1
|
Birnberg L, Busquets N. Vector Competence Assays for RVFV in Mosquitoes. Methods Mol Biol 2025; 2893:85-107. [PMID: 39671032 DOI: 10.1007/978-1-0716-4338-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Rift Valley fever virus (RVFV) is the causative agent of Rift Valley fever, a mosquito-borne zoonotic febrile illness that primarily affects ruminants, camels, and humans. It is endemic in sub-Saharan Africa and the Arabian Peninsula, albeit with the potential to spread to and establish in non-endemic countries where mosquito vectors are present. Assessing the vector competence (VC) of local mosquito populations is essential for risk evaluation and to develop more accurate control and surveillance strategies. Herein, parameters for VC experimental design, as well as protocols for mosquito rearing and laboratory techniques used for RVFV VC assays are comprehensively described.
Collapse
Affiliation(s)
- Lotty Birnberg
- Animal Health Research Center (CReSA-IRTA), Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
| | - Núria Busquets
- Animal Health Research Center (CReSA-IRTA), Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain.
| |
Collapse
|
2
|
Trabelsi MK, Hachid A, Derrar F, Messahel NE, Bia T, Mockbel Y, Khardine AF, Degui D, Bellout L, Benaissa MH, Leulmi H, Khelef D, Kaidi R, Hakem A, Bouguedour R, Bitam I, Lafri I. Serological evidence of Rift Valley fever viral infection among camels imported into Southern Algeria. Comp Immunol Microbiol Infect Dis 2023; 100:102035. [PMID: 37572591 DOI: 10.1016/j.cimid.2023.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by the Rift Valley fever virus (RVFV). The present work aims to investigate the epidemiological status and identify the risk factors associated with RVFV infection in dromedary camels (Camelus dromedarius) from southern Algeria. A total of 269 sera of apparently healthy camels was collected and tested using a competitive Enzyme-Linked Immunosorbent Assay (ELISA). Overall, 72 camels (26.7 %, 95 % CI: 21.4-32) were seropositive to RVFV. IgG antibodies were found to be most prevalent in camels from south-western areas, particularly in Tindouf wilaya (52.38 %, p < 0.0001), and in camels introduced from bordering Sahelian countries (35.8 %) (OR = 8.75, 95 %CI: 2.14-35.81). No anti-RVFV antibodies were detected in sera collected from local camels (0 %). Adult (5-10 years) and aged (>10 years) camels have a significantly higher risk of being infected by RVFV (OR = 2.15; 95 %CI = 1.21-3.81, OR = 2.05; 95 %CI = 1.03-4.11, respectively). This report indicated that dromedaries imported to the south-western areas are exposed to RVFV and may contribute to its spread in Algerian territories.
Collapse
Affiliation(s)
- Melissa Katia Trabelsi
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria; Laboratoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria
| | - Aissam Hachid
- Faculté de Pharmacie, Univérsité d'Alger 1, Alger 16000, Algeria; Laboratoire des Arbovirus et Virus Emergents, Institut Pasteur d'Algérie, Alger 16000, Algeria
| | - Fawzi Derrar
- Faculté de Medecine, Université d'Alger 1, Alger 16000, Algeria; Laboratoire des Grippes et virus respiratoires, Institut Pasteur d'Algérie, Alger 16000, Algeria
| | - Nacer Eddine Messahel
- Faculté des Sciences de la Nature et de la Vie, Université Setif 1, Setif 19000, Algeria
| | - Taha Bia
- Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria
| | - Youcef Mockbel
- Direction des Services Agricoles de la wilaya de Tindouf, Algeria
| | - Ahmed Fayez Khardine
- Laboratoire des Arbovirus et Virus Emergents, Institut Pasteur d'Algérie, Alger 16000, Algeria
| | - Djilali Degui
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria; Laboratoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria
| | - Lydia Bellout
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria
| | - Mohammed Hocine Benaissa
- Centre de Recherche Scientifique Et Technique Sur Les Régions Arides (CRSTRA), 55000 Touggourt, Algeria
| | - Hamza Leulmi
- Faculté des Sciences de la Nature et de la Vie, Université de Blida 1, Blida 09000, Algeria
| | - Djamel Khelef
- Ecole Nationale Supérieure Vétérinaire, Oued Smar, Alger 16000, Algeria
| | - Rachid Kaidi
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria; Laboratoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria
| | - Ahcéne Hakem
- Centre de Recherche en Agropastoralisme (CRAPast) Djelfa, Djelfa 17000, Algeria
| | - Rachid Bouguedour
- Organisation Mondiale de la Santé Animale (OMSA), Representation Sous-Régionale de l'Afrique du Nord, 17 Avenue d'Afrique - El Menzah 5, 2091 Tunis, Tunisia
| | - Idir Bitam
- Ecole Supérieure des Sciences de l'Aliment et des Industries Agroalimentaires, Alger 16000, Algeria
| | - Ismail Lafri
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria; Laboratoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria.
