1
|
Bauer MB, Currie KPM. Serotonin and the serotonin transporter in the adrenal gland. VITAMINS AND HORMONES 2023; 124:39-78. [PMID: 38408804 PMCID: PMC11217909 DOI: 10.1016/bs.vh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.
Collapse
Affiliation(s)
- Mary Beth Bauer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States.
| |
Collapse
|
2
|
Quipazine Elicits Swallowing in the Arterially Perfused Rat Preparation: A Role for Medullary Raphe Nuclei? Int J Mol Sci 2020; 21:ijms21145120. [PMID: 32698469 PMCID: PMC7404031 DOI: 10.3390/ijms21145120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Pharmacological neuromodulation of swallowing may represent a promising therapeutic option to treat dysphagia. Previous studies suggested a serotonergic control of swallowing, but mechanisms remain poorly understood. Here, we investigated the effects of the serotonergic agonist quipazine on swallowing, using the arterially perfused working heart-brainstem (in situ) preparation in rats. Systemic injection of quipazine produced single swallows with motor patterns and swallow-breathing coordination similar to spontaneous swallows, and increased swallow rate with moderate changes in cardiorespiratory functions. Methysergide, a 5-HT2 receptor antagonist, blocked the excitatory effect of quipazine on swallowing, but had no effect on spontaneous swallow rate. Microinjections of quipazine in the nucleus of the solitary tract were without effect. In contrast, similar injections in caudal medullary raphe nuclei increased swallow rate without changes in cardiorespiratory parameters. Thus, quipazine may exert an excitatory effect on raphe neurons via stimulation of 5-HT2A receptors, leading to increased excitability of the swallowing network. In conclusion, we suggest that pharmacological stimulation of swallowing by quipazine in situ represents a valuable model for experimental studies. This work paves the way for future investigations on brainstem serotonergic modulation, and further identification of neural populations and mechanisms involved in swallowing and/or swallow-breathing interaction.
Collapse
|
3
|
Ang R, Marina N. Low-Frequency Oscillations in Cardiac Sympathetic Neuronal Activity. Front Physiol 2020; 11:236. [PMID: 32256390 PMCID: PMC7093552 DOI: 10.3389/fphys.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Sudden cardiac death caused by ventricular arrhythmias is among the leading causes of mortality, with approximately half of all deaths attributed to heart disease worldwide. Periodic repolarization dynamics (PRD) is a novel marker of repolarization instability and strong predictor of death in patients post-myocardial infarction that is believed to occur in association with low-frequency oscillations in sympathetic nerve activity. However, this hypothesis is based on associations of PRD with indices of sympathetic activity that are not directly linked to cardiac function, such as muscle vasoconstrictor activity and the variability of cardiovascular autospectra. In this review article, we critically evaluate existing scientific evidence obtained primarily in experimental animal models, with the aim of identifying the neuronal networks responsible for the generation of low-frequency sympathetic rhythms along the neurocardiac axis. We discuss the functional significance of rhythmic sympathetic activity on neurotransmission efficacy and explore its role in the pathogenesis of ventricular repolarization instability. Most importantly, we discuss important gaps in our knowledge that require further investigation in order to confirm the hypothesis that low frequency cardiac sympathetic oscillations play a causative role in the generation of PRD.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
4
|
Sourioux M, Bertrand SS, Cazalets JR. Cholinergic-mediated coordination of rhythmic sympathetic and motor activities in the newborn rat spinal cord. PLoS Biol 2018; 16:e2005460. [PMID: 29985914 PMCID: PMC6053244 DOI: 10.1371/journal.pbio.2005460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Here, we investigated intrinsic spinal cord mechanisms underlying the physiological requirement for autonomic and somatic motor system coupling. Using an in vitro spinal cord preparation from newborn rat, we demonstrate that the specific activation of muscarinic cholinergic receptors (mAchRs) (with oxotremorine) triggers a slow burst rhythm in thoracic spinal segments, thereby revealing a rhythmogenic capability in this cord region. Whereas axial motoneurons (MNs) were rhythmically activated during both locomotor activity and oxotremorine-induced bursting, intermediolateral sympathetic preganglionic neurons (IML SPNs) exhibited rhythmicity solely in the presence of oxotremorine. This somato-sympathetic synaptic drive shared by MNs and IML SPNs could both merge with and modulate the locomotor synaptic drive produced by the lumbar motor networks. This study thus sheds new light on the coupling between somatic and sympathetic systems and suggests that an intraspinal network that may be conditionally activated under propriospinal cholinergic control constitutes at least part of the synchronizing mechanism.
Collapse
Affiliation(s)
| | | | - Jean-René Cazalets
- Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
- * E-mail: (JRC); (SSB)
| |
Collapse
|
5
|
Lall VK, Bruce G, Voytenko L, Drinkhill M, Wellershaus K, Willecke K, Deuchars J, Deuchars SA. Physiologic regulation of heart rate and blood pressure involves connexin 36-containing gap junctions. FASEB J 2017; 31:3966-3977. [PMID: 28533325 PMCID: PMC5566179 DOI: 10.1096/fj.201600919rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/01/2017] [Indexed: 01/15/2023]
Abstract
Chronically elevated sympathetic nervous activity underlies many cardiovascular diseases. Elucidating the mechanisms contributing to sympathetic nervous system output may reveal new avenues of treatment. The contribution of the gap junctional protein connexin 36 (Cx36) to the regulation of sympathetic activity and thus blood pressure and heart rate was determined using a mouse with specific genetic deletion of Cx36. Ablation of the Cx36 protein was confirmed in sympathetic preganglionic neurons of Cx36-knockout (KO) mice. Telemetric analysis from conscious Cx36 KO mice revealed higher variance in heart rate and blood pressure during rest and activity compared to wild-type (WT) mice, and smaller responses to chemoreceptor activation when anesthetized. In the working heart-brain stem preparation of the Cx36-KO mouse, respiratory-coupled sympathetic nerve discharge was attenuated and responses to chemoreceptor stimulation and noxious stimulation were blunted compared to WT mice. Using whole cell patch recordings, sympathetic preganglionic neurons in spinal cord slices of Cx36-KO mice displayed lower levels of spikelet activity compared to WT mice, indicating reduced gap junction coupling between neurons. Cx36 deletion therefore disrupts normal regulation of sympathetic outflow with effects on cardiovascular parameters.-Lall, V. K., Bruce, G., Voytenko, L., Drinkhill, M., Wellershaus, K., Willecke, K., Deuchars, J., Deuchars, S. A. Physiologic regulation of heart rate and blood pressure involves connexin 36-containing gap junctions.
Collapse
Affiliation(s)
- Varinder K Lall
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Gareth Bruce
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Larysa Voytenko
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Mark Drinkhill
- Division of Cardiovascular and Diabetes Research, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Kerstin Wellershaus
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Klaus Willecke
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jim Deuchars
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Susan A Deuchars
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
6
|
Brindley RL, Bauer MB, Blakely RD, Currie KP. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response. ACS Chem Neurosci 2017; 8:943-954. [PMID: 28406285 PMCID: PMC5541362 DOI: 10.1021/acschemneuro.7b00026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.
Collapse
Affiliation(s)
- Rebecca L. Brindley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Beth Bauer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, and Florida Atlantic University Brain Institute, Jupiter, FL, USA
| | - Kevin P.M. Currie
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
8
|
Darios ES, Barman SM, Orer HS, Morrison SF, Davis RP, Seitz BM, Burnett R, Watts SW. 5-Hydroxytryptamine does not reduce sympathetic nerve activity or neuroeffector function in the splanchnic circulation. Eur J Pharmacol 2015; 754:140-7. [PMID: 25732865 PMCID: PMC4385506 DOI: 10.1016/j.ejphar.2015.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
Abstract
Infusion of 5-hydroxytryptamine (5-HT) in conscious rats results in a sustained (up to 30 days) fall in blood pressure. This is accompanied by an increase in splanchnic blood flow. Because the splanchnic circulation is regulated by the sympathetic nervous system, we hypothesized that 5-HT would: 1) directly reduce sympathetic nerve activity in the splanchnic region; and/or 2) inhibit sympathetic neuroeffector function in splanchnic blood vessels. Moreover, removal of the sympathetic innervation of the splanchnic circulation (celiac ganglionectomy) would reduce 5-HT-induced hypotension. In anaesthetized Sprague-Dawley rats, mean blood pressure was reduced from 101±4 to 63±3mm Hg during slow infusion of 5-HT (25μg/kg/min, i.v.). Pre- and postganglionic splanchnic sympathetic nerve activity were unaffected during 5-HT infusion. In superior mesenteric arterial rings prepared for electrical field stimulation, neither 5-HT (3, 10, 30nM), the 5-HT1B receptor agonist CP 93129 nor 5-HT1/7 receptor agonist 5-carboxamidotryptamine inhibited neurogenic contraction compared to vehicle. 5-HT did not inhibit neurogenic contraction in superior mesenteric venous rings. Finally, celiac ganglionectomy did not modify the magnitude of fall or time course of 5-HT-induced hypotension when compared to animals receiving sham ganglionectomy. We conclude it is unlikely 5-HT interacts with the sympathetic nervous system at the level of the splanchnic preganglionic or postganglionic nerve, as well as at the neuroeffector junction, to reduce blood pressure. These important studies allow us to rule out a direct interaction of 5-HT with the splanchnic sympathetic nervous system as a cause of the 5-HT-induced fall in blood pressure.
