1
|
Klein AH, Alam S, Johnson K, Kriner C, Beck B, Nelson B, Hill C, Meyer B, Mellang J, Watts VJ. Inhibition of adenylyl cyclase 1 (AC1) and exchange protein directly activated by cAMP (EPAC) restores ATP-sensitive potassium (K ATP) channel activity after chronic opioid exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636278. [PMID: 39974972 PMCID: PMC11838493 DOI: 10.1101/2025.02.03.636278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Prolonged exposure to Gαi/o receptor agonists such as opioids can lead to a sensitization of adenylyl cyclases (ACs), resulting in heterologous sensitization or cyclic AMP (cAMP) overshoot. The molecular consequences of cAMP overshoot are not well understood, but this adaptive response is suggested to play a critical role in the development of opioid tolerance and withdrawal. We found that genetic reduction of AC1 and simultaneous upregulation of ATP-sensitive potassium (KATP) channel subunits, SUR1 or Kir6.2, significantly attenuated morphine tolerance and reduced naloxone-precipitated withdrawal. In vitro models utilized an EPAC2-GFP-cAMP biosensor to investigate sensitization of adenylyl cyclase in SH-SY5Y neuroblastoma cells and HEKΔAC3/6 knockout cells. Acute application of DAMGO significantly decreased the cAMP signal from the EPAC2-GFP-cAMP biosensor, while chronic DAMGO administration resulted in enhanced cAMP production following AC stimulation. Inhibition of cAMP overshoot was observed with naloxone (NAL), pertussis toxin (PTX), and the neddylation inhibitor, MLN4924 (Pevonedistat), as well as co-expression of β-adrenergic receptor kinase C-terminus (β-ARKCT). After establishment of the AC1-EPAC sensitization in the in vitro models, we found that inhibition of AC1 or EPAC enhanced potassium channel activity after chronic morphine treatment, using a thallium-based assay in SH-SY5Y cells. Similar data were obtained in mouse dorsal root ganglia (DRG) after chronic morphine treatment. This study presents evidence for investigating further AC1 signaling as a target for opioid tolerance and withdrawal, by increasing EPAC activity and affecting potassium channels downstream of opioid receptors.
Collapse
Affiliation(s)
- Amanda H. Klein
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Sabbir Alam
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN
| | - Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Christian Kriner
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Brie Beck
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Bethany Nelson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Cassidy Hill
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Belle Meyer
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Jonas Mellang
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN
- Purdue Institutes for Integrative Neuroscience (PIIN), Drug Discovery (PIDD), Cancer Research (PICR), and Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette IN
| |
Collapse
|
2
|
Jankowski K, Lemay SE, Lozano-Ojalvo D, Perez Rodriguez L, Sauvaget M, Breuils-Bonnet S, Formoso K, Jagana V, Zhang S, Milara J, Cortijo J, Turnbull IC, Provencher S, Bonnet S, Orchando J, Lezoualc'h F, Bisserier M, Hadri L. Pharmacological Inhibition of Epac1 Protects against Pulmonary Fibrosis by Blocking FoxO3a Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612935. [PMID: 39345579 PMCID: PMC11429716 DOI: 10.1101/2024.09.13.612935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Idiopathic Pulmonary fibrosis (IPF) is characterized by progressive scarring and fibrosis within the lungs. There is currently no cure for IPF; therefore, there is an urgent need to identify novel therapeutic targets that can prevent the progression of IPF. Compelling evidence indicates that the second messenger, cyclic adenosine monophosphate (cAMP), inhibits lung fibroblast proliferation and differentiation through the classical PKA pathway. However, the contribution of the e xchange p rotein directly a ctivated by c AMP 1 (Epac1) to IPF pathophysiological processes is yet to be investigated. Objective To determine the role of the cAMP-binding protein Epac1 in the progression of IPF. Methods We used lung samples from IPF patients or healthy controls, mouse lung samples, or lung fibroblast isolated from a preclinical mouse model of PF induced by bleomycin intratracheal injection. The effect of bleomycin (BLM) treatment was determined in Epac1 knock-out mice or wild-type littermates. Epac1 expression was modulated in vitro by using lentiviral vectors or adenoviruses. The therapeutic potential of the Epac1-selective pharmacological inhibitor, AM-001, was tested in vivo and in vitro, using a bleomycin mouse model of PF and an ex vivo precision-cut lung slices (PCLs) model of human lung fibrosis. Results Epac1 expression was increased in the lung tissue of IPF patients, in IPF-diseased fibroblasts and in BLM-challenged mice. Furthermore, Epac1 genetic or pharmacological inhibition with AM-001 decreased normal and IPF fibroblast proliferation and the expression of profibrotic markers, αSMA, TGF-β/SMAD2/3, and interleukin-6 (IL-6)/STAT3 signaling pathways. Consistently, blocking Epac1 protected against BLM-induced lung injury and fibrosis, suggesting a therapeutic effect of Epac1 inhibition on PF pathogenesis and progression. Global gene expression profiling revealed a decrease in the key components of the profibrotic gene signature and neddylation pathway in Epac1-deficient lung fibroblasts and IPF human-derived PLCs. Mechanistically, the protective effect of Epac1 inhibition against PF development involves the inhibition of FoxO3a neddylation and its subsequent degradation by NEDD8, and in part, by limiting the proliferative capacity of lung-infiltrating monocytes. Conclusions We demonstrated that Epac1 is an important regulator of the pathological state of fibroblasts in PF and that small molecules targeting Epac1 can serve as novel therapeutic drugs against PF.
