1
|
Wu J, Xu X, Zhang S, Li M, Qiu Y, Lu G, Zheng Z, Huang H. Plastic Events of the Vestibular Nucleus: the Initiation of Central Vestibular Compensation. Mol Neurobiol 2024; 61:9680-9693. [PMID: 38689145 DOI: 10.1007/s12035-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Vestibular compensation is a physiological response of the vestibular organs within the inner ear. This adaptation manifests during consistent exposure to acceleration or deceleration, with the vestibular organs incrementally adjusting to such changes. The molecular underpinnings of vestibular compensation remain to be fully elucidated, yet emerging studies implicate associations with neuroplasticity and signal transduction pathways. Throughout the compensation process, the vestibular sensory neurons maintain signal transmission to the central equilibrium system, facilitating adaptability through alterations in synaptic transmission and neuronal excitability. Notable molecular candidates implicated in this process include variations in ion channels and neurotransmitter profiles, as well as neuronal and synaptic plasticity, metabolic processes, and electrophysiological modifications. This study consolidates the current understanding of the molecular events in vestibular compensation, augments the existing research landscape, and evaluates contemporary therapeutic strategies. Furthermore, this review posits potential avenues for future research that could enhance our comprehension of vestibular compensation mechanisms.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Liu D, Wang J, Zhou L, Tian E, Chen J, Kong W, Lu Y, Zhang S. Differential Modulation of Cerebellar Flocculus Unipolar Brush Cells during Vestibular Compensation. Biomedicines 2023; 11:biomedicines11051298. [PMID: 37238967 DOI: 10.3390/biomedicines11051298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Vestibular compensation is a natural behavioral recovery process following unilateral vestibular injury. Understanding the mechanism can considerably enhance vestibular disorder therapy and advance the adult central nervous system functional plasticity study after injury. The cerebellum, particularly the flocculonodular lobe, tightly modulates the vestibular nucleus, the center for vestibular compensation; however, it is still unclear if the flocculus on both sides is involved in vestibular compensation. Here we report that the unipolar brush cells (UBCs) in the flocculus are modulated by unilateral labyrinthectomy (UL). UBCs are excitatory interneurons targeting granule cells to provide feedforward innervation to the Purkinje cells, the primary output neurons in the cerebellum. According to the upregulated or downregulated response to the mossy fiber glutamatergic input, UBC can be classified into ON and OFF forms of UBCs. Furthermore, we discovered that the expression of marker genes of ON and OFF UBCs, mGluR1α and calretinin, was increased and decreased, respectively, only in ipsilateral flocculus 4-8 h after UL. According to further immunostaining studies, the number of ON and OFF UBCs was not altered during UL, demonstrating that the shift in marker gene expression level in the flocculus was not caused by the transformation of cell types between UBCs and non-UBCs. These findings imply the importance of ipsilateral flocculus UBCs in the acute response of UL, and ON and OFF UBCs may be involved in vestibular compensation in opposite directions.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
4
|
Barmack NH, Pettorossi VE. Adaptive Balance in Posterior Cerebellum. Front Neurol 2021; 12:635259. [PMID: 33767662 PMCID: PMC7985352 DOI: 10.3389/fneur.2021.635259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.
Collapse
Affiliation(s)
- Neal H. Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Vito Enrico Pettorossi
- Section of Human Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Wijesinghe R, Camp A. The intrinsic plasticity of medial vestibular nucleus neurons during vestibular compensation-a systematic review and meta-analysis. Syst Rev 2020; 9:145. [PMID: 32552855 PMCID: PMC7302131 DOI: 10.1186/s13643-020-01399-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vestibular compensation is a homeostatic process that occurs in the central nervous system in response to peripheral vestibular dysfunction. Experimental studies in rodent models have suggested that unilateral peripheral vestibular lesions are correlated with an increase in the intrinsic excitability of central vestibular neurons. This process may be dependent on the intrinsic properties of the neurons themselves. We aimed to conduct a systematic review of the literature to survey the evidence for changes in intrinsic plasticity observed during the acute phase of vestibular compensation. METHODS We systematically reviewed the literature regarding the electrophysiological effect of experimentally induced unilateral vestibular deafferentation (UVD) on the intrinsic membrane properties of medial vestibular nucleus neurons in animal models. We developed tools to assess the methodological quality (precision, validity and bias) of studies that met pre-determined inclusion and exclusion criteria. We extracted numerical data and performed a meta-analysis of specific quantitative data pooled from these studies. RESULTS We identified 17 studies that satisfied the inclusion criteria. There is moderate quality evidence to suggest a statistically significant increase in the intrinsic excitability of medial vestibular nucleus neurons following unilateral vestibular deafferentation. Specifically, the spontaneous discharge rate increases by 4 spikes/s on average and the sensitivity to current stimuli increases. CONCLUSION Using this novel approach, we demonstrate that the methodology of systematic review and meta-analysis is a useful tool in the summation of data across experimental animal studies with similar aims.
Collapse
Affiliation(s)
- Rajiv Wijesinghe
- Sensory systems and integration laboratory, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Aaron Camp
- Sensory systems and integration laboratory, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Kalla R, Strupp M. Aminopyridines and Acetyl-DL-leucine: New Therapies in Cerebellar Disorders. Curr Neuropharmacol 2019; 17:7-13. [PMID: 30182858 PMCID: PMC6341500 DOI: 10.2174/1570159x16666180905093535] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cerebellar ataxia is a frequent and often disabling syndrome severely impairing motor functioning and quality of life. Patients suffer from reduced mobility, and restricted autonomy, experiencing an even lower quality of life than, e.g., stroke survivors. Aminopyridines have been demonstrated viable for the symptomatic treatment of certain forms of cerebellar ataxia. This article will give an outline of the present pharmacotherapy of different cerebellar disorders. As a current key-therapy for the treatment of downbeat nystagmus 4-aminopyridine (4-AP) is suggested for the treatment of downbeat nystagmus (5-10 mg Twice a day [TID]), a frequent type of persisting nystagmus, due to a compromise of the vestibulo-cerebellum. Studies with animals have demonstrated, that a nonselective blockage of voltage-gated potassium channels (mainly Kv1.5) increases Purkinje- cell (PC) excitability. In episodic ataxia type 2 (EA2), which is frequently caused by mutations of the PQ-calcium channel, the efficacy of 4-AP (5-10 mg TID) has been shown in a randomized controlled trial (RCT). 4-AP was well tolerated in the recommended dosages. 4-AP was also effective in elevating symptoms in cerebellar gait ataxia of different etiologies (2 case series). A new treatment option for cerebellar disease is the amino-acid acetyl-DL-leucine, which has significantly improved cerebellar symptoms in three case series. There are on-going randomized controlled trials for cerebellar ataxia (acetyl-DL-leucine vs placebo; ALCAT), cerebellar gait disorders (SR-form of 4-AP vs placebo; FACEG) and EA2 (sustained-release/SR-form of 4-AP vs acetazolamide vs placebo; EAT2TREAT), which will provide new insights into the pharmacological treatment of cerebellar disorders.
Collapse
Affiliation(s)
- Roger Kalla
- Department of Neurology, University Hospital Bern, Bern, Switzerland.,Department of Neurology, German Center for Vertigo and Balance Disorders, and Institute for Clinical Neurosciences, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Michael Strupp
- Department of Neurology, German Center for Vertigo and Balance Disorders, and Institute for Clinical Neurosciences, University Hospital Munich, Campus Grosshadern, Munich, Germany
| |
Collapse
|
7
|
Chang MY, Park S, Choi JJ, Kim YK, Suh MW, Lee JH, Oh SH, Park MK. MicroRNAs 218a-5p, 219a-5p, and 221-3p regulate vestibular compensation. Sci Rep 2017; 7:8701. [PMID: 28821887 PMCID: PMC5562769 DOI: 10.1038/s41598-017-09422-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Unilateral vestibular deafferentation (UVD) interrupts afferent signals from one side, resulting in an imbalance of the resting activity between bilateral vestibular nuclei. Vestibular compensation is the process of balancing the resting activity to reestablish homeostasis. Here, we investigated microRNAs (miRNAs) that regulate vestibular compensation using the Sprague-Dawley rat. After determining the progression of vestibular compensation following UVD, microarray analysis was performed and nine miRNAs were selected as candidates. Following validation by quantitative reverse transcription-PCR, three miRNAs remained. We assessed the effect of these miRNAs on vestibular compensation using miRNA oligomers. We compared the results of the rotarod test and 5-bromo-2'-deoxyuridine immunohistochemistry following UVD between the control group and the groups in which the candidate miRNA oligomers were administered. Administration of miR-218a-5p, 219a-5p, and 221-3p oligomers significantly affected vestibular compensation. Target pathway analysis of these miRNAs supported our results. Our findings suggest that the miRNAs 218a-5p, 219a-5p, and 221-3p regulate vestibular compensation.
