1
|
Pfenniger A, Yoo S, Arora R. Oxidative stress and atrial fibrillation. J Mol Cell Cardiol 2024; 196:141-151. [PMID: 39307416 DOI: 10.1016/j.yjmcc.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
2
|
Wang XC, Zhou Y, Chen HX, Hou HT, He GW, Yang Q. ER stress modulates Kv1.5 channels via PERK branch in HL-1 atrial myocytes: Relevance to atrial arrhythmogenesis and the effect of tetramethylpyrazine. Heliyon 2024; 10:e37767. [PMID: 39318794 PMCID: PMC11420496 DOI: 10.1016/j.heliyon.2024.e37767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is implicated in cardiac arrhythmia whereas the associated mechanisms remain inadequately understood. Kv1.5 channels are essential for atrial repolarization. Whether ER stress affects Kv1.5 channels is unknown. This study aimed to elucidate the response of Kv1.5 channels to ER stress by clarifying the unfolded protein response (UPR) branch responsible for the channel modulation. In addition, the effect of tetramethylpyrazine (TMP) on Kv1.5 channels was studied. Patch clamp and western-blot results revealed that exposure of HL-1 atrial myocytes to ER stress inducer tunicamycin upregulates Kv1.5 expression, increases Kv1.5 channel current (I Kur ) (14.91 ± 1.11 vs. 6.11 ± 1.31 pA/pF, P < 0.001), and shortened action potential duration (APD) (APD90: 82.79 ± 5.25 vs.121.11 ± 6.72 ms, P < 0.01), which could be reverted by ER stress inhibitors. Blockade of the PERK branch while not IRE1 and ATF6 branches of UPR downregulated Kv1.5 expression, accompanied by a decreased I Kur (9.03 ± 0.99 pA/pF) and a prolonged APD90 (113.69 ± 4.41 ms) (P < 0.01). PERK-mediated increases of Kv1.5 expression and I Kur were also observed in HL-1 cells incubated with thapsigargin. TMP suppressed the enhancement of I Kur (10.52 ± 0.97 vs. 17.52 ± 2.25 pA/pF, P < 0.05), prevented the shortening of APD (APD90: 110.16 ± 5.36 vs. 84.84 ± 4.58 ms, P < 0.05), and inhibited the upregulation of Kv1.5 triggered by ER stress. Our study suggests that ER stress induces upregulation and activation of Kv1.5 channels in atrial myocytes through the PERK branch of UPR. TMP prevents Kv1.5 upregulation/activation and the resultant APD shortening by inhibiting ER stress. These results may shed light on the mechanisms of atrial arrhythmogenesis and the antiarrhythmic effect of the traditional Chinese herb TMP.
Collapse
Affiliation(s)
- Xiang-Chong Wang
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
- Department of Pharmacology, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- School of Medicine, Nankai University, Tianjin, 300457, China
| | - Yang Zhou
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Huan-Xin Chen
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Hai-Tao Hou
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| |
Collapse
|
3
|
Mitrokhin V, Hadzi-Petrushev N, Kazanski V, Schileyko S, Kamkina O, Rodina A, Zolotareva A, Zolotarev V, Kamkin A, Mladenov M. The Role of K ACh Channels in Atrial Fibrillation. Cells 2024; 13:1014. [PMID: 38920645 PMCID: PMC11201540 DOI: 10.3390/cells13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
This manuscript explores the intricate role of acetylcholine-activated inward rectifier potassium (KACh) channels in the pathogenesis of atrial fibrillation (AF), a common cardiac arrhythmia. It delves into the molecular and cellular mechanisms that underpin AF, emphasizing the vital function of KACh channels in modulating the atrial action potential and facilitating arrhythmogenic conditions. This study underscores the dual nature of KACh activation and its genetic regulation, revealing that specific variations in potassium channel genes, such as Kir3.4 and K2P3.1, significantly influence the electrophysiological remodeling associated with AF. Furthermore, this manuscript identifies the crucial role of the KACh-mediated current, IKACh, in sustaining arrhythmia through facilitating shorter re-entry circuits and stabilizing the re-entrant circuits, particularly in response to vagal nerve stimulation. Experimental findings from animal models, which could not induce AF in the absence of muscarinic activation, highlight the dependency of AF induction on KACh channel activity. This is complemented by discussions on therapeutic interventions, where KACh channel blockers have shown promise in AF management. Additionally, this study discusses the broader implications of KACh channel behavior, including its ubiquitous presence across different cardiac regions and species, contributing to a comprehensive understanding of AF dynamics. The implications of these findings are profound, suggesting that targeting KACh channels might offer new therapeutic avenues for AF treatment, particularly in cases resistant to conventional approaches. By integrating genetic, cellular, and pharmacological perspectives, this manuscript offers a holistic view of the potential mechanisms and therapeutic targets in AF, making a significant contribution to the field of cardiac arrhythmia research.
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Viktor Kazanski
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Stanislav Schileyko
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Olga Kamkina
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Anastasija Rodina
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Alexandra Zolotareva
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Valentin Zolotarev
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Andre Kamkin
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
| | - Mitko Mladenov
- Institute of Physiology, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov, Russian National Research Medical University” Ministry of Health, 117997 Moscow, Russia; (V.M.); (V.K.); (S.S.); (O.K.); (A.R.); (A.Z.); (V.Z.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
4
|
Seibertz F, Rubio T, Springer R, Popp F, Ritter M, Liutkute A, Bartelt L, Stelzer L, Haghighi F, Pietras J, Windel H, Pedrosa NDI, Rapedius M, Doering Y, Solano R, Hindmarsh R, Shi R, Tiburcy M, Bruegmann T, Kutschka I, Streckfuss-Bömeke K, Kensah G, Cyganek L, Zimmermann WH, Voigt N. Atrial fibrillation-associated electrical remodelling in human induced pluripotent stem cell-derived atrial cardiomyocytes: a novel pathway for antiarrhythmic therapy development. Cardiovasc Res 2023; 119:2623-2637. [PMID: 37677054 PMCID: PMC10730244 DOI: 10.1093/cvr/cvad143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS Atrial fibrillation (AF) is associated with tachycardia-induced cellular electrophysiology alterations which promote AF chronification and treatment resistance. Development of novel antiarrhythmic therapies is hampered by the absence of scalable experimental human models that reflect AF-associated electrical remodelling. Therefore, we aimed to assess if AF-associated remodelling of cellular electrophysiology can be simulated in human atrial-like cardiomyocytes derived from induced pluripotent stem cells in the presence of retinoic acid (iPSC-aCM), and atrial-engineered human myocardium (aEHM) under short term (24 h) and chronic (7 days) tachypacing (TP). METHODS AND RESULTS First, 24-h electrical pacing at 3 Hz was used to investigate whether AF-associated remodelling in iPSC-aCM and aEHM would ensue. Compared to controls (24 h, 1 Hz pacing) TP-stimulated iPSC-aCM presented classical hallmarks of AF-associated remodelling: (i) decreased L-type Ca2+ current (ICa,L) and (ii) impaired activation of acetylcholine-activated inward-rectifier K+ current (IK,ACh). This resulted in action potential shortening and an absent response to the M-receptor agonist carbachol in both iPSC-aCM and aEHM subjected to TP. Accordingly, mRNA expression of the channel-subunit Kir3.4 was reduced. Selective IK,ACh blockade with tertiapin reduced basal inward-rectifier K+ current only in iPSC-aCM subjected to TP, thereby unmasking an agonist-independent constitutively active IK,ACh. To allow for long-term TP, we developed iPSC-aCM and aEHM expressing the light-gated ion-channel f-Chrimson. The same hallmarks of AF-associated remodelling were observed after optical-TP. In addition, continuous TP (7 days) led to (i) increased amplitude of inward-rectifier K+ current (IK1), (ii) hyperpolarization of the resting membrane potential, (iii) increased action potential-amplitude and upstroke velocity as well as (iv) reversibly impaired contractile function in aEHM. CONCLUSIONS Classical hallmarks of AF-associated remodelling were mimicked through TP of iPSC-aCM and aEHM. The use of the ultrafast f-Chrimson depolarizing ion channel allowed us to model the time-dependence of AF-associated remodelling in vitro for the first time. The observation of electrical remodelling with associated reversible contractile dysfunction offers a novel platform for human-centric discovery of antiarrhythmic therapies.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Robin Springer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Fiona Popp
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Melanie Ritter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Lena Bartelt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Lea Stelzer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Fereshteh Haghighi
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Pietras
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Hendrik Windel
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Núria Díaz i Pedrosa
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | | | - Yannic Doering
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Richard Solano
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Robin Hindmarsh
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
| | - Runzhu Shi
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Tobias Bruegmann
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - George Kensah
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
- Campus-Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Findlay I, Pasqualin C, Yu A, Maupoil V, Bredeloux P. Selective Inhibition of Pulmonary Vein Excitability by Constitutively Active GIRK Channels Blockade in Rats. Int J Mol Sci 2023; 24:13629. [PMID: 37686437 PMCID: PMC10487709 DOI: 10.3390/ijms241713629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary veins (PV) are the main source of ectopy, triggering atrial fibrillation. This study investigated the roles of G protein-coupled inwardly rectifying potassium (GIRK) channels in the PV and the left atrium (LA) of the rat. Simultaneous intracellular microelectrode recording from the LA and the PV of the rat found that in the presence or absence of acetylcholine, the GIRK channel blocker tertiapin-Q induced AP duration elongation in the LA and the loss of over-shooting AP in the PV, suggesting the presence of constitutively active GIRK channels in these tissues. Patch-clamp recordings from isolated myocytes showed that tertiapin-Q inhibited a basal inwardly rectified background current in PV cells with little effect in LA cells. Experiments with ROMK1 and KCa1.1 channel blockers ruled out the possibility of an off-target effect. Western blot showed that GIRK4 subunit expression was greater in PV cardiomyocytes, which may explain the differences observed between PV and LA in response to tertiapin-Q. In conclusion, GIRK channels blockade abolishes AP only in the PV, providing a molecular target to induce electrical disconnection of the PV from the LA.
