1
|
Kushawaha B, Yadav R, Garg SK, Pelosi E. The impact of mercury exposure on male reproduction: Mechanistic insights. J Trace Elem Med Biol 2025; 87:127598. [PMID: 39827527 DOI: 10.1016/j.jtemb.2025.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Mercury is a pervasive environmental toxin with significant negative effects on human health. In occupational settings, incidents such as the Minamata and Niigata disease in Japan and the large-scale methylmercury poisoning in Iraq have highlighted the severe health impacts of mercury exposure. It is widely accepted that all forms of mercury including methylmercury and mercuric chloride have the potential to induce toxic effects in mammals, and there is increasing concern about the impact of environmentally relevant levels of mercury on reproductive functions. This review summarizes current knowledge on the mechanisms of mercury toxicity, focusing specifically on its impact on male reproductive health across species. We searched the literature and found that mercury exposure is associated with testicular degeneration, altered spermatogenesis, and Leydig cell deformation. In addition, mercury can disrupt sperm motility, steroidogenesis and interfere with the hypothalamic-pituitary-gonadal axis by generation of reactive oxygen species, inducing mitochondrial dysfunction, epigenetic changes, and DNA damage. At the molecular level, mercury has been found to dysregulate the expression of key steroidogenic and spermatogenic genes, significantly reducing overall fertility potential. However, specific mechanisms of action remain to be fully elucidated. Similarly, comprehensive data on the potential transgenerational effects of paternal mercury exposure are lacking. In this review, we discuss both animal and human studies, and highlight the need for further research due to lack of standardization and control for variables such as lifestyle, immune system function, and exposure concentrations.
Collapse
Affiliation(s)
- Bhawna Kushawaha
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA
| | - Rajkumar Yadav
- U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Ansundhan Sansthan (DUVASU), Mathura, India
| | - Satish Kumar Garg
- Rajasthan University of Veterinary and Animal Sciences Bikaner, India
| | - Emanuele Pelosi
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA.
| |
Collapse
|
2
|
Li Y, Yu B, Liu C, Xia S, Luo Y, Zheng P, Cong G, Yu J, Luo J, Yan H, He J. Effects of dietary genistin supplementation on reproductive performance, immunity and antioxidative capacity in gestating sows. Front Vet Sci 2024; 11:1489227. [PMID: 39641093 PMCID: PMC11618539 DOI: 10.3389/fvets.2024.1489227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was conducted to investigate its effect on reproductive performance, antioxidant capacity, and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were selected and randomly divided into two treatment groups (n = 36) based on their backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ kg genistin to the basal diet based on DMI for the entire gestation period. Results showed that dietary genistin supplementation significantly increased the average number of live born per litter (p < 0.05), and tended to increase the number of healthy piglets per litter (p = 0.058), but decreased the average weight of live born per litter (p < 0.05). Dietary genistin supplementation significantly decreased the number of mummified and stillbirths per litter (p < 0.05). Moreover, the average daily feed intake (ADFI) and total feed intake of the gestating sows were also increased in the genistin-supplemented group (p < 0.05). Genistin significantly increased the serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 35 days of gestation (p < 0.05). The serum concentrations of interleukin-10 (IL-10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation (p < 0.05). However, genistin supplementation tended to decrease the serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin at 85 days of gestation (p = 0.081 and p = 0.096, respectively). Interestingly, genistin supplementation decreased the transcript abundance of interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) and SNAT4 in the placenta (p < 0.05). These results suggested that dietary genistin supplementation during gestation can improve the reproductive performance of sows, which was probably associated with improving of antioxidant capacity and immunity, as well as changes of transcript abundance of critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Yuheng Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | | | - Jie Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Sánchez-Soriano C, Pearson ER, Reynolds RM. Associations of offspring birthweight and placental weight with subsequent parental coronary heart disease: survival regression using the walker cohort. J Dev Orig Health Dis 2023; 14:746-754. [PMID: 38192014 DOI: 10.1017/s2040174423000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Low birth weight (BW) is consistently correlated with increased parental risk of subsequent cardiovascular disease, but the links with offspring placental weight (PW) are mostly unexplored. We have investigated the associations between parental coronary heart disease (CHD) and offspring BW and PW using the Walker cohort, a collection of 48,000 birth records from Dundee, Scotland, from the 1950s and 1960s. We linked the medical history of 13,866 mothers and 8,092 fathers to their offspring's records and performed Cox survival analyses modelling maternal and paternal CHD risk by their offspring's BW, PW, and the ratio between both measurements. We identified negative associations between offspring BW and both maternal (hazard ratio [HR]: 0.91, 95% confidence interval [CI]: 0.88-0.95) and paternal (HR: 0.96, 95% CI: 0.93-1.00) CHD risk, the stronger maternal correlation being consistent with previous reports. Offspring PW to BW ratio was positively associated with maternal CHD risk (HR: 1.14, 95% CI: 1.08-1.21), but the associations with paternal CHD were not significant. These analyses provide additional evidence for intergenerational associations between early growth and parental disease, identifying directionally opposed correlations of maternal CHD with offspring BW and PW, and highlight the importance of the placenta as a determinant of early development and adult disease.
Collapse
Affiliation(s)
- Carlos Sánchez-Soriano
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, UK
| | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Pilet J, Hirsch TZ, Gupta B, Roehrig A, Morcrette G, Pire A, Letouzé E, Fresneau B, Taque S, Brugières L, Branchereau S, Chardot C, Aerts I, Sarnacki S, Fabre M, Guettier C, Rebouissou S, Zucman-Rossi J. Preneoplastic liver colonization by 11p15.5 altered mosaic cells in young children with hepatoblastoma. Nat Commun 2023; 14:7122. [PMID: 37932266 PMCID: PMC10628292 DOI: 10.1038/s41467-023-42418-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.
Collapse
Grants
- FunGeST team (FUNctional GEnomics of Solid Tumors) is supported by Ligue contre le cancer (équipe labellisée), SFCE (Société Française de Lutte Contre les Cancers et les Leucémies de l’Enfant), the SIRIC CARPEM, PeLiCan.Resist InCa (Pediatric LIver CANcer database to combat RESISTance to treatment, Institut National du Cancer), France Génomique, association Etoile de Martin, Fédération Enfants et Santé, association Hubert Gouin “Enfance et Cancer,” INSERM Plan Cancer, CisMutHep InCa High-Risk High_Gain (Institut National du Cancer, grant number PEDIAHR22-009). This work was also supported by the Fondation pour la Recherche Médicale, grant number ECO201906008977 to AR and grant number ECO20170637540 to JP. AP received a funding from Fondation Nuovo-Soldati.
Collapse
Affiliation(s)
- Jill Pilet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sophie Taque
- Department of Paediatrics, CHU Rennes, Rennes, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, AP-HP, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Christophe Chardot
- Department of Pediatric Surgery, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Isabelle Aerts
- Institut Curie, PSL Research University, Oncology Center SIREDO, Paris, France
| | - Sabine Sarnacki
- Department of Pediatric Surgery, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Monique Fabre
- Pathology Department, Necker Enfants Malades Hospital, Université Paris Cité, AP-HP, Paris, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France.
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, F-75015, Paris, France.
| |
Collapse
|
6
|
Ju X, Wang Z, Cai D, Bello SF, Nie Q. DNA methylation in poultry: a review. J Anim Sci Biotechnol 2023; 14:138. [PMID: 37925454 PMCID: PMC10625706 DOI: 10.1186/s40104-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023] Open
Abstract
As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methylation sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA methylation in poultry.
Collapse
Affiliation(s)
- Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Zhijun Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Road, Lin'an, 311300, China
| | - Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Semiu Folaniyi Bello
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
7
|
Machado LS, Borges CM, de Lima MA, Sangalli JR, Therrien J, Pessôa LVDF, Fantinato Neto P, Perecin F, Smith LC, Meirelles FV, Bressan FF. Exogenous OCT4 and SOX2 Contribution to In Vitro Reprogramming in Cattle. Biomedicines 2023; 11:2577. [PMID: 37761017 PMCID: PMC10526180 DOI: 10.3390/biomedicines11092577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming. The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that the production of embryos by NT resulted in similar rates of in vitro developmental competence compared to control cells regardless of different profiles of pluripotency-related gene expression presented by donor cells; however, induced reprogramming was compromised after cell sorting.
Collapse
Affiliation(s)
- Lucas Simões Machado
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Camila Martins Borges
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Marina Amaro de Lima
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Lawrence Charles Smith
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Flavio Vieira Meirelles
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Fabiana Fernandes Bressan
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| |
Collapse
|
8
|
Lu Z, Zhao C, Yang J, Ma Y, Qiang M. Paternal exposure to arsenic and sperm DNA methylation of imprinting gene Meg3 in reproductive-aged men. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3055-3068. [PMID: 36152128 DOI: 10.1007/s10653-022-01394-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Prenatal exposure to arsenic and mercury have been associated with adverse pregnancy outcomes that might be in part mediated by dynamic modification of imprinting gene that are emerging mechanism. OBJECTIVES The objective of this study was to examine the impacts of paternal exposure to arsenic and co-exposure to arsenic and mercury on human sperm DNA methylation status of imprinting genes, respectively. METHODS A total of 352 male subjects (23-52 years old) were recruited and demographic data were obtained through questionnaires. Urinary arsenic and mercury levels were measured using hydride generation-atomic fluorescence spectrometer. Multivariate regression model was employed to investigate the relationship between urinary arsenic levels and sperm DNA methylation status at H19, Meg3 and Peg3, measured by pyrosequencing, and evaluating the interaction with mercury. RESULTS After adjusting potential confounds factors by multivariate regression model, the results indicated a significantly positive relationship between urinary arsenic levels and the methylation status of Meg3 at both mean level (β = + 0.125, p < 0.001) and all individual CpGs, i.e., CpG1 (β = + 0.094, p < 0.001), CpG2 (β = + 0.132, p < 0.001), CpG3 (β = + 0.121, p < 0.001), CpG4 (β = + 0.142, p < 0.001), CpG5 (β = + 0.111, p < 0.001), CpG6 (β = + 0.120, p < 0.001), CpG7 (β = + 0.143, p < 0.001), CpG8 (β = + 0.139, p < 0.001) of Meg3 DMRs. The interaction effects analysis indicated the interaction effects of arsenic and mercury on Meg3 were not existing. CONCLUSIONS Paternal nonoccupational exposure to arsenic induces the altered DNA methylation status of Meg3 in human sperm DNA. In addition, the interaction effects of arsenic and mercury on Meg3 were not existing. These findings would implicate the sensibility of sperm epigenome for environmental pollutions.