Collapse
Affiliation(s)
- Mun Young Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, 06973, Republic of Korea.,Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sohyeon Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jun Jae Choi
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, 61186, Republic of Korea
| | - Myung-Whan Suh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jun Ho Lee
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung Ha Oh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Moo Kyun Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
8
|
Zhou W, Zhou LQ, Shi H, Leng YM, Liu B, Zhang SL, Kong WJ. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy. Int J Mol Med 2016; 38:1481-1489. [PMID: 28026001 PMCID: PMC5065303 DOI: 10.3892/ijmm.2016.2753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
The medial vestibular nucleus (MVN) and the cerebellar flocculus have been known to be the key areas involved in vestibular compensation (VC) following unilateral labyrinthectomy (UL). In this study, we examined the role of gephyrin and glycine receptor (GlyR) in VC using Sprague-Dawley rats, in an aim to gain deeper insight into the mechanisms responsible for VC. The expression of the α1 and β subunits of GlyR and gephyrin was immunohistochemically localized in rat MVN and flocculi. The mRNA and protein expression of GlyR (α1 and β subunits) and gephyrin was quantitatively determined by RT-qPCR and western blot analysis at 8 h, and at 1, 3 and 7 days following UL. It was found that in the ipsilateral MVN, the mRNA and protein expression of the β subunit of GlyR was significantly increased in comparison to the sham-operated (P<0.01) rats, and in comparison to the contralateral side (P<0.01) at 8 h following UL. In the ipsilateral flocculi, GlyR β protein expression was significantly elevated (P<0.01 for all), as compared to the sham-operated rats at 8 h, and at 1 and 3 days and to the contralateral side 8 h, 1 and 3 days following UL. No significant differences were observed in the mRNA and protein expression of GlyR α1 and gephyrin in the MVN or flocculi between the two sides (ipsilateral and contralateral) in the UL group, and between the sham-operated group and the UL group at any time point. The findings of our study thus suggest that GlyR plays a major role in the recovery of the resting discharge of the deafferented MVN neurons in the central vestibular system.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liu-Qing Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong Shi
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yang-Ming Leng
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Su-Lin Zhang
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
9
|
Zhou L, Zhou W, Zhang S, Liu B, Liang P, Zhou Y, Zhou T, Zhang K, Leng Y, Kong W. BDNF signaling in the rat cerebello-vestibular pathway during vestibular compensation: BDNF signaling in vestibular compensation. FEBS J 2015; 282:3579-91. [PMID: 26111610 DOI: 10.1111/febs.13360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 05/18/2015] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Vestibular compensation, which is the behavioral recovery from lesions to the peripheral vestibular system, is attributed to plasticity of the central vestibular system. It has been reported that brain-derived neurotrophic factor (BDNF) is expressed and released in an activity-dependent manner. Upon binding to the tyrosine receptor kinase B (TrkB), BDNF can acutely modulate synaptic transmission and plasticity in the central nervous system. To assess the possible contribution of BDNF to this recovery process, we studied the expression of BDNF, TrkB.FL, TrkB.T1 and KCC2 (K(+) -Cl(-) cotransporter isoform 2) in the bilateral medial vestibular nucleus (MVN) and the flocculus of rats at 4 h, 8 h, 1, 3 and 7 days following unilateral labyrinthectomy (UL) using immunohistochemistry, quantitative real-time PCR and western blotting. Our results have shown that, compared with the sham controls and the contra-lesional side, (a) the expression of BDNF and TrkB.FL increased at 4 h in the ipsi-lesional flocculus after UL; (b) the expression of TrkB.T1 decreased at 4 h and KCC2 decreased at 8 h and 1 day in the ipsi-lesional flocculus after UL; and (c) BDNF and TrkB.FL expression was enhanced and KCC2 expression was reduced in the ipsi-lesional MVN at 8 h after UL. Our data supported the hypothesis that BDNF upregulation may reduce the inhibitory effects of the flocculus and commissural inhibition system by regulating inhibitory GABAergic synaptic transmission in floccular Purkinje cells and Purkinje cell terminals in the MVN. Additionally, KCC2 may be a switch in this process.
Collapse
Affiliation(s)
- Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Liang
- Department of Neurobiology, Bielefeld University, Germany
| | - Yan Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Eron JN, Davidovics N, Della Santina CC. Contribution of vestibular efferent system alpha-9 nicotinic receptors to vestibulo-oculomotor interaction and short-term vestibular compensation after unilateral labyrinthectomy in mice. Neurosci Lett 2015; 602:156-61. [PMID: 26163461 DOI: 10.1016/j.neulet.2015.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/25/2015] [Accepted: 06/30/2015] [Indexed: 11/20/2022]
Abstract
Sudden unilateral loss of vestibular afferent input causes nystagmus, ocular misalignment, postural instability and vertigo, all of which improve significantly over the first few days after injury through a process called vestibular compensation (VC). Efferent neuronal signals to the labyrinth are thought to be required for VC. To better understand efferent contributions to VC, we compared the time course of VC in wild-type (WT) mice and α9 knockout (α9(-/-)) mice, the latter lacking the α9 subunit of nicotinic acetylcholine receptors (nAChRs), which is thought to represent one signaling arm activated by the efferent vestibular system (EVS). Specifically, we investigated the time course of changes in the fast/direct and slow/indirect components of the angular vestibulo-ocular reflex (VOR) before and after unilateral labyrinthectomy (UL). Eye movements were recorded using infrared video oculography in darkness with the animal stationary and during sinusoidal (50 and 100°/s, 0.5-5 Hz) and velocity step (150°/s for 7-10s, peak acceleration 3000°/s(2)) passive whole-body rotations about an Earth-vertical axis. Eye movements were measured before and 0.5, 2, 4, 6 and 9 days after UL. Before UL, we found frequency- and velocity-dependent differences between WT and α9(-/-) mice in generation of VOR quick phases. The VOR slow phase time constant (TC) during velocity steps, which quantifies contributions of the indirect component of the VOR, was longer in α9(-/-) mutants relative to WT mice. After UL, spontaneous nystagmus (SN) was suppressed significantly earlier in WT mice than in α9(-/-) mice, but mutants achieved greater recovery of TC symmetry and VOR quick phases. These data suggest (1) there are significant differences in vestibular and oculomotor functions between these two types of mice, and (2) efferent signals mediated by α9 nicotinic AChRs play a role during VC after UL.
Collapse
Affiliation(s)
- Julia N Eron
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | - Natan Davidovics
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles C Della Santina
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Günther L, Beck R, Xiong G, Potschka H, Jahn K, Bartenstein P, Brandt T, Dutia M, Dieterich M, Strupp M, la Fougère C, Zwergal A. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus. PLoS One 2015; 10:e0120891. [PMID: 25803613 PMCID: PMC4372420 DOI: 10.1371/journal.pone.0120891] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus.