Collapse
Affiliation(s)
- Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA
| | - Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA
| | - Hakan S Orer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA; Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Sciences University, Portland Oregon USA
| | - Robert P Davis
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA
| | - Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA
| | - Robert Burnett
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan USA.
| |
Collapse
|
9
|
Stalbovskiy AO, Briant LJB, Paton JFR, Pickering AE. Mapping the cellular electrophysiology of rat sympathetic preganglionic neurones to their roles in cardiorespiratory reflex integration: a whole cell recording study in situ. J Physiol 2014; 592:2215-36. [PMID: 24665100 PMCID: PMC4227904 DOI: 10.1113/jphysiol.2014.270769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sympathetic preganglionic neurones (SPNs) convey sympathetic activity flowing from the CNS to the periphery to reach the target organs. Although previous in vivo and in vitro cell recording studies have explored their electrophysiological characteristics, it has not been possible to relate these characteristics to their roles in cardiorespiratory reflex integration. We used the working heart–brainstem preparation to make whole cell patch clamp recordings from T3–4 SPNs (n = 98). These SPNs were classified by their distinct responses to activation of the peripheral chemoreflex, diving response and arterial baroreflex, allowing the discrimination of muscle vasoconstrictor-like (MVClike, 39%) from cutaneous vasoconstrictor-like (CVClike, 28%) SPNs. The MVClike SPNs have higher baseline firing frequencies (2.52 ± 0.33 Hz vs. CVClike 1.34 ± 0.17 Hz, P = 0.007). The CVClike have longer after-hyperpolarisations (314 ± 36 ms vs. MVClike 191 ± 13 ms, P < 0.001) and lower input resistance (346 ± 49 MΩ vs. MVClike 496 ± 41 MΩ, P < 0.05). MVClike firing was respiratory-modulated with peak discharge in the late inspiratory/early expiratory phase and this activity was generated by both a tonic and respiratory-modulated barrage of synaptic events that were blocked by intrathecal kynurenate. In contrast, the activity of CVClike SPNs was underpinned by rhythmical membrane potential oscillations suggestive of gap junctional coupling. Thus, we have related the intrinsic electrophysiological properties of two classes of SPNs in situ to their roles in cardiorespiratory reflex integration and have shown that they deploy different cellular mechanisms that are likely to influence how they integrate and shape the distinctive sympathetic outputs.
Collapse
Affiliation(s)
- Alexey O Stalbovskiy
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Linford J B Briant
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK Department of Engineering Mathematics, Merchant Venturers Building, Woodland Road, University of Bristol, Bristol, BS8 1UB, UK
| | - Julian F R Paton
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Anthony E Pickering
- School of Physiology & Pharmacology, Bristol Heart Institute, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK Department of Anaesthesia, University Hospitals Bristol, Bristol, BS2 8HW, UK
| |
Collapse
|
10
|
Mechanism of sympathetic activation and blood pressure elevation in humans and animals following acute intermittent hypoxia. PROGRESS IN BRAIN RESEARCH 2014; 209:131-46. [PMID: 24746046 DOI: 10.1016/b978-0-444-63274-6.00007-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep apnea is associated with repeated episodes of hypoxemia, causing marked increase in sympathetic nerve activity and blood pressure. Considerable evidence suggests that intermittent hypoxia (IH) resulting from apnea is the primary stimulus for sympathetic overactivity in sleep apnea patients. Several IH protocols have been developed either in animals or in humans to investigate mechanisms underlying the altered autonomic regulation of the circulation. Most of these protocols involve several days (10-40 days) of IH exposure, that is, chronic intermittent hypoxia (CIH). Recent data suggest that a single session of IH exposure, that is, acute intermittent hypoxia (AIH), is already capable of increasing tonic sympathetic nerve output (sympathetic long-term facilitation, LTF) and altering chemo- and baroreflexes with or without elevation of blood pressure. This indicates that IH alters the autonomic neurocirculatory at a very early time point, although the mechanisms underlying this neuroplasticity have not been explored in detail. The purpose of this chapter is to briefly review the effects of AIH on sympathetic LTF and alteration of autonomic reflexes in comparison with the studies from CIH studies. We will also discuss the potential central and peripheral mechanism underlying sympathetic LTF.
Collapse
|
11
|
Zimmerman AL, Sawchuk M, Hochman S. Monoaminergic modulation of spinal viscero-sympathetic function in the neonatal mouse thoracic spinal cord. PLoS One 2012; 7:e47213. [PMID: 23144807 PMCID: PMC3489886 DOI: 10.1371/journal.pone.0047213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/10/2012] [Indexed: 11/27/2022] Open
Abstract
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.
Collapse
Affiliation(s)
- Amanda L. Zimmerman
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Michael Sawchuk
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
| | - Shawn Hochman
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hochman S, Gozal EA, Hayes HB, Anderson JT, DeWeerth SP, Chang YH. Enabling techniques for in vitro studies on mammalian spinal locomotor mechanisms. Front Biosci (Landmark Ed) 2012; 17:2158-80. [PMID: 22652770 DOI: 10.2741/4043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neonatal rodent spinal cord maintained in vitro is a powerful model system to understand the central properties of spinal circuits generating mammalian locomotion. We describe three enabling approaches that incorporate afferent input and attached hindlimbs. (i) Sacral dorsal column stimulation recruits and strengthens ongoing locomotor-like activity, and implementation of a closed positive-feedback paradigm is shown to support its stimulation as an untapped therapeutic site for locomotor modulation. (ii) The spinal cord hindlimbs-restrained preparation allows suction electrode electromyographic recordings from many muscles. Inducible complex motor patterns resemble natural locomotion, and insights into circuit organization are demonstrated during spontaneous motor burst 'deletions', or following sensory stimuli such as tail and paw pinch. (iii) The spinal cord hindlimbs-pendant preparation produces unrestrained hindlimb stepping. It incorporates mechanical limb perturbations, kinematic analyses, ground reaction force monitoring, and the use of treadmills to study spinal circuit operation with movement-related patterns of sensory feedback while providing for stable whole-cell recordings from spinal neurons. Such techniques promise to provide important additional insights into locomotor circuit organization.
Collapse
Affiliation(s)
- Shawn Hochman
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | |
Collapse
|
14
|
Pierce ML, Deuchars J, Deuchars SA. Spontaneous rhythmogenic capabilities of sympathetic neuronal assemblies in the rat spinal cord slice. Neuroscience 2010; 170:827-38. [PMID: 20650307 PMCID: PMC2989444 DOI: 10.1016/j.neuroscience.2010.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/16/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
Neuronal networks generating rhythmic activity as an emergent property are common throughout the nervous system. Some are responsible for rhythmic behaviours, as is the case for the spinal cord locomotor networks; however, for others the function is more subtle and usually involves information processing and/or transfer. An example of the latter is sympathetic nerve activity, which is synchronized into rhythmic bursts in vivo. This arrangement is postulated to offer improved control of target organ responses compared to tonic nerve activity. Traditionally, oscillogenic circuits in the brainstem are credited with generating these rhythms, despite evidence for the persistence of some frequencies in spinalized preparations. Here, we show that rhythmic population activity can be recorded from the intermediolateral cell column (IML) of thoracic spinal cord slices. Recorded in slices from 10- to 12-day-old rats, this activity was manifest as 8–22 Hz oscillations in the field potential and was spatially restricted to the IML. Oscillations often occurred spontaneously, but could also be induced by application of 5-HT, α-methyl 5-HT or MK212. These agents also significantly increased the strength of spontaneous oscillations. Rhythmic activity was abolished by TTX and attenuated by application of gap junction blockers or by antagonists of GABAA receptors. Together these data indicate that this rhythm is an emergent feature of a population of spinal neurons coupled by gap junctions. This work questions the assumption that sympathetic rhythms are dependent on supraspinal pacemaker circuits, by highlighting a surprisingly strong rhythmogenic capability of the reduced sympathetic networks of the spinal cord slice.
Collapse
Affiliation(s)
- M L Pierce
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
15
|
Llewellyn-Smith IJ. Anatomy of synaptic circuits controlling the activity of sympathetic preganglionic neurons. J Chem Neuroanat 2009; 38:231-9. [DOI: 10.1016/j.jchemneu.2009.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/17/2023]
|
16
|
Takeoka A, Kubasak MD, Zhong H, Roy RR, Phelps PE. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia. J Comp Neurol 2009; 515:664-76. [PMID: 19496067 PMCID: PMC2828942 DOI: 10.1002/cne.22080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks.