Collapse
Affiliation(s)
- Ian Findlay
- Laboratoire de Pharmacologie, Faculté de Pharmacie, Université de Tours, 37200 Tours, France;
| | - Côme Pasqualin
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Angèle Yu
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Véronique Maupoil
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Pierre Bredeloux
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| |
Collapse
|
6
|
Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. The Relevance of GIRK Channels in Heart Function. MEMBRANES 2022; 12:1119. [PMID: 36363674 PMCID: PMC9698958 DOI: 10.3390/membranes12111119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Among the large number of potassium-channel families implicated in the control of neuronal excitability, G-protein-gated inwardly rectifying potassium channels (GIRK/Kir3) have been found to be a main factor in heart control. These channels are activated following the modulation of G-protein-coupled receptors and, although they have been implicated in different neurological diseases in both human and animal studies of the central nervous system, the therapeutic potential of different subtypes of these channel families in cardiac conditions has remained untapped. As they have emerged as a promising potential tool to treat a variety of conditions that disrupt neuronal homeostasis, many studies have started to focus on these channels as mediators of cardiac dynamics, thus leading to research into their implication in cardiovascular conditions. Our aim is to review the latest advances in GIRK modulation in the heart and their role in the cardiovascular system.
Collapse
Affiliation(s)
- Ana Campos-Ríos
- CINBIO, Laboratory of Neuroscience, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Lola Rueda-Ruzafa
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, 04120 Almeria, Spain
| | - José Antonio Lamas
- CINBIO, Laboratory of Neuroscience, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| |
Collapse
|
7
|
Okada D, Okamoto Y, Io T, Oka M, Kobayashi D, Ito S, Yamada R, Ishii K, Ono K. Comparative Study of Transcriptome in the Hearts Isolated from Mice, Rats, and Humans. Biomolecules 2022; 12:biom12060859. [PMID: 35740984 PMCID: PMC9221511 DOI: 10.3390/biom12060859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
The heart is a significant organ in mammalian life, and the heartbeat mechanism has been an essential focus of science. However, few studies have focused on species differences. Accordingly, challenges remain in studying genes that have universal functions across species and genes that determine species differences. Here, we analyzed transcriptome data in mouse, rat, and human atria, ventricles, and sinoatrial nodes (SA) obtained from different platforms and compared them by calculating specificity measure (SPM) values in consideration of species differences. Among the three heart regions, the species differences in SA were the greatest, and we searched for genes that determined the essential characteristics of SA, which was SHOX2 in our criteria. The SPM value of SHOX2 was prominently high across species. Similarly, by calculating SPM values, we identified 3 atrial-specific, 11 ventricular-specific, and 17 SA-specific markers. Ontology analysis identified 70 cardiac region- and species-specific ontologies. These results suggest that reanalyzing existing data by calculating SPM values may identify novel tissue-specific genes and species-dependent gene expression. This study identified the importance of SHOX2 as an SA-specific transcription factor, a novel cardiac regional marker, and species-dependent ontologies.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan; (D.O.); (R.Y.)
| | - Yosuke Okamoto
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
- Correspondence:
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 618-8585, Japan; (T.I.); (M.O.)
| | - Miho Oka
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 618-8585, Japan; (T.I.); (M.O.)
| | - Daiki Kobayashi
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| | - Suzuka Ito
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| | - Ryo Yamada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan; (D.O.); (R.Y.)
| | - Kuniaki Ishii
- Department of Pharmacology, Faculty of medicine, Yamagata University, Iida-Nishi, Yamagata 990-9585, Japan;
| | - Kyoichi Ono
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| |
Collapse
|
8
|
Preferential Expression of Ca2+-Stimulable Adenylyl Cyclase III in the Supraventricular Area, Including Arrhythmogenic Pulmonary Vein of the Rat Heart. Biomolecules 2022; 12:biom12050724. [PMID: 35625651 PMCID: PMC9138642 DOI: 10.3390/biom12050724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Ectopic excitability in pulmonary veins (PVs) is the major cause of atrial fibrillation. We previously reported that the inositol trisphosphate receptor in rat PV cardiomyocytes cooperates with the Na+-Ca2+ exchanger to provoke ectopic automaticity in response to norepinephrine. Here, we focused on adenylyl cyclase (AC) as another effector of norepinephrine stimulation. RT-PCR, immunohistochemistry, and Western blotting revealed that the abundant expression of Ca2+-stimulable AC3 was restricted to the supraventricular area, including the PVs. All the other AC isotypes hardly displayed any region-specific expressions. Immunostaining of isolated cardiomyocytes showed an enriched expression of AC3 along the t-tubules in PV myocytes. The cAMP-dependent response of L-type Ca2+ currents in the PV and LA cells is strengthened by the 0.1 mM intracellular Ca2+ condition, unlike in the ventricular cells. The norepinephrine-induced automaticity of PV cardiomyocytes was reversibly suppressed by 100 µM SQ22536, an adenine-like AC inhibitor. These findings suggest that the specific expression of AC3 along t-tubules may contribute to arrhythmogenic automaticity in rat PV cardiomyocytes.
Collapse
|
9
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
10
|
Premont A, Balthes S, Marr CM, Jeevaratnam K. Fundamentals of arrhythmogenic mechanisms and treatment strategies for equine atrial fibrillation. Equine Vet J 2021; 54:262-282. [PMID: 34564902 DOI: 10.1111/evj.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is the most common pathological arrhythmia in horses. Although it is not usually a life-threatening condition on its own, it can cause poor performance and make the horse unsafe to ride. It is a complex multifactorial disease influenced by both genetic and environmental factors including exercise training, comorbidities or ageing. The interactions between all these factors in horses are still not completely understood and the pathophysiology of AF remains poorly defined. Exciting progress has been recently made in equine cardiac electrophysiology in terms of diagnosis and documentation methods such as cardiac mapping, implantable electrocardiogram (ECG) recording devices or computer-based ECG analysis that will hopefully improve our understanding of this disease. The available pharmaceutical and electrophysiological treatments have good efficacy and lead to a good prognosis for AF, but recurrence is a frequent issue that veterinarians have to face. This review aims to summarise our current understanding of equine cardiac electrophysiology and pathophysiology of equine AF while providing an overview of the mechanism of action for currently available treatments for equine AF.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samantha Balthes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Celia M Marr
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, UK
| | | |
Collapse
|
11
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
12
|
Cui M, Alhamshari Y, Cantwell L, Ei-Haou S, Eptaminitaki GC, Chang M, Abou-Assali O, Tan H, Xu K, Masotti M, Plant LD, Thakur GA, Noujaim SF, Milnes J, Logothetis DE. A benzopyran with antiarrhythmic activity is an inhibitor of Kir3.1-containing potassium channels. J Biol Chem 2021; 296:100535. [PMID: 33713702 PMCID: PMC8086025 DOI: 10.1016/j.jbc.2021.100535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/20/2023] Open
Abstract
Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia and is associated with increased morbidity and mortality. Currently approved AF antiarrhythmic drugs have limited efficacy and/or carry the risk of ventricular proarrhythmia. The cardiac acetylcholine activated inwardly rectifying K+ current (IKACh), composed of Kir3.1/Kir3.4 heterotetrameric and Kir3.4 homotetrameric channel subunits, is one of the best validated atrial-specific ion channels. Previous research pointed to a series of benzopyran derivatives with potential for treatment of arrhythmias, but their mechanism of action was not defined. Here, we characterize one of these compounds termed Benzopyran-G1 (BP-G1) and report that it selectively inhibits the Kir3.1 (GIRK1 or G1) subunit of the KACh channel. Homology modeling, molecular docking, and molecular dynamics simulations predicted that BP-G1 inhibits the IKACh channel by blocking the central cavity pore. We identified the unique F137 residue of Kir3.1 as the critical determinant for the IKACh-selective response to BP-G1. The compound interacts with Kir3.1 residues E141 and D173 through hydrogen bonds that proved critical for its inhibitory activity. BP-G1 effectively blocked the IKACh channel response to carbachol in an in vivo rodent model and displayed good selectivity and pharmacokinetic properties. Thus, BP-G1 is a potent and selective small-molecule inhibitor targeting Kir3.1-containing channels and is a useful tool for investigating the role of Kir3.1 heteromeric channels in vivo. The mechanism reported here could provide the molecular basis for future discovery of novel, selective IKACh channel blockers to treat atrial fibrillation with minimal side effects.