Collapse
Affiliation(s)
- Zhaoxu Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Graduate School of Peking Union Medical College, Beijing, 100005, China.
| | - Chuo Zhao
- School of Public Health, Hebei University, Baoding, 071000, Hebei, China
| | - Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yufeng Ma
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
9
|
Sánchez-Soriano C, Pearson ER, Reynolds RM. Associations between parental type 2 diabetes risk and offspring birthweight and placental weight: a survival analysis using the Walker cohort. Diabetologia 2022; 65:2084-2097. [PMID: 35951032 PMCID: PMC9630220 DOI: 10.1007/s00125-022-05776-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Low birthweight (BW) is associated with the development of type 2 diabetes. Genome-wide analyses have identified a strong genetic component to this association, with many BW-associated loci also involved in glucose metabolism. We hypothesised that offspring BW and placental weight (PW) are correlated with parental type 2 diabetes risk, reflecting the inheritance of diabetes risk alleles that also influence fetal growth. METHODS The Walker cohort, a collection of birth records from Dundee, Scotland, from the 1950s and the 1960s was used to test this hypothesis by linking BW and PW measurements to parental health outcomes. Using data from SCI-Diabetes and the national death registry, we obtained health records for over 20,000 Walker parents. We performed Fine-Gray survival analyses of parental type 2 diabetes risk with competing risk of death, and Cox regression analyses of risk of death, independently in the maternal and paternal datasets, modelled by offspring BW and PW. RESULTS We found significant associations between increased paternal type 2 diabetes risk and reduced offspring BW (subdistribution hazard ratio [SHR] 0.92 [95% CI 0.87, 0.98]) and PW (SHR 0.87 [95% CI 0.81, 0.94]). The association of maternal type 2 diabetes risk with offspring BW or PW was not significant. Lower offspring BW was also associated with increased risk of death in both mothers (HR 0.91 [95% CI 0.89, 0.94]) and fathers (HR 0.95 [95% CI 0.92, 0.98]), and higher offspring PW was associated with increased maternal mortality risk (HR 1.08 [95% CI 1.04, 1.13]) when adjusted for BW. CONCLUSIONS/INTERPRETATION We identified associations between offspring BW and reduced paternal type 2 diabetes risk, most likely resulting from the independent effects of common type 2 diabetes susceptibility alleles on fetal growth, as described by the fetal insulin hypothesis. Moreover, we identified novel associations between offspring PW and reduced paternal type 2 diabetes risk, a relationship that might also be caused by the inheritance of diabetes predisposition variants. We found differing associations between offspring BW and PW and parental risk of death. These results provide novel epidemiological support for the use of offspring BW and PW as predictors for future risk of type 2 diabetes and death in mothers and fathers.
Collapse
Affiliation(s)
- Carlos Sánchez-Soriano
- Centre for Cardiovascular Science, Deanery of Molecular, Genetic and Population Health Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, UK
| | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Deanery of Molecular, Genetic and Population Health Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Figueras F, Meler E. Fetal growth patterns as early markers of fetal programming. Lancet Diabetes Endocrinol 2022; 10:683-684. [PMID: 36030798 DOI: 10.1016/s2213-8587(22)00250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Francesc Figueras
- Barcelona Centre for Maternal, Fetal and Neonatal Medicine, Hospital Clinic, Barcelona, Spain; University of Barcelona, Barcelona 08028, Spain.
| | - Eva Meler
- Barcelona Centre for Maternal, Fetal and Neonatal Medicine, Hospital Clinic, Barcelona, Spain.
| |
Collapse
|
11
|
Ishihara T, Griffith OW, Suzuki S, Renfree MB. Placental imprinting of SLC22A3 in the IGF2R imprinted domain is conserved in therian mammals. Epigenetics Chromatin 2022; 15:32. [PMID: 36030241 PMCID: PMC9419357 DOI: 10.1186/s13072-022-00465-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute carrier family 22 member 2 (Slc22a2) and Slc22a3, to establish the Igf2r imprinted domain in the mouse placenta. Marsupials also have an antisense non-coding RNA, ALID, expressed from a DMR, although the exact function of ALID is currently unknown. The eutherian IGF2R DMR is located in intron 2, while the marsupial IGF2R DMR is located in intron 12, but it is not yet known whether the adjacent genes SLC22A2 and/or SLC22A3 are also imprinted in the marsupial lineage. In this study, the imprinting status of marsupial SLC22A2 and SLC22A3 in the IGF2R imprinted domain in the chorio-vitelline placenta was examined in a marsupial, the tammar wallaby. Results In the tammar placenta, SLC22A3 but not SLC22A2 was imprinted. Tammar SLC22A3 imprinting was evident in placental tissues but not in the other tissues examined in this study. A putative promoter of SLC22A3 lacked DNA methylation, suggesting that this gene is not directly silenced by a DMR on its promoter as seen in the mouse. Based on immunofluorescence, we confirmed that the tammar SLC22A3 is localised in the endodermal cell layer of the tammar placenta where nutrient trafficking occurs. Conclusions Since SLC22A3 is imprinted in the tammar placenta, we conclude that this placental imprinting of SLC22A3 has been positively selected after the marsupial and eutherian split because of the differences in the DMR location. Since SLC22A3 is known to act as a transporter molecule for nutrient transfer in the eutherian placenta, we suggest it was strongly selected to control the balance between supply and demand of nutrients in marsupial as it does in eutherian placentas. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00465-4.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
12
|
Alade A, Ismail W, Nair R, Schweizer M, Awotoye W, Oladayo A, Ryckman K, Butali A. Periconceptional use of vitamin A and the risk of giving birth to a child with nonsyndromic orofacial clefts-A meta-analysis. Birth Defects Res 2022; 114:467-477. [PMID: 35357092 PMCID: PMC9321711 DOI: 10.1002/bdr2.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND We conducted a meta-analysis of observational epidemiological studies to evaluate the association between periconceptional use of vitamin A and the risk of giving birth to a child with nonsyndromic orofacial clefts (NSOFCs). METHODS We carried out a systematic literature search of Embase, PubMed, Web of Science, Google Scholar, and OpenGrey from inception to June 30, 2021. Two reviewers independently evaluated the studies that met the inclusion criteria and filled out an abstraction form for each study. Study quality was assessed using the Newcastle-Ottawa Assessment Scale (NOS). Adjusted estimates were pooled with an inverse variance weighting using a random-effects model. Heterogeneity and publication bias were assessed using the Cochran's Q test and funnel plot, respectively. RESULTS A total of six case-control studies with moderate risk of bias were included. The pooled OR showed a 20% reduction in the risk of NSOFCs for periconceptional use of vitamin A which was not statistically significant (OR = .80; 95% CI .54-1.17, p = .25). For nonsyndromic cleft lip with or without cleft palate (NSCL/P), the studies were homogenous, and the pooled estimate showed a 13% risk reduction, which was significant (OR = .87; 95% CI .77-.99, p = .03). For nonsyndromic cleft palate only (NSCPO), the pooled estimate showed a 33% lower likelihood, which was not statistically significant (OR = .67; 95% CI .42-1.08, p = .10). CONCLUSION Our results suggest a possible protective effect for the periconceptional use of vitamin A on the risk of NSCL/P. This finding should be investigated further in prospective studies across multiple populations.
Collapse
Affiliation(s)
- Azeez Alade
- Department of Epidemiology, College of Public HealthUniversity of IowaIowa CityIowaUSA
- Iowa Institute of Oral Health ResearchUniversity of IowaIowa CityIowaUSA
| | - Wesam Ismail
- College of PharmacyUniversity of IowaIowa CityIowaUSA
| | - Rajeshwari Nair
- University of Iowa Hospitals and ClinicsUniversity of IowaIowa CityIowaUSA
- Center for Access and Delivery Research and EvaluationIowa City VA Health Care SystemIowa CityIowaUSA
| | - Marin Schweizer
- Department of Epidemiology, College of Public HealthUniversity of IowaIowa CityIowaUSA
- University of Iowa Hospitals and ClinicsUniversity of IowaIowa CityIowaUSA
- Center for Access and Delivery Research and EvaluationIowa City VA Health Care SystemIowa CityIowaUSA
| | - Waheed Awotoye
- Iowa Institute of Oral Health ResearchUniversity of IowaIowa CityIowaUSA
| | - Abimbola Oladayo
- Iowa Institute of Oral Health ResearchUniversity of IowaIowa CityIowaUSA
| | - Kelli Ryckman
- Department of Epidemiology, College of Public HealthUniversity of IowaIowa CityIowaUSA
| | - Azeez Butali
- Iowa Institute of Oral Health ResearchUniversity of IowaIowa CityIowaUSA
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
13
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
14
|
Schroeder M, Badini G, Sferruzzi-Perri AN, Albrecht C. The Consequences of Assisted Reproduction Technologies on the Offspring Health Throughout Life: A Placental Contribution. Front Cell Dev Biol 2022; 10:906240. [PMID: 35747691 PMCID: PMC9210138 DOI: 10.3389/fcell.2022.906240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The use of assisted reproductive technologies (ART) worldwide has led to the conception and birth of over eight million babies since being implemented in 1978. ART use is currently on the rise, given growing infertility and the increase in conception age among men and women in industrialized countries. Though obstetric and perinatal outcomes have improved over the years, pregnancies achieved by ART still bear increased risks for the mother and the unborn child. Moreover, given that the first generation of ART offspring is now only reaching their forties, the long-term effects of ART are currently unknown. This is important, as there is a wealth of data showing that life-long health can be predetermined by poor conditions during intrauterine development, including irregularities in the structure and functioning of the placenta. In the current review, we aim to summarize the latest available findings examining the effects of ART on the cardiometabolic, cognitive/neurodevelopmental, and behavioral outcomes in the perinatal period, childhood and adolescence/adulthood; and to examine placental intrinsic factors that may contribute to the developmental outcomes of ART offspring. Altogether, the latest knowledge about life outcomes beyond adolescence for those conceived by ART appears to suggest a better long-term outcome than previously predicted. There are also changes in placenta structure and functional capacity with ART. However, more work in this area is critically required, since the potential consequences of ART may still emerge as the offspring gets older. In addition, knowledge of the placenta may help to foresee and mitigate any adverse outcomes in the offspring.
