injuries through the increase in G-CSF, G-CSFR and C-kit level.
Collapse
Affiliation(s)
- Reza Ghanimati
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center and Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ramez
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Bapiran
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Papanikolaou K, Draganidis D, Chatzinikolaou A, Laschou VC, Georgakouli K, Tsimeas P, Batrakoulis A, Deli CK, Jamurtas AZ, Fatouros IG. The redox-dependent regulation of satellite cells following aseptic muscle trauma (SpEED): study protocol for a randomized controlled trial. Trials 2019; 20:469. [PMID: 31366396 PMCID: PMC6668149 DOI: 10.1186/s13063-019-3557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 01/10/2023] Open
Abstract
Background Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and the production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods/design Based on the SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated-measures design, participants will then receive either placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for eight consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2 and 8 days post exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial should provide insight into (1) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and (2) whether skeletal muscle’s potential for regeneration depends on its basal SCs content. Trial registration ClinicalTrials.gov, ID: NCT03711838. Registered on 19 Oct 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3557-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Dimitrios Draganidis
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Chatzinikolaou
- School of Physical Education and Sport Sciences, Democritus University of Thrace, 69100, Komotini, Greece
| | - Vassiliki C Laschou
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Kalliopi Georgakouli
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Panagiotis Tsimeas
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Alexios Batrakoulis
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Chariklia K Deli
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Ioannis G Fatouros
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece.
| |
Collapse
|
19
|
Philippe M, Gatterer H, Burtscher M, Weinberger B, Keller M, Grubeck-Loebenstein B, Fleckenstein J, Alack K, Krüger K. Concentric and Eccentric Endurance Exercise Reverse Hallmarks of T-Cell Senescence in Pre-diabetic Subjects. Front Physiol 2019; 10:684. [PMID: 31214051 PMCID: PMC6558034 DOI: 10.3389/fphys.2019.00684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
The peripheral T-cell pool undergoes a striking age associated remodeling which is accelerated by progressive insulin resistance. Exercise training is known to delay several aspects of T-cell senescence. The purpose of the current study was to investigate the effect of 3 weeks regular concentric or eccentric endurance exercise training on the composition of the T-cell compartment in pre-diabetic subjects. Sixteen male older adults with impaired glucose tolerance were recruited and performed either concentric exercise (CE) or eccentric exercise (EE) walking 3 times a week for 3 weeks. Fasting venous blood sampling was performed before training and after the training intervention. Various T-cell subpopulations were analyzed by flow cytometry. We did not find significant time × group effects (interaction) but found several significant time effects for cell type ratios and cell subsets proportions. There was an increase of the CD4+/CD8+ (0.55 ± 0.85%; p = 0.033) and CD4+/CD3+ ratio (5.63 ± 8.44%; p = 0.018) and a decrease of the CD8+/CD3+ ratio (-0.95 ± 1.64%; p = 0.049) after training. We found proportional increases of CD4+/CCR7+/CD45RO+ central memory cells (5.02 ± 7.68%; p = 0.030), naïve CD8+/CCR7+/CD45RO- (3.00 ± 6.68%; p = 0.047) and CD8+/CCR7+/CD45RO+ central memory cells (3.01 ± 3.70%; p = 0.009), while proportions of CD4+/CCR7-/CD45RO- TEMRA cells (-2.17 ± 4.66%; p = 0.012), CD8+/CCR7-/CD45RO- TEMRA cells (-5.11 ± 7.02%; p = 0.018) and CD16+ cells (-4.67 ± 6.45%; p = 0.016) decreased after training. 3 weeks of either CE or EE were effective in reversing hallmarks of T-cell senescence in pre-diabetic subjects. It is suggested that exercise stimulates production and mobilization of naïve T-cells, while differentiated TEMRA cells might disappear by apoptosis.