Collapse
Affiliation(s)
- Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA.
| | - Yaser Alhamshari
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Said Ei-Haou
- Department of Cardiac Biology, Xention Ltd, Cambridge, UK
| | - Giasemi C Eptaminitaki
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mengmeng Chang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Obada Abou-Assali
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Haozhou Tan
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Keman Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Meghan Masotti
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Sami F Noujaim
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - James Milnes
- Department of Cardiac Biology, Xention Ltd, Cambridge, UK
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Lemoine MD, Lemme M, Ulmer BM, Braren I, Krasemann S, Hansen A, Kirchhof P, Meyer C, Eschenhagen T, Christ T. Intermittent Optogenetic Tachypacing of Atrial Engineered Heart Tissue Induces Only Limited Electrical Remodelling. J Cardiovasc Pharmacol 2020; 77:291-299. [PMID: 33278190 DOI: 10.1097/fjc.0000000000000951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 01/30/2023]
Abstract
ABSTRACT Atrial tachypacing is an accepted model for atrial fibrillation (AF) in large animals and in cellular models. Human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CM) provide a novel human source to model cardiovascular diseases. Here, we investigated whether optogenetic tachypacing of atrial-like hiPSC-CMs grown into engineered heart tissue (aEHT) can induce AF-remodeling. After differentiation of atrial-like cardiomyocytes from hiPSCs using retinoic acid, aEHTs were generated from ∼1 million atrial-like hiPSC-CMs per aEHT. AEHTs were transduced with lentivirus expressing channelrhodopsin-2 to enable optogenetic stimulation by blue light pulses. AEHTs underwent optical tachypacing at 5 Hz for 15 seconds twice a minute over 3 weeks and compared with transduced spontaneously beating isogenic aEHTs (1.95 ± 0.07 Hz). Force and action potential duration did not differ between spontaneously beating and tachypaced aEHTs. Action potentials in tachypaced aEHTs showed higher upstroke velocity (138 ± 15 vs. 87 ± 11 V/s, n = 15-13/3; P = 0.018), possibly corresponding to a tendency for more negative diastolic potentials (73.0 ± 1.8 vs. 68.0 ± 1.9 mV; P = 0.07). Tachypaced aEHTs exhibited a more irregular spontaneous beating pattern (beat-to-beat scatter: 0.07 ± 0.01 vs. 0.03 ± 0.004 seconds, n = 15-13/3; P = 0.008). Targeted expression analysis showed higher RNA levels of KCNJ12 [Kir2.2, inward rectifier (IK1); 69 ± 7 vs. 44 ± 4, P = 0.014] and NPPB (NT-proBNP; 39,690 ± 4834 vs. 23,671 ± 3691; P = 0.024). Intermittent tachypacing in aEHTs induces some electrical alterations found in AF and induces an arrhythmic spontaneous beating pattern, but does not affect resting force. Further studies using longer, continuous, or more aggressive stimulation may clarify the contribution of different rate patterns on the changes in aEHT mimicking the remodeling process from paroxysmal to persistent atrial fibrillation.
Collapse
Affiliation(s)
- Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Marta Lemme
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
| | - Ingke Braren
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
| | - Paulus Kirchhof
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Christian Meyer
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- Clinic for Cardiology, Evangelical Hospital, Düsseldorf, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Lemme is now with the Nanion Technologies GmbH, Ganghoferstraße, München, Germany
| |
Collapse
|
14
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Yoo S, Pfenniger A, Hoffman J, Zhang W, Ng J, Burrell A, Johnson DA, Gussak G, Waugh T, Bull S, Benefield B, Knight BP, Passman R, Wasserstrom JA, Aistrup GL, Arora R. Attenuation of Oxidative Injury With Targeted Expression of NADPH Oxidase 2 Short Hairpin RNA Prevents Onset and Maintenance of Electrical Remodeling in the Canine Atrium: A Novel Gene Therapy Approach to Atrial Fibrillation. Circulation 2020; 142:1261-1278. [PMID: 32686471 PMCID: PMC9277750 DOI: 10.1161/circulationaha.119.044127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments of AF are suboptimal because they are not targeted to the molecular mechanisms underlying AF. Using a highly novel gene therapy approach in a canine, rapid atrial pacing model of AF, we demonstrate that NADPH oxidase 2 (NOX2) generated oxidative injury causes upregulation of a constitutively active form of acetylcholine-dependent K+ current (IKACh), called IKH; this is an important mechanism underlying not only the genesis, but also the perpetuation of electric remodeling in the intact, fibrillating atrium. METHODS To understand the mechanism by which oxidative injury promotes the genesis and maintenance of AF, we performed targeted injection of NOX2 short hairpin RNA (followed by electroporation to facilitate gene delivery) in atria of healthy dogs followed by rapid atrial pacing. We used in vivo high-density electric mapping, isolation of atrial myocytes, whole-cell patch clamping, in vitro tachypacing of atrial myocytes, lucigenin chemiluminescence assay, immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and Masson trichrome staining. RESULTS First, we demonstrate that generation of oxidative injury in atrial myocytes is a frequency-dependent process, with rapid pacing in canine atrial myocytes inducing oxidative injury through the induction of NOX2 and the generation of mitochondrial reactive oxygen species. We show that oxidative injury likely contributes to electric remodeling in AF by upregulating IKACh by a mechanism involving frequency-dependent activation of PKCε (protein kinase C epsilon). The time to onset of nonsustained AF increased by >5-fold in NOX2 short hairpin RNA-treated dogs. Furthermore, animals treated with NOX2 short hairpin RNA did not develop sustained AF for up to 12 weeks. The electrophysiological mechanism underlying AF prevention was prolongation of atrial effective refractory periods, at least in part attributable to the attenuation of IKACh. Attenuated membrane translocation of PKCε appeared to be a likely molecular mechanism underlying this beneficial electrophysiological remodeling. CONCLUSIONS NOX2 oxidative injury (1) underlies the onset, and the maintenance of electric remodeling in AF, as well, and (2) can be successfully prevented with a novel, gene-based approach. Future optimization of this approach may lead to a novel, mechanism-guided therapy for AF.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jacob Hoffman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wenwei Zhang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jason Ng
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Amy Burrell
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David A. Johnson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Georg Gussak
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Trent Waugh
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Suzanne Bull
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Brandon Benefield
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bradley P. Knight
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rod Passman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - J. Andrew Wasserstrom
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
16
|
Bond RC, Choisy SC, Bryant SM, Hancox JC, James AF. Ion currents, action potentials, and noradrenergic responses in rat pulmonary vein and left atrial cardiomyocytes. Physiol Rep 2020; 8:e14432. [PMID: 32401431 PMCID: PMC7219272 DOI: 10.14814/phy2.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022] Open
Abstract
The electrophysiological properties of pulmonary vein (PV)-cardiomyocytes, and their responses to the sympathetic neurotransmitter, noradrenaline (NA), are thought to differ from those of the left atrium (LA) and contribute to atrial ectopy. The aim of this study was to examine rat PV cardiomyocyte electrophysiology and responses to NA in comparison with LA cells. LA and PV cardiomyocytes were isolated from adult male Wistar rat hearts, and membrane potentials and ion currents recorded at 36°C using whole-cell patch-clamp techniques. PV and LA cardiomyocytes did not differ in size. In control, there were no differences between the two cell-types in zero-current potential or action potential duration (APD) at 1 Hz, although the incidence of early afterdepolarizations (EADs) was greater in PV than LA cardiomyocytes. The L-type Ca2+ current (ICaL ) was ~×1.5 smaller (p = .0029, Student's t test) and the steady-state K+ current (IKss ) was ~×1.4 larger (p = .0028, Student's t test) in PV than in LA cardiomyocytes. PV cardiomyocyte inward-rectifier current (IK1 ) was slightly smaller than LA cardiomyocyte IK1 . In LA cardiomyocytes, NA significantly prolonged APD30 . In PV cells, APD30 responses to 1 μM NA were heterogeneous: while the mean percentage change in APD30 was not different from 0 (16.5 ± 9.7%, n cells/N animals = 12/10, p = .1177, one-sample t test), three cells showed shortening (-18.8 ± 6.0%) whereas nine showed prolongation (28.3 ± 10.1%, p = .008, Student's t test). NA had no effect on IK1 in either cell-type but inhibited PV IKss by 41.9 ± 4.1% (n/N = 23/11 p < .0001), similar to LA cells. NA increased ICaL in most PV cardiomyocytes (median × 2.2-increase, p < .0001, n/N = 32/14, Wilcoxon-signed-rank test), although in 7/32 PV cells ICaL was decreased following NA. PV cardiomyocytes differ from LA cells and respond heterogeneously to NA.