Collapse
Affiliation(s)
- Aya Takeoka
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California 90095-1606
| | - Marc D. Kubasak
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California 90095-1606
| | - Hui Zhong
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1606
| | - Roland R. Roy
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1606
| | - Patricia E. Phelps
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California 90095-1606
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1606
| |
Collapse
|
17
|
Stornetta RL. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 2009; 38:222-30. [PMID: 19665549 DOI: 10.1016/j.jchemneu.2009.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/19/2023]
Abstract
This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
18
|
Chen Y, Oatway MA, Weaver LC. Blockade of the 5-HT3 receptor for days causes sustained relief from mechanical allodynia following spinal cord injury. J Neurosci Res 2009; 87:418-24. [PMID: 18798253 DOI: 10.1002/jnr.21860] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic neuropathic pain is a frequent, serious outcome of spinal cord injury (SCI) that is highly refractory to treatment. Serotonin can contribute to neuropathic pain after SCI, as suggested by our previous observation that transient blockade of the 5-HT(3) receptor by intrathecal injections of the antagonist ondansetron reduces mechanical allodynia after SCI in rats. The current study determined whether intrathecal or intravenous infusion of ondansetron for 3 or 7 days, respectively, could cause sustained blockade of mechanical allodynia at and below the level of a twelfth thoracic clip compression injury in rats. Intrathecal 3-day infusion of ondansetron (2.0 microg/hr), targeted to the cord rostral to the SCI and commencing at 28 days after SCI, decreased at-level mechanical allodynia by 40% and below-level allodynia by 60% compared with saline-treated rats (controls). This reduction was sustained throughout drug delivery and for 1 day afterward. During the next 3 days, allodynia gradually returned toward the values of saline-treated rats. An initial experiment showed that bolus intravenous injections of ondansetron (20-100 microg) at 28 days after SCI decreased both at- and below-level allodynia for 90-120 min. Intravenous 7-day infusions (20 microg/hr), commencing at 28 days after SCI, significantly decreased at-level allodynia by 48% and below-level allodynia by 51% compared with controls. This reduction of allodynia lasted throughout the infusion and for 1-3 days afterward while pain responses gradually approached those of controls. These findings suggest a potential role of 5-HT(3) receptor antagonism in the relief of neuropathic pain after SCI in humans.
Collapse
Affiliation(s)
- Yuhua Chen
- Biotherapeutics Research Group, Robarts Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
19
|
Rathner JA, Madden CJ, Morrison SF. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am J Physiol Regul Integr Comp Physiol 2008; 295:R343-54. [PMID: 18463193 DOI: 10.1152/ajpregu.00115.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.
Collapse
Affiliation(s)
- Joseph A Rathner
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | |
Collapse
|
20
|
Lewis DI, Coote JH. Electrophysiological characteristics of vasomotor preganglionic neurons and related neurons in the thoracic spinal cord of the rat: an intracellular study in vivo. Neuroscience 2007; 152:534-46. [PMID: 18055125 DOI: 10.1016/j.neuroscience.2007.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/10/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022]
Abstract
Sympathetic preganglionic neurons (SPN) represent the final central neurons in the sympathetic pathways which regulate vasomotor tone; they therefore play a pivotal role in the re-distribution of cardiac output to different vascular beds in response to environmental challenges. While the consensus view is that activity in these neurons is due mainly to supraspinal inputs, the possibility that some activity may be generated intrinsically and modified by synaptic inputs cannot be excluded. Therefore, in order to distinguish between these two possibilities, the electrophysiological properties of cardiovascular-like SPN in the upper thoracic spinal cord of the anesthetized rat were examined and their response to activation of vasodepressor inputs was investigated. Intracellular recordings were made from 22 antidromically identified SPN of which 17 displayed irregular, but maintained, spontaneous activity; no evidence of bursting behavior or pacemaker-like activity was observed. Stimulation of the aortic depressor nerve or a vasodepressor site within the nucleus tractus solitarius (NTS) resulted in a membrane hyperpolarization, decrease in cell input resistance and long-lasting cessation of neuronal firing in SPN including a sub-population which had cardiac-modulated patterns of activity patterns. Recordings were also undertaken from 80 non-antidromically-activated neurons located in the vicinity of SPN; 23% of which fired in phase with the cardiac cycle, with this peak of activity occurring before similar increases in cardiac-modulated SPN. Stimulation of vasodepressor regions of the NTS evoked a membrane hyperpolarization and decrease in cell input resistance in cardiac-modulated but not non-modulated interneurons. These studies show that activity patterns in SPN in vivo are determined principally by synaptic inputs. They also demonstrate that spinal interneurons which exhibit cardiac-modulated patterns of activity are postsynaptically inhibited following activation of baroreceptor pathways. However, the question as to whether these inhibitory pathways and/or disfacilitation of tonic excitatory drive underlies the baroreceptor-mediated inhibition of SPN remains to be determined.
Collapse
Affiliation(s)
- D I Lewis
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
21
|
Abstract
In this Paton Lecture I have tried to trace the key experiments that have developed ideas on how the brain regulates the cardiovascular system. It is a personal view and inevitably, owing to constraints on space and time, I have not been able to cover areas such as the nucleus tractus solitarius and cardiac vagal neurones, although I acknowledge that some may consider the story is incomplete without them. Starting with the crucial discovery of vasomotor nerves and 'vasomotor tone', the patterns of activity in sympathetic nerves which led to the important idea of central oscillating networks of neurones are described. I discuss how this knowledge has informed current controversies on the origin of vasomotor activity in presympathetic neurones in the ventral medulla, which identify intrinsic pacemaker activity or synaptic input from multiple oscillators as prime mechanisms. I present an emerging view that the role of other regions of the brain, in particular supramedullary sites, has been underplayed. These regions are pivotal for the non-uniform distribution of cardiac output that is unique to each reflex and behavioural state. I discuss the most recent evidence for 'central command' neurones that offers a plausible explanation for how these patterns of sympathetic activity are achieved. Finally, I stress the importance of these current ideas to the understanding of pathological changes in sympathetic activity in cardiovascular diseases such as hypertension or congestive heart failure.
Collapse
Affiliation(s)
- John H Coote
- Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
22
|
Abstract
In urethane-chloralose anaesthetized, neuromuscularly blocked, ventilated rats, we examined the effects on sympathetic outflow to brown adipose tissue (BAT) of separate and simultaneous spinal microinjections of NMDA and serotonin. Microinjection of NMDA (12 pmol) into the right T4 spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak: +546% of control), BAT thermogenesis (+0.8 degrees C) and heart rate (+53 beats min-1), whereas microinjection of a lower dose of NMDA (1.2 pmol) did not change any of the recorded variables. Microinjection of 5-hydroxytryptamine (5-HT, 2 nmol) into the T4 IML increased BAT SNA (peak: +342% of control) at a long latency (mean onset: 23 min). The long latency 5-HT-evoked increase in BAT SNA was prevented by microinjection of methysergide (600 pmol) into the T4 IML. The increases in BAT SNA evoked by T4 IML microinjections of NMDA (12 pmol) were significantly potentiated (two to three times larger than the response to NMDA alone) following T4 IML microinjections of 5-HT (100 pmol to 2 nmol, but not 20 pmol). Also, microinjection of 5-HT (200 pmol) converted the subthreshold dose of NMDA (1.2 pmol) into an effective dose for increasing BAT SNA and heart rate. The 5-HT-mediated potentiation of the increase in BAT SNA evoked by microinjection of NMDA into the T4 IML was reversed by microinjection of methysergide (600 pmol) into the T4 IML. These results demonstrate that BAT SNA and thermogenesis can be driven by activation of spinal excitatory amino acid or 5-HT receptors and that concomitant activation of spinal NMDA and 5-HT receptors can act synergistically to markedly increase BAT SNA and thermogenesis.
Collapse
Affiliation(s)
- Christopher J Madden
- Neurological Sciences Institute/OHSU, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
23
|
Sood S, Raddatz E, Liu X, Liu H, Horner RL. Inhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats. J Appl Physiol (1985) 2006; 100:1807-21. [PMID: 16484356 DOI: 10.1152/japplphysiol.01508.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although exogenous serotonin at the hypoglossal motor nucleus (HMN) activates the genioglossus muscle, endogenous serotonin plays a minimal role in modulating genioglossus activity in awake and sleeping rats (Sood S, Morrison JL, Liu H, and Horner RL. Am J Respir Crit Care Med 172: 1338–1347, 2005). This result therefore implies that medullary raphe neurons also play a minimal role in the normal physiological control of the HMN, but this has not yet been established because raphe neurons release other excitatory neurotransmitters onto respiratory motoneurons in addition to serotonin. This study tests the hypothesis that inhibition of medullary raphe serotonergic neurons with 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT) suppresses genioglossus and diaphragm activities in awake and sleeping rats. Ten rats were implanted with electrodes to record sleep-wake states and genioglossus and diaphragm activities. Microdialysis probes were also implanted into the nucleus raphe obscurus (NRO). Experiments in 10 anesthetized and vagotomized rats were also performed using the same methodology. In anesthetized rats, microdialysis perfusion of 0.1 mM 8-OH-DPAT into the NRO decreased genioglossus activity by 60.7 ± 9.0% and diaphragm activity by 13.3 ± 3.4%. Diaphragm responses to 7.5% CO2 were also significantly reduced by 8-OH-DPAT. However, despite the robust effects observed in anesthetized and vagotomized rats, there was no effect of 0.1 mM 8-OH-DPAT on genioglossus or diaphragm activities in conscious rats awake or asleep. The results support the concept that endogenously active serotonergic medullary raphe neurons play a minimal role in modulating respiratory motor activity across natural sleep-wake states in freely behaving rodents. This result has implications for pharmacological strategies aiming to manipulate raphe neurons and endogenous serotonin in obstructive sleep apnea.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Medicine, Rm. 6368, Medical Sciences Bldg., 1 Kings College Circle, University of Toronto, ON, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
24
|
Abstract
Recent evidence suggests that neurons in the medullary raphe are critical to the activation of brown adipose tissue (BAT), the major source of nonshivering heat production in the rat. Yet it is unclear which medullary raphe cells participate in cold defense and how participating cells contribute to BAT activation. Therefore, we recorded extracellularly from raphe cells during three thermoregulatory challenges that evoked an increase in BAT temperature in anesthetized rats: central cold, ambient cold, or intracerebroventricular prostaglandin E2 (PGE2) injection. Physiologically identified serotonergic (p5HT) cell discharge increased in response to cold or PGE2 administration and was positively correlated with BAT temperature. However, none of the 147 physiologically identified non-serotonergic (non-p5HT) cells recorded responded to thermoregulatory challenges that evoked an increase in BAT temperature. To test for modulation of BAT activation by non-p5HT cells that are either excited (ON cells) or inhibited (OFF cells) by noxious cutaneous stimulation, noxious stimuli were applied during evoked BAT temperature increases. Noxious stimulation suppressed BAT activation, suggesting that cells inhibited by noxious stimulation facilitate spinal circuits controlling BAT. To test whether medullary OFF cells modulate BAT activity, the mu-opiate receptor agonist (d-Ala2, N-Me-Phe4, Gly-ol5)-enkephalin (DAMGO) was microinjected into the raphe magnus, a manipulation that selectively activates OFF cells. DAMGO microinjection blocked noxious stimulation-evoked suppression of PGE2-induced BAT temperature increases. Thus, both p5HT and non-p5HT OFF cells in the medullary raphe facilitate BAT activation in response to cold challenge or pyrogen.