| |
Collapse
|
3
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
4
|
Mostafavi E, Ghasemian A, Abdinasir A, Nematollahi Mahani SA, Rawaf S, Salehi Vaziri M, Gouya MM, Minh Nhu Nguyen T, Al Awaidy S, Al Ariqi L, Islam MM, Abu Baker Abd Farag E, Obtel M, Omondi Mala P, Matar GM, Asghar RJ, Barakat A, Sahak MN, Abdulmonem Mansouri M, Swaka A. Emerging and Re-emerging Infectious Diseases in the WHO Eastern Mediterranean Region, 2001-2018. Int J Health Policy Manag 2022; 11:1286-1300. [PMID: 33904695 PMCID: PMC9808364 DOI: 10.34172/ijhpm.2021.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Countries in the World Health Organization (WHO) Eastern Mediterranean Region (EMR) are predisposed to highly contagious, severe and fatal, emerging infectious diseases (EIDs), and re-emerging infectious diseases (RIDs). This paper reviews the epidemiological situation of EIDs and RIDs of global concern in the EMR between 2001 and 2018. METHODS To do a narrative review, a complete list of studies in the field was we prepared following a systematic search approach. Studies that were purposively reviewed were identified to summarize the epidemiological situation of each targeted disease. A comprehensive search of all published studies on EIDs and RIDs between 2001 and 2018 was carried out through search engines including Medline, Web of Science, Scopus, Google Scholar, and ScienceDirect. RESULTS Leishmaniasis, hepatitis A virus (HAV) and hepatitis E virus (HEV) are reported from all countries in the region. Chikungunya, Crimean Congo hemorrhagic fever (CCHF), dengue fever, and H5N1 have been increasing in number, frequency, and expanding in their geographic distribution. Middle East respiratory syndrome (MERS), which was reported in this region in 2012 is still a public health concern. There are challenges to control cholera, diphtheria, leishmaniasis, measles, and poliomyelitis in some of the countries. Moreover, Alkhurma hemorrhagic fever (AHF), and Rift Valley fever (RVF) are limited to some countries in the region. Also, there is little information about the real situation of the plague, Q fever, and tularemia. CONCLUSION EIDs and RIDs are prevalent in most countries in the region and could further spread within the region. It is crucial to improve regional capacities and capabilities in preventing and responding to disease outbreaks with adequate resources and expertise.
Collapse
Affiliation(s)
- Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolmajid Ghasemian
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abubakar Abdinasir
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Seyed Alireza Nematollahi Mahani
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Salman Rawaf
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Mostafa Salehi Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- Centre for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Tran Minh Nhu Nguyen
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | | | - Lubna Al Ariqi
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Majdouline Obtel
- Laboratory of Community Medicine, Preventive Medicine and Hygiene, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Epidemiology, Biostatistics and Clinical Research, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Peter Omondi Mala
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology Center for Infectious Diseases Research, American University of Beirut & Medical Center, Beirut, Lebanon
| | - Rana Jawad Asghar
- University of Nebraska Medical Center, Omaha, NE, USA
- Global Health Strategists & Implementers (GHSI), Islamabad, Pakistan
| | - Amal Barakat
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Mohammad Nadir Sahak
- Infectious Hazard Management Department, World Health Organization, Kabul, Afghanistan
| | - Mariam Abdulmonem Mansouri
- Communicable Diseases Control Department, Public Health Directorate Unit, Ministry of Health, Kuwait City, Kuwait
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Alexandra Swaka
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
5
|
Drouin A, Chevalier V, Durand B, Balenghien T. Vector Competence of Mediterranean Mosquitoes for Rift Valley Fever Virus: A Meta-Analysis. Pathogens 2022; 11:pathogens11050503. [PMID: 35631024 PMCID: PMC9146998 DOI: 10.3390/pathogens11050503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by a virus mainly transmitted by Aedes and Culex mosquitoes. Infection leads to high abortion rates and considerable mortality in domestic livestock. The combination of viral circulation in Egypt and Libya and the existence of unregulated live animal trade routes through endemic areas raise concerns that the virus may spread to other Mediterranean countries, where there are mosquitoes potentially competent for RVF virus (RVFV) transmission. The competence of vectors for a given pathogen can be assessed through laboratory experiments, but results may vary greatly with the study design. This research aims to quantify the competence of five major potential RVFV vectors in the Mediterranean Basin, namely Aedes detritus, Ae. caspius, Ae. vexans, Culex pipiens and Cx. theileri, through a systematic literature review and meta-analysis. We first computed the infection rate, the dissemination rate among infected mosquitoes, the overall dissemination rate, the transmission rate among mosquitoes with a disseminated infection and the overall transmission rate for these five mosquito species. We next assessed the influence of laboratory study designs on the variability of these five parameters. According to experimental results and our analysis, Aedes caspius may be the most competent vector among the five species considered.
Collapse
Affiliation(s)
- Alex Drouin
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University Paris-Est, 94701 Maisons-Alfort, France; (A.D.); (B.D.)
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France;
| | - Véronique Chevalier
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France;
- CIRAD, UMR ASTRE, Antananarivo 101, Madagascar
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo 101, Madagascar
- Correspondence:
| | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University Paris-Est, 94701 Maisons-Alfort, France; (A.D.); (B.D.)
| | - Thomas Balenghien
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France;
- CIRAD, UMR ASTRE, Rabat 10101, Morocco
- IAV Hassan II, UR MIMC, Rabat 10101, Morocco
| |
Collapse
|
6
|
Eckstein S, Ehmann R, Gritli A, Ben Rhaiem M, Ben Yahia H, Diehl M, Wölfel R, Handrick S, Ben Moussa M, Stoecker K. Viral and Bacterial Zoonotic Agents in Dromedary Camels from Southern Tunisia: A Seroprevalence Study. Microorganisms 2022; 10:microorganisms10040727. [PMID: 35456778 PMCID: PMC9028256 DOI: 10.3390/microorganisms10040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid spread of SARS-CoV-2 clearly demonstrated the potential of zoonotic diseases to cause severe harm to public health. Having limited access to medical care combined with severe underreporting and a lack of active surveillance, Africa carries a high burden of neglected zoonotic diseases. Therefore, the epidemiological monitoring of pathogen circulation is essential. Recently, we found extensive Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence in free-roaming dromedary camels from southern Tunisia. In this study, we aimed to investigate the seroprevalence, and thus the risk posed to public health, of two additional viral and two bacterial pathogens in Tunisian dromedaries: Rift Valley fever virus (RVFV), foot-and-mouth disease virus (FMDV), Coxiella burnetii and Brucella spp. via ELISA. With 73.6% seropositivity, most animals had previously been exposed to the causative agent of Q fever, C. burnetii. Additionally, 7.4% and 1.0% of the dromedaries had antibodies against Brucella and RVFV, respectively, while no evidence was found for the occurrence of FMDV. Our studies revealed considerable immunological evidence of various pathogens within Tunisian dromedary camels. Since these animals have intense contact with humans, they pose a high risk of transmitting serious zoonotic diseases during active infection. The identification of appropriate countermeasures is therefore highly desirable.