Collapse
Affiliation(s)
- Marc Philippe
- Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Giessen, Germany
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
- Department of Health Promotion and Prevention, Swiss Lung Association, St. Gallen, Switzerland
| | - Hannes Gatterer
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bozen, Italy
| | - Martin Burtscher
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Michael Keller
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Fleckenstein
- Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Giessen, Germany
| | - Katharina Alack
- Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Giessen, Germany
| | - Karsten Krüger
- Department Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
20
|
Niemiro GM, Edwards T, Barfield JP, Beals JW, Broad EM, Motl RW, Burd NA, Pilutti LA, DE Lisio M. Circulating Progenitor Cell Response to Exercise in Wheelchair Racing Athletes. Med Sci Sports Exerc 2018; 50:88-97. [PMID: 28806276 DOI: 10.1249/mss.0000000000001402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Circulating progenitor cells (CPC) are a heterogeneous population of stem/progenitor cells in peripheral blood that participate in tissue repair. CPC mobilization has been well characterized in able-bodied persons but has not been previously investigated in wheelchair racing athletes. The purpose of this study was to characterize CPC and CPC subpopulation mobilization in elite wheelchair racing athletes in response to acute, upper-extremity aerobic exercise to determine whether CPC responses are similar to ambulatory populations. METHODS Eight participants (three females; age = 27.5 ± 4.0 yr, supine height = 162.5 ± 18.6 cm, weight = 53.5 ± 10.9 kg, V˙O2peak = 2.4 ± 0.62 L·min, years postinjury = 21.5 ± 6.2 yr) completed a 25-km time trial on a road course. Blood sampling occurred before and immediately after exercise for quantification of CPC (CD34), hematopoietic stem and progenitor cells (HSPC) (CD34/CD45), hematopoietic stem cells (HSC) (CD34/CD45/CD38), CD34 adipose tissue (AT)-derived mesenchymal stromal cells (MSC) (CD45/CD34/CD105/CD31), CD34 bone marrow (BM)-derived MSC (CD45/CD34/CD105/CD31), and endothelial progenitor cells (EPC) (CD45/CD34/VEGFR2) via flow cytometry. Blood lactate was measured before and after trial as an indicator of exercise intensity. RESULTS CPC concentration increased 5.7-fold postexercise (P = 0.10). HSPC, HSC, EPC, and both MSC populations were not increased postexercise. Baseline HSPC populations were significantly positively correlated to absolute V˙O2peak (rho = 0.71, P < 0.05) with HSC trending to positively correlate to V˙O2peak (rho = 0.62, P = 0.10). AT-MSC populations were trending to be negatively correlated to baseline V˙O2peak (rho = -0.62, P = 0.058). The change in CPC, EPC, and AT-MSC pre- and postexercise significantly positively correlated to the change in lactate concentrations (rho = 0.91 P = 0.002, 0.71 P = 0.047, 0.81 P = 0.02, respectively, all P < 0.05). CONCLUSION These data suggest that CPC content in wheelchair racing athletes is related to cardiorespiratory fitness, and responses to exercise are positively related to exercise intensity.
Collapse
Affiliation(s)
- Grace M Niemiro
- 1Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; 2Department of Health and Human Performance, Radford University, Radford, VA; 3U.S. Paralympics, Colorado Springs, CO; 4Department of Physical Therapy, University of Alabama-Birmingham, Birmingham, AL; 5Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, CANADA; and 6School of Human Kinetics, Brain and Mind Research Institute, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, CANADA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Agha NH, Baker FL, Kunz HE, Graff R, Azadan R, Dolan C, Laughlin MS, Hosing C, Markofski MM, Bond RA, Bollard CM, Simpson RJ. Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the β 2-adrenergic receptor. Brain Behav Immun 2018; 68:66-75. [PMID: 29017969 PMCID: PMC6980177 DOI: 10.1016/j.bbi.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/21/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Acute dynamic exercise mobilizes CD34+ hematopoietic stem cells (HSCs) to the bloodstream, potentially serving as an economical adjuvant to boost the collection of HSCs from stem cell transplant donors. The mechanisms responsible for HSC mobilization with exercise are unknown but are likely due to hemodynamic perturbations, endogenous granulocyte-colony stimulating factor (G-CSF), and/or β2-adrenergic receptor (β2-AR) signaling. We characterized the temporal response of HSC mobilization and plasma G-CSF following exercise, and determined the impact of in vivo β-AR blockade on the exercise-induced mobilization of HSCs. Healthy runners (n = 15) completed, in balanced order, two single bouts of steady state treadmill running exercise at moderate (lasting 90-min) or vigorous (lasting 30-min) intensity. A separate cohort of healthy cyclists (n = 12) completed three 30-min cycling ergometer trials at vigorous intensity after ingesting: (i) 10 mg bisoprolol (β1-AR antagonist); (ii) 80 mg nadolol (β1 + β2-AR antagonist); or (iii) placebo, in balanced order with a double-blind design. Blood samples collected before, during (runners only), immediately after, and at several points during exercise recovery were used to determine circulating G-CSF levels (runners only) and enumerate CD34+ HSCs by flow cytometry (runners and cyclists). Steady state vigorous but not moderate intensity exercise mobilized HSCs, increasing the total blood CD34+ count by ∼4.15 ± 1.62 Δcells/µl (+202 ± 92%) compared to resting conditions. Plasma G-CSF increased in response to moderate but not vigorous exercise. Relative to placebo, nadolol and bisoprolol lowered exercising heart rate and blood pressure to comparable levels. The number of CD34+ HSCs increased with exercise after the placebo and bisoprolol trials, but not the nadolol trial, suggesting β2-AR signaling mediated the mobilization of CD34+ cells [Placebo: 2.10 ± 1.16 (207 ± 69.2%), Bisoprolol 1.66 ± 0.79 (+163 ± 29%), Nadolol: 0.68 ± 0.54 (+143 ± 36%) Δcells/µL]. We conclude that the mobilization of CD34+ HSCs with exercise is not dependent on circulating G-CSF and is likely due to the combined actions of β2-AR signaling and hemodynamic shear stress.