Collapse
Affiliation(s)
- Mariana Schroeder
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Gina Badini
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christiane Albrecht
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Sasaki A, Murphy KE, Briollais L, McGowan PO, Matthews SG. DNA methylation profiles in the blood of newborn term infants born to mothers with obesity. PLoS One 2022; 17:e0267946. [PMID: 35500004 PMCID: PMC9060365 DOI: 10.1371/journal.pone.0267946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
Maternal obesity is an important risk factor for childhood obesity and influences the prevalence of metabolic diseases in offspring. As childhood obesity is influenced by postnatal factors, it is critical to determine whether children born to women with obesity during pregnancy show alterations that are detectable at birth. Epigenetic mechanisms such as DNA methylation modifications have been proposed to mediate prenatal programming. We investigated DNA methylation signatures in male and female infants from mothers with a normal Body Mass Index (BMI 18.5-24.9 kg/m2) compared to mothers with obesity (BMI≥30 kg/m2). BMI was measured during the first prenatal visit from women recruited into the Ontario Birth Study (OBS) at Mount Sinai Hospital in Toronto, ON, Canada. DNA was extracted from neonatal dried blood spots collected from heel pricks obtained 24 hours after birth at term (total n = 40) from women with a normal BMI and women with obesity matched for parity, age, and neonatal sex. Reduced representation bisulfite sequencing was used to identify genomic loci associated with differentially methylated regions (DMRs) in CpG-dense regions most likely to influence gene regulation. DMRs were predominantly localized to intergenic regions and gene bodies, with only 9% of DMRs localized to promoter regions. Genes associated with DMRs were compared to those from a large publicly available cohort study, the Avon Longitudinal Study of Parents and Children (ALSPAC; total n = 859). Hypergeometric tests revealed a significant overlap in genes associated with DMRs in the OBS and ALSPAC cohorts. PTPRN2, a gene involved in insulin secretion, and MAD1L1, which plays a role in the cell cycle and tumor suppression, contained DMRs in males and females in both cohorts. In males, KEGG pathway analysis revealed significant overrepresentation of genes involved in endocytosis and pathways in cancer, including IGF1R, which was previously shown to respond to diet-induced metabolic stress in animal models and in lymphocytes in the context of childhood obesity. These preliminary findings are consistent with Developmental Origins of Health and Disease paradigm, which posits that adverse prenatal exposures set developmental health trajectories.
Collapse
Affiliation(s)
- Aya Sasaki
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kellie E. Murphy
- Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Patrick O. McGowan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Chavatte-Palmer P, Derisoud E, Robles M. Pregnancy and placental development in horses: an update. Domest Anim Endocrinol 2022; 79:106692. [PMID: 34823139 DOI: 10.1016/j.domaniend.2021.106692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/03/2022]
Abstract
Horses have been domesticated by man and historical information mostly associates horses with men. Nowadays, however, horse riding is essentially by women. Women are also very much involved in equine sciences, with a large contribution to the understanding of fetoplacental development. While highlighting the work of female scientists, this review describes the recent advances in equine fetoplacental studies, focusing on data obtained by new generation sequencing and progress on the understanding of the role of placental progesterone metabolites throughout gestation. A second emphasis is made on fetal programming, a currently very active field, where the importance of maternal nutrition, mare management or the use of embryo technologies has been shown to induce long term effects in the offspring that might affect progeny's performance. Finally, new perspectives for the study of equine pregnancy are drawn, that will rely on new methodologies applied to molecular explorations and imaging.
Collapse
Affiliation(s)
- P Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France.
| | - E Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France
| | - M Robles
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France; INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec H7V1B7, Canada
| |
Collapse
|
18
|
Kobayashi EH, Shibata S, Oike A, Kobayashi N, Hamada H, Okae H, Arima T. Genomic imprinting in human placentation. Reprod Med Biol 2022; 21:e12490. [PMID: 36465588 PMCID: PMC9713850 DOI: 10.1002/rmb2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Genomic imprinting (GI) is a mammalian-specific epigenetic phenomenon that has been implicated in the evolution of the placenta in mammals. Methods Embryo transfer procedures and trophoblast stem (TS) cells were used to re-examine mouse placenta-specific GI genes. For the analysis of human GI genes, cytotrophoblast cells isolated from human placental tissues were used. Using human TS cells, the biological roles of human GI genes were examined. Main findings (1) Many previously identified mouse GI genes were likely to be falsely identified due to contaminating maternal cells. (2) Human placenta-specific GI genes were comprehensively determined, highlighting incomplete erasure of germline DNA methylation in the human placenta. (3) Human TS cells retained normal GI patterns. (4) Complete hydatidiform mole-derived TS cells were characterized by aberrant GI and enhanced trophoblastic proliferation. The maternally expressed imprinted gene p57KIP2 may be responsible for the enhanced proliferation. (5) The primate-specific microRNA cluster on chromosome 19, which is a placenta-specific GI gene, is essential for self-renewal and differentiation of human TS cells. Conclusion Genomic imprinting plays diverse and important roles in human placentation. Experimental analyses using TS cells suggest that the GI maintenance is necessary for normal placental development in humans.
Collapse
Affiliation(s)
- Eri H. Kobayashi
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Shun Shibata
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Akira Oike
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Norio Kobayashi
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Hirotaka Hamada
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Hiroaki Okae
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Takahiro Arima
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| |
Collapse
|
19
|
Guernsey MW, van Kruistum H, Reznick DN, Pollux BJA, Baker JC. Molecular Signatures of Placentation and Secretion Uncovered in Poeciliopsis Maternal Follicles. Mol Biol Evol 2021; 37:2679-2690. [PMID: 32421768 PMCID: PMC7475030 DOI: 10.1093/molbev/msaa121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Placentation evolved many times independently in vertebrates. Although the core functions of all placentas are similar, we know less about how this similarity extends to the molecular level. Here, we study Poeciliopsis, a unique genus of live-bearing fish that have independently evolved complex placental structures at least three times. The maternal follicle is a key component of these structures. It envelops yolk-rich eggs and is morphologically simple in lecithotrophic species but has elaborate villous structures in matrotrophic species. Through sequencing, the follicle transcriptome of a matrotrophic, Poeciliopsis retropinna, and lecithotrophic, P. turrubarensis, species we found genes known to be critical for placenta function expressed in both species despite their difference in complexity. Additionally, when we compare the transcriptome of different river populations of P. retropinna, known to vary in maternal provisioning, we find differential expression of secretory genes expressed specifically in the top layer of villi cells in the maternal follicle. This provides some of the first evidence that the placental structures of Poeciliopsis function using a secretory mechanism rather than direct contact with maternal circulation. Finally, when we look at the expression of placenta proteins at the maternal–fetal interface of a larger sampling of Poeciliopsis species, we find expression of key maternal and fetal placenta proteins in their cognate tissue types of all species, but follicle expression of prolactin is restricted to only matrotrophic species. Taken together, we suggest that all Poeciliopsis follicles are poised for placenta function but require expression of key genes to form secretory villi.
Collapse
Affiliation(s)
- Michael W Guernsey
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Henri van Kruistum
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - David N Reznick
- Department of Biology, University of California Riverside, Riverside, CA
| | - Bart J A Pollux
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
20
|
Brekke TD, Moore EC, Campbell-Staton SC, Callahan CM, Cheviron ZA, Good JM. X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics 2021; 218:6168998. [PMID: 33710276 DOI: 10.1093/genetics/iyab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.
Collapse
Affiliation(s)
- Thomas D Brekke
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Emily C Moore
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Shane C Campbell-Staton
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,Department of Ecology and Evolutionary Biology; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin M Callahan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
21
|
Zhao YH, Wang JJ, Zhang PP, Hao HS, Pang YW, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev 2021; 32:676-689. [PMID: 32317092 DOI: 10.1071/rd19234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
To explore the mechanisms leading to the poor quality of IVF blastocysts, the single-cell whole-genome methylation sequencing technique was used in this study to analyse the methylation patterns of bovine blastocysts derived from invivo, fresh (IVF) or vitrified (V_IVF) oocytes. Genome methylation levels of blastocysts in the IVF and V_IVF groups were significantly lower than those of the invivo group (P<0.05). In all, 1149 differentially methylated regions (DMRs) were identified between the IVF and invivo groups, 1578 DMRs were identified between the V_IVF and invivo groups and 151 DMRs were identified between the V_IVF and IVF groups. For imprinted genes, methylation levels of insulin-like growth factor 2 receptor (IGF2R) and protein phosphatase 1 regulatory subunit 9A (PPP1R9A) were lower in the IVF and V_IVF groups than in the invivo group, and the methylation level of paternally expressed 3 (PEG3) was lower in the V_IVF group than in the IVF and invivo groups. Genes with DMRs between the IVF and invivo and the V_IVF and IVF groups were primarily enriched in oocyte maturation pathways, whereas DMRs between the V_IVF and invivo groups were enriched in fertilisation and vitrification-vulnerable pathways. The results of this study indicate that differences in the methylation of critical DMRs may contribute to the differences in quality between invitro- and invivo-derived embryos.