Collapse
Affiliation(s)
- Simone Eckstein
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
- Correspondence: ; Tel.: +49-992692-3990
| | - Rosina Ehmann
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Abderraouf Gritli
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1000, Tunisia; (A.G.); (M.B.R.); (H.B.Y.)
| | - Mohamed Ben Rhaiem
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1000, Tunisia; (A.G.); (M.B.R.); (H.B.Y.)
| | - Houcine Ben Yahia
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1000, Tunisia; (A.G.); (M.B.R.); (H.B.Y.)
| | - Manuel Diehl
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Susann Handrick
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Mohamed Ben Moussa
- Department of Virology, Military Hospital of Instruction of Tunis, Tunis 1008, Tunisia;
| | - Kilian Stoecker
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| |
Collapse
|
7
|
Hellal J, Mejri S, Lacote S, Sghaier S, Dkhil A, Arsevska E, Calavas D, Hénaux V, Marianneau P, Hammami S. Serological evidence of Rift Valley fever in domestic ruminants in Tunisia underlines the need for effective surveillance. Open Vet J 2021; 11:337-341. [PMID: 34722193 PMCID: PMC8541715 DOI: 10.5455/ovj.2021.v11.i3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Rift Valley fever (RVF) is an infectious zoonotic disease infecting, mainly, domestic ruminants and causing significant economic and public health problems. RVF is a vector-borne disease transmitted by mosquitoes. Aim: In this work, we tried to seek any RVF virus circulation in Tunisia. Methods: Thus, we investigated 1,723 sera from different parts of Tunisia, collected in 2009 and 2013–2015 from sheep, goats, cattle, and dromedaries. All sera were assessed using enzyme-linked immunosorbent assay techniques. Results: Eighty-seven sera were detected positive and 11 doubtful. All of them were investigated by the virus-neutralization technique (VNT), which confirmed the positivity of three sera. Conclusion: This is the first case of RVF seropositive confirmed by the VNT in Tunisian ruminants. Such a result was expected considering the climate, entomology, and geographic location of the country. Further investigations must enhance our findings to understand the RVF epidemiologic situation better and implement risk-based surveillance programs and effective control strategies.
Collapse
Affiliation(s)
- Jihene Hellal
- Tunisian Institute of Veterinary Research, Rue Djebel Lakhdhar, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia.,These authors contributed equally to this work
| | - Selma Mejri
- Tunisian Institute of Veterinary Research, Rue Djebel Lakhdhar, University of Tunis El Manar, Tunis, Tunisia.,These authors contributed equally to this work
| | - Sandra Lacote
- Virology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, Lyon, France
| | - Soufien Sghaier
- Tunisian Institute of Veterinary Research, Rue Djebel Lakhdhar, University of Tunis El Manar, Tunis, Tunisia
| | - Abderrazek Dkhil
- Tunisian Institute of Veterinary Research, Rue Djebel Lakhdhar, University of Tunis El Manar, Tunis, Tunisia
| | - Elena Arsevska
- Epidemiology and Support to Surveillance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, Lyon, France
| | - Didier Calavas
- Epidemiology and Support to Surveillance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, Lyon, France
| | - Viviane Hénaux
- Epidemiology and Support to Surveillance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, Lyon, France
| | - Philippe Marianneau
- Virology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, Lyon, France
| | - Salah Hammami
- National School of Veterinary Medicine Sidi-Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
8
|
Musa HI, Kudi CA, Gashua MM, Muhammad AS, Tijjani AO, Saidu AS, Mohammed S, Jajere SM, Adamu SG. Survey of antibodies to Rift Valley fever virus and associated risk factors in one-humped camels (Camelus dromedarius) slaughtered in Maiduguri abattoir, Borno State, Nigeria. Trop Anim Health Prod 2021; 53:500. [PMID: 34613460 DOI: 10.1007/s11250-021-02956-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
Rift Valley fever (RVF) is an emerging mosquito-borne zoonosis that threatens public health and animal agriculture in the endemic areas causing devastating epizootics characterized by abortion storms and high mortalities, especially in newborn animals. A cross-sectional study was conducted to determine the seroprevalence and investigate risk factors associated with exposure to the virus in camels slaughtered in Maiduguri abattoir, Borno State of Nigeria. Camels presented for slaughtered were sampled and data on age, sex, source or origin, utility, presence of post-mortem lesions, body weights and body condition score were collected. Blood samples were collected and sera were harvested and stored at - 20 °C until tested. The sera were tested using a commercial ELISA kit based on the manufacturer's instructions. The overall seroprevalence in the study was 20.7% (95% CI, 13.6-30.0). The analysis showed no significant differences between the presence of antibodies and variables that included the sex of camels (χ2 = 0.015, df = 1, p = 0.904) and the presence of post-mortem lesion on the carcass (χ2 = 0.009, df = 1, p = 0.925). There were significant differences between presence of antibodies and three variables that included the age (χ2 = 4.89, df = 1, p = 0.027), the source (χ2 = 7.077, df = 2, p = 0.029) and the main utility (χ2 = 8.057, df = 3, p = 0.045) of the camels. It was concluded that camels presented for slaughter at the Maiduguri abattoir have evidence of exposure to the RVF virus and maybe means of transmission of the virus. Regular monitoring and control of transboundary animal movements were recommended in the study area.