Collapse
Affiliation(s)
- Nadia H Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Forrest L Baker
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Hawley E Kunz
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Rachel Graff
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Rod Azadan
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Chad Dolan
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Mitzi S Laughlin
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa M Markofski
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington D.C., USA
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman Street, Houston, TX 77204, USA; Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA; Department of Pediatrics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
22
|
Ribeiro F, Ribeiro IP, Gonçalves AC, Alves AJ, Melo E, Fernandes R, Costa R, Sarmento-Ribeiro AB, Duarte JA, Carreira IM, Witkowski S, Oliveira J. Effects of resistance exercise on endothelial progenitor cell mobilization in women. Sci Rep 2017; 7:17880. [PMID: 29259281 PMCID: PMC5736626 DOI: 10.1038/s41598-017-18156-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
This study aimed to determine the effect of a single bout of resistance exercise at different intensities on the mobilization of circulating EPCs over 24 hours in women. In addition, the angiogenic factors stromal cell-derived factor 1 (SDF-1α), vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1-alpha (HIF-1α) and erythropoietin (EPO) were measured as potential mechanisms for exercise-induced EPCs mobilization. Thirty-eight women performed a resistance exercise session at an intensity of 60% (n = 13), 70% (n = 12) or 80% (n = 13) of one repetition maximum. Each session was comprised of three sets of 12 repetitions of four exercises: bench press, dumbbell curl, dumbbell squat, and standing dumbbell upright row. Blood was sampled at baseline and immediately, 6 hours, and 24 hours post-exercise. Circulating EPC and levels of VEGF, HIF-1α and EPO were significantly higher after exercise (P < 0.05). The change in EPCs from baseline was greatest in the 80% group (P < 0.05), reaching the highest at 6 hours post-exercise. The change in EPCs from baseline to 6 hours post-exercise was correlated with the change in VEGF (r = 0.492, P = 0.002) and HIF-1α (r = 0.388, P = 0.016). In general, a dose-response relationship was observed, with the highest exercise intensities promoting the highest increases in EPCs and angiogenic factors.
Collapse
Affiliation(s)
- Fernando Ribeiro
- School of Health Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| | - Ilda P Ribeiro
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
| | - Ana C Gonçalves
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal.,Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, and Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Alberto J Alves
- Research Centre in Sports Sciences, Health and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal
| | - Elsa Melo
- School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Raquel Fernandes
- School of Health Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rui Costa
- School of Health Sciences and CINTESIS.UA, University of Aveiro, Aveiro, Portugal
| | - Ana B Sarmento-Ribeiro
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal.,Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, and Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal.,Hematology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - José A Duarte
- Research Center in Physical Activity, Health and Leisure, CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal
| | - Isabel M Carreira
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - José Oliveira
- Research Center in Physical Activity, Health and Leisure, CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators Inflamm 2017; 2017:7517350. [PMID: 29362521 PMCID: PMC5738577 DOI: 10.1155/2017/7517350] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was originally discovered in the context of hematopoiesis. However, the identification of the G-CSF receptor (G-CSFR) being expressed outside the hematopoietic system has revealed wider roles for G-CSF, particularly in tissue repair and regeneration. Skeletal muscle damage, including that following strenuous exercise, induces an elevation in plasma G-CSF, implicating it as a potential mediator of skeletal muscle repair. This has been supported by preclinical studies and clinical trials investigating G-CSF as a potential therapeutic agent in relevant disease states. This review focuses on the growing literature associated with G-CSF and G-CSFR in skeletal muscle under healthy and disease conditions and highlights the current controversies.