Collapse
Affiliation(s)
- Richard C. Bond
- Cardiovascular Research LaboratoriesSchool of PhysiologyBiomedical Sciences BuildingUniversity of BristolBristolUK
| | - Stéphanie C. Choisy
- Cardiovascular Research LaboratoriesSchool of PhysiologyBiomedical Sciences BuildingUniversity of BristolBristolUK
| | - Simon M. Bryant
- Cardiovascular Research LaboratoriesSchool of PhysiologyBiomedical Sciences BuildingUniversity of BristolBristolUK
| | - Jules C. Hancox
- Cardiovascular Research LaboratoriesSchool of PhysiologyBiomedical Sciences BuildingUniversity of BristolBristolUK
| | - Andrew F. James
- Cardiovascular Research LaboratoriesSchool of PhysiologyBiomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
17
|
Takagi D, Okamoto Y, Ohba T, Yamamoto H, Ono K. Comparative study of hyperpolarization-activated currents in pulmonary vein cardiomyocytes isolated from rat, guinea pig, and rabbit. J Physiol Sci 2020; 70:6. [PMID: 32046630 PMCID: PMC7012960 DOI: 10.1186/s12576-020-00736-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023]
Abstract
Pulmonary vein (PV) cardiomyocytes have the potential to generate spontaneous activity, in contrast to working myocytes of atria. Different electrophysiological properties underlie the potential automaticity of PV cardiomyocytes, one being the hyperpolarization-activated inward current (Ih), which facilitates the slow diastolic depolarization. In the present study, we examined pharmacological characteristics of the Ih of PV cardiomyocytes in rat, guinea pig and rabbit. The results showed that guinea pig and rat PV cardiomyocytes possessed sizeable amplitudes of the Ih, and the Ih of guinea pig was suppressed by Cs+, a blocker of the hyperpolarization-activated cation current. However, the Ih of rat was not suppressed by Cs+, but by Cd2+, a blocker of the Cl- current. The current density of the Ih of rabbit PV cardiomyocytes was significantly smaller than those of other species. This suggests that the ion channels that carry the Ih of PV cardiomyocytes differ among the animal species.
Collapse
Affiliation(s)
- Daichi Takagi
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita, 010-8543, Japan
| | - Yosuke Okamoto
- Department of Cell Physiology, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita, 010-8543, Japan
| | - Takayoshi Ohba
- Department of Cell Physiology, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita, 010-8543, Japan
| | - Hiroshi Yamamoto
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita, 010-8543, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita, 010-8543, Japan.
| |
Collapse
|
18
|
Kyo M, Hosokawa K, Ohshimo S, Kida Y, Tanabe Y, Ota K, Shime N. High serum potassium level is associated with successful electrical cardioversion for new-onset atrial fibrillation in the intensive care unit: A retrospective observational study. Anaesth Intensive Care 2019; 47:52-59. [PMID: 30864476 DOI: 10.1177/0310057x18811815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrical cardioversion (ECV) is a potentially life-saving treatment for haemodynamically unstable new-onset atrial fibrillation (AF); however, its efficacy is unsatisfactory. We aimed to elucidate the factors associated with successful ECV and prognosis in patients with AF. This retrospective observational study was conducted in two mixed intensive care units (ICUs) in a university hospital. Patients with new-onset AF who received ECV in the ICU were enrolled. We defined an ECV session as consecutive shocks within 15 minutes. The success of ECV was evaluated five minutes after the session. We analysed the factors associated with successful ECV and ICU mortality. Eighty-five AF patients who received ECV were included. ECV was successful in 41 (48%) patients, and 11 patients (13%) maintained sinus rhythm until ICU discharge. A serum potassium level ≥3.8 mol/L was independently associated with successful ECV in multivariate analysis (odds ratio (OR), 3.13; 95% confidence interval (CI), 1.07-9.11; p = 0.04). Maintenance of sinus rhythm until ICU discharge was significantly associated with ICU survival (OR 9.35; 95% CI 1.02-85.78, p = 0.048). ECV was successful in 48% of patients with new-onset AF developed in the ICU. A serum potassium level ≥3.8 mol/L was independently associated with successful ECV, and sinus rhythm maintained until ICU discharge was independently associated with ICU survival. These results suggested that maintaining a high serum potassium level may be important when considering the effectiveness of ECV for AF in the ICU.
Collapse
Affiliation(s)
- Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Koji Hosokawa
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshiko Kida
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuko Tanabe
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
19
|
Yao C, Veleva T, Scott L, Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Abu-Taha I, Ghezelbash S, Reynolds CL, Shen YH, LeMaire SA, Schmitz W, Müller FU, El-Armouche A, Eissa NT, Beeton C, Nattel S, Wehrens XH, Dobrev D, Li N. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018; 138:2227-2242. [PMID: 29802206 PMCID: PMC6252285 DOI: 10.1161/circulationaha.118.035202] [Citation(s) in RCA: 453] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The NLRP3 (NACHT, LRR, and PYD domain containing protein 3) inflammasome mediates caspase-1 activation and interleukin-1β release in immune cells but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3 inflammasome in AF. METHODS NLRP3 inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal AF or long-standing persistent (chronic) AF. To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knockin mouse model expressing constitutively active NLRP3 (CM-KI) was established. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electric activation pattern, Ca2+ spark frequency, atrial effective refractory period, and morphology of atria were evaluated in CM-KI mice and wild-type littermates. RESULTS NLRP3 inflammasome activity was increased in the atrial CMs of patients with paroxysmal AF and chronic AF. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which was attenuated by a specific NLRP3 inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic reticulum Ca2+ release, atrial effective refractory period shortening, and atrial hypertrophy. Adeno-associated virus subtype-9-mediated CM-specific knockdown of Nlrp3 suppressed AF development in CM-KI mice. Finally, genetic inhibition of Nlrp3 prevented AF development in CREM transgenic mice, a well-characterized mouse model of spontaneous AF. CONCLUSIONS Our study establishes a novel pathophysiological role for CM NLRP3 inflammasome signaling, with a mechanistic link to the pathogenesis of AF, and establishes the inhibition of NLRP3 as a potential novel AF therapy approach.
Collapse
Affiliation(s)
- Chunxia Yao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan, Hebei Province, China
| | - Tina Veleva
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larry Scott
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Shuyi Cao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Gong Chen
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Prince Jeyabal
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Xiaolu Pan
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Katherina M. Alsina
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Corey L. Reynolds
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, TX, USA
| | - Ying H. Shen
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Scott A. LeMaire
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Wilhelm Schmitz
- Department of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U. Müller
- Department of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - N. Tony Eissa
- Department of Medicine (Pulmonary), Baylor College of Medicine, Houston, TX, USA
| | - Christine Beeton
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Na Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Juhász V, Hornyik T, Benák A, Nagy N, Husti Z, Pap R, Sághy L, Virág L, Varró A, Baczkó I. Comparison of the effects of I K,ACh, I Kr, and I Na block in conscious dogs with atrial fibrillation and on action potentials in remodeled atrial trabeculae. Can J Physiol Pharmacol 2017; 96:18-25. [PMID: 28892643 DOI: 10.1139/cjpp-2017-0342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of morbidity and mortality. Traditional antiarrhythmic agents used for restoration of sinus rhythm have limited efficacy in long-term AF and they may possess ventricular proarrhythmic adverse effects, especially in patients with structural heart disease. The acetylcholine receptor-activated potassium channel (IK,ACh) represents an atrial selective target for future AF management. We investigated the effects of the IK,ACh blocker tertiapin-Q (TQ), a derivative of the honeybee toxin tertiapin, on chronic atrial tachypacing-induced AF in conscious dogs, without the influence of anesthetics that modulate a number of cardiac ion channels. Action potentials (APs) were recorded from right atrial trabeculae isolated from dogs with AF. TQ significantly and dose-dependently reduced AF incidence and AF episode duration, prolonged atrial effective refractory period, and prolonged AP duration. The reference drugs propafenone and dofetilide, both used in the clinical management of AF, exerted similar effects against AF in vivo. Dofetilide prolonged atrial AP duration, whereas propafenone increased atrial conduction time. TQ and propafenone did not affect the QT interval, whereas dofetilide prolonged the QT interval. Our results show that inhibition of IK,ACh may represent a novel, atrial-specific target for the management of AF in chronic AF.