Collapse
Affiliation(s)
- Hassan Ismail Musa
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria.
| | - Caleb Ayuba Kudi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Muhammad Mamman Gashua
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Abubakar Sadiq Muhammad
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Abdulyeken Olawale Tijjani
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Adamu Saleh Saidu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Sani Mohammed
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Saleh Mohammed Jajere
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Shuaibu Gidado Adamu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| |
Collapse
|
9
|
Risk based serological survey of Rift Valley fever in Tunisia (2017-2018). Heliyon 2021; 7:e07932. [PMID: 34522818 PMCID: PMC8427255 DOI: 10.1016/j.heliyon.2021.e07932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever (RVF) has been reported in the sub-Saharan region of Africa, Egypt and Arabian Peninsula - Yemen and Saudi Arabia, over the past 20 years and is a threat to both the animal and human populations in Tunisia. Tunisia is considered as a high-risk country for the introduction of RVF due to the informal movements of diseased animals already reported in the neighboring countries. The objective of this study was to assess the status of RVF in small ruminants and camels in Tunisia. A risk-based serological survey was conducted to evaluate the presence of RVF based on spatial qualitative risk analysis (SQRA). Samples were collected from small ruminants (sheep and goats) (n = 1,114), and camels (n = 173) samples, belonging to 18 breeders in 14 governorates between November 2017 and January 2018. Samples were tested using an RVF specific multispecies competitive ELISA. Out of the 1,287 samples tested for the presence of RVF IgG antibodies by ELISA, only one positive sample 0.07% (1/1 287) was detected but not confirmed with the virus neutralization test (VNT) used for confirmation. So far, no RVF outbreaks have been reported in Tunisia and our study confirmed the absence of RVF in livestock up to January 2018. Further investigations are needed to confirm the RVF-free status of Tunisia today.
Collapse
|
10
|
First Serological Evidence of Crimean-Congo Hemorrhagic Fever Virus and Rift Valley Fever Virus in Ruminants in Tunisia. Pathogens 2021; 10:pathogens10060769. [PMID: 34207423 PMCID: PMC8234966 DOI: 10.3390/pathogens10060769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV, Nairoviridae family) and Rift Valley fever virus (RVFV, Phenuiviridae family) are zoonotic vector-borne pathogens with clinical relevance worldwide. Our study aimed to determine seroprevalences of these viruses and potential risk factors among livestock (cattle, sheep, and goats) in Tunisia. Sera were tested for antibodies against CCHFV (n = 879) and RVFV (n = 699) using various enzyme-linked immunosorbent assays (ELISAs) and indirect immunofluorescence assays (IIFA). The overall seroprevalence of IgG antibodies was 8.6% (76/879) and 2.3% (16/699) against CCHFV and RVFV, respectively. For CCHF seropositivity bioclimatic zones and breed were potential risk factors for the three tested animal species; while the season was associated with cattle and sheep seropositivity, tick infestation was associated with cattle and goats seropositivity and age as a risk factor was only associated with cattle seropositivity. Age and season were significantly associated with RVFV seropositivity in sheep. Our results confirm the circulation of CCHFV and RVFV in Tunisia and identified the principal risk factors in ruminants. This knowledge could help to mitigate the risk of ruminant infections and subsequently also human infections.
Collapse
|
11
|
Outammassine A, Zouhair S, Loqman S. Rift Valley Fever and West Nile virus vectors in Morocco: Current situation and future anticipated scenarios. Transbound Emerg Dis 2021; 69:1466-1478. [PMID: 33876581 DOI: 10.1111/tbed.14113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Rift Valley Fever (RVF) and West Nile virus (WNV) are two important emerging Arboviruses transmitted by Aedes and Culex mosquitoes, typically Ae. caspius, Ae. detritus and Cx. pipiens in temperate regions. In Morocco, several outbreaks of WNV (1996, 2003 and 2010), affecting horses mostly, have been reported in north-western regions resulting in the death of 55 horses and one person cumulatively. Serological evidence of WNV local circulation, performed one year after the latest outbreak, revealed WNV neutralizing bodies in 59 out of 499 tested participants (El Rhaffouli et al., 2012). The country also shares common borders with northern Mauritania, where RVF is often documented. Human movement, livestock trade, climate changes and the availability of susceptible mosquito vectors are expected to increase the spread of these diseases in the country. Thus, in this study, we gathered a data set summarizing occurrences of Ae. caspius, Ae. detritus and Cx. pipiens in the country, and generated model prediction for their potential distribution under both current and future (2050) climate conditions, as a proxy to identify regions at-risk of RVF and WNV probable expansion. We found that the north-western regions (where the population is most concentrated), specifically along the Atlantic coastline, are highly suitable for Ae. caspius, Ae. detritus and Cx. pipiens, under present-day conditions. Future model scenarios anticipated possible range changes for the three mosquitoes under all climatic assumptions. All of the studied species are prospected to gain new areas that are currently not suitable, even under the most optimist scenario, thus placing additional human populations at risk. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes. Public health officials, entomological surveillance and control delegation must augment efforts and continuously monitor these areas to reduce and minimize human infection risk.