Collapse
|
25
|
Marina N, Taheri M, Gilbey MP. Generation of a physiological sympathetic motor rhythm in the rat following spinal application of 5-HT. J Physiol 2006; 571:441-50. [PMID: 16396930 PMCID: PMC1796786 DOI: 10.1113/jphysiol.2005.100677] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/04/2006] [Indexed: 11/08/2022] Open
Abstract
When applied in vitro to various CNS structures 5-HT and/or NMDA have been observed to generate rhythmic nervous activity. In contrast, reports of similar in vivo actions are relatively rare. Here we describe a physiological sympathetic motor rhythm regulating the thermoregulatory circulation of the rat tail (T-rhythm; 0.40-1.20 Hz) that can be elicited following intrathecal (i.t.) application of 5-HT to an in situ'isolated' spinal cord preparation (anaesthetized rats spinalized at T10-T11 and cauda equina cut). i.t. injections were delivered to L1 as sympathetic neuronal activity to the tail (SNAT) arises from preganglionic neurones at T11-L2. SNAT was abolished after spinal transection (n = 18) and it did not return spontaneously. The administration of 5-HT (250 nmol) generated rhythmic sympathetic discharges (n = 6). The mean frequency of the T-like rhythm during the highest level of activity was 0.88 +/- 0.04 Hz which was not significantly different from the T-rhythm frequency observed in intact animals (0.77 +/- 0.02 Hz; P > 0.05 n = 16). In contrast, NMDA (1 micromol) generated an irregular tonic activity, but it failed to generate a T-like rhythm (n = 9), even though the mean levels of activity were not significantly different to those produced by 5-HT. However, 5-HT (250 nmol) applied after NMDA generated a T-like rhythm (0.95 +/- 0.11 Hz, n = 6). Our observations support the idea that 5-HT released from rostral ventromedial medullary neurones, known to innervate sympathetic preganglionic neurones, can induce sympathetic rhythmic activity.
Collapse
Affiliation(s)
- Nephtali Marina
- Department of Physiology, University College London, Hampstead Campus, London NW3 2PF, UK
| | | | | |
Collapse
|
26
|
Llewellyn-Smith IJ, Weaver LC, Keast JR. Effects of spinal cord injury on synaptic inputs to sympathetic preganglionic neurons. PROGRESS IN BRAIN RESEARCH 2006; 152:11-26. [PMID: 16198690 DOI: 10.1016/s0079-6123(05)52001-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Spinal cord injuries often lead to disorders in the control of autonomic function, including problems with blood pressure regulation, voiding, defecation and reproduction. The root cause of all these problems is the destruction of brain pathways that control spinal autonomic neurons lying caudal to the lesion. Changes induced by spinal cord injuries have been most extensively studied in sympathetic preganglionic neurons, cholinergic autonomic neurons with cell bodies in the lateral horn of thoracic and upper lumbar spinal cord that are the sources of sympathetic outflow. After an injury, sympathetic preganglionic neurons in mid-thoracic cord show plastic changes in their morphology. There is also extensive loss of synaptic input from the brain, leaving these neurons profoundly denervated in the acute phase of injury. Our recent studies on sympathetic preganglionic neurons in lower thoracic and upper lumbar cord that regulate the pelvic viscera suggest that these neurons are not so severely affected by spinal cord injury. Spinal interneurons appear to contribute most of the synaptic input to these neurons so that injury does not result in extensive denervation. Since intraspinal circuitry remains intact after injury, drug treatments targeting these neurons should help to normalize sympathetically mediated pelvic visceral reflexes. Furthermore, sympathetic pelvic visceral control may be more easily restored after an injury because it is less dependent on the re-establishment of direct synaptic input from regrowing brain axons.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.
| | | | | |
Collapse
|
27
|
Derjean D, Bertrand S, Nagy F, Shefchyk SJ. Plateau potentials and membrane oscillations in parasympathetic preganglionic neurones and intermediolateral neurones in the rat lumbosacral spinal cord. J Physiol 2005; 563:583-96. [PMID: 15618277 PMCID: PMC1665588 DOI: 10.1113/jphysiol.2004.076802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 12/22/2004] [Indexed: 11/08/2022] Open
Abstract
Whole-cell patch recordings were made from parasympathetic preganglionic neurones (P-PGNs) and unidentified intermediolateral (IML) neurones in thick slices of the lower lumbar and sacral spinal cord of 14- to 21-day-old rats. The P-PGNs and IML neurones examined were similar in terms of soma sizes, input resistance and capacitance, and displayed a sag conductance as well as rebound firing. In the absence of drugs, the neurones responded with either tonic or adapting firing to depolarizing current steps. However, in the presence of the group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), almost half of the neurones displayed accelerating firing rates during the constant current injection, followed by a sustained after-discharge. In the presence of TTX, plateau potentials were observed. The firing changes and plateaux were blocked by nifedipine, an L-type Ca2+ channel blocker, and (S)-(-)-Bay K8644 was able to produce these firing changes and plateaux in the absence of DHPG, demonstrating the involvement of an L-type Ca2+ conductance. Ca2+-activated nonspecific cationic conductances also appear to contribute to the firing changes. A few neurones displayed membrane oscillations and burst firing in the presence of DHPG. The results suggest that the firing characteristics of both P-PGNs and other neurones likely to be involved in caudal spinal reflex control are not static but, rather, quite dynamic and under metabotropic glutamate receptor modulatory control. Such changes in firing patterns may be involved in normal pelvic parasympathetic reflex function during micturition, defaecation and sexual reflexes, and may contribute to the abnormal output patterns seen with loss of descending brainstem input and visceral or perineal sensory disturbances.