Collapse
Affiliation(s)
- Lisa Günther
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Guoming Xiong
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Heidrun Potschka
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Bartenstein
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Clinical Neuroscience, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Mayank Dutia
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Strupp
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christian la Fougère
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Nuclear Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
12
|
Beck R, Günther L, Xiong G, Potschka H, Böning G, Bartenstein P, Brandt T, Jahn K, Dieterich M, Strupp M, la Fougère C, Zwergal A. The mixed blessing of treating symptoms in acute vestibular failure — Evidence from a 4-aminopyridine experiment. Exp Neurol 2014; 261:638-45. [DOI: 10.1016/j.expneurol.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
13
|
The changes in mGluR2 and mGluR7 expression in rat medial vestibular nucleus and flocculus following unilateral labyrinthectomy. Int J Mol Sci 2013; 14:22857-75. [PMID: 24264036 PMCID: PMC3856095 DOI: 10.3390/ijms141122857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/09/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022] Open
Abstract
It is known that the medial vestibular nucleus (MVN) and the cerebellar flocculus are the key areas, which contribute to the behavioral recovery ("vestibular compensation") after unilateral labyrinthectomy (UL). In these areas, how the genetic activities of the metabotropic glutamate receptors mGluR2 and mGluR7 performance after UL is unknown. With the means of quantitative real-time PCR, Western blotting, and immunohistochemistry, we analyzed the expression of mGluR2 and mGluR7 in the bilateral MVN and the flocculus of rats in different stages after UL (the 1st, 3rd, and 7th day). Our results show that in the MVN, the mRNA, and protein expressions of mGluR7 were ipsilaterally decreased at the 1st day following UL. However, in the MVN, no change was observed in the mRNA and protein expressions of mGluR2. On the other hand, the mRNA and protein expression of mGluR2 were enhanced in the ipsilateral flocculus at the 1st day following UL, while in the flocculus no change was shown in mGluR7 mRNA and protein expressions. Our results suggest that mGluR2 and mGluR7 may contribute to the early rebalancing of spontaneous resting activity in the MVN.
Collapse
|
14
|
Temporal changes of calbindin expression in the nodulus following unilateral labyrinthectomy in rats. Neurosci Lett 2013; 555:47-50. [PMID: 24055607 DOI: 10.1016/j.neulet.2013.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/09/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022]
Abstract
Following unilateral vestibular deafferentation, many of the oculomotor and postural symptoms, such as spontaneous ocular nystagmus and head tilt, gradually abate over time in a process known as 'vestibular compensation'. Although many experimental studies have indicated a role for the cerebellum during vestibular compensation, the effects of unilateral labyrinthectomy (UL) on cerebellar function and the role of cerebellum in post-lesional plasticity remain unclear. Thus, we investigated the temporal changes of calbindin expression in the ipsilateral and contralateral nodulus to the lesion side during vestibular compensation following UL in rats. Change of calbindin expression in the nodulus was measured by immunohistochemistry at 2, 6, 24 and 48hr following UL. The staining intensity of calbindin-positive Purkinje cells in the ipsilateral and contralateral nodulus to the lesion side was found to decrease 6hr after UL compared with the control and asymmetric calbindin expression between ipsilateral and contralateral nodulus 24hr after UL. Forty-eight hours after UL, calbindin expression returned to the control level, and asymmetric expression in both noduli also subsided. It is suggested that the regulation of calbindin expression may facilitate synaptic plasticity by adjusting the efficacy of biochemical responses of Purkinje cells according to the changes in neuronal activity in the vestibular nuclear complex during the early phase of vestibular compensation. Thus, the results revealed that the nodulus has a role during vestibular compensation through Purkinje cells.
Collapse
|
15
|
Newlands SD, Wei M. Responses of central vestibular neurons to sinusoidal yaw rotation in compensated macaques after unilateral labyrinthectomy. J Neurophysiol 2013; 110:1822-36. [PMID: 23864379 DOI: 10.1152/jn.00365.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
After vestibular labyrinth injury, behavioral measures of vestibular function partially recover through the process of vestibular compensation. The present study was performed to improve our understanding of the physiology of macaque vestibular nucleus neurons in the compensated state (>6 wk) after unilateral labyrinthectomy (UL). The responses of neurons to sinusoidal yaw rotation at a series of frequencies (0.1-2.0 Hz) and peak velocities (7.5-210°/s) were examined to determine how the behavior of these cells differed from those in animals with intact labyrinths. The sensitivity of neurons responding to ipsilateral rotation (type I) did not differ between the intact and injured sides after UL, although this sensitivity was lower bilaterally after lesion than before lesion. The sensitivity of neurons that increase firing with contralateral rotation (type II) was higher ipsilateral to the UL than before lesion or in the nucleus contralateral to the UL. UL did not increase asymmetry in the responses of individual type I or II neurons to ipsilateral vs. contralateral rotation, nor does it change the power law relationship between neuronal firing and level of stimulation. Increased sensitivities of contralesional type I neurons to the remaining vestibular nerve input and increased efficacy of inhibitory vestibular commissures projecting to the ipsilesional vestibular nucleus appear to be responsible for recovery of dynamic function of central vestibular neurons in compensated animals. The portion of type I neurons on the ipsilesional side is reduced in compensated animals, which likely accounts for the asymmetries in vestibular reflexes and perception that characterize vestibular function after UL.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| | | |
Collapse
|
16
|
Tarnutzer AA, Palla A. Neurobiological mechanisms of acute vertigo. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vestibular system provides us with reflexive responses of eye movements and balance control, as well as with perceptual estimates of self-motion and gravity direction. Crucial to its proper functioning is a bilaterally balanced vestibular signal originating from the vestibular end organs in the inner ears and projecting via vestibular nerve afferents to the brainstem vestibular nuclei. Disturbances of the bilateral vestibular interplay become evident in cases of acute unilateral peripheral vestibular deafferentation. The resultant sudden imbalance of vestibular afferent tone at the level of the vestibular nuclei leads to pronounced ocular–motor and postural impairment, as well as to intensive vertigo and/or dizziness, accompanied by autonomic symptoms, such as nausea and vomiting. Subsequent compensatory mechanisms efficiently diminish these static symptoms (such as spontaneous nystagmus) within days and allow functional recovery of dynamic symptoms (such as blurred vision during fast head turns) to such a degree that most patients return to their normal daily activities within weeks. This article aims to provide an understanding about the pathophysiological changes after unilateral vestibular deafferentation and the current knowledge on the compensatory mechanisms.
Collapse
Affiliation(s)
- Alexander A Tarnutzer
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Antonella Palla
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| |
Collapse
|
17
|
Zhou L, Zhou W, Zhang S, Liu B, Leng Y, Zhou R, Kong W. Changes in Histamine Receptors (H1, H2, and H3) Expression in Rat Medial Vestibular Nucleus and Flocculus after Unilateral Labyrinthectomy: Histamine Receptors in Vestibular Compensation. PLoS One 2013; 8:e66684. [PMID: 23840519 PMCID: PMC3686684 DOI: 10.1371/journal.pone.0066684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Vestibular compensation is the process of behavioral recovery following peripheral vestibular lesion. In clinics, the histaminergic medicine is the most widely prescribed for the treatment of vertigo and motion sickness, however, the molecular mechanisms by which histamine modulates vestibular function remain unclear. During recovery from the lesion, the modulation of histamine receptors in the medial vestibular nucleus (MVN) and the flocculus may play an important role. Here with the means of quantitative real-time PCR, western blotting and immunohistochemistry, we studied the expression of histamine receptors (H1, H2, and H3) in the bilateral MVN and the flocculus of rats on the 1st, 3rd, and 7th day following unilateral labyrinthectomy (UL). Our results have shown that on the ipsi-lesional flocculus the H1, H2 and H3 receptors mRNA and the protein increased significantly on the 1st and 3rd day, with compare of sham controls and as well the contralateral side of UL. However, on the 7th day after UL, this expression returned to basal levels. Furthermore, elevated mRNA and protein levels of H1, H2 and H3 receptors were observed in the ipsi-lesional MVN on the 1st day after UL compared with sham controls and as well the contralateral side of UL. However, this asymmetric expression was absent by the 3rd post-UL. Our findings suggest that the upregulation of histamine receptors in the MVN and the flocculus may contribute to rebalancing the spontaneous discharge in bilateral MVN neurons during vestibular compensation.
Collapse
Affiliation(s)
- Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Wen Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Renhong Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Lewis RF, Nicoucar K, Gong W, Haburcakova C, Merfeld DM. Adaptation of vestibular tone studied with electrical stimulation of semicircular canal afferents. J Assoc Res Otolaryngol 2013; 14:331-40. [PMID: 23423561 DOI: 10.1007/s10162-013-0376-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/31/2013] [Indexed: 11/26/2022] Open
Abstract
Damage to one vestibular labyrinth or nerve causes a central tone imbalance, reflected by prominent spontaneous nystagmus. Central adaptive mechanisms eliminate the nystagmus over several days, and the mechanisms underlying this process have received extensive study. The characteristics of vestibular compensation when the tone imbalance is presented gradually or repeatedly have never been studied. We used high-frequency electrical stimulation of semicircular canal afferents to generate a vestibular tone imbalance and recorded the nystagmus produced when the stimulation was started abruptly or gradually and when it was repeatedly cycled on and off. In the acute-onset protocol, brisk nystagmus occurred when stimulation started, gradually resolved within 1 day, and reversed direction when the stimulation was stopped after 1 week. Repeated stimulation cycles resulted in progressively smaller nystagmus responses. In the slow-onset protocol, minimal nystagmus occurred while the stimulation ramped-up to its maximum rate over 12 h, but a reversal still occurred when the stimulation was stopped after 1 week, and repeated stimulation cycles did not affect this pattern. The absence of nystagmus during the 12 h ramp of stimulation demonstrates that central vestibular tone can rebalance relatively quickly, and the reduction in the stimulation-off nystagmus with repeated cycles of the acute-onset but not the slow-onset stimulation suggests that dual-state adaptation may have occurred with the former paradigm but not the latter.