Collapse
Affiliation(s)
- Abdelkrim Outammassine
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Said Zouhair
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Bacteriology-Virology, Avicienne Hospital Military, Marrakech, Morocco
| | - Souad Loqman
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
12
|
Abdellahoum Z, Maurin M, Bitam I. Tularemia as a Mosquito-Borne Disease. Microorganisms 2020; 9:microorganisms9010026. [PMID: 33374861 PMCID: PMC7823759 DOI: 10.3390/microorganisms9010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis (Ft) is the etiological agent of tularemia, a disease known for over 100 years in the northern hemisphere. Ft includes four subspecies, of which two are the etiologic agents of tularemia: Ft subsp. tularensis (Ftt) and Ft subsp. holarctica (Fth), mainly distributed in North America and the whole northern hemisphere, respectively. Several routes of human infection with these bacteria exist, notably through bites of Ixodidae ticks. However, mosquitoes represent the main vectors of Fth in Scandinavia, where large tularemia outbreaks have occurred, usually during the warm season. The mechanisms making mosquitoes vectors of Fth are still unclear. This review covers the inventory of research work and epidemiological data linking tularemia to mosquitoes in Scandinavia and highlights the gaps in understanding mosquitoes and Ft interactions.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria;
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
- Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400 Saint Martin d’Heres, France
- Correspondence: (M.M.); (I.B.); Tel.: +33-476-769-594 (M.M.); +213-559-775-322 (I.B.)
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria;
- Ecole Supérieure des Sciences de l’Aliment et des Industries Alimentaires, Alger 16004, Algeria
- Correspondence: (M.M.); (I.B.); Tel.: +33-476-769-594 (M.M.); +213-559-775-322 (I.B.)
| |
Collapse
|
13
|
Selmi R, Mamlouk A, Ben Said M, Ben Yahia H, Abdelaali H, Ben Chehida F, Daaloul-Jedidi M, Gritli A, Messadi L. First serological evidence of the Rift Valley fever Phlebovirus in Tunisian camels. Acta Trop 2020; 207:105462. [PMID: 32325049 DOI: 10.1016/j.actatropica.2020.105462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonosis that severely impacts livelihoods, national and international economies, and human health. Few studies have investigated the prevalence of this infection in Tunisian livestock. The present report aimed to update the epidemiological status and identify the risk factors associated with this RVF virus infection in the one-humped dromedary camel from arid areas. A total of 470 sera of apparently healthy camels (Camelus dromedarius) were collected from six governorates from southern and central Tunisia. Samples were tested by a competitive Enzyme Linked Immunosorbent Assay (ELISA). An overall, 162 camels (34%, 95%CI: 0.1-0.4) were seropositive to RVF virus antigen. Logistic regression model revealed three potential risk factors associated with the infection. A meaningful high seropositivity was observed among aged camels (>10 years-old) (40%) (P=0.001; OR=3.367). Besides, camels raised in small flocks particularly intended for meat production showed a high level of seropositivity (37%) (P=0.013; OR=13.173). Animals having close contact with other ruminants showed high seroprevalence (37%) (P=0.022; OR=10.919). This report indicated that Tunisian one-humped dromedaries were exposed to this virus and may contribute to its dissemination among farmers and other livestock. Furthers studies are urgently required to isolate and characterize this virus, evaluate the potential risk of human infection particularly in farmers, veterinarians and slaughterhouse workers and finally to program a serious strategy for RVF control.
Collapse
|
14
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Rojas JLG, Schmidt CG, Michel V, Chueca MÁM, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Bett B, Cetre-Sossah C, Chevalier V, Devos C, Gubbins S, Monaco F, Sotiria-Eleni A, Broglia A, Abrahantes JC, Dhollander S, Stede YVD, Zancanaro G. Rift Valley Fever - epidemiological update and risk of introduction into Europe. EFSA J 2020; 18:e06041. [PMID: 33020705 PMCID: PMC7527653 DOI: 10.2903/j.efsa.2020.6041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5-15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228-700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
Collapse
|
15
|
Sadeghieh T, Waddell LA, Ng V, Hall A, Sargeant J. A scoping review of importation and predictive models related to vector-borne diseases, pathogens, reservoirs, or vectors (1999-2016). PLoS One 2020; 15:e0227678. [PMID: 31940405 PMCID: PMC6961930 DOI: 10.1371/journal.pone.0227678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/25/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND As globalization and climate change progress, the expansion and introduction of vector-borne diseases (VBD) from endemic regions to non-endemic regions is expected to occur. Mathematical and statistical models can be useful in predicting when and where these changes in distribution may happen. Our objective was to conduct a scoping review to identify and characterize predictive and importation models related to vector-borne diseases that exist in the global literature. METHODS A literature search was conducted to identify publications published between 1999 and 2016 from five scientific databases using relevant keywords. All publications had to be in English or French, and include a predictive or importation model on VBDs, pathogens, reservoirs and/or vectors. Relevance screening and data characterization were performed by two reviewers using pretested forms. The data were analyzed using descriptive statistics. RESULTS The search initially identified 19 710 unique articles, reports, and conference abstracts. This was reduced to 428 relevant documents after relevance screening and data charting. About half of the models used mathematical techniques, and the remainder were statistical. Most of the models were predictive (87%), rather than importation (5%). The most commonly investigated diseases were malaria and dengue fever. Around 12% of the publications did not report all the parameters used in their model. Only 29% of the models incorporated the impacts of climate change. CONCLUSIONS A wide variety of mathematical and statistical models on vector-borne diseases exist. Researchers creating their own mathematical and/or statistical models may be able to use this scoping review to be informed about the diseases and/or regions, parameters, model types, and methodologies used in published models.