Collapse
Affiliation(s)
- Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Jing-Jing Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Pei-Pei Zhang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Min Ruan
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Ming Lun Street, Kaifeng, Henan, 475004, PR China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Tong Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China; and Corresponding author.
| |
Collapse
|
22
|
Edwards CA, Takahashi N, Corish JA, Ferguson-Smith AC. The origins of genomic imprinting in mammals. Reprod Fertil Dev 2020; 31:1203-1218. [PMID: 30615843 DOI: 10.1071/rd18176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is a process that causes genes to be expressed according to their parental origin. Imprinting appears to have evolved gradually in two of the three mammalian subclasses, with no imprinted genes yet identified in prototheria and only six found to be imprinted in marsupials to date. By interrogating the genomes of eutherian suborders, we determine that imprinting evolved at the majority of eutherian specific genes before the eutherian radiation. Theories considering the evolution of imprinting often relate to resource allocation and recently consider maternal-offspring interactions more generally, which, in marsupials, places a greater emphasis on lactation. In eutherians, the imprint memory is retained at least in part by zinc finger protein 57 (ZFP57), a Kruppel associated box (KRAB) zinc finger protein that binds specifically to methylated imprinting control regions. Some imprints are less dependent on ZFP57invivo and it may be no coincidence that these are the imprints that are found in marsupials. Because marsupials lack ZFP57, this suggests another more ancestral protein evolved to regulate imprints in non-eutherian subclasses, and contributes to imprinting control in eutherians. Hence, understanding the mechanisms acting at imprinting control regions across mammals has the potential to provide valuable insights into our understanding of the origins and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jennifer A Corish
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
23
|
Ardeshir F, Keshavarz L, Asadian F, Omidmokhtarkhanloo G, Yavarian M. Role of the 820 A/G variant in the IGF-2 gene and recurrent spontaneous abortion in southern Iran: A cross-sectional study. Int J Reprod Biomed 2020; 18:747-754. [PMID: 33062920 PMCID: PMC7521167 DOI: 10.18502/ijrm.v13i9.7669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/28/2019] [Accepted: 04/18/2020] [Indexed: 11/24/2022] Open
Abstract
Background Insulin-like growth factor-2 (IGF-2) is a polypeptide growth factor and one of the first genes expressed prior to the implantation of the embryo, with its highest expression in the placental cells. Its activity strongly depends on the genomic imprinting, and the result of the loss of genetic imprinting is the termination of the early stages of embryonic development, which can lead to recurrent spontaneous abortion. Objective This cross-sectional study aimed to investigate the role of 820A/G variant of the IGF-2 gene and the probability to recurrent spontaneous abortion (RSA) in southern Iran. Materials and Methods In this study, 50 aborted fetuses tissue for the study group and blood samples umbilical-cord from newborns as control group (n = 50) were collected from Shiraz-Iran (2017). The genotyping of the target point in the IGF-2 gene was performed by Real-time Polymerase Chain Reaction and analyzed through high-resolution melting (HRM) curve. Results Based on the collected data (AA genotype = reference), allele “A” frequency in aborted fetus was 51% and control 68% as well as allele G 49% and 32%, respectively. Moreover, 27 aborted embryos (54%) were heterozygous (A/G) (OR = 3.274, 95% CI = 1.015-10.561, p = 0.04), while 18 cases (36%) in control sample showed heterozygosity. Considering the phenotypic status, the G allele had a dominant effect on the incidence of RSA (p = 0.008, OR = 3.167). Conclusion Based on the present study, the risk of abortion due to loss of heterozygosity or quantitative decline of the IGF-2 is about three-fold in the southern Iran.
Collapse
Affiliation(s)
- Farzaneh Ardeshir
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Leila Keshavarz
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Fatemeh Asadian
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Majid Yavarian
- Persian Bayan Gene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Siraz, Iran.,Shiraz Nephron-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165373. [PMID: 30684642 PMCID: PMC6650384 DOI: 10.1016/j.bbadis.2018.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023]
Abstract
The most common cause of intrauterine growth restriction (IUGR) in the developed world is placental insufficiency, a concept often used synonymously with reduced utero-placental and umbilical blood flows. However, placental insufficiency and IUGR are associated with complex, coordinated and highly regulated changes in placental signaling and nutrient transport including inhibition of insulin and mTOR signaling and down-regulation of specific amino acid transporters, Na+/K+-ATPase, the Na+/H+-exchanger, folate and lactate transporters. In contrast, placental glucose transport capacity is unaltered and Ca2+-ATPase activity and the expression of proteins involved in placental lipid transport are increased in IUGR. These findings are not entirely consistent with the traditional view that the placenta is dysfunctional in IUGR, but rather suggest that the placenta adapts to reduce fetal growth in response to an inability of the mother to allocate resources to the fetus. This new model has implications for the understanding of the mechanisms underpinning IUGR and for the development of intervention strategies.
Collapse
Affiliation(s)
- Stephanie Chassen
- Department of Pediatrics, Division of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
25
|
Zhong H, Zhang X, Xu Q, Yan J, Han Z, Zheng H, Xiao J, Tang Z, Wang F, Luo Y, Zhou Y. Nonadditive and Asymmetric Allelic Expression of Growth Hormone in Hybrid Tilapia. Front Genet 2019; 10:961. [PMID: 31681414 PMCID: PMC6803431 DOI: 10.3389/fgene.2019.00961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 12/04/2022] Open
Abstract
Hybridization is a common breeding technique that can improve germplasm through heterosis in aquaculture. However, the regulation of key gene expression, including the details of transcriptional level changes at the beginning of hybridization events, remains largely undefined, especially in teleosts. In this study, by interspecies crossing between two pure lines of Nile tilapia and blue tilapia, we obtained a hybrid tilapia population as a model to elucidate heterosis, and we traced the molecular outcomes of growth hormone (GH) expression and allele-specific expression (ASE) in hybrids. The hybrids display growth vigor compared to their parents in the 120-day growth trial. GH mRNA expression was uniquely expressed in the pituitary. Higher GH expression was found in the hybrid than the midparent value, in both males and females, showing a nonadditive pattern. We identified four single-nucleotide polymorphism sites between Nile tilapia and blue tilapia. Subsequently, by pyrosequencing, we found asymmetric allelic expression in hybrids with higher maternal allelic transcript ratios in both males and females. Fasting significantly increased GH expression in hybrids, but asymmetric allelic expression was not affected by feeding or fasting conditions. Finally, we identified cis and trans effects via overall expression and ASE values in the hybrid, which showed that the cis and trans effects promoted the expression of maternal subgenome in the hybrid, contributing to the expression superiority of GH in hybrid tilapia. Taken together, the results of our study first illustrated the concept of GH expression superiority and its formation mechanism in hybrid fish with growth vigor.
Collapse
Affiliation(s)
- Huan Zhong
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaojin Zhang
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zhuojun Han
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huifang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Zhanyang Tang
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Fenghua Wang
- Sports Biochemistry Laboratory, Institute of Physical Education, Xinjiang Normal University, Urumqi, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yi Zhou
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
26
|
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019; 76:4009-4021. [PMID: 31270580 PMCID: PMC6785587 DOI: 10.1007/s00018-019-03197-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults. While many of the prenatal functions of imprinted genes that have so far been described adhere to the "parental conflict" hypothesis, no clear picture has yet emerged on the functional role of imprints on postnatal metabolism. As these roles are uncovered, interest in the potential for these genes to influence postnatal metabolism and associated adult-onset disease outcomes when dysregulated has gathered pace. Here, we review the published data on imprinted genes and their influence on postnatal metabolism, starting in the nest, and then progressing through to adulthood. When observing the functional effects of these genes on adult metabolism, we must always be careful to acknowledge the influence both of direct expression in the relevant metabolic tissue, but also indirect metabolic programming effects caused by their modulation of both in utero and postnatal growth trajectories.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
27
|
Kuang Q, Wang Y, Li S. Detailed observation on expression dynamics of Polycomb group genes during rice early endosperm development in subspecies hybridization reveals their characteristics of parent-of-origin genes. RICE (NEW YORK, N.Y.) 2019; 12:64. [PMID: 31410597 PMCID: PMC6692421 DOI: 10.1186/s12284-019-0306-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Parent-of-origin gene expression and its role in seed development have drown a great attention in recent years. Genome-wide analysis has identified hundreds of candidate imprinted genes, a major type of parent-of-origin genes, in rice hybrid endosperms at the stage of 5 days after pollination (dap). However, the expression of these genes in early endosperm have been never confirmed due to technique limitations and the behavior of the imprinted genes in different rice hybridizations are still largely unknown. RESULTS Here, based on our elaborate technique established previously, the expression patterns of PcG genes in the early stages of endosperm development (within 3 dap), were comprehensively analyzed. We revealed that the free nucleus stage of endosperm development is critical for parent-of-origin gene analysis. The expression of the imprinted genes are highly dynamic, likely corresponding to the critical developmental events during this period. Hybridizations between Oryza sativa japonica and indica showed that the expression patterns of the same imprinted gene could be varied by crossing with different parental cultivars, indicative of their parent-dependent character. There are strong alleles that often showed predominant expression over other alleles regardless of the parental origin, which provides a possible explanation for the cultivar-dependent predominant phenotype in crop hybridizations. In addition, we found that the transcripts of the same gene behave differently, with imprinting or non-imprinting patterns, suggesting the existence of not only imprinted and non-imprinted genes but also imprinted or non-imprinted transcripts, which reveals new aspects of the genomic imprinting. CONCLUSIONS These findings on the characters of parent-of-origin genes shed light on the understanding the real role of gene imprinting in endosperm development.