Collapse
Affiliation(s)
- D Derjean
- Spinal Cord Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | |
Collapse
|
28
|
Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N, Weston MC, Guyenet PG. Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 2005; 492:477-94. [PMID: 16228993 DOI: 10.1002/cne.20742] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Markers of serotonergic, gamma-aminobutyric acid (GABA)-ergic (glutamic acid decarboxylase, 67 kDa isoform; GAD-67), and glutamatergic transmission (vesicular glutamate transporter 3; VGLUT3) have been detected in presumed sympathetic premotor neurons of the medullary raphe, a region that controls sympathetic tone to brown fat, skin blood vessels, and heart. In this study, the degree of coexpression of these markers was examined in raphe neurons by simultaneous histological detection of tryptophan hydroxylase (TrpOH) immunoreactivity with GAD-67 mRNA and VGLUT3 mRNA. Over half (52%) of the VGLUT3 mRNA-positive neurons expressed one or both of the other markers. The proportion of VGLUT3 neurons containing at least one of the other two markers was even higher (89%) for VGLUT3 spinally projecting neurons. VGLUT3 neurons containing markers for both serotonin and GABA were especially numerous (50-72%, depending on rostrocaudal level) within the marginal layer of raphe pallidus and the parapyramidal region. The dual GABAergic and glutamatergic nature of some bulbospinal raphe neurons was suggested by the presence of nerve terminals immunoreactive (ir) for both VGLUT3 and GABA in the intermediolateral cell column (IML) as detected by electron microscopy. VGLUT3-ir terminals formed approximately equal numbers of symmetric and asymmetric synapses onto presumed preganglionic neurons (nitric oxide synthase-ir profiles) or GABA-ir dendrites in IML, and terminals immunoreactive for both VGLUT3 and GABA always formed symmetric synapses. These data suggest that medullary raphe VGLUT3 neurons could inhibit sympathetic outflow and that their spinal targets include both preganglionic neurons and GABAergic interneurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yoshida K, Nakamura K, Matsumura K, Kanosue K, König M, Thiel HJ, Boldogköi Z, Toth I, Roth J, Gerstberger R, Hübschle T. Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur J Neurosci 2003; 18:1848-60. [PMID: 14622218 DOI: 10.1046/j.1460-9568.2003.02919.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major effector organ for thermogenesis during inflammation or experimental pyrogen-induced fever in rodents is the brown adipose tissue (BAT). Prostaglandin E2 (PGE2) microinjection into the medial preoptic area (POA) of rats leads to hyperthermia through an increase in BAT thermogenesis and induces pyrogenic signal transmission towards the raphe pallidus nucleus (RPa), a brainstem nucleus known to contain sympathetic premotor neurons for BAT control. The medial POA has a high expression of prostaglandin E receptor subtype EP3 (EP3R) on POA neurons, suggesting that these EP3R are main central targets of PGE2 to mediate BAT thermogenesis. To reveal central command neurons that contain EP3R and polysynaptically project to the BAT, we combined EP3R immunohistochemistry with the detection of transneuronally labelled neurons that were infected after injection of pseudorabies virus into the BAT. Neurons double-labelled with EP3R and viral surface antigens were particularly numerous in two brain regions, the medial POA and the RPa. Of all medial POA neurons that became virally infected 71 h after BAT inoculation, about 40% expressed the EP3R. This subpopulation of POA neurons is the origin of a complete neuronal chain that connects potential PGE2-sensitive POA neurons with the BAT. As for the efferent pathway of pyrogenic signal transmission, we hypothesize that neurons of this subpopulation of EP3R expressing POA neurons convey their pyrogenic signals towards the BAT via the RPa. We additionally observed that two-thirds of those RPa neurons that polysynaptically project to the interscapular BAT also expressed the EP3R, suggesting that RPa neurons themselves might possess prostaglandin sensitivity that is able to modulate BAT thermogenesis under febrile conditions.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Veterinary-Physiology, and Institute of Virology, Justus-Liebig-University Giessen, Frankfurter Strasse 100 and 107, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Greenwood BN, Kennedy S, Smith TP, Campeau S, Day HEW, Fleshner M. Voluntary freewheel running selectively modulates catecholamine content in peripheral tissue and c-Fos expression in the central sympathetic circuit following exposure to uncontrollable stress in rats. Neuroscience 2003; 120:269-81. [PMID: 12849759 DOI: 10.1016/s0306-4522(03)00047-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Modulation of sympathetic drive to the spleen is one potential mechanism whereby physical activity prevents stress-induced splenic immune suppression in rats. The current study tested the hypothesis that voluntary freewheel running reduces peripheral sympathetic drive by modulating stress-induced activity of brain regions synaptically linked to sympathetically innervated peripheral organs, including the adrenals and spleen. To this end, adrenal and splenic catecholamine content and activity of the central sympathetic circuit indexed by c-Fos protein induction, elicited by acute exposure to inescapable tail shock, were measured. Stressor exposure depleted adrenal and splenic norepinephrine content and elicited a robust increase in c-Fos in the brains of sedentary rats. Physical activity status had no effect on adrenal norepinephrine content. Indicative of attenuated sympathetic drive to the spleen, however, 6 weeks of voluntary freewheel running diminished stress-induced splenic norepinephrine depletion, and significantly attenuated stress-induced c-Fos in specific brain regions responsible for sympathetic regulation, including tyrosine hydroxylase-immunoreactive neurons of the locus coeruleus, A5 cell group and rostral ventrolateral medulla. Results suggest that voluntary activity attenuates sympathetic drive to the spleen during stressor exposure by selectively modulating stress-induced activity of the central sympathetic circuit. The attenuation of sympathetic responses observed in this study may be one important mechanism for the protective effect of physical activity against stress-related illness and immunosuppression.
Collapse
Affiliation(s)
- B N Greenwood
- Department of Kinesiology and Applied Physiology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
31
|
van den Top M, Nolan MF, Lee K, Richardson PJ, Buijs RM, Davies CH, Spanswick D. Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J Physiol 2003; 549:809-21. [PMID: 12702746 PMCID: PMC2342973 DOI: 10.1113/jphysiol.2002.033290] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2002] [Accepted: 03/20/2003] [Indexed: 11/08/2022] Open
Abstract
The neuropeptides orexin A and B are synthesised by perifornical and lateral hypothalamic (LH) neurones and exert a profound influence on autonomic sympathetic processes. LH neurones project to spinal areas containing sympathetic preganglionic neurones (SPNs) and therefore may directly modulate sympathetic output. In the present study we examined the possibility that orexinergic inputs from the LH influence SPN activity. Orexin-positive neurones in the LH were labelled with pseudorabies virus injected into the liver of parasympathetically denervated animals and orexin fibres were found adjacent to the soma and dendrites of SPNs. Orexin A or B (10-1000 nM) directly and reversibly depolarised SPNs in spinal cord slices. The response to orexin A was significantly reduced in the presence of the orexin receptor 1 (OX1R) antagonist SB334867A at concentrations of 1-10 micro M. Single cell reverse transcriptase-polymerase chain reaction revealed expression of mRNA for both OX1R and OX2R in the majority of orexin-sensitive SPNs. The orexin-induced depolarisation involved activation of pertussis toxin-sensitive G-proteins and closure of a K+ conductance via a protein kinase A (PKA)-dependent pathway that did not require an increase in intracellular Ca2+. Orexins also induced biphasic subthreshold membrane potential oscillations and synchronised activity between pairs of electrically coupled SPNs. Coupling coefficients and estimated junctional conductances between SPNs were not altered indicating synchronisation is due to activation of previously silent coupled neurones rather than modulation of gap junctions. These findings are consistent with a direct excitation and synchronisation of SPNs by orexinergic neurones that in vivo could increase the frequency and coherence of sympathetic nerve discharges and mediate LH effects on sympathetic components of energy homeostasis and cardiovascular control.
Collapse
Affiliation(s)
- Marco van den Top
- Department of Biological Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Pelaez NM, Schreihofer AM, Guyenet PG. Decompensated hemorrhage activates serotonergic neurons in the subependymal parapyramidal region of the rat medulla. Am J Physiol Regul Integr Comp Physiol 2002; 283:R688-97. [PMID: 12185004 DOI: 10.1152/ajpregu.00154.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to prior evidence opioid and serotonin release by lower brain stem neurons may contribute to hemorrhage-induced sympathoinhibition (HISI). Here we seek direct evidence for the activation of opioidergic, GABAergic, or serotonergic neurons by severe hemorrhage in the medulla oblongata. Blood was withdrawn from awake rats (40-50% total volume) causing hypotension and profound initial bradycardia. Other rats received the vasodilator hydralazine, causing tachycardia and hypotension. Neuronal activation was gauged by the presence of Fos-immunoreactive (ir) nuclei after 2 h. Serotonergic, enkephalinergic, and GABAergic neurons were identified by the presence of a diagnostic enzyme or mRNA. Hemorrhaged rats had 30% fewer non-GABAergic Fos-ir neurons in the rostral ventrolateral medulla (RVLM) than hydralazine-treated rats, but they had six times more Fos-ir neurons within the subependymal parapyramidal nucleus (SEPPN). Fos-labeled SEPPN neurons were serotonergic (40-60%), GABAergic (31%), enkephalinergic (15%), or had mixed phenotypes. The data suggest that a reduced sympathoexcitatory drive from RVLM may contribute to HISI. SEPPN neuronal activation may also contribute to HISI or could mediate defensive thermoregulatory mechanisms triggered by hemorrhage-induced hypothermia.
Collapse
Affiliation(s)
- Nicole M Pelaez
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908-0735, USA
| | | | | |
Collapse
|
33
|
Abstract
1. Amino acid neurotransmitters are critical for controlling the activity of most central neurons, including sympathetic preganglionic neurons (SPN), the spinal cord neurons involved in controlling blood pressure and other autonomic functions. 2. In studies reviewed here, SPN were identified either by retrograde tracing from a peripheral target (superior cervical ganglion or adrenal medulla) or by detection of immunoreactivity for choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme that is a marker for all SPN, in intact or completely transected rat spinal cord. 3. Postembedding immunogold labelling on ultrathin sections was then used to detect GABA and sometimes glutamate in nerve terminals on SPN or near them in the neuropil of the lateral horn. 4. In some cases, the terminals were prelabelled to show an anterograde tracer or immunoreactivity for ChAT or neuropeptide Y. 5. This anatomical work has provided information that is helpful in understanding how SPN are influenced by their GABAergic innervation. 6. Immunogold studies showed that the proportion of input provided by GABAergic terminals varies between different groups of SPN. For some groups, this input may be preferentially targeted to cell bodies. 7. Anterograde tracing demonstrated that supraspinal as well as intraspinal GABAergic neurons innervate SPN and investigations on completely transected cord suggested that supraspinal neurons may provide a surprisingly large proportion of the GABAergic terminals that contact SPN. 8. The double-labelling studies in which other amino acids, ChAT or neuropeptide Y were localized along with GABA indicate that GABAergic terminals contain other neurochemicals that could modulate the actions of GABA, depending on the complement of receptors that are present pre- and post-synaptically. 9. Taken together, these data indicate that GABAergic transmission to SPN may be much more complicated than suggested by the currently available electrophysiological studies.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia.
| |
Collapse
|
34
|
Batueva IV, Buchanan JT, Veselkin NP, Suderevskaya EI, Tsvetkov EA. Serotonin modulates oscillations of the membrane potential in isolated spinal neurons from lampreys. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:195-203. [PMID: 11942699 DOI: 10.1023/a:1013935710851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Studies were performed on spinal neurons from lampreys isolated by an enzymatic/mechanical method using pronase. The effects of 100 microM serotonin (5-HT) on membrane potential oscillations induced by a variety of excitatory amino acids were studied. 5-HT was found to depolarize branched cells (presumptive motoneurons and interneurons) by 2-6 mV without inducing membrane potential oscillations. However, when oscillations were already present because of an excitatory amino acid, 5-HT changed the parameters of these oscillations, increasing the amplitudes of all types of oscillations, increasing the frequency of irregular oscillations, and increasing the duration of the depolarization plateaus accompanied by action potentials. Serotonin modulation of the effects of excitatory amino acids and the electrical activity of cells in the neural locomotor network facilitates motor activity and leads to increases in the contraction of truncal muscles and more intense movements by the animal. The possible mechanisms of receptor coactivation are discussed, along with increases in action potential frequency and changes in the parameters of the locomotor rhythm.