Collapse
Affiliation(s)
- Tara Sadeghieh
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A. Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victoria Ng
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Alexandra Hall
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jan Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019; 11:E1013. [PMID: 31683823 PMCID: PMC6893470 DOI: 10.3390/v11111013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses. Vector competence is affected by both direct and indirect effects of temperature, and generally increases with increasing temperature, but results may vary by vector species, population, and viral strain. Temperature additionally has a significant influence on life history traits of vectors at both immature and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector competence, temperature effects on life history traits can vary by species and population. Vector, host, and viral distributions are all affected by temperature, and are generally expected to change with increased temperatures predicted under climate change. Arboviruses are generally expected to shift poleward and to higher elevations under climate change, yet significant variability on fine geographic scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an optimum, and then decreases at high temperatures. Improved vector distribution information could facilitate future distribution modeling. A wide variety of approaches have been used to model viral distributions, although most research has focused on the West Nile virus. Direct temperature effects are frequently observed, as are indirect effects, such as through droughts, where temperature interacts with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors, and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of evolving biological systems.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| | - Alexander C Keyel
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
17
|
Jourdain F, Samy AM, Hamidi A, Bouattour A, Alten B, Faraj C, Roiz D, Petrić D, Pérez-Ramírez E, Velo E, Günay F, Bosevska G, Salem I, Pajovic I, Marić J, Kanani K, Paronyan L, Dente MG, Picard M, Zgomba M, Sarih M, Haddad N, Gaidash O, Sukhiasvili R, Declich S, Shaibi T, Sulesco T, Harrat Z, Robert V. Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl Trop Dis 2019; 13:e0007314. [PMID: 31194743 PMCID: PMC6563966 DOI: 10.1371/journal.pntd.0007314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue. The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease. The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources. Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies. The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes. METHODS Current knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region. FINDINGS Robust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area.
Collapse
Affiliation(s)
- Frédéric Jourdain
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Afrim Hamidi
- University of Prishtina, Faculty of Agriculture and Veterinary Sciences, Prishtina, Kosovo
| | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03 Service d’entomologie médicale, Tunis, Tunisia
| | - Bülent Alten
- Hacettepe University, Faculty of Science, Biology Department, Ecology Section, Ankara, Turkey
| | - Chafika Faraj
- Laboratoire d'Entomologie Médicale, Institut National d'Hygiène, Rabat, Morocco
| | - David Roiz
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Dušan Petrić
- Faculty of Agriculture, Department of Phytomedicine and Environment Protection, Laboratory for Medical Entomology, University of Novi Sad, Novi Sad, Serbia
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar, Valdeolmos, Madrid, Spain
| | - Enkeledja Velo
- Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Filiz Günay
- Hacettepe University, Faculty of Science, Biology Department, Ecology Section, Ankara, Turkey
| | - Golubinka Bosevska
- Institute of Public Health of R. Macedonia, Laboratory for virology and molecular diagnostics, Skopje, the Former Yugoslav Republic of Macedonia
| | - Ibrahim Salem
- Ministry of Health, Central public health laboratory, Ramallah, Palestine
| | - Igor Pajovic
- University of Montenegro, Biotechnical Faculty, Podgorica, Montenegro
| | - Jelena Marić
- PI Veterinary Institute of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Khalil Kanani
- Parasitic and Zoonotic Diseases Department, Vector-Borne Diseases programmes manager, MOH, Ramallah, Jordan
| | - Lusine Paronyan
- Epidemiology of Vector borne and Parasitic diseases, National Center for Disease Control and Prevention, Ministry of Health, Yerevan, Armenia
| | - Maria-Grazia Dente
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marie Picard
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Marija Zgomba
- Faculty of Agriculture, Department of Phytomedicine and Environment Protection, Laboratory for Medical Entomology, University of Novi Sad, Novi Sad, Serbia
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Nabil Haddad
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Oleksandr Gaidash
- State Body “Ukrainian I. I. Mechnikov Research Anti-Plague Institute of Ministry of Health of Ukraine”, Laboratory of Especially Dangerous Infections Epizootology, Odessa, Ukraine
| | - Roena Sukhiasvili
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Silvia Declich
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Taher Shaibi
- Reference Laboratory of Parasites & Vector Borne Diseases, NCDC Libya, and Zoology Department, Faculty of Science, University of Tripoli, Libya
| | - Tatiana Sulesco
- Institute of Zoology, Ministry of Education, Culture and Research, Chisinau, Moldova
| | - Zoubir Harrat
- Laboratoire éco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d’Algérie, Algiers, Algeria
| | - Vincent Robert
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| |
Collapse
|
18
|
Mohamed N, Magzoub M, Mohamed REH, Aleanizy FS, Alqahtani FY, Nour BYM, Alkarsany MMS. Prevalence and identification of arthropod-transmitted viruses in Kassala state, Eastern Sudan. Libyan J Med 2019. [PMID: 30716013 PMCID: PMC6366427 DOI: 10.1080/19932820.2018.1564511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vector-borne diseases are responsible for more than 20% of the infectious diseases worldwide. The prevalence of arboviruses transmit diseases to humans in Sudan has not been investigated. Mosquito-borne viral diseases increase globally incidence, including the Sudan. Frequent unknown fever outbreaks have been reported in eastern region, Sudan. However, diagnosis was based exclusively on clinical signs and symptoms without confirmatory laboratory investigations. However, for accurate detection of these viruses in outbreaks, molecular technique is considered. The objective of this study was to determine the prevalence of six arboviruses in the Kassala state of east Sudan during unknown fever outbreak. A cross sectional hospital-based study was conducted in the Kassala, Teaching Hospital. Blood samples from 119 patients suffering from unknown fever were used for screening of six arboviruses, hepatitis E virus and malarial using molecular techniques and serology. The overall arboviruses seroprevelance was 61.3% (73/119). The highest positivity rate was 73.1% (52/73) chikungunya virus; 29 males and 20 females patients were chikungunya positive. Other arboviruses were circulating in low rate 20.5% (15/73), and 6.8% (5/73) for sindbis and rift valley fever viruses respectively. Hepatitis E virus was negative in all cases and malaria positivity rate 13.4% (16/119). The prevalence of arboviruses among unknown fever patients present to Kassala teaching hospital of eastern region in Sudan is significantly high (61.3%). The chikungunya virus is the predominant causative agent of arboviruses. Molecular techniques such as PCR are important for accurate and rapid diagnosis of this viral outbreak.