Collapse
Affiliation(s)
- Quan Kuang
- Department of Biology, Institute of Biotechnology, Nanchang Normal College, Nanchang, 330032, China
| | - Yinghua Wang
- College of Software, East China Jiao Tong University, Nanchang, 330013, China
| | - Shisheng Li
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Key Laboratories of Economic Forest Germplasm Improvement and Comprehensive Resources Utilization of Hubei province, College of Biology and Agricultural Resource, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
28
|
Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O'Connell MJ, Spillane C. Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana. Mol Biol Evol 2019; 36:1239-1253. [PMID: 30913563 PMCID: PMC6526901 DOI: 10.1093/molbev/msz063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.
Collapse
Affiliation(s)
- Reetu Tuteja
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Center for Genomics and Systems Biology, New York University, New York, NY
| | - Peter C McKeown
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pat Ryan
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Claire C Morgan
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland.,Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Mark T A Donoghue
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim Downing
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charles Spillane
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
29
|
Litzky JF, Marsit CJ. Epigenetically regulated imprinted gene expression associated with IVF and infertility: possible influence of prenatal stress and depression. J Assist Reprod Genet 2019; 36:1299-1313. [PMID: 31127477 PMCID: PMC6642239 DOI: 10.1007/s10815-019-01483-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Despite the growing body of research implying an impact of in vitro fertilization (IVF) on imprinted genes and epigenetics, few studies have examined the effects of underlying subfertility or prenatal stress on epigenetics, particularly in terms of their role in determining infant birthweights. Both subfertility and prenatal stressors have been found to impact epigenetics and may be confounding the effect of IVF on epigenetics and imprinted genes. Like IVF, both of these exposures-infertility and prenatal stressors-have been associated with lower infant birthweights. The placenta, and specifically epigenetically regulated placental imprinted genes, provides an ideal but understudied mechanism for evaluating the relationship between underlying genetics, environmental exposures, and birthweight. METHODS AND RESULTS In this review, we discuss the impacts of IVF and infertility on birthweight, epigenetic mechanisms and genomic imprinting, and the role of these mechanisms in the IVF population and discuss the role and importance of the placenta in infant development. We then highlight recent work on the relationships between infertility, IVF, and prenatal stressors in terms of placental imprinting. CONCLUSIONS In combination, the studies discussed, as well as two recent projects of our own on placental imprinted gene expression, suggest that lower birthweights in IVF infants are secondary to a combination of exposures including the infertility and prenatal stress that couples undergoing IVF are experiencing. The work highlighted herein emphasizes the need for appropriate control populations that take infertility into account and also for consideration of prenatal psychosocial stressors as confounders and causes of variation in IVF infant outcomes.
Collapse
Affiliation(s)
- Julia F Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 202, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Kazemian A, Hooshmandabbasi R, Schraner EM, Boos A, Klisch K. Evolutionary implications of fetal and maternal microvillous surfaces in epitheliochorial placentae. J Morphol 2019; 280:615-622. [PMID: 30805975 DOI: 10.1002/jmor.20970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
Abstract
According to the "parent-offspring conflict hypothesis" the rapid evolution and diversification of the mammalian placenta is driven by divergent optima of resource allocation between fetus and mother. The fetus has an interest to maximize its resource intake, while the mother has an interest to restrict the transfer of resources, and thus retain resources for subsequent pregnancies. In the epitheliochorial placenta, the contacting fetal and maternal surfaces at the feto-maternal interface are covered with microvilli, which leads to an increase of membrane surfaces available for transport processes. Because membranes are the site of active transport, the conflict hypothesis predicts that the fetal surfaces at the feto-maternal interfaces are larger than the maternal ones. We use transmission electron microscopy and a stereological method to estimate the factors by which the apical fetal and maternal membranes are enlarged by the microvilli. Ten species with an epitheliochorial placenta were studied. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to create three-dimensional models of the interdigitating microvilli of the bovine and porcine placenta. In all species, the fetal surface was larger than the maternal. This was due to a higher number of fetal microvilli and to the presence of membrane folds at the base of the fetal, but not of maternal microvilli. Our results suggest that the ultrastructural morphology of the feto-maternal interface in the epitheliochorial placenta is shaped by conflicting interests between fetus and mother and thus represent a so far neglected arena of the parent-offspring conflict.
Collapse
Affiliation(s)
- Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reyhaneh Hooshmandabbasi
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Elisabeth M Schraner
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Karl Klisch
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Lopez MF, Zheng L, Miao J, Gali R, Gorski G, Hirschhorn JN. Disruption of the Igf2 gene alters hepatic lipid homeostasis and gene expression in the newborn mouse. Am J Physiol Endocrinol Metab 2018; 315:E735-E744. [PMID: 30016152 PMCID: PMC6293172 DOI: 10.1152/ajpendo.00048.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
Abstract
Newborns with intrauterine growth-restriction are at increased risk of mortality and life-long comorbidities. Insulin-like growth factor-II (IGF2) deficiency in humans, as well as in mice, leads to intrauterine growth restriction and decreased neonatal glycogen stores. The present study aims to further characterize the metabolic and transcriptional consequences of Igf2 deficiency in the newborn. We found that, despite being born significantly smaller than their wild-type ( Igf2+/+) littermates, brain size was preserved in Igf2 knockout ( Igf2-/-), consistent with nutritional deficiency. Histological and triglyceride analyses of newborn livers revealed that Igf2-/- mice are born with hepatic steatosis. Gene expression analysis in Igf2-/- newborn livers showed an alteration of genes known to be dysregulated in chronic caloric restriction, including the most upregulated gene, serine dehydratase. Multiple genes connected with lipid metabolism and/or hepatic steatosis were also upregulated. Ingenuity Pathway Analysis confirmed that the biological functions most altered in livers of Igf2-/- newborns are related to lipid metabolism, with the top upstream regulator predicted to be the peroxisome proliferator-activated receptor alpha, a master regulator of hepatic lipid and carbohydrate homeostasis. Together, our data indicate that Igf2 deficiency leads to a newborn phenotype strongly reminiscent of nutritional deficiency, including growth retardation, increased brain/body weight ratio, hepatic steatosis, and characteristic changes in hepatic gene expression. We propose that in addition to its growth factor proliferating functions, Igf2 may also regulate growth by altering the expression of genes that control nutrient metabolism in the newborn.
Collapse
Affiliation(s)
- Mary Frances Lopez
- Center for Basic and Translational Obesity Research , Boston, Massachusetts
- Endocrine Division, Boston Children's Hospital , Boston, Massachusetts
- Harvard Medical School , Boston, Massachusetts
| | - Lingyun Zheng
- Endocrine Division, Boston Children's Hospital , Boston, Massachusetts
| | - Ji Miao
- Endocrine Division, Boston Children's Hospital , Boston, Massachusetts
- Harvard Medical School , Boston, Massachusetts
| | - Reddy Gali
- Harvard Medical School , Boston, Massachusetts
- The Harvard Clinical and Translational Science Center and Countway Library of Medicine , Boston, Massachusetts
| | - Grzegorz Gorski
- Center for Basic and Translational Obesity Research , Boston, Massachusetts
| | - Joel N Hirschhorn
- Center for Basic and Translational Obesity Research , Boston, Massachusetts
- Endocrine Division, Boston Children's Hospital , Boston, Massachusetts
- Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
32
|
Velicky P, Meinhardt G, Plessl K, Vondra S, Weiss T, Haslinger P, Lendl T, Aumayr K, Mairhofer M, Zhu X, Schütz B, Hannibal RL, Lindau R, Weil B, Ernerudh J, Neesen J, Egger G, Mikula M, Röhrl C, Urban AE, Baker J, Knöfler M, Pollheimer J. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet 2018; 14:e1007698. [PMID: 30312291 PMCID: PMC6200260 DOI: 10.1371/journal.pgen.1007698] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/24/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.
Collapse
Affiliation(s)
- Philipp Velicky
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Kerstin Plessl
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Children's Cancer Research Institute, St. Anna Children´s Hospital, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Thomas Lendl
- Biooptics Facility of Institute of Molecular Pathology, Institute of Molecular Biotechnology and Gregor Mendel Institute, Vienna, Austria
| | - Karin Aumayr
- Biooptics Facility of Institute of Molecular Pathology, Institute of Molecular Biotechnology and Gregor Mendel Institute, Vienna, Austria
| | - Mario Mairhofer
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | - Xiaowei Zhu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Birgit Schütz
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Roberta L. Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Robert Lindau
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Beatrix Weil
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jürgen Neesen
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Tasha and John Morgridge Faculty Scholar, Stanford Child Health Research Institute, Stanford, California, United States of America
| | - Julie Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Petry CJ, Koulman A, Lu L, Jenkins B, Furse S, Prentice P, Matthews L, Hughes IA, Acerini CL, Ong KK, Dunger DB. Associations between the maternal circulating lipid profile in pregnancy and fetal imprinted gene alleles: a cohort study. Reprod Biol Endocrinol 2018; 16:82. [PMID: 30157874 PMCID: PMC6116391 DOI: 10.1186/s12958-018-0399-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Imprinted genes, which are expressed in a parent of origin-specific manner, are thought to mediate the genetic priorities of each parent in pregnancy. Recently we reported that some fetal imprinted gene variants are associated with maternal glucose concentrations and blood pressures in pregnancy. We suggest that the conflict between the effects of paternal and maternal transmitted genes starts at conception and may already be evident in measures of maternal metabolism in early pregnancy, before gestational diabetes is manifest. METHODS Lipid fractions in maternal non-fasting serum collected around week 15 of pregnancy were profiled using direct infusion mass spectrometry in a subset Discovery Cohort (n = 200) of women from the Cambridge Baby Growth Study using direct infusion mass spectrometry. Associations between 151 haplotype-tag fetal polymorphisms in 16 imprinted genes and lipids were determined using partial least squares discriminant analysis. Variable importance in projection scores were used to identify those lipid species that contribute most to the underlying variation in the lipid profile and the concentrations of these species tested for associations with fetal imprinted gene alleles using linear regression. In an internal Validation Cohort (n = 567 women from the same cohort) the lipid fraction was profiled using liquid chromatography-mass spectrometry and tested for associations with the same fetal imprinted gene variants as above, followed by meta-analysis of associations from the Discovery and Validation Cohorts. RESULTS The most significant associations were between a monounsaturated triglyceride (44:1) and both paternally-transmitted fetal H19 rs7950932 (R = 0.14, p = 2.9 × 10- 3, n = 386) and maternally-transmitted fetal FAM99A rs7131362 (R = 0.18, p = 6.2 × 10- 3, n = 351; association with maternal-untransmitted allele R = 0.08, p = 0.07, n = 328). This same triglyceride isoform was also associated with subsequent week 28 fasting glucose concentrations (R = 0.09, p = 9.9 × 10- 3, n = 673) and homeostasis model assessment of insulin resistance (R = 0.09, p = 0.01, n = 664). CONCLUSIONS Fetal imprinted genes may influence maternal circulating clinically relevant triglyceride concentrations early in pregnancy.