Collapse
|
3
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|
4
|
Melatonin alleviates traumatic brain injury‑induced anxiety‑like behaviors in rats: Roles of the protein kinase A/cAMP‑response element binding signaling pathway. Exp Ther Med 2022; 23:248. [PMID: 35261620 PMCID: PMC8855513 DOI: 10.3892/etm.2022.11173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Melatonin is a hormone produced by the pineal gland. Given its capabilities of neuroprotection and low neurotoxicity, melatonin could be a therapeutic strategy for traumatic brain injury (TBI). The present study was conducted to determine the neuroprotective effects of melatonin on TBI-induced anxiety and the possible molecular mechanism. Rats were randomly divided into seven groups. The rodent model of TBI was established using the weight-drop method. Melatonin was administered by intraperitoneal injection at a dose of 10 mg/kg after TBI. H89 (0.02 mg/kg), a special protein kinase A (PKA) inhibitor, or dibutyryl-cyclic adenosine monophosphate (cAMP; 0.1 mg/kg), an activator of PKA, were administered by stereotactic injection of the brain to evaluate the roles of PKA and cAMP-response element-binding protein (CREB) in melatonin-related mood regulation, respectively. At 30 days post-TBI, the changes in anxiety-like behaviors in rats were measured using the open field and elevated plus maze tests. At 24 h post-TBI, the number of activated astrocytes and neuronal apoptosis were evaluated using immunofluorescence assay. The expression levels of inflammatory cytokines (TNF-α and IL-6) in the amygdala were measured using an enzyme-linked immunosorbent assay. The expression levels of PKA, phosphorylated (p)-PKA, CREB, p-CREB, NF-κB and p-NF-κB in the amygdala were detected using western blotting. It was revealed that melatonin partially reversed TBI-induced anxiety-like behavior in rats, and decreased the number of activated astrocytes and neuronal apoptosis in the amygdala induced by TBI. H89 partially blocked the neuroprotective effects of melatonin; while dibutyryl-cAMP not only reduced the H89-induced emotional disturbance but also enhanced the protective effects of melatonin against TBI. Overall, melatonin can alleviate TBI-induced anxiety-like behaviors in rats. Moreover, the underlying mechanism may be associated with the activation of the PKA/CREB signaling pathway.
Collapse
|
5
|
Khaliulin I, Ascione R, Maslov LN, Amal H, Suleiman MS. Preconditioning or Postconditioning with 8-Br-cAMP-AM Protects the Heart against Regional Ischemia and Reperfusion: A Role for Mitochondrial Permeability Transition. Cells 2021; 10:1223. [PMID: 34067674 PMCID: PMC8155893 DOI: 10.3390/cells10051223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023] Open
Abstract
The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 μM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Raimondo Ascione
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 111 a, Kievskaya Street, 634012 Tomsk, Russia;
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
| | - M. Saadeh Suleiman
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| |
Collapse
|
6
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
7
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
8
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
9
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
10
|
Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio 2019; 10:mBio.01743-19. [PMID: 31551332 PMCID: PMC6759761 DOI: 10.1128/mbio.01743-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Monocytes arriving at the site of infection differentiate into functional effector macrophages to replenish the resident sentinel cells. Bordetella pertussis, the pertussis agent, secretes an adenylate cyclase toxin-hemolysin (CyaA) that binds myeloid phagocytes through complement receptor 3 (CD11b/CD18) and swiftly delivers its adenylyl cyclase enzyme domain into phagocytes. This ablates the bactericidal capacities of phagocytes through massive and unregulated conversion of cytosolic ATP into the key signaling molecule cAMP. We show that exposure of primary human monocytes to as low a concentration as 22.5 pM CyaA, or a low (2:1) multiplicity of infection by CyaA-producing B. pertussis bacteria, blocks macrophage colony-stimulating factor (M-CSF)-driven differentiation of monocytes. CyaA-induced cAMP signaling mediated through the activity of protein kinase A (PKA) efficiently blocked expression of macrophage markers, and the monocytes exposed to 22.5 pM CyaA failed to acquire the characteristic intracellular complexity of mature macrophage cells. Neither M-CSF-induced endoplasmic reticulum (ER) expansion nor accumulation of Golgi bodies, mitochondria, or lysosomes was observed in toxin-exposed monocytes, which remained small and poorly phagocytic and lacked pseudopodia. Exposure to 22.5 pM CyaA toxin provoked loss of macrophage marker expression on in vitro differentiated macrophages, as well as on primary human alveolar macrophages, which appeared to dedifferentiate into monocyte-like cells with upregulated CD14 levels. This is the first report that terminally differentiated tissue-resident macrophage cells can be dedifferentiated in vitro The results suggest that blocking of monocyte-to-macrophage transition and/or dedifferentiation of the sentinel cells of innate immunity through cAMP-elevating toxin action may represent a novel immune evasion strategy of bacterial pathogens.IMPORTANCE Macrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agent Bordetella pertussis The adenylate cyclase toxin (CyaA) mediates immune evasion of B. pertussis by suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion of host immunity, where CyaA at very low (22 pM) concentrations could inhibit maturation of human monocyte precursors into the more phagocytic macrophage cells. Furthermore, exposure to low CyaA amounts has been shown to trigger dedifferentiation of mature primary human alveolar macrophages back into monocyte-like cells. This unprecedented capacity is likely to promote survival of the pathogen in the airways, both by preventing maturation of monocytes attracted to the site of infection into phagocytic macrophages and by dedifferentiation of the already airway-resident sentinel cells.