Collapse
Affiliation(s)
- Nahla Mohamed
- a Faculty of Medical Laboratory Sciences , Karrary University , Omdurman , Sudan.,b Faculty of Medicine , University of Kassala, Kassala , Sudan
| | - Mamoun Magzoub
- c College of Medicine , Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia.,d Clinical Microbiology Department, Virology Unit , Umeå university , Umeå , Sweden
| | - Rania El Hadi Mohamed
- e College of Science , Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia.,f Federal Ministry of Health , Khartoum , Sudan
| | - Fadilah Sfouq Aleanizy
- g Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Fulwah Y Alqahtani
- g Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Bakri Y M Nour
- h Blue Nile National Institute for Communicable Diseases , University of Gezira , Wad Medani , Sudan.,i Department of Parasitology , University of Gezira , Wad Medani , Sudan
| | - Mubark M S Alkarsany
- c College of Medicine , Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| |
Collapse
|
19
|
Rift Valley fever: An open-source transmission dynamics simulation model. PLoS One 2019; 14:e0209929. [PMID: 30625221 PMCID: PMC6326482 DOI: 10.1371/journal.pone.0209929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/13/2018] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever (RVF) is one of the major viral zoonoses in Africa, affecting humans and several domestic animal species. The epidemics in eastern Africa occur in a 5-15 year cycle coinciding with abnormally high rainfall generally associated to the warm phase of the El Niño event. However, recently, evidence has been gathered of inter-epidemic transmission. An open-source, easily applicable, accessible and modifiable model was built to simulate the transmission dynamics of RVF. The model was calibrated using data collected in the Kilombero Valley in Tanzania with people and cattle as host species and Ædes mcintoshi, Æ. ægypti and two Culex species as vectors. Simulations were run over a period of 27 years using standard parameter values derived from two previous studies in this region. Our model predicts low-level transmission of RVF, which is in line with epidemiological studies in this area. Emphasis in our simulation was put on both the dynamics and composition of vector populations in three ecological zones, in order to elucidate the respective roles played by different vector species: the model output did indicate the necessity of Culex involvement and also indicated that vertical transmission in Ædes mcintoshi may be underestimated. This model, being built with open-source software and with an easy-to-use interface, can be adapted by researchers and control program managers to their specific needs by plugging in new parameters relevant to their situation and locality.
Collapse
|
20
|
Ecological niche modeling of Aedes mosquito vectors of chikungunya virus in southeastern Senegal. Parasit Vectors 2018; 11:255. [PMID: 29673389 PMCID: PMC5907742 DOI: 10.1186/s13071-018-2832-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/05/2018] [Indexed: 01/30/2023] Open
Abstract
Background Chikungunya virus (CHIKV) originated in a sylvatic cycle of transmission between non-human animal hosts and vector mosquitoes in the forests of Africa. Subsequently the virus jumped out of this ancestral cycle into a human-endemic transmission cycle vectored by anthropophilic mosquitoes. Sylvatic CHIKV cycles persist in Africa and continue to spill over into humans, creating the potential for new CHIKV strains to enter human-endemic transmission. To mitigate such spillover, it is first necessary to delineate the distributions of the sylvatic mosquito vectors of CHIKV, to identify the environmental factors that shape these distributions, and to determine the association of mosquito presence with key drivers of virus spillover, including mosquito and CHIKV abundance. We therefore modeled the distribution of seven CHIKV mosquito vectors over two sequential rainy seasons in Kédougou, Senegal using Maxent. Methods Mosquito data were collected in fifty sites distributed in five land cover classes across the study area. Environmental data representing land cover, topographic, and climatic factors were included in the models. Models were compared and evaluated using area under the receiver operating characteristic curve (AUROC) statistics. The correlation of model outputs with abundance of individual mosquito species as well as CHIKV-positive mosquito pools was tested. Results Fourteen models were produced and evaluated; the environmental variables most strongly associated with mosquito distributions were distance to large patches of forest, landscape patch size, rainfall, and the normalized difference vegetation index (NDVI). Seven models were positively correlated with mosquito abundance and one (Aedes taylori) was consistently, positively correlated with CHIKV-positive mosquito pools. Eight models predicted high relative occurrence rates of mosquitoes near the villages of Tenkoto and Ngary, the areas with the highest frequency of CHIKV-positive mosquito pools. Conclusions Of the environmental factors considered here, landscape fragmentation and configuration had the strongest influence on mosquito distributions. Of the mosquito species modeled, the distribution of Ae. taylori correlated most strongly with abundance of CHIKV, suggesting that presence of this species will be a useful predictor of sylvatic CHIKV presence. Electronic supplementary material The online version of this article (10.1186/s13071-018-2832-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Lumley S, Horton DL, Hernandez-Triana LLM, Johnson N, Fooks AR, Hewson R. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 2017; 98:875-887. [PMID: 28555542 DOI: 10.1099/jgv.0.000765] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus-host and vector-virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.