Collapse
|
24
|
Krüger K, Alack K, Ringseis R, Mink L, Pfeifer E, Schinle M, Gindler K, Kimmelmann L, Walscheid R, Muders K, Frech T, Eder K, Mooren FC. Apoptosis of T-Cell Subsets after Acute High-Intensity Interval Exercise. Med Sci Sports Exerc 2017; 48:2021-9. [PMID: 27183117 DOI: 10.1249/mss.0000000000000979] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION High-intensity interval training (HIT) exercise has gained much interest in both performance and recreational sports. This study aims to compare the effect of HIT versus continuous (CONT) exercise with regard to changes of circulating T cells and progenitor cells. METHODS Subjects (n = 23) completed an HIT test and an isocaloric CONT test. Blood samples were collected before, immediately after, and 3 and 24 h postexercise for the assessment of low differentiated (CD3CD28CD57), highly differentiated T cells (CD3CD28CD57), regulatory T cells (Tregs) (CD4CD25CD127), hematopoietic progenitor cells (CD45CD34), and endothelial progenitor cells (CD45CD34KDR) by flow cytometry. The detection of apoptosis was performed by using labeling with annexin V. To analyze potential mechanisms affecting T cells, several hormones and metabolites were analyzed. RESULTS Both exercise tests induced an increase of catecholamines, cortisol, and thiobarbituric acid-reactive substances (P < 0.05). CONT induced a higher increase of apoptosis in low differentiated T cells compared with the HIT (CONT: 3.66% ± 0.21% to 6.48% ± 0.29%, P < 0.05; HIT: 3.43% ± 0.31% to 4.71% ± 0.33%), whereas HIT was followed by a higher rate of apoptotic highly differentiated T cells (CONT: 21.45% ± 1.23% to 25.32% ± 1.67%; HIT: 22.45% ± 1.37% to 27.12% ± 1.76%, P < 0.05). Regarding Tregs, HIT induced a mobilization, whereas CONT induced apoptosis in these cells (P < 0.05). The mobilization of progenitor cells did not differ between the exercise protocols. CONCLUSION These results suggest that HIT deletes mainly highly differentiated T cells known to affect immunity to control latent infections. By contrast, CONT deletes mainly low differentiated T cells and Tregs, which might affect defense against new infectious agents.
Collapse
Affiliation(s)
- Karsten Krüger
- 1Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, GERMANY; 2Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen, GERMANY; and 3MVZ for Laboratory Medicine, Koblenz, GERMANY
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Niemiro GM, Parel J, Beals J, van Vliet S, Paluska SA, Moore DR, Burd NA, De Lisio M. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol (1985) 2017; 122:675-682. [DOI: 10.1152/japplphysiol.00936.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that includes hematopoietic stem and progenitor cells (HSPCs and HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs) that are involved in tissue repair and adaptation. CPC mobilization during exercise remains uncharacterized in young adults. The purpose of this study was to investigate the kinetics of CPC mobilization during and after submaximal treadmill running and their relationship to mobilization factors. Seven men [age = 25.3 ± 2.4 yr, body mass index = 23.5 ± 1.0 kg/m2, peak O2uptake (V̇o2peak) = 60.9 ± 2.74 ml·kg−1·min−1] ran on a treadmill for 60 min at 70% V̇o2peak. Blood sampling occurred before (Pre), during [20 min (20e), 40 min (40e), 60 min (60e)], and after exercise [15 min (15p), 60 min (60p), 120 min (120p)] for quantification of CPCs (CD34+), HSPCs (CD34+/CD45low), HSCs (CD34+/CD45low/CD38−), CD34+MSCs (CD45−/CD34+/CD31−/CD105+), CD34−MSCs (CD45−/CD34−/CD31−/CD105+), and EPCs (CD45−/CD34+/CD31+) via flow cytometry. CPC concentration increased compared with Pre at 20e and 40e (2.7- and 2.4-fold, respectively, P < 0.05). HSPCs and HSCs increased at 20e compared with 60p (2.7- and 2.8-fold, respectively, P < 0.05), whereas EPCs and both MSC populations did not change. CXC chemokine ligand (CXCL) 12 (1.5-fold; P < 0.05) and stem cell factor (1.3-fold; P < 0.05) were increased at 40e and remained elevated postexercise. The peak increase in CPCs was positively correlated to concentration of endothelial cells during exercise with no relationship to CXCL12 and SCF. Our data show the kinetics of progenitor cell mobilization during exercise that could provide insight into cellular mediators of exercise-induced adaptations, and have implication for the use of exercise as an adjuvant therapy for CPC collection in hematopoietic stem cell transplant.NEW & NOTEWORTHY Using a comprehensive evaluation of circulating progenitor cells (CPCs), we show that CPC mobilization during exercise is related to tissue damage, and not plasma concentrations of CXC chemokine ligand 12 and stem cell factor. These data have implications for the use of exercise interventions as adjuvant therapy for CPC mobilization in the context of hematopoietic stem cell transplant and also support the role of mobilized progenitor cells as cellular mediators of systemic adaptations to exercise.