Collapse
|
11
|
Cui HX, Zhang LS, Luo Y, Yuan K, Huang ZY, Guo Y. A Purified Anthraquinone-Glycoside Preparation From Rhubarb Ameliorates Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Reducing Inflammation. Front Microbiol 2019; 10:1423. [PMID: 31293553 PMCID: PMC6603233 DOI: 10.3389/fmicb.2019.01423] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Rheum palmatum L. is widely used in traditional Chinese medicine for the treatment of constipation. Here, the therapeutic effects and underlying mechanisms of purified anthraquinone-glycoside preparation from rhubarb (RAGP) on the type 2 diabetes mellitus (T2DM) rats were investigated. After 6 weeks of metformin and RAGP treatment, the weight returned to normal. Fasting blood glucose (FBG), glycated serum protein (GSP), insulin concentration and HOMA-IR index had significantly decreased, and glucagon-like peptide-1 (GLP-1) concentrations had increased. Histological abnormalities in the pancreas and ileum had improved. These effects were associated with enhanced intestinal integrity, thereby reducing the absorption of lipopolysaccharide (LPS) and inflammation. To investigate whether RAGP ameliorated insulin resistance via effects on the gut microbiota, we performed 16s rDNA sequencing of ileal gut contents. This showed an amelioration of gut dysbiosis, with greater abundance of probiotic Lactobacillus and short-chain fatty acid-producing bacteria, and lower abundance of the Lachnospiraceae NK4A136 group and LPS-producing Desulfovibrio. The mechanism of the hypoglycemic effect of RAGP involves regulation of the gut microbiota, activation of the GLP-1/cAMP pathway to ameliorate insulin resistance. Thus, this study provides a theoretical basis for the use of RAGP to treat T2DM, and it may be a novel approach to restore the gut microbiota.
Collapse
Affiliation(s)
- Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Ling-Shuai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Luo
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, China
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, China
| | | | - Ying Guo
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Anwar MA, Samaha AA, Baydoun S, Iratni R, Eid AH. Rhus coriaria L. (Sumac) Evokes Endothelium-Dependent Vasorelaxation of Rat Aorta: Involvement of the cAMP and cGMP Pathways. Front Pharmacol 2018; 9:688. [PMID: 30002626 PMCID: PMC6031713 DOI: 10.3389/fphar.2018.00688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Rhus coriaria L. (sumac) is widely used in traditional remedies and cuisine of countries of the Mediterranean as well as Central and South-West Asia. Administration of sumac to experimental models and patients with diverse pathological conditions generates multi-faceted propitious effects, including the quality as a vasodilator. Together, the effects are concertedly channeled toward cardiovasobolic protection. However, there is paucity of data on the mechanism of action for sumac’s vasodilatory effect, an attribute which is considered to be advantageous for unhealthy circulatory system. Accordingly, we sought to determine the mechanisms by which sumac elicits its vasorelaxatory effects. We deciphered the signaling networks by application of a range of pharmacological inhibitors, biochemical assays and including the quantification of cyclic nucleotide monophosphates. Herein, we provide evidence that an ethanolic extract of sumac fruit, dose-dependently, relaxes rat isolated aorta. The mechanistic effect is achieved via stimulation of multiple transducers namely PI3-K/Akt, eNOS, NO, guanylyl cyclase, cGMP, and PKG. Interestingly, the arachidonic acid pathway (cyclooxygenases), adenylyl cyclase/cAMP and ATP-dependent potassium channels appear to partake in this sumac-orchestrated attenuation of vascular tone. Clearly, our data support the favorable potential cardio-vasculoprotective action of sumac.