Collapse
Affiliation(s)
- Viktor Juhász
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Benák
- b 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- c MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Husti
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Róbert Pap
- b 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Sághy
- b 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Virág
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Varró
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,c MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Baczkó
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Letsas KP, Georgopoulos S, Efremidis M, Liu T, Bazoukis G, Vlachos K, Karamichalakis N, Lioni L, Sideris A, Ehrlich JR. Adenosine-guided radiofrequency catheter ablation of atrial fibrillation: A meta-analysis of randomized control trials. J Arrhythm 2017; 33:247-255. [PMID: 28765753 PMCID: PMC5529608 DOI: 10.1016/j.joa.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/16/2017] [Accepted: 02/19/2017] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The prognostic significance of adenosine-mediated dormant pulmonary vein conduction, and whether such dormant conduction should be eliminated, remains controversial. We sought to perform a meta-analysis of data from eligible studies to delineate the prognostic impact of adenosine-guided radiofrequency catheter ablation of atrial fibrillation. METHODS A systematic literature search was performed using online databases in order to identify relevant studies from January 2004 to September 2016. Ten studies [six observational and four randomized control trials (RCTs)] were included in the analysis. RESULTS Five studies (two observational and three RCTs) compared the efficacy of adenosine-mediated elimination of dormant conduction versus no adenosine test. Overall, the adenosine-guided ablation strategy displayed better long-term outcomes as compared with no adenosine testing (RR 1.08, 95% CI 1.01-1.14, p=0.02; Heterogeneity: I2=42%, p: 0.14). The meta-analysis of only RCTs failed to show any differences between the two strategies (RR 1.03, 95% CI 0.96-1.11, p=0.37; Heterogeneity: I2 0%, p: 0.41). Eight studies (five observational and three RCTs) addressed the efficacy of adenosine-induced dormant conduction and additional ablation versus no dormant conduction during adenosine challenge. Overall, a trend towards a better outcome in those without dormant conduction during drug challenge was noted (RR 0.89, 95% CI 0.77-1.03, p=0.11; Heterogeneity: I2 65% p: 0.006). The pooled analysis of RCTs failed to show any differences between the two arms (RR 0.90, 95% CI 0.62-1.30, p= 0.57; Heterogeneity: I2 88%, p: 0.0002). CONCLUSIONS Adenosine-guided radiofrequency catheter ablation of atrial fibrillation does not provide additional benefit in terms of freedom of arrhythmia recurrence.
Collapse
Affiliation(s)
- Konstantinos P. Letsas
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | - Stamatis Georgopoulos
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | - Michael Efremidis
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, People׳s Republic of China
| | - George Bazoukis
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | - Konstantinos Vlachos
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | | | - Louiza Lioni
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | - Antonios Sideris
- Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Greece
| | | |
Collapse
|
23
|
Alexander B, Sadiq F, Azimi K, Glover B, Antiperovitch P, Hopman WM, Jaff Z, Baranchuk A. Reverse atrial electrical remodeling induced by cardiac resynchronization therapy. J Electrocardiol 2017; 50:610-614. [PMID: 28515003 DOI: 10.1016/j.jelectrocard.2017.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE Cardiac resynchronization therapy (CRT) has been shown to improve left atrial function; however the effect on reverse electrical remodeling has been poorly evaluated. We hypothesized that CRT might induce reverse atrial electrical remodeling manifesting in the surface ECG as a shortening in P-wave duration. METHODS Patients with CRT and more than 92% biventricular pacing at minimum follow-up of 1 year were included in the analysis. Those with prior history of atrial fibrillation (AF) were excluded. Data were recorded for clinical, echocardiographic and ECG variables prior to implant and at least 12 months post implantation. Semiautomatic calipers and scanned ECGs at 300 DPI maximized × 8 were used to measure P-wave duration and diagnose advanced interatrial block (aIAB) during sinus rhythm. The occurrence of AF was assessed through analyses of intracardiac electrograms and clinical presentations. RESULTS 41 patients were included in the study with mean age of 67.4 ±9.6 years, 71% were male, left atrial diameter 41.1 ± 8.5 mm and LV EF 28.5 ± 6.5%. Over a mean follow up of 55 months, a significant reduction in P-wave duration (142.7 ms vs. 133.1 ms; p < 0.001) was noted. The presence of aIAB was significantly reduced (36% vs. 17%; p = 0.03). The incidence of new onset AF was 36%. Time to AF onset after CRT implantation was not influenced by a reduction in P-wave duration. CONCLUSION CRT induces atrial reverse electrical remodeling manifested as a reduction in P-wave duration. Larger studies are needed to determine the impact on AF incidence after CRT implantation.
Collapse
Affiliation(s)
- Bryce Alexander
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Fariha Sadiq
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Kousha Azimi
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Benedict Glover
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | | | - Wilma M Hopman
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Zardasht Jaff
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
24
|
Majumder R, Jangsangthong W, Feola I, Ypey DL, Pijnappels DA, Panfilov AV. A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current. PLoS Comput Biol 2016; 12:e1004946. [PMID: 27332890 PMCID: PMC4917258 DOI: 10.1371/journal.pcbi.1004946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities. A fundamentally important element in cardiac in silico research is a model for the cardiac cell. It provides a link between measurable characteristics at the subcellular level and biological processes at the whole cell level, thereby allowing the researcher to study mechanisms of cardiac arrhythmias from a molecular cell biological perspective. Such studies are of vast importance for the advancement of understanding of living systems from cells to patient populations. This paper is a joint in silico-experimental study in which we propose the first model for the action potential of an NRAM. To develop this model, we fitted patch-clamp data from recent literature, while additionally performing specific measurements of IKACh-c in NRAMs. IKACh-c is an important factor in atrial arrhythmogenesis and a promising target for pharmacological AF-management. The model reproduces in vitro results such as standard characteristics of AP morphology, restitution, and spiral wave dynamics in monolayers, with effects of a subsequent drug-intervention and in the presence of localized myofibroblast heterogeneities. Thus it can be used as a tool to provide computational support to a variety of systematic experimental studies that investigate the mechanisms underlying atrial fibrillation (AF) in NRAM cultures.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Wanchana Jangsangthong
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk L. Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniël A. Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
- Moscow Institute of Physics and Technology, (State University), Dolgoprudny, Moscow Region, Russia
- * E-mail:
| |
Collapse
|
25
|
Abstract
Heart disease produces substantial remodeling of K(+) channels that in general promotes arrhythmia occurrence. In the case of ventricular arrhythmias, K(+) channel remodeling contributes to the arrhythmic risk and increases vulnerability to torsades de pointes with K(+) channel inhibiting drugs. Atrial K(+) channel remodeling caused by atrial fibrillation promotes arrhythmia stability and presents opportunities for the development of new drugs targeting atrial inward rectifier K(+) currents. A better understanding of K(+) channel remodeling will help clinicians to appreciate arrhythmia mechanisms and determinants in a variety of clinical situations and to better manage arrhythmia therapy in patients with heart disease.
Collapse
Affiliation(s)
- Vincent Algalarrondo
- Department of Medicine, Research Center, Montreal Heart Institute, University of Montreal, 5000 Belanger Street East, Montreal, Quebec H1T 1C8, Canada; Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada; Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Stanley Nattel
- Department of Medicine, Research Center, Montreal Heart Institute, University of Montreal, 5000 Belanger Street East, Montreal, Quebec H1T 1C8, Canada; Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada; Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany.
| |
Collapse
|
26
|
Abstract
Atrial fibrillation (AF) is associated with increased morbidity and mortality. Atrial-selective potassium (K(+)) channel blockers may represent a novel therapeutic target. The best validated atrial-specific ion currents are the acetylcholine-activated inward-rectifier K(+) current IK,ACh and ultrarapidly activating delayed-rectifier K(+) current IKur. Two-pore domain and small-conductance Ca(2+)-activated K(+) channels and Kv1.1 channels may also contribute to the atrial repolarization. We review the molecular and electrophysiologic characteristics of atrial-selective K(+) channels and their potential pathophysiologic role in AF. We summarize currently available K(+) channel blockers focusing on the most important compounds.
Collapse
Affiliation(s)
- Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany.
| |
Collapse
|
27
|
Qin M, Liu X, Liu T, Wang T, Huang C. Potential Role of Regulator of G-Protein Signaling 5 in the Protection of Vagal-Related Bradycardia and Atrial Tachyarrhythmia. J Am Heart Assoc 2016; 5:e002783. [PMID: 26961238 PMCID: PMC4943254 DOI: 10.1161/jaha.115.002783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background The regulator of G‐protein signaling 5 (Rgs5), which functions as the regulator of G‐protein‐coupled receptor (GPCR) including muscarinic receptors, has a potential effect on atrial muscarinic receptor‐activated IKAch current. Methods and Results In the present study, hearts of Rgs5 knockout (KO) mice had decreased low‐frequency/high‐frequency ratio in spectral measures of heart rate variability. Loss of Rgs5 provoked dramatically exaggerated bradycardia and significantly (P<0.05) prolonged sinus nodal recovery time in response to carbachol (0.1 mg/kg, intraperitoneally). Compared to those from wild‐type (WT) mice, Langendorff perfused hearts from Rgs5 KO mice had significantly (P<0.01) abbreviated atrial effective refractory periods and increased dominant frequency after administration of acetylcholine (ACh; 1 μmol/L). In addition, whole patch clamp analyses of single atrial myocytes revealed that the ACh‐regulated potassium current (IKAch) was significant increased in the time course of activation and deactivation (P<0.01) in Rgs5 KO, compared to those in WT, mice. To further determine the effect of Rgs5, transgenic mice with cardiac‐specific overexpression of human Rgs5 were found to be resistant to ACh‐related effects in bradycardia, atrial electrophysiology, and atrial tachyarrhythmia (AT). Conclusion The results of this study indicate that, as a critical regulator of parasympathetic activation in the heart, Rgs5 prevents vagal‐related bradycardia and AT through negatively regulating the IKAch current.