Collapse
Affiliation(s)
- I V Batueva
- Laboratory for the Evolution of Interneuronal Interactions, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | | | | | |
Collapse
|
35
|
Funakoshi K, Nakano M, Atobe Y, Kadota T, Goris RC, Kishida R. Catecholaminergic innervation of the sympathetic preganglionic cell column of the filefish Stephanolepis cirrhifer. J Comp Neurol 2002; 442:204-16. [PMID: 11774336 DOI: 10.1002/cne.10082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve fibers immunoreactive for enzymes synthesizing catecholamines were examined in the central autonomic nucleus, a column of sympathetic preganglionic neurons, in the filefish Stephanolepis cirrhifer. Varicose nerve fibers immunoreactive for tyrosine hydroxylase were densely distributed in the rostral part, sometimes in contact with perikarya but were sparse in the caudal part of this nucleus. Fluorescent double labeling distinguished noradrenergic nerve fibers immunoreactive for both tyrosine hydroxylase and dopamine beta hydroxylase, and dopaminergic fibers immunoreactive only for tyrosine hydroxylase. In the brainstem, catecholaminergic neurons were observed in the locus coeruleus, the caudal dorsomedial reticular zone of the medulla, and the area postrema. Double labeling of tyrosine hydroxylase and dopamine beta hydroxylase showed that the neurons in the locus coeruleus were all noradrenergic, and those in the caudal dorsomedial medulla were mostly noradrenergic, whereas the area postrema contained both noradrenergic and dopaminergic neurons. No catecholaminergic neurons were found in the ventral region of the brainstem. After application of DiI to the central autonomic nucleus, retrogradely labeled neurons were seen in the caudal dorsomedial medulla but not in the locus coeruleus or the area postrema. These findings suggest that the sympathetic preganglionic neurons of the filefish may receive noradrenergic axonal projections from neurons in the caudal dorsomedial medulla. In the light of previous studies, inputs of these catecholaminergic fibers to the central autonomic nucleus may be involved in regulation of sympathetic activity of peripheral organs, together with serotoninergic and peptidergic inputs to this nucleus.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Anatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Batueva IV, Buchanan JT, Veselkin NP, Suderevskaya EI, Tsvetkov EA. The effects of serotonin on functionally diverse isolated lamprey spinal cord neurons. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:89-101. [PMID: 11838562 DOI: 10.1023/a:1012960711757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The experiments reported here showed that application of serotonin (5-hydroxytryptamine, 5-HT) (100 microM) did not induce any significant current through the membranes of any of the spinal neurons studied (n = 62). At the same time, the membranes of most motoneurons and interneurons (15 of 18) underwent slight depolarization (2-6 mV) in the presence of 5-HT, which was not accompanied by any change in the input resistance of the cells. Depolarization to 10-20 mV occurred in some cells (3 of 18) of these functional groups, this being accompanied by 20-60% decreases in input resistance. The same concentration of 5-HT induced transient low-amplitude depolarization of most sensory spinal neurons (dorsal sensory cells), this changing smoothly to long-term hyperpolarization by 2-7 mV. The input resistance of the cell membranes in these cases showed no significant change (n = 8). Data were obtained which provided a better understanding of the mechanism by which 5-HT modulates the activity of spinal neurons. Thus, 5-HT facilitates chemoreceptive currents induced by application of NMDA to motoneurons and interneurons, while the NMDA responses of dorsal sensory cells were decreased by 5-HT. 5-HT affected the post-spike afterresponses of neurons. 5-HT significantly decreased the amplitude of afterhyperpolarization arising at the end of the descending phase of action potentials in motoneurons and interneurons and increased the amplitude of afterdepolarization in these types of cells. In sensory spinal neurons, 5-HT had no great effect on post-spike afterresponses. The results obtained here support the suggestion that 5-HT significantly modulates the activity of spinal neurons of different functional types. 5-HT facilitates excitation induced by subthreshold depolarization in motoneurons and some interneurons, facilitating the generation of rhythmic discharges by decreasing afterhyperpolarization. In sensory cells, 5-HT enhances inhibition due to hyperpolarization, suppressing NMDA currents. The differences in the effects of 5-HT on functionally diverse neurons are presumed to be associated with the combination of different types of 5-HT receptors on the membranes of these types of spinal neurons.
Collapse
Affiliation(s)
- I V Batueva
- Laboratory for the Evolution of Intercellular Interactions, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg
| | | | | | | | | |
Collapse
|
37
|
Abstract
This review focuses on the nervous control of the caudal ventral artery of the rat tail, and aims to convince the reader that sympathetic control of the vasculature can be mediated via neural oscillators intrinsic to the sympathetic nervous system. The definitive functional significance of these oscillators is unknown at present. However, it is expected that through dynamic relationships with modulating and driving inputs, such oscillators would permit graded vascular responses.
Collapse
Affiliation(s)
- J E Smith
- Department of Physiology, St. George's Hospital Medical School, Tooting, London, UK.
| |
Collapse
|
38
|
Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull 2000; 53:689-710. [PMID: 11165804 DOI: 10.1016/s0361-9230(00)00402-0] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past 40 years, much has been learned about the role of serotonin in spinal cord reflex modulation and locomotor pattern generation. This review presents an historical overview and current perspective of this literature. The primary focus is on the mammalian nervous system. However, where relevant, major insights provided by lower vertebrate models are presented. Recent studies suggest that serotonin-sensitive locomotor network components are distributed throughout the spinal cord and the supralumbar regions are of particular importance. In addition, different serotonin receptor subtypes appear to have different rostrocaudal distributions within the locomotor network. It is speculated that serotonin may influence pattern generation at the cellular level through modulation of plateau properties, an interplay with N-methyl-D-aspartate receptor actions, and afterhyperpolarization regulation. This review also summarizes the origin and maturation of bulbospinal serotonergic projections, serotonin receptor distribution in the spinal cord, the complex actions of serotonin on segmental neurons and reflex pathways, the potential role of serotonergic systems in promoting spinal cord maturation, and evidence suggesting serotonin may influence functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- B J Schmidt
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
39
|
Higuchi A, Adachi S, Imizu T, Ok YB, Tsubomura T, Hara M, Sakai K. Oscillation of Membrane Potential in Immobilized DNA Membranes. J Phys Chem B 2000. [DOI: 10.1021/jp001600n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akon Higuchi
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Shinya Adachi
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Takeshi Imizu
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Yoon Boo Ok
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Taro Tsubomura
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Mariko Hara
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Ken Sakai
- Department of Applied Chemistry, Science University of Tokyo, 1-3 Kagurazaka, Shinjyuku, Tokyo 162-8601, Japan
| |
Collapse
|
40
|
Russo RE, Hounsgaard J. Dynamics of intrinsic electrophysiological properties in spinal cord neurones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:329-65. [PMID: 10605293 DOI: 10.1016/s0079-6107(99)00011-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. The intrinsic response properties of spinal neurones--determined by the particular set and distribution of voltage sensitive channels and their dynamic non-linear interactions--show a high degree of functional specialisation as reflected by the differences of intrinsic response patterns in different cell types. Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands.
Collapse
Affiliation(s)
- R E Russo
- Unidad Asociada Neurofisiología, Instituto de Investigaciones Biológicas Clemente Estable, Facultad de Ciencias, Montevideo, Uruguay.
| | | |
Collapse
|
41
|
Elliott P, Wallis DI, Foster GA, Stringer BM. Ionic mechanisms underlying excitatory effects of serotonin on embryonic rat motoneurons in long-term culture. Neuroscience 1999; 90:1311-23. [PMID: 10338299 DOI: 10.1016/s0306-4522(98)00534-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The actions of serotonin were investigated on motoneurons isolated from embryonic day 14 rat spinal cord and enriched by metrizamide density gradient centrifugation. Trophic support was provided by a spinal cord glial monolayer, ciliary neurotrophic factor and heat-inactivated serum. Cultures were maintained for 17-83 days and investigated using whole-cell patch-clamp recording. Serotonin evoked slow depolarizations (6.2+/-0.7 or 9.3+/-1.3 mV in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione and strychnine, EC50 8.2 nM), which were reversibly blocked by 0.1 microM ketanserin. Serotonin generated synaptic potentials in motoneurons, lowered the threshold for repetitive firing and changed the slope of the current intensity-firing frequency relationship. The inward current evoked by serotonin (-147+/-15.2 pA) was ascribed to a complex ionic mechanism, which varied amongst neurons in the sampled population. It was due to closure of barium-sensitive potassium channels, effects on Ih and increase in a separate mixed cation current which comprised both transient voltage-sensitive and sustained components. We conclude that serotonergic responses develop in motoneurons cultured under these conditions in the absence of serotonergic input, sensory neurons or many interneurons.