Collapse
Affiliation(s)
- Mohammad A Anwar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ali A Samaha
- Department of Biomedical Sciences, Lebanese International University, Beirut, Lebanon.,Faculty of Public Health IV, Lebanese University, Beirut, Lebanon
| | - Safaa Baydoun
- Research Center for Environment and Development, Beirut Arab University, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
15
|
Ethanol extract of Atractylodis macrocephalae Rhizoma ameliorates insulin resistance and gut microbiota in type 2 diabetic db/db mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Chen S, Hao X, Yu L, Zhang P, Cao W, Chen H, Zhu D. Gastrodin causes vasodilation by activating K ATP channels in vascular smooth muscles via PKA-dependent signaling pathway. J Recept Signal Transduct Res 2017; 37:543-549. [PMID: 28840751 DOI: 10.1080/10799893.2017.1369118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gastrodin, one of the major components extracted from the Chinese herb Gastrodia elata Bl., has been widely used as an anticonvulsant, sedative, analgesic and hypotensive. In our study, we aimed to investigate the effects and possible mechanisms of gastrodin on vascular KATP channels. Tension experiments were used on rat mesenteric artery rings without an endothelium. Patch clamp experiments were executed to investigate the influences of gastrodin on the membrane current in mesenteric artery smooth muscle cells. Gastrodin induced vasorelaxation in a concentration dependent manner when rat mesenteric artery rings were pre-contracted with Phenylephrine. The vasorelaxation effect was partially diminished by pre-treating with a KATP channel inhibitor, or a PKA inhibitor. With whole-cell patch-clamp recording techniques, we found that gastrodin is a activator of KATP in rat mesenteric artery smooth muscle cells, and this effect was eliminate by pre-treating with H89or PKI, PKA inhibitor. In addition, when rat vascular smooth muscle cells were treated with 100 μM gastrodin for 24 h, maximum KATP current density increased by 28.1%. The results indicate that gastrodin exerts vasorelaxation effect through activation of PKA and subsequent opening of smooth muscle KATP channels.
Collapse
Affiliation(s)
- Shuo Chen
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| | - Xuewei Hao
- b Department of Biochemistry, Inspection Institute , Harbin Medical University , Daqing , PR China
| | - Lei Yu
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| | - Ping Zhang
- b Department of Biochemistry, Inspection Institute , Harbin Medical University , Daqing , PR China
| | - Weiwei Cao
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| | - Hongyang Chen
- b Department of Biochemistry, Inspection Institute , Harbin Medical University , Daqing , PR China
| | - Daling Zhu
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| |
Collapse
|
17
|
Wang P, Liu Z, Chen H, Ye N, Cheng X, Zhou J. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett 2017; 27:1633-1639. [PMID: 28283242 PMCID: PMC5397994 DOI: 10.1016/j.bmcl.2017.02.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 11/22/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators. The discovery of EPAC proteins has significantly facilitated understanding on cAMP-dependent signaling pathway and efforts along this line open new avenues for developing novel therapeutics for cancer, diabetes, heart failure, inflammation, infections, neurological disorders and other human diseases. Over the past decade, important progress has been made in the identification of EPAC agonists, antagonists and their biological and pharmacological applications. In this review, we briefly summarize recently reported novel functions of EPACs and the discovery of their small molecule modulators. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
18
|
Yu X, Zhang Q, Zhao Y, Schwarz BJ, Stallone JN, Heaps CL, Han G. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA. PLoS One 2017; 12:e0173085. [PMID: 28278256 PMCID: PMC5344336 DOI: 10.1371/journal.pone.0173085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3–3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1–100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Qiao Zhang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Benjamin J. Schwarz
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - John N. Stallone
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States of America
| | - Cristine L. Heaps
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Guichun Han
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
19
|
Sukhanova IF, Kozhevnikova LM, Mironova GY, Avdonin PV. The Epac protein inhibitor ESI-09 eliminates the tonic phase of aorta contraction induced by endogenic vasoconstrictors in rats. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Stott JB, Barrese V, Greenwood IA. Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries. Arterioscler Thromb Vasc Biol 2016; 36:2404-2411. [PMID: 27789473 DOI: 10.1161/atvbaha.116.308517] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/11/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To establish the role of Kv7 channels in EPAC (exchange protein directly activated by cAMP)-dependent relaxations of the rat vasculature and to investigate whether this contributes to β-adrenoceptor-mediated vasorelaxations. APPROACH AND RESULTS Isolated rat renal and mesenteric arteries (RA and MA, respectively) were used for isometric tension recording to study the relaxant effects of a specific EPAC activator and the β-adrenoceptor agonist isoproterenol in the presence of potassium channel inhibitors and cell signaling modulators. Isolated myocytes were used in proximity ligation assay studies to detect localization of signaling intermediaries with Kv7.4 before and after cell stimulation. Our studies showed that the EPAC activator (8-pCPT-2Me-cAMP-AM) produced relaxations and enhanced currents of MA and RA that were sensitive to linopirdine (Kv7 inhibitor). Linopirdine also inhibited isoproterenol-mediated relaxations in both RA and MA. In the MA, isoproterenol relaxations were sensitive to EPAC inhibition, but not protein kinase A inhibition. In contrast, isoproterenol relaxations in RA were attenuated by protein kinase A but not by EPAC inhibition. Proximity ligation assay showed a localization of Kv7.4 with A-kinase anchoring protein in both vessels in the basal state, which increased only in the RA with isoproterenol stimulation. In the MA, but not the RA, a localization of Kv7.4 with both Rap1a and Rap2 (downstream of EPAC) increased with isoproterenol stimulation. CONCLUSIONS EPAC-dependent vasorelaxations occur in part via activation of Kv7 channels. This contributes to the isoproterenol-mediated relaxation in mesenteric, but not renal, arteries.