Collapse
Affiliation(s)
- Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
19
|
Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation. Brain Res 2012; 1482:101-11. [PMID: 22981400 DOI: 10.1016/j.brainres.2012.08.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/23/2012] [Accepted: 08/23/2012] [Indexed: 12/19/2022]
Abstract
This review examines vestibular compensation and vestibular rehabilitation from a unified translational research perspective. Laboratory studies illustrate neurobiological principles of vestibular compensation at the molecular, cellular and systems levels in animal models that inform vestibular rehabilitation practice. However, basic research has been hampered by an emphasis on 'naturalistic' recovery, with time after insult and drug interventions as primary dependent variables. The vestibular rehabilitation literature, on the other hand, provides information on how the degree of compensation can be shaped by specific activity regimens. The milestones of the early spontaneous static compensation mark the re-establishment of static gaze stability, which provides a common coordinate frame for the brain to interpret residual vestibular information in the context of visual, somatosensory and visceral signals that convey gravitoinertial information. Stabilization of the head orientation and the eye orientation (suppression of spontaneous nystagmus) appear to be necessary by not sufficient conditions for successful rehabilitation, and define a baseline for initiating retraining. The lessons from vestibular rehabilitation in animal models offer the possibility of shaping the recovery trajectory to identify molecular and genetic factors that can improve vestibular compensation.
Collapse
|
20
|
Saman Y, Bamiou DE, Gleeson M, Dutia MB. Interactions between Stress and Vestibular Compensation - A Review. Front Neurol 2012; 3:116. [PMID: 22866048 PMCID: PMC3406321 DOI: 10.3389/fneur.2012.00116] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 07/05/2012] [Indexed: 01/24/2023] Open
Abstract
Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is important in promoting compensatory synaptic and neuronal plasticity in the vestibular system and cerebellum. The role of stress in human vestibular disorders is complex, and definitive evidence is lacking. This article reviews the evidence from animal and clinical studies with a focus on the effects of stress on the central vestibular pathways and their role in the pathogenesis and management of human vestibular disorders.
Collapse
Affiliation(s)
- Yougan Saman
- Department of Neuro-otology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College London London, UK
| | | | | | | |
Collapse
|
21
|
Baizer JS, Weinstock N, Witelson SF, Sherwood CC, Hof PR. The nucleus pararaphales in the human, chimpanzee, and macaque monkey. Brain Struct Funct 2012; 218:389-403. [PMID: 22426796 DOI: 10.1007/s00429-012-0403-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name "pararaphales" has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the "PRa" in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, 123 Sherman Hall, Buffalo, NY 14214, USA.
| | | | | | | | | |
Collapse
|
22
|
Expression of doublecortin, a neuronal migration protein, in unipolar brush cells of the vestibulocerebellum and dorsal cochlear nucleus of the adult rat. Neuroscience 2011; 202:169-83. [PMID: 22198017 DOI: 10.1016/j.neuroscience.2011.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022]
Abstract
Doublecortin (DCX) is a microtubule-associated protein that is critical for neuronal migration and the development of the cerebral cortex. In the adult, it is expressed in newborn neurons in the subventricular and subgranular zones, but not in the mature neurons of the cerebral cortex. By contrast, neurogenesis and neuronal migration of cells in the cerebellum continue into early postnatal life; migration of one class of cerebellar interneuron, unipolar brush cells (UBCs), may continue into adulthood. To explore the possibility of continued neuronal migration in the adult cerebellum, closely spaced sections through the brainstem and cerebellum of adult (3-16 months old) Sprague-Dawley rats were immunolabeled for DCX. Neurons immunoreactive (ir) to DCX were present in the granular cell layer of the vestibulocerebellum, most densely in the transition zone (tz), the region between the flocculus (FL) and ventral paraflocculus (PFL), as well as in the dorsal cochlear nucleus (DCN). These DCX-ir cells had the morphological appearance of UBCs with oval somata and a single dendrite ending in a brush. There were many examples of colocalization of DCX with Eps8 or calretinin, UBC markers. We also identified DCX-ir elements along the fourth ventricle and its lateral recess that had labeled somata but lacked the dendritic structure characteristic of UBCs. Labeled UBCs were seen in nearby white matter. These results suggest that there may be continued neurogenesis and/or migration of UBCs in the adult. Another possibility is that UBCs maintain DCX expression even after migration and maturation, reflecting a role of DCX in adult neuronal plasticity in addition to a developmental role in migration.
Collapse
|
23
|
Xiao Z, Jaiswal MK, Deng PY, Matsui T, Shin HS, Porter JE, Lei S. Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus 2011; 22:1438-50. [PMID: 22072552 DOI: 10.1002/hipo.20984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 01/07/2023]
Abstract
Although cholecystokinin (CCK) has long been known to exert anxiogenic effects in both animal anxiety models and humans, the underlying cellular and molecular mechanisms are ill-defined. CCK interacts with CCK-1 and CCK-2 receptors resulting in up-regulation of phospholipase C (PLC) and protein kinase C (PKC). However, the roles of PLC and PKC in CCK-mediated anxiogenic effects have not been determined. We have shown previously that CCK facilitates glutamate release in the hippocampus especially at the synapses formed by the perforant path and dentate gyrus granule cells via activations of PLC and PKC. Here we further demonstrated that CCK enhanced NMDA receptor function in dentate gyrus granule cells via activation of PLC and PKC pathway. At the single-channel level, CCK increased NMDA single-channel open probability and mean open time, reduced the mean close time, and had no effects on the conductance of NMDA channels. Because elevation of glutamatergic functions results in anxiety, we explored the roles of PLC and PKC in CCK-induced anxiogenic actions using the Vogel Conflict Test (VCT). Our results from both pharmacological approach and knockout mice demonstrated that microinjection of CCK into the dentate gyrus concentration-dependently increased anxiety-like behavior via activation of PLC and PKC. Our results provide a novel unidentified signaling mechanism whereby CCK increases anxiety.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This article reviews recent studies that have provided experimental evidence for mechanisms of neural and synaptic plasticity in the brain during vestibular compensation, the behavioural recovery that takes place following peripheral vestibular lesions. RECENT FINDINGS First, experimental evidence from animal studies indicates that an unbalanced vestibular commissural system is a fundamental cause of the syndrome of oculomotor and postural deficits after unilateral labyrinthectomy. Second, recent studies suggest the involvement of both GABAergic and glycinergic commissural neurons. In addition gliosis and reactive neurogenesis in the ipsilesional vestibular nuclei appear to be involved in compensation. Third, evidence from cerebellar-deficient mutant mice demonstrates an important role for cerebellum-dependent motor learning in the longer term. Factors such as stress steroids and neuromodulators such as histamine influence these plasticity mechanisms and may thus contribute to the development of compensation in patients. SUMMARY Vestibular compensation involves multiple, parallel plastic processes at various sites in the brain. Experimental evidence suggests that adaptive changes in the sensitivity of ipsilesional vestibular neurons to the inhibitory neurotransmitters GABA and glycine, changes in the electrophysiological excitability of vestibular neurons, changes in the inhibitory control of the brainstem vestibular networks by the cerebellum, gliosis and neurogenesis in the ipsilesional vestibular nuclei, and activity-dependent reorganization of the synaptic connectivity of the vestibular pathways are mechanisms involved in compensation.