Collapse
Affiliation(s)
- P Elliott
- Physiology Unit, School of Molecular and Medical Biosciences, Cardiff University, UK
| | | | | | | |
Collapse
|
42
|
Hwang LL, Dun NJ. 5-HT modulates multiple conductances in immature rat rostral ventrolateral medulla neurones in vitro. J Physiol 1999; 517 ( Pt 1):217-28. [PMID: 10226161 PMCID: PMC2269332 DOI: 10.1111/j.1469-7793.1999.0217z.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Whole-cell patch-clamp recordings were made from rostral ventrolateral medulla (RVLM) neurones of brainstem slices from 8- to 12-day-old rats. In the presence of tetrodotoxin (0.5 microM), 5-HT (50 microM) elicited an outward current (I5-HT,outward) (10/44 neurones) associated with an increase in membrane conductance, and an inward current (I5-HT,inward) (29/44 neurones) accompanied by a decrease or no significant change in membrane conductance. 2. The steady-state I-V relationship of I5-HT,outward showed an inward rectification; the 5-HT-induced current, which reversed at -87.9 +/- 3.0 mV, was suppressed by 0.1 mM Ba2+. 3. Two types of steady-state I-V relationship for I5-HT,inward were noted: type I I5-HT,inward was characterized by a significant decrease in membrane conductance and reversed at a potential close to or negative to the theoretical K+ equilibrium potential (EK), -94 mV, in 8/17 neurones; type II I5-HT,inward was not associated with a significant change in membrane conductance and was relatively independent of membrane potential. 4. Both type I and type II I5-HT,inward were significantly reduced in a low [Na+]o solution. In this solution, I5-HT,inward decreased with hyperpolarization and had a linear steady-state I-V relationship with a reversal potential of approximately -110 mV. The reversal potential of type I I5-HT,inward shifted to about -80 mV as the [K+]o was increased from 3.1 to 7.0 mM in low [Na+]o solution. The type II I5-HT,inward did not reverse at the estimated EK in the same solution. 5. While not affected by externally applied Cs+ (1 mM), I5-HT,inward was significantly smaller in RVLM neurones patched with Cs+-containing electrodes; the current reversed at -11.9 +/- 6.4 mV in 8/15 responsive neurones. 6. It may be concluded that in rat RVLM neurones 5-HT increases an inwardly rectifying K+ conductance which may underlie the I5-HT, outward and that a combination of varying degrees of K+ conductance decrease and a Cs+-insensitive, non-selective cation conductance increase may account for the two types of conductance change associated with I5-HT,inward.
Collapse
Affiliation(s)
- L L Hwang
- Department of Anatomy & Neurobiology, Medical College of Ohio, 3000 Arlington Avenue, Toledo, OH 43699, USA
| | | |
Collapse
|
43
|
Li YW, Bayliss DA. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons. Clin Exp Pharmacol Physiol 1998; 25:468-73. [PMID: 9673827 DOI: 10.1111/j.1440-1681.1998.tb02237.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.
Collapse
Affiliation(s)
- Y W Li
- Department of Pharmacology, University of Virginia, Charlottesville, USA
| | | |
Collapse
|
44
|
Farkas E, Jansen AS, Loewy AD. Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons. Brain Res 1998; 792:179-92. [PMID: 9593884 DOI: 10.1016/s0006-8993(98)00029-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The periaqueductal gray matter (PAG) serves as the midbrain link between forebrain emotional processing systems and motor pathways used in the defense reaction. Part of this response depends upon PAG efferent pathways that modulate cardiovascular-related sympathetic outflow systems, including those that regulate the heart. While it is known that the PAG projects to vagal preganglionic neurons, including possibly cardiovagal motoneurons, no information exists on the PAG circuits that may affect sympathetically mediated cardiac functions and, thus, the purpose of this study was to use neuroanatomical methods to identify these pathways. First, viral transneuronal retrograde tracing experiments were performed in which pseudorabies virus (PRV) was injected into the stellate ganglion of rats. After 4 days survival, five PAG regions contained transynaptically infected neurons; these included the dorsomedial, lateral and ventrolateral PAG columns as well as the Edinger-Westphal and precommissural nuclei. Second, the descending efferent PAG projections were studied with the anterograde axonal marker Phaseolus vulgaris leuco-agglutinin (PHA-L) with a particular focus on determining whether the PAG projects to the intermediolateral cell column (IML). Almost no axonal labeling was found throughout the thoracic IML suggesting that the PAG modulates sympathetic functions by indirect pathways involving synaptic relays through sympathetic premotor cell groups, especially those found in the medulla oblongata. This possibility was examined by a double tracing study. PHA-L was first injected into either the lateral or ventrolateral PAG and after 6 days, PRV was injected into the ipsilateral stellate ganglion. After an additional 4 days survival, a double immunohistochemical procedure for co-visualization of PRV and PHA-L was used to identify the sympathetic premotor regions that receive an input from the PAG. The PAG innervated specific groups of sympathetic premotor neurons in the hypothalamus, pons, and medulla as well as providing reciprocal intercolumnar connections within the PAG itself (Jansen et al., Brain Res. 784 (1998) 329-336). The major route terminates in the ventral medulla, especially within the medial region which contains sympathetic premotor neurons lying within the raphe magnus and gigantocellular reticular nucleus, pars alpha. Both serotonergic and non-serotonergic sympathetic premotor neurons in these two regions receive inputs from the PAG. Weak PAG projections to sympathetic premotor neurons were found in the rostral ventrolateral medulla (including to C1 adrenergic neurons), locus coeruleus, A5 cell group, paraventricular and lateral hypothalamic nuclei. In summary, both the lateral and ventrolateral PAG columns appear to be capable of modulating cardiac sympathetic functions via a series of indirect pathways involving sympathetic premotor neurons found in selected sites in the hypothalamus, midbrain, pons, and medulla oblongata, with the major outflow terminating in bulbospinal regions of the rostral ventromedial medulla.
Collapse
Affiliation(s)
- E Farkas
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
45
|
Abstract
1. The activity recorded from mammalian sympathetic nerves comes in bursts, which result from large numbers of fibres firing synchronously. 2. Human sympathetic nerve activity behaves similarly to that in animals, although burst rates may be lower. 3. Vasomotor, cardiac and sudomotor nerve fibres all fire in bursts. Whether other sympathetic pathways do so is unknown. 4. Sympathetic activity is intrinsically 'bursty' but not intrinsically regular. 5. Bursting is a population phenomenon, not usually evident in the firing of individual neurons. 6. Bursts in post-ganglionic nerves are driven by synchronously firing preganglionic neurons. 7. The origin of bursts remains controversial. Preganglionic neuron properties are likely to be important in at least shaping bursts. 8. Burst amplitude, which reflects the number of fibres firing together, and burst probability are controlled independently. 9. Baroreceptors affect burst probability over a wide range, but have less effect on mean burst amplitude. How they affect burst timing within the cardiac cycle is discussed. 10. Burst probability is determined 'downstream' of the rostral ventrolateral medulla, implicating either the spinal cord or recurrent brainstem connections in burst generation. 11. Neuroeffector responses are too slow to follow individual bursts. However, bursting will promote spatial facilitation at both ganglionic and effector levels, which may increase the dynamic range of neural control.
Collapse
Affiliation(s)
- R M McAllen
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
46
|
Krupp J, Bordey A, Feltz P. Electrophysiological evidence for multiple glycinergic inputs to neonatal rat sympathetic preganglionic neurons in vitro. Eur J Neurosci 1997; 9:1711-9. [PMID: 9283825 DOI: 10.1111/j.1460-9568.1997.tb01528.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The time pattern of glycinergic inhibitory postsynaptic currents (IPSCs) in sympathetic preganglionic neurons was studied in thin transverse spinal cord slices of neonatal (1-10 days postnatal) rats by means of the patchclamp technique. Three time patterns could be distinguished: (i) large events [mostly > 400 pA (30-36 degrees C)] occurring at regular intervals, (ii) small events occurring at irregular intervals, and (iii) small events occurring in transient (1.5-10 s), high-frequency (> 15 Hz) bursts of synaptic activity. The large regular events had uniform kinetics which was consistent with the idea of a proximal site of origin for all of these events. They were reversibly inhibited in amplitude and frequency by extracellular application of a high concentration of acetylcholine (200 microM) or the specific nicotinic acetylcholine receptor agonist dimethylphenylpiperazinium iodide (DMPP; 1 mM), but unaffected by glutamate (100 microM). IPSCs occurring in bursts had slower and less uniform kinetics, suggesting a more diverse site of origin. The frequency of events decreased during a burst. Similar bursts could be induced by extracellular application of glutamate receptor agonists. These results indicate that sympathetic pregnanglionic neurons in a thin, transverse spinal cord slice receive at least two different glycinergic inputs.