Collapse
Affiliation(s)
- Jennifer B Stott
- From the Vascular Biology Research Group, Institute for Cardiovascular and Cell Sciences, St George's University of London, UK
| | - Vincenzo Barrese
- From the Vascular Biology Research Group, Institute for Cardiovascular and Cell Sciences, St George's University of London, UK
| | - Iain A Greenwood
- From the Vascular Biology Research Group, Institute for Cardiovascular and Cell Sciences, St George's University of London, UK.
| |
Collapse
|
21
|
Lai PF, Tribe RM, Johnson MR. Differential impact of acute and prolonged cAMP agonist exposure on protein kinase A activation and human myometrium contractile activity. J Physiol 2016; 594:6369-6393. [PMID: 27328735 DOI: 10.1113/jp272320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Over 15 million babies are born prematurely each year with approximately 1 million of these babies dying as a direct result of preterm delivery. β2 -Adrenoreceptor agonists that act via cAMP can reduce uterine contractions to delay preterm labour, but their ability to repress uterine contractions lasts ≤ 48 h and their use does not improve neonatal outcomes. Previous research has suggested that cAMP inhibits myometrial contractions via protein kinase A (PKA) activation, but this has yet to be demonstrated with PKA-specific agonists. We investigated the role of PKA in mediating cAMP-induced human myometrial relaxation, and the impact of prolonged cAMP elevation on myometrial contractility. Our findings suggest that PKA is not the sole mediator of cAMP-induced myometrial relaxation and that prolonged prophylactic elevation of cAMP alone is unlikely to prevent preterm labour (PTL). ABSTRACT Acute cAMP elevation inhibits myometrial contractility, but the mechanisms responsible are not fully elucidated and the long-term effects are uncertain. Both need to be defined in pregnant human myometrium before the therapeutic potential of cAMP-elevating agents in the prevention of preterm labour can be realised. In the present study, we tested the hypotheses that PKA activity is necessary for cAMP-induced myometrial relaxation, and that prolonged cAMP elevation can prevent myometrial contractions. Myometrial tissues obtained from term, pre-labour elective Caesarean sections were exposed to receptor-independent cAMP agonists to determine the relationship between myometrial contractility (spontaneous and oxytocin-induced), PKA activity, HSP20 phosphorylation and expression of contraction-associated and cAMP signalling proteins. Acute (1 h) application of cAMP agonists promoted myometrial relaxation, but this was weakly related to PKA activation. A PKA-specific activator, 6-Bnz-cAMP, increased PKA activity (6.8 ± 2.0 mean fold versus vehicle; P = 0.0313) without inducing myometrial relaxation. Spontaneous myometrial contractility declined after 24 h but was less marked when tissues were constantly exposed to cAMP agonists, especially for 8-bromo-cAMP (4.3 ± 1.2 mean fold versus vehicle; P = 0.0043); this was associated with changes to calponin, cofilin and HSP20 phosphorylated/total protein levels. Oxytocin-induced contractions were unaffected by pre-incubation with cAMP agonists despite treatments being able to enhance PKA activity and HSP20 phosphorylation. These data suggest that cAMP-induced myometrial relaxation is not solely dependent on PKA activity and the ability of cAMP agonists to repress myometrial contractility is lost with prolonged exposure. We conclude that cAMP agonist treatment alone may not prevent preterm labour.
Collapse
Affiliation(s)
- Pei F Lai
- Academic Department of Obstetrics & Gynaecology, Imperial College London, London, SW10 9NH, UK
| | - Rachel M Tribe
- Division of Women's Health, Kings College London and Women's Health Academic Centre, Kings Health Partners, London, SE1 7EH, UK
| | - Mark R Johnson
- Academic Department of Obstetrics & Gynaecology, Imperial College London, London, SW10 9NH, UK.