Collapse
|
25
|
Cullen KE, Minor LB, Beraneck M, Sadeghi SG. Neural substrates underlying vestibular compensation: contribution of peripheral versus central processing. J Vestib Res 2010; 19:171-82. [PMID: 20495234 DOI: 10.3233/ves-2009-0357] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The vestibulo-ocular reflex (VOR), which functions to stabilize gaze and ensure clear vision during everyday activities, shows impressive adaptation in response to environmental requirements. In particular, the VOR exhibits remarkable recovery following the loss of unilateral labyrinthine input as a result of injury or disease. The relative simplicity of the pathways that mediate the VOR, make it an excellent model system for understanding the changes (learning) that occur in the brain following peripheral vestibular loss to yield adaptive changes. This mini review considers the findings of behavioral, single unit recording and lesion studies of VOR compensation. Recent experiments have provided evidence that the brain makes use of multiple plasticity mechanisms (i.e., changes in peripheral as well as central processing) during the course of vestibular compensation to accomplish the sensory-motor transformations required to accurately guide behavior.
Collapse
|
26
|
Heskin-Sweezie R, Titley HK, Baizer JS, Broussard DM. Type B GABA receptors contribute to the restoration of balance during vestibular compensation in mice. Neuroscience 2010; 169:302-14. [PMID: 20394801 PMCID: PMC2910079 DOI: 10.1016/j.neuroscience.2010.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/23/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Following unilateral vestibular damage (UVD), vestibular compensation restores both static and dynamic vestibular reflexes. The cerebellar cortex provides powerful GABAergic inhibitory input to the vestibular nuclei which is necessary for compensation. Metabotropic GABA type B (GABA(B)) receptors in the vestibular nuclei are thought to be involved. However, the contribution of GABA(B) receptors may differ between static and dynamic compensation. We tested static and dynamic postural reflexes and gait in young mice, while they compensated for UVD caused by injection of air into the vestibular labyrinth. The effects of an agonist (baclofen), an antagonist (CGP56433A) and a positive allosteric modulator (CGP7930) of the GABA(B) receptor were evaluated during compensation. Static postural reflexes recovered very rapidly in our model, and baclofen slightly accelerated recovery. However, CGP56433A significantly impaired static compensation. Dynamic reflexes were evaluated by balance-beam performance and by gait; both showed significant decrements following UVD and performance improved over the next 2 days. Both CGP56433A and baclofen temporarily impaired the ability to walk on a balance beam after UVD. Two days later, there were no longer any significant effects of drug treatments on balance-beam performance. Baclofen slightly accelerated the recovery of stride length on a flat surface, but CGP7930 worsened the gait impairment following UVD. Using immunohistochemistry, we confirmed that GABA(B) receptors are abundantly expressed on the vestibulospinal neurons of Deiters in mice. Our results suggest that GABA(B) receptors contribute to the compensation of static vestibular reflexes following unilateral peripheral damage. We also conclude that impairment of the first stage of compensation, static recovery, does not necessarily result in an impairment of dynamic recovery in the long term.
Collapse
Affiliation(s)
| | | | - Joan S. Baizer
- Department of Physiology and Biophysics, University at Buffalo
| | - Dianne M. Broussard
- Department of Physiology, University of Toronto
- Division of Neurology, Department of Medicine, University of Toronto
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto
| |
Collapse
|
27
|
Hamid MA, Trune DR, Dutia MB. Advances in Auditory and Vestibular Medicine. AUDIOLOGICAL MEDICINE 2009; 7:180-188. [PMID: 20711412 PMCID: PMC2920488 DOI: 10.3109/02841860903364076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Auditory and Vestibular medicine is becoming more accepted as a specialty of its own, Medical NeurOtology. Recent advances in the field have been instrumental in the understanding of the scientific foundations, pathophysiology, clinical approach and management of patients with hearing and vestibular disorders. This paper will review these advances.
Collapse
Affiliation(s)
- Mohamed A Hamid
- Professor of Audiology and Otolaryngology, Founder and Medical Director, The Cleveland Hearing and Balance Center, 29001 Cedar Rd, #203, Lyndhurst, Oh, 44124, USA, 01(216) 684-9970,
| | | | | |
Collapse
|
28
|
Marom T, Oron Y, Watad W, Levy D, Roth Y. Revisiting benign paroxysmal positional vertigo pathophysiology. Am J Otolaryngol 2009; 30:250-5. [PMID: 19563936 DOI: 10.1016/j.amjoto.2008.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 06/05/2008] [Indexed: 11/24/2022]
Abstract
Benign paroxysmal positional vertigo is the most common peripheral cause of vertigo. Although its pathophysiologic mechanisms remain unclear, different locations have been attributed throughout the last century, from the days of Bárány. Disease was initially located by Dix and Hallpike in the utricle, but later, Schuknecht's works elicited the cupulolithiasis and canalolithiasis theories, localizing the pathology to the semicircular canal system and mainly to the posterior one. However, conflicting evidences from temporal bone studies accumulated against this theory, which suggest other explanations. Although this clinical entity is well defined, and can usually be effectively treated with certain physical maneuvers, its pathophysiology is still obscure and is being critically discussed in this article, which reviews the milestones of benign paroxysmal positional vertigo understanding.
Collapse
|
29
|
Hong SM, Cha CI, Park BR. Changes in calbindin expression within the flocculus after unilateral labyrinthectomy in rats. Neurosci Lett 2009; 460:52-5. [PMID: 19446007 DOI: 10.1016/j.neulet.2009.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 11/17/2022]
Abstract
The role of flocculus in vestibular compensation is still a controversial issue. Calbindin regulates intracellular signaling and has been reported to be a reliable marker of Purkinje cell. Expression of calbindin in flocculus was examined using immunohistochemistry following unilateral labyrinthectomy (UL) in rats. Both the staining intensity and number of calbindin-positive Purkinje cells in the ipsilateral flocculus to the lesion side decreased 6h after UL compared to the control and contralateral side. Forty-eight hours after UL, the expression of calbindin returned to control levels and asymmetric expression in bilateral flocculus subsided. These transient reduction of calbindin expression in the ipsilateral flocculus may reflect a decrease in the GABAergic inhibition of the floccular Purkinje cell to the ipsilateral vestibular nuclei during vestibular compensation.
Collapse
Affiliation(s)
- Seok Min Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 200-704, Republic of Korea
| | | | | |
Collapse
|
30
|
Bergquist F, Ludwig M, Dutia MB. Role of the commissural inhibitory system in vestibular compensation in the rat. J Physiol 2008; 586:4441-52. [PMID: 18635647 DOI: 10.1113/jphysiol.2008.155291] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the role of the vestibular commissural inhibitory system in vestibular compensation (VC, the behavioural recovery that follows unilateral vestibular loss), using in vivo microdialysis to measure GABA levels in the bilateral medial vestibular nucleus (MVN) at various times after unilateral labyrinthectomy (UL). Immediately after UL, in close correlation with the appearance of the characteristic oculomotor and postural symptoms, there is a marked increase in GABA release in the ipsi-lesional MVN. This is not prevented by bilateral flocculectomy, indicating that it is due to hyperactivity of vestibular commissural inhibitory neurones. Over the following 96 h, as VC occurs and the behavioural symptoms ameliorate, the ipsi-lesional GABA levels return to near-normal. Contra-lesional GABA levels do not change significantly in the initial stages of VC, but decrease at late stages so that when static symptoms have abated there remains a significant difference between the MVNs of the two sides. We also investigated the role of the commissural inhibition in Bechterew's phenomenon, by reversibly inactivating the intact contra-lesional labyrinth in compensating animals through superfusion of local anaesthetic on the round window. Transient inactivation of the intact labyrinth elicited the lateralized behaviour described by Bechterew, but did not alter the GABA levels in either MVN, suggesting the involvement of distinct cellular mechanisms. These findings indicate that an imbalanced commissural inhibitory system is a root cause of the severe oculomotor and postural symptoms of unilateral vestibular loss, and that re-balancing of commissural inhibition occurs in parallel with the subsequent behavioural recovery during VC.