Collapse
Affiliation(s)
- Clive J Petry
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Albert Koulman
- Medical Research Council Human Nutrition Research, Cambridge, UK
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Liangjian Lu
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Benjamin Jenkins
- Medical Research Council Human Nutrition Research, Cambridge, UK
| | - Samuel Furse
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Philippa Prentice
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lee Matthews
- Medical Research Council Human Nutrition Research, Cambridge, UK
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ken K Ong
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Lu Z, Ma Y, Gao L, Li Y, Li Q, Qiang M. Urine mercury levels correlate with DNA methylation of imprinting gene H19 in the sperm of reproductive-aged men. PLoS One 2018; 13:e0196314. [PMID: 29698523 PMCID: PMC5919660 DOI: 10.1371/journal.pone.0196314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mercury (Hg) is a well-recognized environmental pollutant known by its toxicity of development and neurotoxicity, which results in adverse health outcomes. However, the mechanisms underlying the teratogenic effects of Hg are not well understood. Imprinting genes are emerging regulators for fetal development subjecting to environmental pollutants impacts. In this study, we examined the association between preconceptional Hg exposure and the alteration of DNA methylation of imprinting genes H19, Meg3, and Peg3 in human sperm DNA. Methods A total of 616 men, aged from 22 to 59, were recruited from Reproductive Medicine Clinic of Maternal and Child Care Service Center and the Urologic Surgery Clinic of Shanxi Academy of Medical Sciences during April 2015 and March 2016. Demographic information was collected through questionnaires. Urine was collected and urinary Hg concentrations were measured using a fully-automatic double-channel hydride generation atomic fluorescence spectrometer. Methylation of imprinting genes H19, Meg3 and Peg3 of sperm DNA from 242 participants were examined by bisulfite pyrosequencing. Spearman’s rank and multivariate regression analysis were used for correlation analysis between sperm DNA methylation status of imprinting genes and urinary Hg levels. Results The median concentration of Hg for 616 participants was 9.14μg/l (IQR: 5.56–12.52 μg/l; ranging 0.16–71.35μg/l). A total of 42.7% of the participants are beyond normal level for non-occupational exposure according to the criterion of Hg poisoning (≥10 μg/L). Spearman’s rank analysis indicated a negative correlation between urinary Hg concentrations and average DNA methylation levels of imprinted genes H19 (rs = −0.346, p <0.05), but there was no such a correlation for Peg3 and Meg3. Further, we analyzed the correlation between methylation level at individual CpG site of H19 and urinary Hg level. The results showed a negative correlation between urinary Hg concentrations and three out of seven CpG sites on H19 DMR, namely CpG2 (rs = −0.137, p <0.05), CpG4 (rs = −0.380, p <0.05) and CpG6 (rs = −0.228, p <0.05). After adjusting age, smoking, drinking, intake of aquatic products and education by multivariate regression analysis, the results have confirmed the correlation as mentioned above. Conclusions Mercury non-occupational environmental exposure in reproductive-aged men was associated with altered DNA methylation outcomes at imprinting gene H19 in sperm, implicating the susceptibility of the developing sperm for environmental insults.
Collapse
Affiliation(s)
- Zhaoxu Lu
- Department of Child and Adolescence Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, China
| | - Yufeng Ma
- Department of Child and Adolescence Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, China
| | - Linying Gao
- Department of Sanitary Inspection, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, China
| | - Yingjun Li
- Department of Child and Adolescence Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, China
| | - Qiang Li
- Department of Andrology, Children’s Hospital and Women Health Center of Shanxi, Shanxi, Taiyuan, China
| | - Mei Qiang
- Department of Child and Adolescence Health, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, China
- * E-mail:
| |
Collapse
|
35
|
Affiliation(s)
- Sharvari S. Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| | - Nafisa H. Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
36
|
Myatt L, Thornburg KL. Effects of Prenatal Nutrition and the Role of the Placenta in Health and Disease. Methods Mol Biol 2018; 1735:19-46. [PMID: 29380305 DOI: 10.1007/978-1-4939-7614-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidemiologic studies identified the linkage between exposures to stresses, including the type and plane of nutrition in utero with development of disease in later life. Given the critical roles of the placenta in mediating transport of nutrients between the mother and fetus and regulation of maternal metabolism, recent attention has focused on the role of the placenta in mediating the effect of altered nutritional exposures on the development of disease in later life. In this chapter we describe the mechanisms of nutrient transport in the placenta, the influence of placental metabolism on this, and how placental energetics influence placental function in response to a variety of stressors. Further the recent "recognition" that the placenta itself has a sex which affects its function may begin to help elucidate the mechanisms underlying the well-known dimorphism in development of disease in adult life.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA. .,Bob and Charlee Moore Institute for Nutrition & Wellness, Oregon Health & Science University, Portland, OR, USA.
| | - Kent L Thornburg
- Bob and Charlee Moore Institute for Nutrition & Wellness, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
37
|
Chen XJ, Chen F, Lv PP, Zhang D, Ding GL, Hu XL, Feng C, Sheng JZ, Huang HF. Maternal high estradiol exposure alters CDKN1C and IGF2 expression in human placenta. Placenta 2017; 61:72-79. [PMID: 29277274 DOI: 10.1016/j.placenta.2017.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The increased maternal estradiol (E2) concentrations induced by assisted reproductive technology (ART) result in lower birth weight of offspring, which is associated with increased risk of adult diseases. However, the exact mechanism remains unknown. The present study investigated the effect of high E2 exposure on the expression of imprinted genes CDKN1C and IGF2 in human placentas and the DNA methylation status of their differential methylation regions (DMRs). METHODS The mRNA expression of CDKN1C and IGF2 in human placentas and the human trophoblast cells (HTR8) treated with E2 were investigated by reverse transcription-real time polymerase chain reaction (PCR). The DNA methylation of their DMRs were investigated by sodium bisulfite sequencing. RESULTS CDKN1C and IGF2 were significantly up-regulated in ART conceived placentas. The mean birth weight of ART singletons was significantly lower than that of naturally conceived (NC) ones, with the increased percentage of small-for-gestational-age (SGA) birth. The DNA methylation was significantly down-regulated in the DMR of CDKN1C (KvDMR1) and up-regulated in the DMR of IGF2 (H19 DMR) in ART placentas. The treatment of E2 altered the expression of the two genes and the DNA methylation of their DMRs in HTR8 to a similar tendency as in vivo. DISCUSSION The maternal high E2 levels after ART up-regulate the expression of imprinted genes in human placentas through epigenetic modifications, which influences the growth potential of the offspring. Further studies are needed to follow up the growth and development of the ART offspring.
Collapse
Affiliation(s)
- Xi-Jing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ping-Ping Lv
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo-Lian Ding
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Diseases and Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiao-Ling Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chun Feng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Center of Reproductive Medicine, The 2nd Afliated Hospital of Medical School, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Diseases and Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
38
|
What is fetal programming?: a lifetime health is under the control of in utero health. Obstet Gynecol Sci 2017; 60:506-519. [PMID: 29184858 PMCID: PMC5694724 DOI: 10.5468/ogs.2017.60.6.506] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 01/10/2023] Open
Abstract
The "Barker hypothesis" postulates that a number of organ structures and associated functions undergo programming during embryonic and fetal life, which determines the set point of physiological and metabolic responses that carry into adulthood. Hence, any stimulus or insult at a critical period of embryonic and fetal development can result in developmental adaptations that produce permanent structural, physiological and metabolic changes, thereby predisposing an individual to cardiovascular, metabolic and endocrine disease in adult life. This article will provide evidence linking these diseases to fetal undernutrition and an overview of previous studies in this area as well as current advances in understanding the mechanism and the role of the placenta in fetal programming.
Collapse
|
39
|
Guernsey MW, Chuong EB, Cornelis G, Renfree MB, Baker JC. Molecular conservation of marsupial and eutherian placentation and lactation. eLife 2017; 6. [PMID: 28895534 PMCID: PMC5595433 DOI: 10.7554/elife.27450] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Eutherians are often mistakenly termed 'placental mammals', but marsupials also have a placenta to mediate early embryonic development. Lactation is necessary for both infant and fetal development in eutherians and marsupials, although marsupials have a far more complex milk repertoire that facilitates morphogenesis of developmentally immature young. In this study, we demonstrate that the anatomically simple tammar placenta expresses a dynamic molecular program that is reminiscent of eutherian placentation, including both fetal and maternal signals. Further, we provide evidence that genes facilitating fetal development and nutrient transport display convergent co-option by placental and mammary gland cell types to optimize offspring success.