| |
Collapse
|
22
|
Lezoualc'h F, Fazal L, Laudette M, Conte C. Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. Circ Res 2016; 118:881-97. [PMID: 26941424 DOI: 10.1161/circresaha.115.306529] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
cAMP is a universal second messenger that plays central roles in cardiovascular regulation influencing gene expression, cell morphology, and function. A crucial step toward a better understanding of cAMP signaling came 18 years ago with the discovery of the exchange protein directly activated by cAMP (EPAC). The 2 EPAC isoforms, EPAC1 and EPAC2, are guanine-nucleotide exchange factors for the Ras-like GTPases, Rap1 and Rap2, which they activate independently of the classical effector of cAMP, protein kinase A. With the development of EPAC pharmacological modulators, many reports in the literature have demonstrated the critical role of EPAC in the regulation of various cAMP-dependent cardiovascular functions, such as calcium handling and vascular tone. EPAC proteins are coupled to a multitude of effectors into distinct subcellular compartments because of their multidomain architecture. These novel cAMP sensors are not only at the crossroads of different physiological processes but also may represent attractive therapeutic targets for the treatment of several cardiovascular disorders, including cardiac arrhythmia and heart failure.
Collapse
Affiliation(s)
- Frank Lezoualc'h
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.).
| | - Loubina Fazal
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Marion Laudette
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Caroline Conte
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| |
Collapse
|
23
|
Cuíñas A, García-Morales V, Viña D, Gil-Longo J, Campos-Toimil M. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016; 155:102-9. [PMID: 27142830 DOI: 10.1016/j.lfs.2016.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022]
Abstract
AIMS We investigated the implication of PKA and Epac proteins in the endothelium-independent vasorelaxant effects of cyclic AMP (cAMP). MAIN METHODS Cytosolic Ca(2+) concentration ([Ca(2+)]c) was measured by fura-2 imaging in rat aortic smooth muscle cells (RASMC). Contraction-relaxation experiments were performed in rat aortic rings deprived of endothelium. KEY FINDINGS In extracellular Ca(2+)-free solution, cAMP-elevating agents induced an increase in [Ca(2+)]c in RASMC that was reproduced by PKA and Epac activation and reduced after depletion of intracellular Ca(2+) reservoirs. Arginine-vasopressin (AVP)-evoked increase of [Ca(2+)]c and store-operated Ca(2+) entry (SOCE) were inhibited by cAMP-elevating agents, PKA or Epac activation in these cells. In aortic rings, the contractions induced by phenylephrine in absence of extracellular Ca(2+) were inhibited by cAMP-elevating agents, PKA or Epac activation. In these conditions, reintroduction of Ca(2+) induced a contraction that was inhibited by cAMP-elevating agents, an effect reduced by PKA inhibition and reproduced by PKA or Epac activators. SIGNIFICANCE Our results suggest that increased cAMP depletes intracellular, thapsigargin-sensitive Ca(2+) stores through activation of PKA and Epac in RASMC, thus reducing the amount of Ca(2+) released by IP3-generating agonists during the contraction of rat aorta. cAMP rise also inhibits the contraction induced by depletion of intracellular Ca(2+), an effect mediated by reduction of SOCE after PKA or Epac activation. Both effects participate in the cAMP-induced endothelium-independent vasorelaxation.
Collapse
Affiliation(s)
- Andrea Cuíñas
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Verónica García-Morales
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Gil-Longo
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Li S, Chen S, Yang W, Liao L, Li S, Li J, Zheng Y, Zhu D. Allicin relaxes isolated mesenteric arteries through activation of PKA-K ATP channel in rat. J Recept Signal Transduct Res 2016; 37:17-24. [PMID: 27049346 DOI: 10.3109/10799893.2016.1155065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Allicin is a natural effective organosulfur compound isolated from garlic, which possesses many beneficial properties, such as antibacterial, anti-inflammatory, antimicrobial, hypotensive and hypolipidemic. In the present study, we investigated the effects and the underlying mechanisms of allicin on isolated mesenteric arteries (MAs). We examined MAs relaxation induced by allicin on rat-isolated mesenteric artery (MA) rings, the KATP channels with patch, and the expression of Kir6.1 and SUR2B with western blotting and NO production with Diaminofluorescein-FM diacetate (DAF-FMDA) in rat mesenteric artery smooth muscle cells (MASMCs). The results showed that allicin elicited the dose-dependent vasorelaxation effect with phenylephrine (PE) precontracted rat MA rings. The vasorelaxation effect was endothelium and NO independent but could be diminished by inhibition of PKA and KATP channels in the vascular smooth muscle. Allicin activated KATP channels in rat MASMCs, and the activation of KATP channels was inhibited by the inhibitors of PKA and KATP channels. But allicin had no effect on the expression of KATP subtypes Kir6.1 and SUR2B. These observations suggest that allicin exerts vasorelaxation effect through activation of PKA-KATP-signaling pathway.
Collapse
Affiliation(s)
- Shuzhen Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Shuo Chen
- b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , PR China , and
| | - Weiwei Yang
- c College of Food Science, Northeast Agricultural University , PR China
| | - Lin Liao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Shanshan Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Jiali Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Yaqin Zheng
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Daling Zhu
- c College of Food Science, Northeast Agricultural University , PR China
| |
Collapse
|
25
|
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B. PLoS One 2015; 10:e0121285. [PMID: 25793374 PMCID: PMC4368632 DOI: 10.1371/journal.pone.0121285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/29/2015] [Indexed: 01/17/2023] Open
Abstract
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone.