Collapse
Affiliation(s)
- Filip Bergquist
- Centre for Integrative Physiology, School of Biomedical Sciences, Edinburgh University College of Medicine and Veterinary Medicine, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | |
Collapse
|
31
|
Beraneck M, McKee JL, Aleisa M, Cullen KE. Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy. J Neurophysiol 2008; 100:945-58. [PMID: 18509072 DOI: 10.1152/jn.90319.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The term "vestibular compensation" refers to the resolution of motor deficits resulting from a peripheral vestibular lesion. We investigated the role of the cerebellum in the compensation process by characterizing the vestibuloocular reflex (VOR) evoked by head rotations at frequencies and velocities similar to those in natural behaviors in wild-type (WT) versus cerebellar-deficient Lurcher (Lc/+) mice. We found that during exploratory activity, normal mice produce head rotations largely consisting of frequencies < or =4 Hz and velocities and accelerations as large as 400 degrees/s and 5,000 degrees/s2, respectively. Accordingly, the VOR was characterized using sinusoidal rotations (0.2-4 Hz) as well as transient impulses (approximately 400 degrees/s; approximately 2,000 degrees/s2). Before lesions, WT and Lc/+ mice produced similar VOR responses to sinusoidal rotation. Lc/+ mice, however, had significantly reduced gains for transient stimuli. After unilateral labyrinthectomy, VOR recovery followed a similar course for WT and Lc/+ groups during the first week: gain was reduced by 80% for ipsilesionally directed head rotations on day 1 and improved for both strains to values of approximately 0.4 by day 5. Moreover, responses evoked by contralesionally directed rotations returned to prelesion in both strains within this period. However, unlike WT, which showed improving responses to ipsilesionally directed rotations, recovery plateaued after first week for Lc/+ mice. Our results show that despite nearly normal recovery in the acute phase, long-term compensation is compromised in Lc/+. We conclude that cerebellar pathways are critical for long-term restoration of VOR during head rotation toward the lesioned side, while noncerebellar pathways are sufficient to restore proper gaze stabilization during contralesionally directed movements.
Collapse
Affiliation(s)
- M Beraneck
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
32
|
Haque A, Zakir M, Dickman JD. Recovery of gaze stability during vestibular regeneration. J Neurophysiol 2007; 99:853-65. [PMID: 18045999 DOI: 10.1152/jn.01038.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many motion related behaviors, such as gaze stabilization, balance, orientation, and navigation largely depend on a properly functioning vestibular system. After vestibular insult, many of these responses are compromised but can return during the regeneration of vestibular receptors and afferents as is known to occur in birds, reptiles, and amphibians. Here we characterize gaze stability in pigeons to rotational motion during regeneration after complete bilateral vestibular loss via an ototoxic antibiotic. Immediate postlesion effects included severe head oscillations, postural ataxia, and total lack of gaze control. We found that these abnormal behaviors gradually subsided, and gaze stability slowly returned to normal function according to a temporal sequence that lasted several months. We also found that the dynamic recovery of gaze function during regeneration was not homogeneous for all types of motion. Instead high-frequency motion stability was first achieved, followed much later by slow movement stability. In addition, we found that initial gaze stability was established using almost exclusive head-response components with little eye-movement contribution. However, that trend reversed as recovery progressed so that when gaze stability was complete, the eye component had increased and the head response had decreased to levels significantly different from that observed in normal birds. This was true even though the head-fixed VOR response recovered normally. Recovery of gaze stability coincided well with the three stage temporal sequence of morphologic regeneration previously described by our laboratory.
Collapse
Affiliation(s)
- Asim Haque
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
33
|
Eleore L, Ardehali MR, Vassias I, Vidal PP, de Waele C. Amino acid transporter (VIAAT, VGLUT2) and chloride cotransporter (KCC1, KCC2 and NKCC1) expression in the vestibular nuclei of intact and labyrinthectomized rat. Exp Brain Res 2007; 182:449-58. [PMID: 17598093 DOI: 10.1007/s00221-007-1006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/15/2007] [Indexed: 11/30/2022]
Abstract
We report the first investigation of whether unilateral labyrinthectomy in adult rats affects the expression of two amino acid transporters, vesicular glutamate transporter 2 (VGLUT2) and vesicular inhibitory amino acid transporter (VIAAT) and of chloride cotransporters (KCC1, KCC2 and NKCC1) in the intact and deafferented medial vestibular nuclei (MVN). In situ hybridization with specific radioactive oligonucleotide probes and immunofluorescent methods were used in normal and unilaterally labyrinthectomized rats at various times following the lesion: 5 h, and 1, 3 and 8 days. In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei contained VGLUT2, VIAAT and KCC2 mRNA. In contrast, no or a very faint labeling was observed with KCC1 and NKCC1 probes. In unilaterally lesioned rats, there was no asymmetry between the two MVN with any of the oligonucleotide probes at any time after the lesion. Similarly, there were no differences in the intensity of MVN labeling between controls and lesioned animals. Finally, no over-expression of the cotransporter KCC1 and NKCC1 was found in ipsilateral or controlateral MVN in lesioned rats at any time. Immunohistochemical experiments gave similar conclusions. Our findings suggest that the recovery of the resting discharge of the deafferented MVN neurons, and consequently the functional compensation of the deficits, are not dependent on changes in the expression of amino acid transporters (VIAAT, VGLUT2), and chloride cotransporters (KCC1, KCC2 and NKCC1) or on their mRNAs.
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS (CNRS-Paris 5), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
34
|
Saxon DW, White G. Episodic vestibular disruption following ablation of the inferior olive in rats: Behavioral correlates. Behav Brain Res 2006; 175:128-38. [PMID: 16979764 DOI: 10.1016/j.bbr.2006.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 01/03/2023]
Abstract
The experiments herein investigate whether the behavioral responses to transient and episodic vestibular disruption and permanent ablation are distinct in the absence of climbing fiber input. Subjects in group 1 received an IP injection of PBS followed by an IP injection of niacinamide. Seven days later these rats received the first of 3 serial transtympanic injections of TTX on the same side with 7 days between each injection. Following each TTX injection rats displayed unilateral vestibular symptoms that persisted beyond 48h. Spontaneous barrel rolling behavior was not observed. Group 2 subjects received an IP injection of 3-acetylpyridine (3-AP)+niacinamide followed by the same TTX regimen as group 1. Following each TTX injection vestibular symptoms (severe body twisting and persistent spontaneous barrel rolling) emerged rapidly (<15min) and resolved by 72h. Group 3 subjects received an IP injection of 3-AP+niacinamide and 7 days later a single unilateral transtympanic injection of sodium arsanilate. Rats in group 3 developed vestibular symptoms similar to those observed in group 2 although there was no resolution of these symptoms. The results indicate that TTX has a rapid rate of infiltration and blockade of the VIIIth nerve that persists for >48h and then completely resolves. The contrast in vestibular symptoms between groups 1 and 2 suggest that climbing fibers are recruited soon after onset of vestibular disruption and play a role in attenuating the severity of vestibular symptoms associated with transient/episodic vestibular disruption.
Collapse
Affiliation(s)
- Dale W Saxon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Evansville Center for Medical Education, 8600 University Blvd., Evansville, IN 47712, United States.
| | | |
Collapse
|
35
|
Gittis AH, du Lac S. Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol 2006; 16:385-90. [PMID: 16842990 DOI: 10.1016/j.conb.2006.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/30/2006] [Indexed: 11/23/2022]
Abstract
The vestibular system provides an attractive model for understanding how changes in cellular and synaptic activity influence learning and memory in a quantifiable behavior, the vestibulo-ocular reflex. The vestibulo-ocular reflex produces eye movements that compensate for head motion; simple yet powerful forms of motor learning calibrate the circuit throughout life. Learning in the vestibulo-ocular reflex depends initially on the activity of Purkinje cells in the cerebellar flocculus, but consolidated memories appear to be stored downstream of Purkinje cells, probably in the vestibular nuclei. Recent studies have demonstrated that the neurons of the vestibular nucleus possess the capacity for both synaptic and intrinsic plasticity. Mechanistic analyses of a novel form of firing rate potentiation in neurons of the vestibular nucleus have revealed new rules of plasticity that could apply to spontaneously firing neurons in other parts of the brain.