Collapse
Affiliation(s)
- Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Justin Parel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Joseph Beals
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Scott A. Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
- School of Human Kinetics, Brain and Mind Institute, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Stefanou C, Karatzanos E, Mitsiou G, Psarra K, Angelopoulos E, Dimopoulos S, Gerovasili V, Boviatsis E, Routsi C, Nanas S. Neuromuscular electrical stimulation acutely mobilizes endothelial progenitor cells in critically ill patients with sepsis. Ann Intensive Care 2016; 6:21. [PMID: 26969168 PMCID: PMC4788669 DOI: 10.1186/s13613-016-0123-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have been suggested to constitute a restoration index of the disturbed endothelium in ICU patients. Neuromuscular electric stimulation (NMES) is increasingly employed in ICU to prevent comorbidities such as ICU-acquired weakness, which is related to endothelial dysfunction. The role of NMES to mobilize EPCs has not been investigated yet. The purpose of this study was to explore the NMES-induced effects on mobilization of EPCs in septic ICU patients. METHODS Thirty-two septic mechanically ventilated patients (mean ± SD, age 58 ± 14 years) were randomized to one of the two 30-min NMES protocols of different characteristics: a high-frequency (75 Hz, 6 s on-21 s off) or a medium-frequency (45 Hz, 5 s on-12 s off) protocol both applied at maximally tolerated intensity. Blood was sampled before and immediately after the NMES sessions. Different EPCs subpopulations were quantified by cytometry markers CD34(+)/CD133(+)/CD45(-), CD34(+)/CD133(+)/CD45(-)/VEGFR2 (+) and CD34(+)/CD45(-)/VEGFR2 (+). RESULTS Overall, CD34(+)/CD133(+)/CD45(-) EPCs increased from 13.5 ± 10.2 to 20.8 ± 16.9 and CD34(+)/CD133(+)/CD45(-)/VEGFR2 (+) EPCs from 3.8 ± 5.2 to 6.4 ± 8.5 cells/10(6) enucleated cells (mean ± SD, p < 0.05). CD34(+)/CD45(-)/VEGFR2 (+) EPCs also increased from 16.5 ± 14.5 to 23.8 ± 19.2 cells/10(6) enucleated cells (mean ± SD, p < 0.05). EPCs mobilization was not affected by NMES protocol and sepsis severity (p > 0.05), while it was related to corticosteroids administration (p < 0.05). CONCLUSIONS NMES acutely mobilized endothelial progenitor cells, measures of the endothelial restoration potential, in septic ICU patients.