Collapse
|
26
|
Dawn A, Singh S, More KR, Siddiqui FA, Pachikara N, Ramdani G, Langsley G, Chitnis CE. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes. PLoS Pathog 2014; 10:e1004520. [PMID: 25522250 PMCID: PMC4270784 DOI: 10.1371/journal.ppat.1004520] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022] Open
Abstract
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. The blood stage of malaria parasites is responsible for all the morbidity and mortality associated with malaria. During the blood stage, malaria parasites invade and multiply within host erythrocytes. The process of erythrocyte invasion requires specific interactions between host receptors and parasite ligands. Many of the key parasite proteins that bind host receptors are localized in apical organelles called micronemes. Here, we demonstrate that cAMP serves as a key regulator that controls the timely secretion of microneme proteins during invasion. We show that exposure of merozoites to a low K+ environment, as found in blood plasma, leads to a rise in cytosolic cAMP levels due to activation of the cytoplasmic, bicarbonate-sensitive adenylyl cyclase β (PfACβ). A rise in cAMP activates protein kinase A (PKA), which regulates microneme secretion. In addition, cAMP triggers a rise in cytosolic Ca2+ levels through the Epac pathway. Increases in both cAMP and Ca2+ levels are essential for triggering microneme secretion. Identification of the different elements in the cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to block erythrocyte invasion, inhibit blood stage parasite growth and prevent malaria.
Collapse
Affiliation(s)
- Amrita Dawn
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shailja Singh
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Kunal R. More
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Faiza Amber Siddiqui
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Niseema Pachikara
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ghania Ramdani
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Chetan E. Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
27
|
cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP). Biochem Soc Trans 2014; 42:89-97. [PMID: 24450633 DOI: 10.1042/bst20130253] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.
Collapse
|
28
|
Figueiredo M, Lane S, Stout RF, Liu B, Parpura V, Teschemacher AG, Kasparov S. Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 2014; 56:208-14. [PMID: 25109549 PMCID: PMC4169180 DOI: 10.1016/j.ceca.2014.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
We compared six optogenetic tools to selectively stimulate and study astrocytes. Channelrhodopsin-2 variants cause release of Ca2+ from intracellular stores. Opto-GPCRs activate selective second messenger cascades, leading to [Ca2+]i rises. Autocrine action of ATP mediates the bulk of [Ca2+]i signals evoked by opto-GPCRs. Current optogenetic tools initiate relevant signalling events in astrocytes.
Astrocytes modulate synaptic transmission via release of gliotransmitters such as ATP, glutamate, d-serine and l-lactate. One of the main problems when studying the role of astrocytes in vitro and in vivo is the lack of suitable tools for their selective activation. Optogenetic actuators can be used to manipulate astrocytic activity by expression of variants of channelrhodopsin-2 (ChR2) or other optogenetic actuators with the aim to initiate intracellular events such as intracellular Ca2+ ([Ca2+]i) and/or cAMP increases. We have developed an array of adenoviral vectors (AVV) with ChR2-like actuators, including an enhanced ChR2 mutant (H134R), and a mutant with improved Ca2+ permeability (Ca2+ translocating channelrhodopsin, CatCh). We show here that [Ca2+]i elevations evoked by ChR2(H134R) and CatCh in astrocytes are largely due to release of Ca2+ from the intracellular stores. The autocrine action of ATP which is released under these conditions and acts on the P2Y receptors also contributes to the [Ca2+]i elevations. We also studied effects evoked using light-sensitive G-protein coupled receptors (opto-adrenoceptors). Activation of optoα1AR (Gq-coupled) and optoβ2AR (Gs-coupled) resulted in astrocytic [Ca2+]i increases which were suppressed by blocking the corresponding intracellular signalling cascade (phospholipase C and adenylate cyclase, respectively). Interestingly, the bulk of [Ca2+]i responses evoked using either optoAR was blocked by an ATP degrading enzyme, apyrase, or a P2Y1 receptor blocker, MRS 2179, indicating that they are to a large extent triggered by the autocrine action of ATP. We conclude that, whilst optimal tools for control of astrocytes are yet to be generated, the currently available optogenetic actuators successfully initiate biologically relevant signalling events in astrocytes.