Collapse
Affiliation(s)
- Sarah Lumley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,School of Veterinary Medicine, University of Surrey, Guildford, UK.,Virology and Pathogenesis Group, Microbiology Services Division, Public Health England, Wiltshire, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Luis L M Hernandez-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Nicholas Johnson
- School of Veterinary Medicine, University of Surrey, Guildford, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Roger Hewson
- Virology and Pathogenesis Group, Microbiology Services Division, Public Health England, Wiltshire, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Amara Korba R, Alayat MS, Bouiba L, Boudrissa A, Bouslama Z, Boukraa S, Francis F, Failloux AB, Boubidi SC. Ecological differentiation of members of the Culex pipiens complex, potential vectors of West Nile virus and Rift Valley fever virus in Algeria. Parasit Vectors 2016; 9:455. [PMID: 27534938 PMCID: PMC4989528 DOI: 10.1186/s13071-016-1725-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022] Open
Abstract
Background We investigated the ecological differentiation of two members of the Culex pipiens complex, Cx. p. pipiens form pipiens and Cx. p. pipiens form molestus in three sites, El-Kala, M'Sila and Tinerkouk in Algeria. These two forms are the most widespread mosquito vectors in temperate regions exhibiting important behavioural and physiological differences. Nevertheless, this group of potential vectors has been poorly studied, particularly in North Africa. Methods Ten larval populations of Cx. p. pipiens were sampled from various above- and underground habitats in three zones representing the three bioclimatic regions in Algeria. The reproduction characteristics were also investigated in the laboratory to define the rates of autogeny and stenogamy. Identification of Cx. p. pipiens members present in Algeria was achieved using a molecular analysis with the microsatellite CQ11 locus. Results We detected larvae of Cx. p. pipiens in all areas suggesting that the species is a ubiquitous mosquito well adapted to various environments. To our knowledge, this study provides the first molecular evidence of the presence of the Cx. p. pipiens form molestus and hybrids (molestus/pipiens) in Algeria with a high proportion of molestus form (48.3 %) in comparison with hybrids (36.8 %) and pipiens form (14.9 %). Conclusions Some unexpected correlations between the proportion of forms pipiens, molestus and hybrids, and mosquito biological characteristics were observed suggesting some epigenetic effects controlling Cx. p. pipiens mating and reproduction. Consequences for pathogen transmission are discussed. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1725-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raouf Amara Korba
- Laboratoire Ecologie des Systèmes Terrestres et Aquatiques, Département de Biologie, Faculté des Sciences, Université Badji Mokhtar, Annaba, Algérie. .,Institut Pasteur d'Alger, Unité d'Entomologie Médicale, Service d'Eco-épidémiologie parasitaire et génétique des populations, Alger, Algérie.
| | - Moufida Saoucen Alayat
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Département de Biologie, Université Badji Mokhtar, Annaba, Algérie
| | - Lazhari Bouiba
- Institut Pasteur d'Alger, Unité d'Entomologie Médicale, Service d'Eco-épidémiologie parasitaire et génétique des populations, Alger, Algérie
| | - Abdelkarim Boudrissa
- Institut Pasteur d'Alger, Unité d'Entomologie Médicale, Service d'Eco-épidémiologie parasitaire et génétique des populations, Alger, Algérie
| | - Zihad Bouslama
- Laboratoire Ecologie des Systèmes Terrestres et Aquatiques, Département de Biologie, Faculté des Sciences, Université Badji Mokhtar, Annaba, Algérie
| | - Slimane Boukraa
- Unit of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Frederic Francis
- Unit of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, Paris, France
| | - Saïd Chaouki Boubidi
- Institut Pasteur d'Alger, Unité d'Entomologie Médicale, Service d'Eco-épidémiologie parasitaire et génétique des populations, Alger, Algérie
| |
Collapse
|
23
|
Bosworth A, Ghabbari T, Dowall S, Varghese A, Fares W, Hewson R, Zhioua E, Chakroun M, Tiouiri H, Ben Jemaa M, Znazen A, Letaief A. Serologic evidence of exposure to Rift Valley fever virus detected in Tunisia. New Microbes New Infect 2015; 9:1-7. [PMID: 26740887 PMCID: PMC4678919 DOI: 10.1016/j.nmni.2015.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
Rift Valley fever virus (RVFv) is capable of causing dramatic outbreaks amongst economically important animal species and is capable of causing severe symptoms and mortality in humans. RVFv is known to circulate widely throughout East Africa; serologic evidence of exposure has also been found in some northern African countries, including Mauritania. This study aimed to ascertain whether RVFv is circulating in regions beyond its known geographic range. Samples from febrile patients (n = 181) and nonfebrile healthy agricultural and slaughterhouse workers (n = 38) were collected during the summer of 2014 and surveyed for exposure to RVFv by both serologic tests and PCR. Of the 219 samples tested, 7.8% of nonfebrile participants showed immunoglobulin G reactivity to RVFv nucleoprotein and 8.3% of febrile patients showed immunoglobulin M reactivity, with the latter samples indicating recent exposure to the virus. Our results suggest an active circulation of RVFv and evidence of human exposure in the population of Tunisia.
Collapse
Affiliation(s)
- A Bosworth
- Public Health England, Porton Down, Salisbury, UK; National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - T Ghabbari
- Infectious Diseases Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - S Dowall
- Public Health England, Porton Down, Salisbury, UK
| | - A Varghese
- Public Health England, Porton Down, Salisbury, UK
| | - W Fares
- Institut Pasteur de Tunis, Tunis, Tunisia
| | - R Hewson
- Public Health England, Porton Down, Salisbury, UK; National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - E Zhioua
- Institut Pasteur de Tunis, Tunis, Tunisia
| | - M Chakroun
- Infectious Diseases Department, F Bourguiba University hospital, Monastir, Tunisia
| | - H Tiouiri
- Infectious Diseases Department, Sfax, Tunisia
| | | | - A Znazen
- Laboratory of Microbiology, Sfax, Tunisia
| | - A Letaief
- Infectious Diseases Department, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|