Collapse
Affiliation(s)
- Aryn H Gittis
- Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Faulstich M, van Alphen AM, Luo C, du Lac S, De Zeeuw CI. Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD. J Neurophysiol 2006; 96:1187-95. [PMID: 16723418 DOI: 10.1152/jn.00045.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vestibular paradigms are widely used for investigating mechanisms underlying cerebellar motor learning. These include adaptation of the vestibuloocular reflex (VOR) after visual-vestibular mismatch training and vestibular compensation after unilateral damage to the vestibular apparatus. To date, various studies have shown that VOR adaptation may be supported by long-term depression (LTD) at the parallel fiber to Purkinje cell synapse. Yet it is unknown to what extent vestibular compensation may depend on this cellular process. Here we investigated adaptive gain changes in the VOR and optokinetic reflex during vestibular compensation in transgenic mice in which LTD is specifically blocked in Purkinje cells via expression of a peptide inhibitor of protein kinase C (L7-PKCi mutants). The results demonstrate that neither the strength nor the time course of vestibular compensation are affected by the absence of LTD. In contrast, analysis of vestibular compensation in spontaneous mutants that lack a functional olivo-cerebellar circuit (lurchers) shows that this form of motor learning is severely impaired. We conclude that oculomotor plasticity during vestibular compensation depends critically on intact cerebellar circuitry but not on the occurrence of cerebellar LTD.
Collapse
Affiliation(s)
- M Faulstich
- Systems Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
37
|
Background impulse activity of neurons of the fastigial cerebellar nucleus of intact and labyrinthectomized rats under conditions of vibration. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Zhang R, Smith PF, Darlington CL. Immunocytochemical and stereological study of glucocorticoid receptors in rat medial vestibular nucleus neurons and the effects of unilateral vestibular deafferentation. Acta Otolaryngol 2005; 125:1258-64. [PMID: 16303671 DOI: 10.1080/00016480510012291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONCLUSION The results of this study suggest that neither the number of medial vestibular nucleus (MVN) neurons expressing cytosolic glucocorticoid receptors nor blood corticosterone levels change significantly during the development of vestibular compensation. OBJECTIVE Vestibular compensation is a process of partial behavioral recovery that occurs following damage to the vestibular labyrinth. It has been suggested that this compensation process might be dependent on the release of glucocorticoids such as corticosterone at the time of unilateral vestibular deafferentation (UVD) and that changes in glucocorticoid receptors in the MVN might contribute to the initiation of the compensation process. MATERIAL AND METHODS We compared the number of MVN neurons expressing cytosolic glucocorticoid receptors in rats at 10 h and 2 weeks following UVD, and in sham and anesthetic control animals; we also measured blood corticosterone levels. RESULTS Using immunocytochemistry and stereology, we found that the majority of MVN neurons expressed glucocorticoid receptors, but there were no significant differences in the number of glucocorticoid receptor-expressing neurons in the ipsilateral or contralateral MVNs at 10 h or 2 weeks post-UVD; furthermore, corticosterone levels did not vary significantly between the UVD and control groups.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand
| | | | | |
Collapse
|
39
|
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 2005; 76:349-92. [PMID: 16263204 DOI: 10.1016/j.pneurobio.2005.10.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 10/05/2005] [Indexed: 11/30/2022]
Abstract
Central vestibular neurons play an important role in the processing of body motion-related multisensory signals and their transformation into motor commands for gaze and posture control. Over recent years, medial vestibular nucleus (MVN) neurons and to a lesser extent other vestibular neurons have been extensively studied in vivo and in vitro, in a range of species. These studies have begun to reveal how their intrinsic electrophysiological properties may relate to their response patterns, discharge dynamics and computational capabilities. In vitro studies indicate that MVN neurons are of two major subtypes (A and B), which differ in their spike shape and after-hyperpolarizations. This reflects differences in particular K(+) conductances present in the two subtypes, which also affect their response dynamics with type A cells having relatively low-frequency dynamics (resembling "tonic" MVN cells in vivo) and type B cells having relatively high-frequency dynamics (resembling "kinetic" cells in vivo). The presence of more than one functional subtype of vestibular neuron seems to be a ubiquitous feature since vestibular neurons in the chick and frog also subdivide into populations with different, analogous electrophysiological properties. The ratio of type A to type B neurons appears to be plastic, and may be determined by the signal processing requirements of the vestibular system, which are species-variant. The membrane properties and discharge pattern of type A and type B MVN neurons develop largely post-natally, through the expression of the underlying ion channel conductances. The membrane properties of MVN neurons show rapid and long-lasting plastic changes after deafferentation (unilateral labyrinthectomy), which may serve to maintain their level of activity and excitability after the loss of afferent inputs.
Collapse
Affiliation(s)
- H Straka
- L.N.R.S., CNRS UMR 7060-Université René Descartes (Paris 5), Paris, France.
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Timothy C Hain
- Departments of Neurology, Otolaryngology, and Physical Therapy and Human Movement Science, Northwestern University, 645 North Michigan, Chicago, IL 60611, USA.
| | | |
Collapse
|
41
|
Shinder ME, Perachio AA, Kaufman GD. VOR and Fos response during acute vestibular compensation in the Mongolian gerbil in darkness and in light. Brain Res 2005; 1038:183-97. [PMID: 15757634 DOI: 10.1016/j.brainres.2005.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/10/2005] [Accepted: 01/10/2005] [Indexed: 11/28/2022]
Abstract
We measured binocular horizontal eye movements in the gerbil following unilateral labyrinthectomy during the acute phase (1-24 h) of vestibular compensation. Regardless of whether the animals compensated in the light or the dark, VOR gain progressively reduced following the lesion, and normal oculomotor symmetry was disrupted. Initially, the VOR was comparable at 1 h post-lesion for both visual conditions. However, by 3 h post-lesion the VOR response for head turns away from the lesion continued to drop in animals compensating in the dark. By 24 h, both groups displayed reduced VOR gains, but animals compensating in the light had improved frequency response characteristics. Optokinetic responses became unstable but were generally elevated compared to pre-lesion levels. Animals with vision had reduced optokinetic gains by 24 h, while the OKR response for animals in the dark remained elevated. Brainstem Fos labeling generally increased from 1 to 3 h, then decreased by 24 h. However, at 1 h, Fos labeling in the inferior olivary dorsal cap and prepositus contralateral to the lesion was significantly increased in animals compensating in the light. In both visual conditions, flocculus and paraflocculus Purkinje cell labeling was also observed, and some of the Fos-labeled cells in the medial vestibular nucleus were commissural. Fos in the dorsal cap and prepositus could be attributed to the presence of visual input. While the visually related prepositus Fos labeling preceded improved VOR performance, the dorsal cap appeared to be involved in resolving visual and motor deficits from spontaneous nystagmus.
Collapse
Affiliation(s)
- Michael E Shinder
- University of Texas Medical Branch, 7.102 Medical Research Building, 301 University Boulevard, Galveston, TX 77555-1063, USA
| | | | | |
Collapse
|
42
|
Lindsay L, Liu P, Gliddon C, Zheng Y, Smith PF, Darlington CL. Cytosolic glucocorticoid receptor expression in the rat vestibular nucleus and hippocampus following unilateral vestibular deafferentation. Exp Brain Res 2004; 162:309-14. [PMID: 15580339 DOI: 10.1007/s00221-004-2168-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
It has been suggested that vestibular compensation, the process of behavioural recovery that occurs following peripheral vestibular damage, might be partially dependent on the release of glucocorticoids (GC) during the early stages of recovery from the lesion. One possibility is that glucocorticoid receptors (GRs) in the vestibular nucleus complex (VNC) might change following the lesion, altering their response to GCs. We sought to test this hypothesis by quantifying the expression of cytosolic GRs in the bilateral VNCs at 10 h, 58 h and 2 weeks following unilateral vestibular deafferentation (UVD) in rat, using western blotting. We also examined GR expression in the CA1, CA2/3 and dentate gyrus (DG) subregions of the hippocampus and measured serum corticosterone levels. Compared with sham surgery and anaesthetic controls, we found no significant changes in GR expression in the ipsilateral or contralateral VNCs at any time post-UVD. However, we did find a significant decrease in GR expression in the ipsilateral CA1 at 2 weeks post-UVD. Serum corticosterone levels were significantly lower in all groups at 58 h post-op. compared to 10 h and 2 weeks; however, there were no significant differences between the UVD and control groups at any time point. These results suggest that changes in GR expression in the VNC are unlikely to contribute to the development of vestibular compensation. However, long-term changes in GR expression in CA1 might be related to chronic deficits in hippocampal function and spatial cognition following vestibular damage.