Collapse
Affiliation(s)
- Michael W Guernsey
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Guillaume Cornelis
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
40
|
Haertle L, Maierhofer A, Böck J, Lehnen H, Böttcher Y, Blüher M, Schorsch M, Potabattula R, El Hajj N, Appenzeller S, Haaf T. Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals. PLoS One 2017; 12:e0184030. [PMID: 28854270 PMCID: PMC5576652 DOI: 10.1371/journal.pone.0184030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals.
Collapse
Affiliation(s)
- Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Mönchengladbach, Germany
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
| | | | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, Julius Maximilians University, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- * E-mail:
| |
Collapse
|
41
|
Litzky JF, Deyssenroth MA, Everson TM, Armstrong DA, Lambertini L, Chen J, Marsit CJ. Placental imprinting variation associated with assisted reproductive technologies and subfertility. Epigenetics 2017; 12:653-661. [PMID: 28621618 PMCID: PMC5687325 DOI: 10.1080/15592294.2017.1336589] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Infertility affects one in 6 couples in developed nations, resulting in an increasing use of assisted reproductive technologies (ART). Both ART and subfertility appear to be linked to lower birth weight outcomes, setting infants up for poor long-term health. Prenatal growth is, in part, regulated via epigenetically-controlled imprinted genes in the placenta. Although differences in DNA methylation between ART and control infants have been found, it remains unclear whether these differences are due to the ART procedures or to the underlying parental subfertility and how these methylation differences affect imprinted gene expression. In this study, we examined the expression of 108 imprinted genes in placental tissues from infants born to subfertile parents (n = 79), matched naturally-conceived controls (n = 158), and infants conceived using in vitro fertilization (IVF, n = 18). Forty-five genes were identified as having significantly different expression between the subfertile infants and controls, whereas no significant differences were identified between the IVF and control groups. The expression of 4 genes-IGF2, NAPIL5, PAX8-AS1, and TUBGCP5-was significantly downregulated in the IVF compared with the subfertile group. Three of the 45 genes significantly dysregulated between subfertile and control placentae-GRB10, NDN, and CD44 -were found to have a significant positive correlation between expression and birth weight. Methylation levels for these 3 genes and 4 others-MKRN3, WRB, DHCR24, and CYR61-were significantly correlated with expression. Our findings indicate that epigenetic differences in placentas resulting from IVF pregnancies may be related to the underlying subfertility in parents using IVF rather than the IVF procedure itself.
Collapse
Affiliation(s)
- Julia F. Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - David A. Armstrong
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Obstetrics; Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
42
|
Gibson C, de Ruijter-Villani M, Stout TAE. Negative uterine asynchrony retards early equine conceptus development and upregulation of placental imprinted genes. Placenta 2017; 57:175-182. [PMID: 28864009 DOI: 10.1016/j.placenta.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Placental imprinted genes appear to be sensitive indicators of an inappropriate pre-implantation environment. This study examined the effects of negative uterine asynchrony after embryo transfer (ET) on early horse embryo development, and yolk-sac membrane expression of DNA methyltransferases (DNMTs) and equine specific placental imprinted genes. METHODS Day 8 embryos were transferred to recipient mares on day 8 (synchronous) or day 3 (asynchronous) after ovulation, and conceptuses were recovered 6 or 11 days later (day 14 or 19 of development). RESULTS Day 14 conceptuses recovered from an asynchronous uterus had a smaller embryonic disc, in which primitive streak development was visibly retarded compared to conceptuses from a synchronous uterus. Similarly, length, somite number and organogenesis were retarded in day 19 embryos after asynchronous ET. Maternal (GRB10, H19, IGF2R, PHLDA2) and paternal (IGF2, INSR, PEG3, PEG10, DIO3, NDN, SNRPN) imprinted genes and DNMTs (DNMT1, 3A and 3B) were all up-regulated between day 14 and 19 of pregnancy and, for most, mRNA expression was higher in synchronous than asynchronous day 19 yolk-sac membrane. Expression of the paternally imprinted gene HAT1 increased between day 14 and 19 of pregnancy, but was not affected by the asynchrony. DISCUSSION Conceptus development and upregulation of DNMTs and imprinted genes were delayed rather than dysregulated after transfer into a negatively asynchronous uterus. We propose that this ability to 'reset' conceptus development to uterine stage is an adaptation that explains why horse embryos are unusually tolerant of asynchrony after ET.
Collapse
Affiliation(s)
- Charlotte Gibson
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands.
| | - Marta de Ruijter-Villani
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands.
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
43
|
Saldivar Lemus Y, Vielle-Calzada JP, Ritchie MG, Macías Garcia C. Asymmetric paternal effect on offspring size linked to parent-of-origin expression of an insulin-like growth factor. Ecol Evol 2017. [PMID: 28649356 PMCID: PMC5478053 DOI: 10.1002/ece3.3025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sexual reproduction brings together reproductive partners whose long‐term interests often differ, raising the possibility of conflict over their reproductive investment. Males that enhance maternal investment in their offspring gain fitness benefits, even if this compromises future reproductive investment by iteroparous females. When the conflict occurs at a genomic level, it may be uncovered by crossing divergent populations, as a mismatch in the coevolved patterns of paternal manipulation and maternal resistance may generate asymmetric embryonic growth. We report such an asymmetry in reciprocal crosses between populations of the fish Girardinichthys multiradiatus. We also show that a fragment of a gene which can influence embryonic growth (Insulin‐Like Growth Factor 2; igf2) exhibits a parent‐of‐origin methylation pattern, where the maternally inherited igf2 allele has much more 5′ cytosine methylation than the paternally inherited allele. Our findings suggest that male manipulation of maternal investment may have evolved in fish, while the parent‐of‐origin methylation pattern appears to be a potential candidate mechanism modulating this antagonistic coevolution process. However, disruption of other coadaptive processes cannot be ruled out, as these can lead to similar effects as conflict.
Collapse
|
44
|
Diemert A, Goletzke J, Barkmann C, Jung R, Hecher K, Arck P. Maternal progesterone levels are modulated by maternal BMI and predict birth weight sex-specifically in human pregnancies. J Reprod Immunol 2017. [PMID: 28641119 DOI: 10.1016/j.jri.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Successful pregnancy outcome is the result of a tailored adaptation of the maternal endocrine and immune system throughout gestation. We aimed to investigate if maternal endocrine, anthropometric and life style factors assessed longitudinally throughout pregnancy allow prediction of birth weight. STUDY DESIGN Data on maternal factors and obstetrical characteristics from 220 pregnancies from a German prospective pregnancy cohort were analyzed using univariate and multivariate regression models. The association between maternal progesterone levels at the end of the 1st (gw 12-14), the 2nd (gw 22-24) and the 3rd trimester (gw 34-36) and birth weight of children born at term was examined. Interaction terms were included to identify possible sex-specific associations. Furthermore, associations between maternal and obstetric characteristics and progesterone levels were tested. RESULTS After controlling for possible confounders, progesterone in the 2nd trimester emerged as an independent predictor for birth weight in pregnancies with female (p=0.01), but not male fetuses (p=0.6). In female fetuses each increase of progesterone by 1ng/ml in the 2nd trimester was associated with an increase of birth weight by 6.8g (95%-CI=1.44-12.24). Maternal 1st trimester BMI showed a significant inverse correlation to progesterone levels throughout gestation (p<0.0001 in the 1st and 2nd, p=0.01 in the 3rd trimester). This inverse association between maternal BMI and progesterone levels was confined to overweight women. CONCLUSION Our data support that maternal progesterone levels have the potential to serve as early biomarker for reduced birth weight and underpins the importance of normal weight when entering the reproductive phase.
Collapse
Affiliation(s)
- Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany.
| | - Janina Goletzke
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Claus Barkmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Robert Jung
- Center for Diagnostics, Department of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
45
|
Lassi G, Tucci V. Gene-environment interaction influences attachment-like style in mice. GENES BRAIN AND BEHAVIOR 2017; 16:612-618. [PMID: 28421709 DOI: 10.1111/gbb.12385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/27/2022]
Abstract
Attachment styles are established soon after birth and form the basis for a healthy psychological life during adulthood. Here, we investigated whether genetic background (i.e. isogenic strains: C57BL/6N and BALB/c) and parent-of-origin (i.e. reciprocal hybrids) epigenetic effects influence attachment-like styles in mice. We discovered that a specific genetic and epigenetic assortment exerts a role on the development of a secure or insecure attachment-like style. In particular, when biological mothers raise their pups, the attachment-like style is mainly secure, independently of the genetic background. However, when foster mothers raise pups, the attachment-like style can be either secure or insecure, depending on the particular genetic background, and this effect is paternally transmitted. Finally, we observed that secure attachment-like in mice leads to greater sociability during adulthood, while insecure attachment-like leads to reduced sociability. Our study sheds light on gene-environment interactions that shape the attachment-like style early in development and pave the way for a healthy psychological life.