Collapse
Affiliation(s)
- Christos Stefanou
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Eleftherios Karatzanos
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Georgios Mitsiou
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Katerina Psarra
- />Immunology and Histocompatibility Department, Evangelismos General Hospital, 45-47 Ypsilantou Str, 106 75 Athens, Greece
| | - Epameinondas Angelopoulos
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Stavros Dimopoulos
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
- />Critical Care Unit, Guys and St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH UK
| | - Vasiliki Gerovasili
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Efstathios Boviatsis
- />2nd Neurosurgical Department, Attiko University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini Str, 124 62 Athens, Greece
| | - Christina Routsi
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Serafeim Nanas
- />1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| |
Collapse
|
27
|
Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985) 2016; 122:1077-1087. [PMID: 27909225 DOI: 10.1152/japplphysiol.00622.2016] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/31/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8+ T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; .,Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Queensland, Australia
| | - Oliver Neubauer
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Neil P Walsh
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom; and
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
28
|
Waclawovsky G, Umpierre D, Figueira FR, De Lima ES, Alegretti AP, Schneider L, Matte US, Rodrigues TC, Schaan BD. Exercise on Progenitor Cells in Healthy Subjects and Patients with Type 1 Diabetes. Med Sci Sports Exerc 2016; 48:190-9. [PMID: 26312614 DOI: 10.1249/mss.0000000000000764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To evaluate the acute effect of aerobic exercise (AE) and resistance exercise (RE) on the release of endothelial progenitor cell (EPCs, CD34+/KDR+/CD45 dim) and vascular function in type 1 diabetes (T1DM). METHODS Fourteen men with T1DM and 5 nondiabetic controls were randomly assigned to 40-min AE (60% VO 2peak) and RE sessions (60% 1-RM). The study had a crossover design, and interventions were 1 wk apart. Venous occlusion plethysmography (blood flow, reactive hyperemia, and vascular resistance) and blood collection (EPC levels, flow cytometry) were done immediately before and after exercise sessions. RESULTS Patients were 30.3 ± 1.6 yr-old, HbA1c 7.7% ± 0.2%; controls were 26.8 ± 2.3 yr-old. Groups did not differ in EPC levels at baseline or in relation to exercise. Over time, exercise did not induce changes in patients with T1DM, whereas, in controls, EPCs were decreased after AE (-10.7%, P = 0.017) and increased after RE (+12.2%, P = 0.004). Compared with baseline, blood flow increased and vascular resistance decreased after RE in both groups. Reactive hyperemia was increased 10 min after AE and RE sessions in patients with T1DM (36.5% and 42.0%, respectively) and in controls (35.4% and 74.3%), but no group differences were observed between groups in response to exercise. CONCLUSIONS Despite the increased vascular reactivity in both groups after both exercise sessions, EPCs were only influenced by exercise in controls. The unchanged number of EPCs in T1DM after exercise sessions might indicate a blunted endothelium regenerating capacity, revealing an early deterioration of the functional arterial characteristics not disclosed by only evaluating vascular functional variables.
Collapse
Affiliation(s)
- Gustavo Waclawovsky
- 1Exercise Pathophysiology Research Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL; 2Graduate Program in Cardiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL; 3Department of Clinical Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL; 4Molecular and Protein Analysis Unit, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL; 5Endocrine Division of the Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL; and 6Internal Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shanely RA, Nieman DC, Perkins-Veazie P, Henson DA, Meaney MP, Knab AM, Cialdell-Kam L. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity. Nutrients 2016; 8:nu8080518. [PMID: 27556488 PMCID: PMC4997430 DOI: 10.3390/nu8080518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023] Open
Abstract
Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.
Collapse
Affiliation(s)
- R Andrew Shanely
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | - David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, Department of Horticulture Science, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Dru A Henson
- Department of Biology, Appalachian State University, Boone, NC 28608, USA.
| | - Mary P Meaney
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | - Amy M Knab
- Kinesiology Department, Queens University of Charlotte, Charlotte, NC 28274, USA.
| | - Lynn Cialdell-Kam
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
β-Hydroxy-β-methylbutyrate attenuates cytokine response during sustained military training. Nutr Res 2016; 36:553-63. [DOI: 10.1016/j.nutres.2016.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 11/19/2022]
|
31
|
Effects of Acute Endurance Exercise on Plasma Protein Profiles of Endurance-Trained and Untrained Individuals over Time. Mediators Inflamm 2016; 2016:4851935. [PMID: 27239103 PMCID: PMC4867072 DOI: 10.1155/2016/4851935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 12/03/2022] Open
Abstract
Acute physical exercise and repeated exercise stimuli affect whole-body metabolic and immunologic homeostasis. The aim of this study was to determine plasma protein profiles of trained (EET, n = 19) and untrained (SED, n = 17) individuals at rest and in response to an acute bout of endurance exercise. Participants completed a bicycle exercise test at an intensity corresponding to 80% of their VO2max. Plasma samples were taken before, directly after, and three hours after exercise and analyzed using multiplex immunoassays. Seventy-eight plasma variables were included in the final analysis. Twenty-nine variables displayed significant acute exercise effects in both groups. Seven proteins differed between groups, without being affected by acute exercise. Among these A2Macro and IL-5 were higher in EET individuals while leptin showed elevated levels in SED individuals. Fifteen variables revealed group and time differences with elevated levels for IL-3, IL-7, IL-10, and TNFR2 in EET individuals. An interaction effect could be observed for nine variables including IL-6, MMP-2, MMP-3, and muscle damage markers. The proteins that differ between groups indicate a long-term exercise effect on plasma protein concentrations. These findings might be of importance in the development of exercise-based strategies in the prevention and therapy of chronic metabolic and inflammatory diseases and for training monitoring.