Collapse
Affiliation(s)
- Mu Qin
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Tao Liu
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Teng Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Congxin Huang
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol 2016; 5:649-65. [PMID: 25880508 DOI: 10.1002/cphy.c140047] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting 1% to 2% of the general population. It is characterized by rapid and disorganized atrial activation leading to impaired atrial function, which can be diagnosed on an EKG by lack of a P-wave and irregular QRS complexes. AF is associated with increased morbidity and mortality and is a risk factor for embolic stroke and worsening heart failure. Current research on AF support and explore the hypothesis that initiation and maintenance of AF require pathophysiological remodeling of the atria, either specifically as in lone AF or secondary to other heart disease as in heart failure-associated AF. Remodeling in AF can be grouped into three categories that include: (i) electrical remodeling, which includes modulation of L-type Ca(2+) current, various K(+) currents and gap junction function; (ii) structural remodeling, which includes changes in tissues properties, size, and ultrastructure; and (iii) autonomic remodeling, including altered sympathovagal activity and hyperinnervation. Electrical, structural, and autonomic remodeling all contribute to creating an AF-prone substrate which is able to produce AF-associated electrical phenomena including a rapidly firing focus, complex multiple reentrant circuit or rotors. Although various remodeling events occur in AF, current AF therapies focus on ventricular rate and rhythm control strategies using pharmacotherapy and surgical interventions. Recent progress in the field has started to focus on the underlying substrate that drives and maintains AF (termed upstream therapies); however, much work is needed in this area. Here, we review current knowledge of AF mechanisms, therapies, and new areas of investigation.
Collapse
Affiliation(s)
- Jason Pellman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
29
|
|
30
|
Bingen BO, Askar SFA, Neshati Z, Feola I, Panfilov AV, de Vries AAF, Pijnappels DA. Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation. Sci Rep 2015; 5:15187. [PMID: 26487066 PMCID: PMC4613729 DOI: 10.1038/srep15187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022] Open
Abstract
Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10–20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (IK,ACh → IK,ACh-c), which is associated with ECV failure. This study investigated the role of IK,ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25–100 V to determine aDFT. Blocking IK,ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate IK,ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by IK,ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after IK,ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies IK,ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness.
Collapse
Affiliation(s)
- Brian O Bingen
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saïd F A Askar
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Zeinab Neshati
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
31
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Attenuation of acetylcholine activated potassium current (I KACh) by simvastatin, not pravastatin in mouse atrial cardiomyocyte: possible atrial fibrillation preventing effects of statin. PLoS One 2014; 9:e106570. [PMID: 25329899 PMCID: PMC4199526 DOI: 10.1371/journal.pone.0106570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/30/2014] [Indexed: 01/20/2023] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, are associated with the prevention of atrial fibrillation (AF) by pleiotropic effects. Recent clinical trial studies have demonstrated conflicting results on anti-arrhythmia between lipophilic and hydrophilic statins. However, the underlying mechanisms responsible for anti-arrhythmogenic effects of statins are largely unexplored. In this study, we evaluated the different roles of lipophilic and hydrophilic statins (simvastatin and pravastatin, respectively) in acetylcholine (100 µM)-activated K+ current (IKACh, recorded by nystatin-perforated whole cell patch clamp technique) which are important for AF initiation and maintenance in mouse atrial cardiomyocytes. Our results showed that simvastatin (1–10 µM) inhibited both peak and quasi-steady-state IKACh in a dose-dependent manner. In contrast, pravastatin (10 µM) had no effect on IKACh. Supplementation of substrates for the synthesis of cholesterol (mevalonate, geranylgeranyl pyrophosphate or farnesyl pyrophosphate) did not reverse the effect of simvastatin on IKACh, suggesting a cholesterol-independent effect on IKACh. Furthermore, supplementation of phosphatidylinositol 4,5-bisphosphate, extracellular perfusion of phospholipase C inhibitor or a protein kinase C (PKC) inhibitor had no effect on the inhibitory activity of simvastatin on IKACh. Simvastatin also inhibits adenosine activated IKACh, however, simvastatin does not inhibit IKACh after activated by intracellular loading of GTP gamma S. Importantly, shortening of the action potential duration by acetylcholine was restored by simvastatin but not by pravastatin. Together, these findings demonstrate that lipophilic statins but not hydrophilic statins attenuate IKACh in atrial cardiomyocytes via a mechanism that is independent of cholesterol synthesis or PKC pathway, but may be via the blockade of acetylcholine binding site. Our results may provide important background information for the use of statins in patients with AF.
Collapse
|
33
|
Walfridsson H, Anfinsen OG, Berggren A, Frison L, Jensen S, Linhardt G, Nordkam AC, Sundqvist M, Carlsson L. Is the acetylcholine-regulated inwardly rectifying potassium current a viable antiarrhythmic target? Translational discrepancies of AZD2927 and A7071 in dogs and humans. Europace 2014; 17:473-82. [PMID: 25082948 DOI: 10.1093/europace/euu192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS We aimed at examining the acetylcholine-dependent inward-rectifier current (IKAch) as a target for the management of atrial fibrillation (AF). METHODS AND RESULTS The investigative agents AZD2927 and A7071 concentration-dependently blocked IKACh in vitro with minimal off-target activity. In anaesthetized dogs (n = 17) subjected to 8 weeks of rapid atrial pacing (RAP), the left atrial effective refractory period (LAERP) was maximally increased by 50 ± 7.4 and 50 ± 4.8 ms following infusion of AZD2927 and A7071. Ventricular refractoriness and the QT interval were unaltered. During sustained AF, both drugs significantly reduced AF frequency and effectively restored sinus rhythm. AZD2927 successfully restored sinus rhythm at 10/10 conversion attempts and A7071 at 14/14 attempts, whereas saline converted 4/17 episodes only (P<0.001 vs. AZD2927 and A7071). In atrial flutter patients (n = 18) undergoing an invasive investigation, AZD2927 did not change LAERP, the paced QT interval, or ventricular refractoriness when compared with placebo. To address the discrepancy on LAERP by IKACh blockade in man and dog and the hypothesis that atrial electrical remodelling is a prerequisite for IKACh blockade being efficient, six dogs were studied after 8 weeks of RAP followed by sinus rhythm for 4 weeks to reverse electrical remodelling. In these dogs, both AZD2927 and A7071 were as effective in increasing LAERP as in the dogs studied immediately after the 8-week RAP period. CONCLUSION Based on the present series of experiments, an important role of IKACh in human atrial electrophysiology, as well as its potential as a viable target for effective management of AF, may be questioned.
Collapse
Affiliation(s)
| | | | - Anders Berggren
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Lars Frison
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Steen Jensen
- Department of Cardiology, University Hospital, Umeå, Sweden
| | - Gunilla Linhardt
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Ann-Christin Nordkam
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Monika Sundqvist
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Leif Carlsson
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| |
Collapse
|
34
|
Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 2014; 114:1483-99. [PMID: 24763466 DOI: 10.1161/circresaha.114.302226] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common clinically relevant arrhythmia and is associated with increased morbidity and mortality. The incidence of AF is expected to continue to rise with the aging of the population. AF is generally considered to be a progressive condition, occurring first in a paroxysmal form, then in persistent, and then long-standing persistent (chronic or permanent) forms. However, not all patients go through every phase, and the time spent in each can vary widely. Research over the past decades has identified a multitude of pathophysiological processes contributing to the initiation, maintenance, and progression of AF. However, many aspects of AF pathophysiology remain incompletely understood. In this review, we discuss the cellular and molecular electrophysiology of AF initiation, maintenance, and progression, predominantly based on recent data obtained in human tissue and animal models. The central role of Ca(2+)-handling abnormalities in both focal ectopic activity and AF substrate progression is discussed, along with the underlying molecular basis. We also deal with the ionic determinants that govern AF initiation and maintenance, as well as the structural remodeling that stabilizes AF-maintaining re-entrant mechanisms and finally makes the arrhythmia refractory to therapy. In addition, we highlight important gaps in our current understanding, particularly with respect to the translation of these concepts to the clinical setting. Ultimately, a comprehensive understanding of AF pathophysiology is expected to foster the development of improved pharmacological and nonpharmacological therapeutic approaches and to greatly improve clinical management.