Collapse
Affiliation(s)
- J Krupp
- Institut de Physiologie Générale, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
47
|
Bayliss DA, Li YW, Talley EM. Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance. J Neurophysiol 1997; 77:1349-61. [PMID: 9084602 DOI: 10.1152/jn.1997.77.3.1349] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used whole cell current- and voltage-clamp recording in neonatal rat brain stem slices to characterize firing properties and effects of serotonin (5-HT) on neurons (n = 225) in raphe pallidus (RPa) and raphe obscurus (ROb). Of a sample of 51 Lucifer yellow-filled neurons recovered after immunohistochemical processing to detect tryptophan hydroxylase (TPH), 34 were found to be TPH immunoreactive (i.e., serotonergic). Serotonergic neurons had long-duration action potentials and fired spontaneously at low frequency (approximately 1 Hz) in a pattern that was often irregular; at higher firing frequencies the discharge became more regular. These neurons displayed spike frequency adaptation, with maximal steady-state firing rates of < 4 Hz. The overwhelming majority of identified serotonergic neurons was hyperpolarized by bath-applied 5-HT (94%; n = 32 of 34); conversely, most cells in this sample that were hyperpolarized by 5-HT were serotonergic (78%; n= 32 of 41). TPH-immunonegative neurons were separated into two populations. One group had properties that were indistinguishable from those of serotonergic caudal raphe neurons. The other group was truly distinct; those neurons had more hyperpolarized resting membrane potentials, were not spontaneously active, had shorter-duration action potentials, and were depolarized by 5-HT. Caudal raphe neurons responded to 5-HT (1-5 microM) with membrane hyperpolarization in current clamp (-13.4 +/- 1.1 mV, mean +/- SE) or with outward current in voltage clamp (16.0 +/- 1.4 pA). The current induced by 5-HT was inwardly rectifying and associated with an increase in peak conductance and was highly selective for K+. It was completely blocked by 0.2 mM Ba2+ but not by glibenclamide, an inhibitor of ATP-sensitive K+ channels. Effects of 5-HT were dose dependent, with an EC50 of 0.1-0.3 microM. The 5-HT1A agonist 8-OH-DPAT mimicked, and the 5-HT1A antagonists (+)WAY 10,0135 and NAN 190 blocked, effects of 5-HT. The 5-HT2A/C antagonist ketanserin did not inhibit the effects of 5-HT. Fewer 5-HT-responsive neurons were encountered in slices exposed acutely to pertussis toxin (approximately 13%) than in adjacent control slices not exposed to pertussis toxin (approximately 85%). In addition, in neurons recorded with pipettes containing GTP gamma S (0.1 mM), 5-HT induced an inwardly rectifying current that did not reverse on washing. In many cells recorded with GTP gamma S, a current developed in the absence of agonist that had properties identical to those of the 5-HT-sensitive current; when followed for extended periods, the agonist-independent GTP gamma S-induced conductance desensitized, returning toward control levels with a time constant of approximately 18 min. Together these results indicate that serotonergic neurons of ROb and RPa are spontaneously active in a neonatal rat brain stem slice preparation and that hyperpolarization of those neurons by 5-HT1A receptor stimulation is due to pertussis toxin-sensitive G protein-mediated activation of an inwardly rectifying K+ conductance. In addition, we identified a group of nonserotonergic medullary raphe neurons that had distinct electrophysiological properties and that was depolarized by 5-HT.
Collapse
Affiliation(s)
- D A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
48
|
Abstract
Smooth muscle relaxation of penile arteries, the corpus cavernosum, and the corpus spongiosum, leading to penile erection, results from parasympathetic neural pathway activation and, likely, simultaneous inhibition of sympathetic outflow. Proerectile parasympathetic outflow is reflexively activated by sensory information of peripheral origin, conveyed by the dorsal penile nerve, and reflexive erections are supported by an intraspinal circuitry. Supraspinal influences modulate the reflex. Information integrated at or originating from supraspinal structures may also elicit penile erection. Several neurotransmitters are involved in either the modulation of the spinal reflex or the mediation of supraspinal influences. Spinal cord injury differently alters reflexive penile erection or erection from a central origin, depending on the neurologic level of injury.
Collapse
Affiliation(s)
- O Rampin
- Laboratoire de Neurobiologie des Fonctions Végétatives, Batiment 325 INRA, Jouy-en-Josas, France
| | | | | |
Collapse
|
49
|
Albert AP, Spyer KM, Brooks PA. The effect of 5-HT and selective 5-HT receptor agonists and antagonists on rat dorsal vagal preganglionic neurones in vitro. Br J Pharmacol 1996; 119:519-26. [PMID: 8894172 PMCID: PMC1915695 DOI: 10.1111/j.1476-5381.1996.tb15702.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Whole-cell patch-clamp recordings were made from 142 visually identified rat dorsal vagal preganglionic neurones (DVMs). Applications of 5-hydroxytryptamine (5-HT, 20 microM, 2 min) elicited a slow depolarization (8.2 +/- 0.5 mV, n = 59) in 95% of the cells tested, accompanied by an increase in excitability. In (68%) of DVMs the depolarization was associated with an increase in apparent membrane resistance (Rmt 22.7 +/- 2.2%). These depolarizations and increases in Rm (14.3 +/- 2.6%, n = 8) were maintained in a medium which blocked synaptic transmission. 2. The response to 5-HT was associated with a reversal potential (Erev) of -91 +/- 1 mV at an extracellular K+ concentration (LK+]o) of 4.2 mM. This correlated well with the K+ equilibrium potential (Ek = -89 mV). 3. The depolarizing effect of 5-HT was attenuated by the 5-HT2A/2C receptor antagonists, ketanserin (1 microM), LY 53,857 (1 microM) and the 5-HT1A/2A receptor antagonist, spiperone (1 microM). The 5-HT1A receptor antagonist, pindobind 5-HT1A (5 microM), had no effect on the depolarizing response to 5-HT. 4. The effect of 5-HT was mimicked by the 5-HT2A/2C receptor agonist, alpha-methyl-5-HT (50 microM), the 5-HT1 receptor agonist, 5-carboxamidotryptamine (20 microM) and the putative 5-HT4 agonist, 5-methyoxytryptamine (5 microM). The selective 5-HT4 receptor antagonist, GR113808, had no effect on the depolarizing effect of 5-HT or 5-MEOT on DVMs. 5. The 5-HT3 antagonists, MDL 72222 (10 microM) and ICS-205-930 (1 and 10 microM), partially reduced the effect of 5-HT. The 5-HT3 receptor agonist, 2-methyl-5-HT (100-300 microM), excited a proportion of neurones tested (56%) by evoking a depolarizing and/or an increase in postsynaptic potentials (p.s.ps). 6. These results are consistent with direct, postsynaptic actions of 5-HT on DVMs via 5-HT2A receptors, being mediated, in part, by the reduction of K+ conductance.
Collapse
Affiliation(s)
- A P Albert
- Department of Physiology, Royal Free Hospital School of Medicine, London
| | | | | |
Collapse
|
50
|
Logan SD, Pickering AE, Gibson IC, Nolan MF, Spanswick D. Electrotonic coupling between rat sympathetic preganglionic neurones in vitro. J Physiol 1996; 495 ( Pt 2):491-502. [PMID: 8887759 PMCID: PMC1160807 DOI: 10.1113/jphysiol.1996.sp021609] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Using the whole-cell recording technique in rat spinal cord slices we have shown that 26% of sympathetic preganglionic neurones (SPNs) show spontaneous membrane potential oscillations. These oscillations consist of trains of biphasic waves, which we have termed spikelets because of their similarity to truncated action potentials. 2. The spikelets were inhibited by TTX and anaesthetics such as alpha-chloralose but not by the intracellular application of lidocaine N-ethyl bromide (QX-314). 3. By stimulating the ventral roots we have demonstrated the presence of short-latency depolarizations (SLDs) in oscillating neurones. These SLDs have a similar waveform to the spontaneous spikelets, and also show the ability to override the frequency of occurrence of the spontaneous spikelets. These observations suggest that the spikelets result from electrotonic coupling between the oscillating SPNs. 4. SLDs were also observed in a population of non-oscillating, electrotonically coupled, quiescent SPNs. It was possible to induce oscillations in these neurones by the injection of depolarizing current (in the presence of QX-314), suggesting that these neurones are also gap-junction coupled. 5. Simultaneous whole-cell recordings were obtained from twenty-three pairs of SPNs. Two pairs displayed both spontaneous, synchronized oscillations and action potentials. Electrotonic coupling was confirmed by the detection of membrane polarization in both neurones in response to current injected into one neurone. In a further two pairs of quiescent SPNs, injection of depolarizing current pulses into one neurone induced action potential discharge in that neurone and a depolarization and oscillations in the other neurone. 6. The ability of groups of electrotonically coupled SPNs to generate spontaneous discharges within the spinal cord provides a novel mechanism for the integration and synchronization of information within the sympathetic nervous system.
Collapse
Affiliation(s)
- S D Logan
- Department of Biomedical Sciences, Marischal College, University of Aberdeen, UK.
| | | | | | | | | |
Collapse
|