Collapse
Affiliation(s)
- Libby Lindsay
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
43
|
Eleore L, Vassias I, Bernat I, Vidal PP, de Waele C. An in situ hybridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 2004; 160:166-79. [PMID: 15452674 DOI: 10.1007/s00221-004-1997-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 05/25/2004] [Indexed: 11/25/2022]
Abstract
We investigated whether the production of the sixteen subunits of the GABA(A) receptors and of the different variants of GABA Breceptors are modulated in rat medial vestibular nuclei (MVN) following unilateral labyrinthectomy. Specific alpha1-6, beta1-3, gamma1-3 and delta GABA(A) and GABA(B) B1 and B2receptor radioactive oligonucleotides were used for in situ hybridization to probe sections of rat vestibular nuclei. Specific antibodies against alpha1, beta2, beta3 and gamma2 subunits of GABA(A) receptors and against GABA( B)receptors were also used to detect a potential protein expression modulation. No asymmetry was observed by autoradiography in the intact and deafferented MVN at any time (5 h to 8 days) following the lesion and for any of the oligonucleotide probes used. Also, no difference in the alpha1, beta2, beta3 and gamma2 of the GABA(A) and in the GABA(B) receptor immunohistochemical signal could be detected between the intact and deafferented vestibular nuclei at any time following the lesion. Our data suggest that GABA(A) and GABA Breceptor density changes most probably were not involved in the early stage of the vestibular compensation process, i.e., in the restoration of a normal resting discharge of the deafferented vestibular neurons and consequently in the recovery of a normal posture and eye position.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Animals
- Antibody Specificity/physiology
- Denervation
- Ear, Inner/physiology
- Ear, Inner/surgery
- Fluorescent Antibody Technique
- Functional Laterality/physiology
- In Situ Hybridization
- Male
- Neuronal Plasticity/physiology
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Vestibular Nerve/metabolism
- Vestibular Nerve/physiopathology
- Vestibular Nuclei/metabolism
- Vestibular Nuclei/physiopathology
- Vestibule, Labyrinth/injuries
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS, CNRS-Paris 5, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
44
|
Guilding C, Seckl JR, Dutia MB. 11Beta-hydroxysteroid dehydrogenase type 1 activity in medial vestibular nucleus and cerebellum after unilateral vestibular deafferentation in the rat. Stress 2004; 7:127-30. [PMID: 15512857 DOI: 10.1080/10253890410001728360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In the early stages of vestibular compensation (VC) (the behavioural recovery that follows unilateral vestibular deafferentation), neurons in the medial vestibular nucleus (MVN) on the lesioned side develop a sustained up-regulation of their intrinsic excitability. This plasticity is dependent on the activation of glucocorticoid receptors, which presumably occurs during the acute stress response that accompanies the vestibular deafferentation symptoms. Recent studies have established that the access of glucocorticoids to their intracellular receptors in brain is potently modulated by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which catalyses the generation of active glucocorticoids from their inert 11-keto forms. In this study, we investigated the presence of 11beta-HSD1 bioactivity, and possible changes in activity in the early stage after vestibular deafferentation, in the cerebellar nodulus and uvula, the flocculus/paraflocculus (F/PF) complex and the MVN of the rat. 11beta-HSD1 activity was found in each of these brain areas, with especially high levels of activity in the F/PF complex. No differences were found in the level of 11beta-HSD1 activity in these brain areas between control rats, sham-operated rats and rats that underwent VC for 4 h after unilateral vestibular deafferentation. These findings demonstrate 11beta-HSD1 bioactivity in the MVN and vestibulocerebellum, but exclude the possibility that changes in 11beta-HSD1 activity occur in the early period after deafferentation, over the time when changes in MVN neuronal properties take place.
Collapse
Affiliation(s)
- Clare Guilding
- Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | | | | |
Collapse
|
45
|
Nelson AB, Krispel CM, Sekirnjak C, du Lac S. Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron 2004; 40:609-20. [PMID: 14642283 DOI: 10.1016/s0896-6273(03)00641-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although experience-dependent changes in neural circuits are commonly assumed to be mediated by synaptic plasticity, modifications of intrinsic excitability may serve as a complementary mechanism. In whole-cell recordings from spontaneously firing vestibular nucleus neurons, brief periods of inhibitory synaptic stimulation or direct membrane hyperpolarization triggered long-lasting increases in spontaneous firing rates and firing responses to intracellular depolarization. These increases in excitability, termed firing rate potentiation, were induced by decreases in intracellular calcium and expressed as reductions in the sensitivity to the BK-type calcium-activated potassium channel blocker iberiotoxin. Firing rate potentiation is a novel form of cellular plasticity that could contribute to motor learning in the vestibulo-ocular reflex.
Collapse
Affiliation(s)
- Alexandra B Nelson
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
46
|
Zhang W, Linden DJ. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 2003; 4:885-900. [PMID: 14595400 DOI: 10.1038/nrn1248] [Citation(s) in RCA: 576] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Zhang
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
47
|
Gliddon CM, Smith PF, Darlington CL. Interaction between the hypothalamic-pituitary-adrenal axis and behavioural compensation following unilateral vestibular deafferentation. Acta Otolaryngol 2003; 123:1013-21. [PMID: 14710901 DOI: 10.1080/00016480310000520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vestibular compensation is defined as the process of behavioural recovery that occurs following the loss of sensory input from one or both vestibular labyrinths. The visual and postural instability resulting from the vestibular damage must alter the homeostasis of the subject; however, very little research has been conducted that investigates the interaction between vestibular compensation and the adaptive stress response of the body, i.e. the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this review is to describe and evaluate the experimental evidence indicating a link between vestibular compensation and the body's response to stress, via the HPA axis.
Collapse
Affiliation(s)
- Catherine M Gliddon
- Vestibular Research Group, Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand
| | | | | |
Collapse
|
48
|
Magnusson AK, Tham R. Vestibulo-oculomotor behaviour in rats following a transient unilateral vestibular loss induced by lidocaine. Neuroscience 2003; 120:1105-14. [PMID: 12927215 DOI: 10.1016/s0306-4522(03)00407-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of a transient vestibular nerve blockade, achieved by intra-tympanic instillation of lidocaine, were studied in rats by recording horizontal eye movements in darkness. Evaluation of the dose-response relationship showed that a maximal effect was attained with a concentration of 4% lidocaine. Within 15 min of lidocaine instillation, a vigorous spontaneous nystagmus was observed which reached maximal frequency and velocity of the slow phase after about 20 min. Subsequently, the nystagmus failed for approximately half an hour before it reappeared. This could be avoided by providing visual feedback in between the recordings in darkness or by a contralateral instillation of 2.5% lidocaine. It is suggested that the failure reflects an overload of the vestibulo-oculomotor circuits. After recovery from the nerve blockade, when the gaze was stable, dynamic vestibular tests were performed. They revealed that a decrease of the slow phase velocity gain and the dominant time constant during, respectively, sinusoidal- and step stimulation toward the unanaesthetised side, had developed with the nerve blockade. These modulations were impaired by a nodulo-uvulectomy but not by bilateral flocculectomy, which is consistent with the concept of vestibular habituation. A GABA(B) receptor antagonist, CGP 56433A, given systemically during the nerve blockade, aggravated the vestibular asymmetry. The same effect has previously been demonstrated in both short- (days) and long-term (months) compensated rats, by antagonising the GABA(B) receptor. In summary, this study provides the first observations of vestibulo-oculomotor disturbances during the first hour after a rapid and transient unilateral vestibular loss in the rat. By using this method, it is possible to study immediate behavioural consequences and possible neural changes that might outlast the nerve blockade.
Collapse
MESH Headings
- Adaptation, Physiological
- Anesthetics, Local/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benzoates/pharmacology
- Denervation
- Dose-Response Relationship, Drug
- Eye Movements/drug effects
- Eye Movements/physiology
- Functional Laterality
- GABA Antagonists/pharmacology
- Lidocaine/pharmacology
- Male
- Nystagmus, Physiologic
- Phosphinic Acids/pharmacology
- Posture
- Rats
- Rats, Inbred Strains
- Reflex, Vestibulo-Ocular/drug effects
- Reflex, Vestibulo-Ocular/physiology
- Saccades/drug effects
- Saccades/physiology
- Time Factors
- Vestibule, Labyrinth/drug effects
- Vestibule, Labyrinth/physiology
- Vestibule, Labyrinth/surgery
Collapse
Affiliation(s)
- A K Magnusson
- Department of Biomedicine and Surgery, Faculty of Health Sciences, SE-581 85, Linköping, Sweden.
| | | |
Collapse
|