Collapse
Affiliation(s)
- Jordi Heijman
- From the Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (J.H., N.V., D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (S.N.); and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (S.N.)
| | | | | | | |
Collapse
|
35
|
Kienitz MC, Mintert-Jancke E, Hertel F, Pott L. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes. Cell Signal 2014; 26:1182-92. [PMID: 24576551 DOI: 10.1016/j.cellsig.2014.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 12/23/2022]
Abstract
Opening of G-protein-activated inward-rectifying K(+) (GIRK, Kir3) channels is regulated by interaction with βγ-subunits of Pertussis-toxin-sensitive G proteins upon activation of appropriate GPCRs. In atrial and neuronal cells agonist-independent activity (I(basal)) contributes to the background K(+) conductance, important for stabilizing resting potential. Data obtained from the Kir3 signaling pathway reconstituted in Xenopus oocytes suggest that I(basal) requires free G(βγ). In cells with intrinsic expression of Kir3 channels this issue has been scarcely addressed experimentally. Two G(βγ)-binding proteins (myristoylated phosducin - mPhos - and G(αi1)) were expressed in atrial myocytes using adenoviral gene transfer, to interrupt G(βγ)-signaling. Agonist-induced and basal currents were recorded using whole cell voltage-clamp. Expression of mPhos and G(αi1) reduced activation of Kir3 current via muscarinic M(2) receptors (IK(ACh)). Inhibition of IK(ACh) by mPhos consisted of an irreversible component and an agonist-dependent reversible component. Reduction in density of IK(ACh) by overexpressed Gαi1, in contrast to mPhos, was paralleled by substantial slowing of activation, suggesting a reduction in density of functional M2 receptors, rather than G(βγ)-scavenging as underlying mechanism. In line with this notion, current density and activation kinetics were rescued by fusing the αi1-subunit to an Adenosine A(1) receptor. Neither mPhos nor G(αi1) had a significant effect on I(basal), defined by the inhibitory peptide tertiapin-Q. These data demonstrate that basal Kir3 current in a native environment is unrelated to G-protein signaling or agonist-independent free G(βγ). Moreover, our results illustrate the importance of physiological expression levels of the signaling components in shaping key parameters of the response to an agonist.
Collapse
Affiliation(s)
| | | | - Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
36
|
Constitutive Activity of the Acetylcholine-Activated Potassium Current IK,ACh in Cardiomyocytes. ADVANCES IN PHARMACOLOGY 2014; 70:393-409. [DOI: 10.1016/b978-0-12-417197-8.00013-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Kumar N, Pison L, Meir T, Crijns H, Maessen J. Testing Of Box Lesion By Adenosine. J Atr Fibrillation 2013; 6:988. [PMID: 28496920 DOI: 10.4022/jafib.988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Taku Meir
- Department of cardiac surgery,Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht
| | | | - Jos Maessen
- Department of cardiac surgery,Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht
| |
Collapse
|
38
|
Pathological impact of hyperpolarization-activated chloride current peculiar to rat pulmonary vein cardiomyocytes. J Mol Cell Cardiol 2013; 66:53-62. [PMID: 24239603 DOI: 10.1016/j.yjmcc.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023]
Abstract
Pulmonary veins (PVs) are believed to be a crucial origin of atrial fibrillation. We recently reported that rat PV cardiomyocytes exhibit arrhythmogenic automaticity in response to norepinephrine. Herein, we further characterized the electrophysiological properties underlying the potential arrhythmogenicity of PV cardiomyocytes. Patch clamping studies revealed a time dependent hyperpolarization-activated inward current in rat PV cardiomyocytes, but not in left atrial (LA) myocytes. The current was Cs(+) resistant, and was not affected by removal of external Na(+) or K(+). The current was inhibited with Cd(2+), and the reversal potential was sensitive to changes in [Cl(-)] on either side of the membrane in a manner consistent with a Cl(-) selective channel. Cl(-) channel blockers attenuated the current, and slowed or completely inhibited the norepinephrine-induced automaticity. The biophysical properties of the hyperpolarization-activated Cl(-) current in rat PVs were different from those of ClC-2 currents previously reported: (i) the voltage-dependent activation of the Cl(-) current in rat PVs was shifted to negative potentials as [Cl(-)]i increased, (ii) the Cl(-) current was enhanced by extracellular acidification, and (iii) extracellular hyper-osmotic stress increased the current, whereas hypo-osmotic cell swelling suppressed the current. qPCR analysis revealed negligible ClC-2 mRNA expression in the rat PV. These findings suggest that rat PV cardiomyocytes possess a peculiar voltage-dependent Cl(-) channel, and that the channel may play a functional role in norepinephrine-induced automaticity.
Collapse
|
39
|
Bingen BO, Neshati Z, Askar SFA, Kazbanov IV, Ypey DL, Panfilov AV, Schalij MJ, de Vries AAF, Pijnappels DA. Atrium-specific Kir3.x determines inducibility, dynamics, and termination of fibrillation by regulating restitution-driven alternans. Circulation 2013; 128:2732-44. [PMID: 24065610 DOI: 10.1161/circulationaha.113.005019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atrial fibrillation is the most common cardiac arrhythmia. Ventricular proarrhythmia hinders pharmacological atrial fibrillation treatment. Modulation of atrium-specific Kir3.x channels, which generate a constitutively active current (I(K,ACh-c)) after atrial remodeling, might circumvent this problem. However, it is unknown whether and how I(K,ACh-c) contributes to atrial fibrillation induction, dynamics, and termination. Therefore, we investigated the effects of I(K,ACh-c) blockade and Kir3.x downregulation on atrial fibrillation. METHODS AND RESULTS Neonatal rat atrial cardiomyocyte cultures and intact atria were burst paced to induce reentry. To study the effects of Kir3.x on action potential characteristics and propagation patterns, cultures were treated with tertiapin or transduced with lentiviral vectors encoding Kcnj3- or Kcnj5-specific shRNAs. Kir3.1 and Kir3.4 were expressed in atrial but not in ventricular cardiomyocyte cultures. Tertiapin prolonged action potential duration (APD; 54.7±24.0 to 128.8±16.9 milliseconds; P<0.0001) in atrial cultures during reentry, indicating the presence of I(K,ACh-c). Furthermore, tertiapin decreased rotor frequency (14.4±7.4 to 6.6±2.0 Hz; P<0.05) and complexity (6.6±7.7 to 0.6±0.8 phase singularities; P<0.0001). Knockdown of Kcnj3 or Kcnj5 gave similar results. Blockade of I(K,ACh-c) prevented/terminated reentry by prolonging APD and changing APD and conduction velocity restitution slopes, thereby altering the probability of APD alternans and rotor destabilization. Whole-heart mapping experiments confirmed key findings (e.g., >50% reduction in atrial fibrillation inducibility after I(K,ACh-c) blockade). CONCLUSIONS Atrium-specific Kir3.x controls the induction, dynamics, and termination of fibrillation by modulating APD and APD/conduction velocity restitution slopes in atrial tissue with I(K,ACh-c). This study provides new molecular and mechanistic insights into atrial tachyarrhythmias and identifies Kir3.x as a promising atrium-specific target for antiarrhythmic strategies.
Collapse
Affiliation(s)
- Brian O Bingen
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (B.O.B., Z.N., S.F.A.A., D.L.Y., M.J.S., A.A.V.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Ghent, Belgium (I.V.K., A.V.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kapur S, Macrae CA. The developmental basis of adult arrhythmia: atrial fibrillation as a paradigm. Front Physiol 2013; 4:221. [PMID: 24062689 PMCID: PMC3771314 DOI: 10.3389/fphys.2013.00221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
Normal cardiac rhythm is one of the most fundamental physiologic phenomena, emerging early in the establishment of the vertebrate body plan. The developmental pathways underlying the patterning and maintenance of stable cardiac electrophysiology must be extremely robust, but are only now beginning to be unraveled. The step-wise emergence of automaticity, AV delay and sequential conduction are each tightly regulated and perturbations of these patterning events is now known to play an integral role in pediatric and adult cardiac arrhythmias. Electrophysiologic patterning within individual cardiac chambers is subject to exquisite control and is influenced by early physiology superimposed on the underlying gene networks that regulate cardiogenesis. As additional cell populations migrate to the developing heart these too bring further complexity to the organ, as it adapts to the dynamic requirements of a growing organism. A comprehensive understanding of the developmental basis of normal rhythm will inform not only the mechanisms of inherited arrhythmias, but also the differential regional propensities of the adult heart to acquired arrhythmias. In this review we use atrial fibrillation as a generalizable example where the various factors are perhaps best understood.