Collapse
|
32
|
Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization. Stem Cells Int 2016; 2016:7131359. [PMID: 27123008 PMCID: PMC4830735 DOI: 10.1155/2016/7131359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers.
Collapse
|
33
|
Boppart MD, De Lisio M, Witkowski S. Exercise and Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:423-56. [PMID: 26477925 DOI: 10.1016/bs.pmbts.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are traditionally studied in the context of embryonic development, yet studies confirm that a fraction remains in the adult organism for the purpose of daily remodeling and rejuvenation of multiple tissues following injury. Adult stem cells (ASCs) are found in close proximity to vessels and respond to tissue-specific cues in the microenvironment that dictate their fate and function. Exercise can dramatically alter strain sensing, extracellular matrix composition, and inflammation, and such changes in the niche likely alter ASC quantity and function postexercise. The field of stem cell biology is still in its infancy and identification and terminology of ASCs continues to evolve; thus, current information regarding exercise and stem cells is lacking. This chapter summarizes the literature that reports on the ASC response to acute exercise and exercise training, with particular emphasis on hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA.
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | - Sarah Witkowski
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
34
|
Mooren FC, Krüger K. Apoptotic lymphocytes induce progenitor cell mobilization after exercise. J Appl Physiol (1985) 2015; 119:135-9. [PMID: 26023229 DOI: 10.1152/japplphysiol.00287.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023] Open
Abstract
There is evidence that apoptotic cells and their components have immunmodulatory properties and signaling function. The present study investigated first whether exercise-induced apoptosis and exercise-induced mobilization of progenitor cells are similarly affected by subjects' training status and, second, whether the appearance of dying cells in the circulation might mobilize progenitor cells. CD1 SWISS mice were subjected to a 10-wk endurance training using free wheel running or served as untrained controls. Mice of both groups performed an intensive exercise test after the training period at a velocity corresponding to 80% maximal oxygen uptake for 30 min. Cells from blood and bone marrow were analyzed, and apoptosis and number of progenitor cells determined via flow cytometry. In a second experiment, apoptotic cells were transferred into recipient mice, and mobilization of progenitor cells was analyzed while vital cells served as controls. In untrained animals, the exhaustive exercise was followed by an enhanced rate of annexin V positive CD3(+) cells in blood and bone marrow (P < 0.05), whereas no increase was found in trained mice. Similarly, exercise mobilized Sca-1(+)/c-kit(+) and Sca-1(+)/Flk(+) cells in untrained (P < 0.05) but not trained mice. Furthermore, application of apoptotic cells and their supernatant mobilized Sca-1(+)/c-kit(+) cells into the blood (P < 0.05), whereas Sca-1(+)/Flk(+) cells were not affected. The present study demonstrated that both lymphocyte apoptosis, as well as mobilization of progenitor cells are similarly related to training status. Furthermore, apoptotic cells seem to induce signals that effectively mobilize hematopoietic progenitor cells. The relevance of this effect for the adaptation to exercise stimuli remains to be shown.
Collapse
Affiliation(s)
- Frank C Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
35
|
Henriques A, Kastner S, Chatzikonstantinou E, Pitzer C, Plaas C, Kirsch F, Wafzig O, Krüger C, Spoelgen R, Gonzalez De Aguilar JL, Gretz N, Schneider A. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF. Front Cell Neurosci 2015; 8:464. [PMID: 25653590 PMCID: PMC4299451 DOI: 10.3389/fncel.2014.00464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.
Collapse
Affiliation(s)
- Alexandre Henriques
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | | | | | | | | | | | | | | | | | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | | |
Collapse
|