Collapse
Affiliation(s)
- G Lassi
- Department of Neuroscience and Brain Technologies (NBT), Genetic and Epigenetics of Behaviour - Istituto Italiano di Tecnologia, Genova, Italy
| | - V Tucci
- Department of Neuroscience and Brain Technologies (NBT), Genetic and Epigenetics of Behaviour - Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
46
|
Song L, Sun B, Boersma GJ, Cordner ZA, Yan J, Moran TH, Tamashiro KLK. Prenatal high-fat diet alters placental morphology, nutrient transporter expression, and mtorc1 signaling in rat. Obesity (Silver Spring) 2017; 25:909-919. [PMID: 28332771 DOI: 10.1002/oby.21821] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study aimed to determine how the rat placenta and fetus respond to maternal high-fat (HF) diet during gestation and to identify the possible mechanisms. METHODS Pregnant Sprague-Dawley rats were fed with standard chow (13.5% fat) or HF (60% fat) diet during gestation. Placentas were collected on gestation day 21. RESULTS HF dams had greater fat mass, higher plasma leptin, lower plasma adiponectin, and impaired glucose tolerance during pregnancy. The placental labyrinth thickness was reduced in both male and female fetuses of HF dams. In HF male placentas, glucose transporter 3 gene expression, system A amino acid transporter (SNAT) 2 gene expression, and SNAT2 protein expression were increased through the activation of the mTORC1 4EBP1 branch. In HF female placentas, gene expression of insulin-like growth factor 2 (IGF2) and IGF2 receptor was elevated compared to placentas of females fed standard chow. Although male and female placentas responded differently to prenatal HF diet exposure, both male and female fetal weight was not altered by maternal HF diet. CONCLUSIONS Placenta responds and adapts to maternal metabolic changes by altering placental layer thickness, mTORC1 signaling, expression of nutrient transporters, and growth factors in a sex-specific manner.
Collapse
Affiliation(s)
- Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Gretha J Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Wang KCW, Botting KJ, Zhang S, McMillen IC, Brooks DA, Morrison JL. Akt signaling as a mediator of cardiac adaptation to low birth weight. J Endocrinol 2017; 233:R81-R94. [PMID: 28219933 DOI: 10.1530/joe-17-0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Intrauterine insults, such as poor nutrition and placental insufficiency, can alter cardiomyocyte development, and this can have significant long-term implications for heart health. Consequently, epidemiological studies have shown that low-birth-weight babies have an increased risk of death from cardiovascular disease in adult life. In addition, intrauterine growth restriction can result in increased left ventricular hypertrophy, which is the strongest predictor for poor health outcomes in cardiac patients. The mechanisms responsible for these associations are not clear, but a suboptimal intrauterine environment can program alternative expression of genes such as cardiac IGF-2/H19, IGF-2R and AT1R through either an increase or decrease in DNA methylation or histone acetylation at specific loci. Furthermore, hypoxia and other intrauterine insults can also activate the IGF-1 receptor via IGF-1 and IGF-2, and the AT1 receptor via angiotensin signaling pathways; both of which can result in the phosphorylation of Akt and the activation of a range of downstream pathways. In turn, Akt activation can increase cardiac angiogenesis and cardiomyocyte apoptosis and promote a reversion of metabolism in postnatal life to a fetal phenotype, which involves increased reliance on glucose. Cardiac Akt can also be indirectly regulated by microRNAs and conversely can target microRNAs that will eventually affect other specific cardiac genes and proteins. This review aims to discuss our understanding of this complex network of interactions, which may help explain the link between low birth weight and the increased risk of cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Gonzalez-Nahm S, Mendez M, Robinson W, Murphy SK, Hoyo C, Hogan V, Rowley D. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx007. [PMID: 29492309 PMCID: PMC5804547 DOI: 10.1093/eep/dvx007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 05/17/2023]
Abstract
Diet is dictated by the surrounding environment, as food access and availability may change depending on where one lives. Maternal diet during pregnancy is an important part of the in utero environment, and may affect the epigenome. Studies looking at overall diet pattern in relation to DNA methylation have been lacking. The Mediterranean diet is known for its health benefits, including decreased inflammation, weight loss, and management of chronic diseases. This study assesses the association between maternal adherence to a Mediterranean diet pattern during pregnancy and infant DNA methylation at birth. Mediterranean diet adherence in early pregnancy was measured in 390 women enrolled in the Newborn Epigenetic Study, and DNA methylation was assessed in their infants at birth. Multinomial logistic regression was used to assess the association between adherence to a Mediterranean diet and infant methylation at the MEG3, MEG3-IG, pleiomorphic adenoma gene-like 1, insulin-like growth factor 2 gene, H19, mesoderm-specific transcript, neuronatin, paternally expressed gene 3, sarcoglycan and paternally expressed gene 10 regions, measured by pyrosequencing. Infants of mothers with a low adherence to a Mediterranean diet had a greater odds of hypo-methylation at the MEG3-IG differentially methylated region (DMR). Sex-stratified models showed that this association was present in girls only. This study provides early evidence on the association between overall diet pattern and methylation at the 9 DMRs included in this study, and suggests that maternal diet can have a sex-specific impact on infant DNA methylation at specific imprinted DMRs.
Collapse
Affiliation(s)
- Sarah Gonzalez-Nahm
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Mendez
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Whitney Robinson
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan K. Murphy
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cathrine Hoyo
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vijaya Hogan
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diane Rowley
- Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, 624 N. Broadway, HH 904, Baltimore, MD 21205, USADepartment of NutritionDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAOB/GYN, Duke University Medical CenterDepartment of Environmental Health Science, North Carolina State University, NC, USADepartment of Food, Health and Well-Being, W.K. Kellogg FoundationDepartment of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Petry CJ, Mooslehner K, Prentice P, Hayes MG, Nodzenski M, Scholtens DM, Hughes IA, Acerini CL, Ong KK, Lowe WL, Dunger DB. Associations between a fetal imprinted gene allele score and late pregnancy maternal glucose concentrations. DIABETES & METABOLISM 2017; 43:323-331. [PMID: 28392167 PMCID: PMC5507297 DOI: 10.1016/j.diabet.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/21/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Aim We hypothesised that some of the genetic risk for gestational diabetes (GDM) is due to the fetal genome affecting maternal glucose concentrations. Previously, we found associations between fetal IGF2 gene variants and maternal glucose concentrations in late pregnancy. Methods In the present study, we tested associations between SNP alleles from 15 fetal imprinted genes and maternal glucose concentrations in late pregnancy in the Cambridge Baby Growth and Wellbeing cohorts (1160 DNA trios). Results Four fetal SNP alleles with the strongest univariate associations: paternally-transmitted IGF2 rs10770125 (P-value = 2 × 10–4) and INS rs2585 (P-value = 7 × 10–4), and maternally-transmitted KCNQ1(OT1) rs231841 (P-value = 1 × 10–3) and KCNQ1(OT1) rs7929804 (P-value = 4 × 10–3), were used to construct a composite fetal imprinted gene allele score which was associated with maternal glucose concentrations (P-value = 4.3 × 10–6, n = 981, r2 = 2.0%) and GDM prevalence (odds ratio per allele 1.44 (1.15, 1.80), P-value = 1 × 10–3, n = 89 cases and 899 controls). Meta-analysis of the associations including data from 1367 Hyperglycaemia and Adverse Pregnancy Outcome Study participants confirmed the paternally-transmitted fetal IGF2/INS SNP associations (rs10770125, P-value = 3.2 × 10–8, rs2585, P-value = 3.6 × 10–5) and the composite fetal imprinted gene allele score association (P-value = 1.3 × 10–8), but not the maternally-transmitted fetal KCNQ1(OT1) associations (rs231841, P-value = 0.4; rs7929804, P-value = 0.2). Conclusion This study suggests that polymorphic variation in fetal imprinted genes, particularly in the IGF2/INS region, contribute a small but significant part to the risk of raised late pregnancy maternal glucose concentrations.
Collapse
Affiliation(s)
- C J Petry
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK.
| | - K Mooslehner
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK
| | - P Prentice
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK
| | - M G Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Nodzenski
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D M Scholtens
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - I A Hughes
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK
| | - C L Acerini
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK
| | - K K Ong
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK; Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - W L Lowe
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D B Dunger
- Department of Paediatrics, Box 116, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 0QQ Cambridge, UK; Medical Research Laboratories, The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Griffith OW, Brandley MC, Whittington CM, Belov K, Thompson MB. Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. Gen Comp Endocrinol 2017; 244:19-29. [PMID: 27102939 DOI: 10.1016/j.ygcen.2016.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 01/17/2016] [Accepted: 04/16/2016] [Indexed: 01/13/2023]
Abstract
In oviparous amniotes (reptiles, birds, and mammals) the chorioallantoic membrane (CAM) lines the inside of the egg and acts as the living point of contact between the embryo and the outside world. In livebearing (viviparous) amniotes, communication during embryonic development occurs across placental tissues, which form between the uterine tissue of the mother and the CAM of the embryo. In both oviparous and viviparous taxa, the CAM is at the interface of the embryo and the external environment and can transfer signals from there to the embryo proper. To understand the evolution of placental hormone production in amniotes, we examined the expression of genes involved in hormone synthesis, metabolism, and hormone receptivity in the CAM of species across the amniote phylogeny. We collected transcriptome data for the chorioallantoic membranes of the chicken (oviparous), the lizards Lerista bougainvillii (both oviparous and viviparous populations) and Pseudemoia entrecasteauxii (viviparous), and the horse Equus caballus (viviparous). The viviparous taxa differ in their mechanisms of nutrient provisioning: L. bougainvillii is lecithotrophic (embryonic nourishment is provided via the yolk only), but P. entrecasteauxii and the horse are placentotrophic (embryos are nourished via placental transport). Of the 423 hormone-related genes that we examined, 91 genes are expressed in all studied species, suggesting that the chorioallantoic membrane ancestrally had an endocrine function. Therefore, the chorioallantoic membrane appears to be a highly hormonally active organ in all amniotes. No genes are expressed only in viviparous species, suggesting that the evolution of viviparity has not required the recruitment of any specific hormone-related genes. Our data suggest that the endocrine function of the CAM as a placental tissue evolved in part through co-option of ancestral gene expression patterns.
Collapse
Affiliation(s)
- Oliver W Griffith
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Matthew C Brandley
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; New York University - Sydney, The Rocks, NSW 2000, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|