Collapse
Affiliation(s)
- Sunil Kapur
- Medicine, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
41
|
Calloe K, Goodrow R, Olesen SP, Antzelevitch C, Cordeiro JM. Tissue-specific effects of acetylcholine in the canine heart. Am J Physiol Heart Circ Physiol 2013; 305:H66-75. [PMID: 23645460 DOI: 10.1152/ajpheart.00029.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current [ACh-dependent K⁺ current (IK,ACh)]. The effect of ACh in the ventricle is still debated. We compared the effect of ACh on action potentials in canine atria, Purkinje, and ventricular tissue as well as on ionic currents in isolated cells. Action potentials were recorded from ventricular slices, Purkinje fibers, and arterially perfused atrial preparations. Whole cell currents were recorded under voltage-clamp conditions, and unloaded cell shortening was determined on isolated cells. The effect of ACh (1-10 μM) as well as ACh plus tertiapin, an IK,ACh-specific toxin, was tested. In atrial tissue, ACh hyperpolarized the membrane potential and shortened the action potential duration (APD). In Purkinje and ventricular tissues, no significant effect of ACh was observed. Addition of ACh to atrial cells activated a large inward rectifying current (from -3.5 ± 0.7 to -23.7 ± 4.7 pA/pF) that was abolished by tertiapin. This current was not observed in other cell types. A small inhibition of Ca²⁺ current (ICa) was observed in the atria, endocardium, and epicardium after ACh. ICa inhibition increased at faster pacing rates. At a basic cycle length of 400 ms, ACh (1 μM) reduced ICa to 68% of control. In conclusion, IK,ACh is highly expressed in atria and is negligible/absent in Purkinje, endocardial, and epicardial cells. In all cardiac tissues, ACh caused rate-dependent inhibition of ICa.
Collapse
Affiliation(s)
- Kirstine Calloe
- Department of Veterinary Clinical and Animal Science, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Ion channels and transporters are expressed in every living cell, where they participate in controlling a plethora of biological processes and physiological functions, such as excitation of cells in response to stimulation, electrical activities of cells, excitation-contraction coupling, cellular osmolarity, and even cell growth and death. Alterations of ion channels/transporters can have profound impacts on the cellular physiology associated with these proteins. Expression of ion channels/transporters is tightly regulated and expression deregulation can trigger abnormal processes, leading to pathogenesis, the channelopathies. While transcription factors play a critical role in controlling the transcriptome of ion channels/transporters at the transcriptional level by acting on the 5'-flanking region of the genes, microribonucleic acids (miRNAs), a newly discovered class of regulators in the gene network, are also crucial for expression regulation at the posttranscriptional level through binding to the 3'untranslated region of the genes. These small noncoding RNAs fine tune expression of genes involved in a wide variety of cellular processes. Recent studies revealed the role of miRNAs in regulating expression of ion channels/transporters and the associated physiological functions. miRNAs can target ion channel genes to alter cardiac excitability (conduction, repolarization, and automaticity) and affect arrhythmogenic potential of heart. They can modulate circadian rhythm, pain threshold, neuroadaptation to alcohol, brain edema, etc., through targeting ion channel genes in the neuronal systems. miRNAs can also control cell growth and tumorigenesis by acting on the relevant ion channel genes. Future studies are expected to rapidly increase to unravel a new repertoire of ion channels/transporters for miRNA regulation.
Collapse
Affiliation(s)
- Zhiguo Wang
- Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
43
|
McBride BF. The Emerging Role of Antiarrhythmic Compounds With Atrial Selectivity in the Management of Atrial Fibrillation. J Clin Pharmacol 2013; 49:258-67. [DOI: 10.1177/0091270008325151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Atrial remodeling: New pathophysiological mechanism of atrial fibrillation. Med Hypotheses 2013; 80:53-6. [DOI: 10.1016/j.mehy.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022]
|
45
|
Aslanidi OV, Butters TD, Ren CX, Ryecroft G, Zhang H. Electrophysiological models for the heterogeneous canine atria: computational platform for studying rapid atrial arrhythmias. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1693-6. [PMID: 22254651 DOI: 10.1109/iembs.2011.6090486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heterogeneity in the electrical action potential (AP) properties can provide a substrate for atrial arrhythmias, especially at rapid pacing rates. In order to quantify such substrates, we develop a family of detailed AP models for canine atrial cells. An existing model for the canine right atrial (RA) myocyte was modified based on electrophysiological data from dog to create new models for the canine left atrium (LA), the interatrial Bachmann's bundle (BB), and the pulmonary vein (PV). The heterogeneous AP models were incorporated into a tissue strand model to simulate the AP propagation, and used to quantify conditions for conduction abnormalities (primarily, conduction block at rapid pacing rated) in the canine atria.
Collapse
Affiliation(s)
- Oleg V Aslanidi
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.
| | | | | | | | | |
Collapse
|
46
|
Verkerk AO, Geuzebroek GSC, Veldkamp MW, Wilders R. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes. Front Physiol 2012; 3:174. [PMID: 22754533 PMCID: PMC3385584 DOI: 10.3389/fphys.2012.00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/12/2012] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1-1000 nM, while a clear-cut frequency dependence in the range of 1-4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | | | |
Collapse
|
47
|
Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J 2012; 33:1870-7. [PMID: 22507975 DOI: 10.1093/eurheartj/ehs079] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, and its prevalence is increasing with the ageing of the population. Presently available treatment options are far from optimal and new insights into underlying mechanisms are needed to improve therapy. A variety of recent lines of research are converging to reveal important and relatively underappreciated multidimensional roles of cellular Ca(2+) content, distribution, and handling in AF pathophysiology. The objective of the present paper is to review the participation of changes in cell Ca(2+) and related processes in the mechanisms that lead to AF initiation and maintenance, and to consider the relevance of new knowledge in this area to therapeutic innovation. We first review the involvement of Ca(2+)-related functions in the principal arrhythmia mechanisms underlying AF: focal ectopic activity due to afterdepolarizations and re-entrant mechanisms. The detailed molecular pathophysiology of focal ectopic and re-entrant activity is then discussed in relationship to the participation of cell Ca(2+) changes and related Ca(2+)-handling and Ca(2+)-sensitive signalling systems. We then go on to consider the participation of Ca(2+)-related functions in electrical and structural remodelling processes leading to the AF substrate. Finally, we consider the implications for development of new arrhythmia management approaches and future research and development.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger St E, Montreal, Quebec, Canada H1T 1C8.
| | | |
Collapse
|
48
|
Xie LH, Shanmugam M, Park JY, Zhao Z, Wen H, Tian B, Periasamy M, Babu GJ. Ablation of sarcolipin results in atrial remodeling. Am J Physiol Cell Physiol 2012; 302:C1762-71. [PMID: 22496245 DOI: 10.1152/ajpcell.00425.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sarcolipin (SLN) is a key regulator of sarco(endo)plasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and its expression is altered in diseased atrial myocardium. To determine the precise role of SLN in atrial Ca(2+) homeostasis, we developed a SLN knockout (sln-/-) mouse model and demonstrated that ablation of SLN enhances atrial SERCA pump activity. The present study is designed to determine the long-term effects of enhanced SERCA activity on atrial remodeling in the sln-/- mice. Calcium transient measurements show an increase in atrial SR Ca(2+) load and twitch Ca(2+) transients. Patch-clamping experiments demonstrate activation of the forward mode of sodium/calcium exchanger, increased L-type Ca(2+) channel activity, and prolongation of action potential duration at 90% repolarization in the atrial myocytes of sln-/- mice. Spontaneous Ca(2+) waves, delayed afterdepolarization, and triggered activities are frequent in the atrial myocytes of sln-/- mice. Furthermore, loss of SLN in atria is associated with increased interstitial fibrosis and altered expression of genes encoding collagen and other extracellular matrix proteins. Our results also show that the sln-/- mice are susceptible to atrial arrhythmias upon aging. Together, these findings indicate that ablation of SLN results in increased SERCA activity and SR Ca(2+) load, which, in turn, could cause abnormal intracellular Ca(2+) handling and atrial remodeling.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality in the general population. Current treatments have moderate efficacy and considerable risks, especially of pro-arrhythmia, highlighting the need for new therapeutic strategies. In recent years, substantial efforts have been invested in developing novel treatments that target the underlying molecular determinants of atrial fibrillation, and several new compounds are under development. This Review focuses on the mechanistic rationale for the development of new anti-atrial fibrillation drugs, on the molecular and structural motifs that they target and on the results obtained so far in experimental and clinical studies.
Collapse
|
50
|
Macle L, Khairy P, Verma A, Weerasooriya R, Willems S, Arentz T, Novak P, Veenhuyzen G, Scavée C, Skanes A, Puererfellner H, Jaïs P, Khaykin Y, Rivard L, Guerra PG, Dubuc M, Thibault B, Talajic M, Roy D, Nattel S. Adenosine Following Pulmonary Vein Isolation to Target Dormant Conduction Elimination (ADVICE): Methods and Rationale. Can J Cardiol 2012; 28:184-90. [DOI: 10.1016/j.cjca.2011.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/21/2011] [Accepted: 10/06/2011] [Indexed: 10/14/2022] Open
|