Collapse
Affiliation(s)
- Melina Figueiredo
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, UK
| | - Samantha Lane
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, UK
| | - Randy F Stout
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama, Birmingham, AL 35294, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Beihui Liu
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, UK
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama, Birmingham, AL 35294, USA; Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Anja G Teschemacher
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, UK.
| | - Sergey Kasparov
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
29
|
García-Morales V, Cuíñas A, Elíes J, Campos-Toimil M. PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production. Vascul Pharmacol 2014; 60:95-101. [PMID: 24469067 DOI: 10.1016/j.vph.2014.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
Vascular relaxation induced by 3',5'-cyclic adenosine monophosphate (cAMP) is both endothelium-dependent and endothelium-independent, although the underlying signaling pathways are not fully understood. Aiming to uncover potential mechanisms, we performed contraction-relaxation experiments on endothelium-denuded and intact rat aorta rings and measured NO levels in isolated human endothelial cells using single cell fluorescence imaging. The vasorelaxant effect of forskolin, an adenylyl cyclase activator, was decreased after selective inhibitor of protein kinase A (PKA), a cAMP-activated kinase, or L-NAME, an endothelial nitric oxide synthase (eNOS) inhibitor, only in intact aortic rings. Both selective activation of PKA with 6-Bnz-cAMP and exchange protein directly activated by cAMP (Epac) with 8-pCPT-2'-O-Me-cAMP significantly relaxed phenylephrine-induced contractions. The vasorelaxant effect of the Epac activator, but not that of the PKA activator, was reduced by endothelium removal. Forskolin, dibutyryl cAMP (a cAMP analogue), 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP increased NO levels in endothelial cells and the forskolin effect was significantly inhibited by inactivation of both Epac and PKA, and eNOS inhibition. Our results indicate that the endothelium-dependent component of forskolin/cAMP-induced vasorelaxation is partially mediated by an increase in endothelial NO release due to an enhanced eNOS activity through PKA and Epac activation in endothelial cells.
Collapse
Affiliation(s)
- Verónica García-Morales
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Andrea Cuíñas
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jacobo Elíes
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Hayoz S, Cubano L, Maldonado H, Bychkov R. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta. PLoS One 2013; 8:e75077. [PMID: 24086441 PMCID: PMC3781042 DOI: 10.1371/journal.pone.0075077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that protein kinase A (PKA) inhibits K2P currents activated by protein kinase C (PKC) in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the “cocktail” of K+ channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs). Zn2+ and Hg2+ inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K+ currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn2+ and Hg2. 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Luis Cubano
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Hector Maldonado
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Rostislav Bychkov
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
31
|
Roberts OL, Kamishima T, Barrett-Jolley R, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery. J Physiol 2013; 591:5107-23. [PMID: 23959673 DOI: 10.1113/jphysiol.2013.262006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP-AM (5 μM, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n = 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K(+) over the same time period (n = 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca(2+)-sensitive, large-conductance K(+) (BK(Ca)) channel opening as iberiotoxin (100 nM) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n = 5; P < 0.05). 8-pCPT-AM increased Ca(2+) spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s(-1) μm(-1) (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s(-1)) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n = 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nM) and to ryanodine (30 μM). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n = 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n = 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n = 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca(2+)-sensitive, small- and intermediate-conductance K(+) (SK(Ca) and IK(Ca)) channels, respectively, and N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase (NOS). In Fluo-4-AM-loaded mesenteric endothelial cells, 8-pCPT-AM induced a sustained increase in global Ca(2+). Our data suggest that Epac hyperpolarizes smooth muscle by (1) increasing localized Ca(2+) release from ryanodine receptors (Ca(2+) sparks) to activate BK(Ca) channels, and (2) endothelial-dependent mechanisms involving the activation of SK(Ca)/IK(Ca) channels and NOS. Epac-mediated smooth muscle hyperpolarization will limit Ca(2+) entry via voltage-sensitive Ca(2+) channels and represents a novel mechanism of arterial relaxation.
Collapse
Affiliation(s)
- Owain Llŷr Roberts
- C. Dart: Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | | | |
Collapse
|
32
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
33
|
Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle. J Mol Cell Cardiol 2013; 57:96-105. [PMID: 23376036 DOI: 10.1016/j.yjmcc.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 01/17/2013] [Indexed: 02/08/2023]
Abstract
Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.
Collapse
|
34
|
Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 2013; 304:C485-504. [PMID: 23325405 DOI: 10.1152/ajpcell.00161.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.
Collapse
Affiliation(s)
- Trent Butler
- Mothers and Babies Research Centre, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
35
|
Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291-331. [PMID: 24281338 PMCID: PMC3816672 DOI: 10.3390/ph5121291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
36
|
Dekkers BGJ, Racké K, Schmidt M. Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther 2012; 137:248-65. [PMID: 23089371 DOI: 10.1016/j.pharmthera.2012.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibroblasts, substantially contribute to disease features by the release of inflammatory mediators, smooth muscle contraction, extracellular matrix deposition and structural changes in the airways. Current pharmacological treatment of both diseases intends to target the dynamic features of the endogenous intracellular suppressor cyclic AMP (cAMP). This review will summarize our current knowledge on cAMP and will emphasize on key discoveries and paradigm shifts reflecting the complex spatio-temporal nature of compartmentalized cAMP signalling networks in health and disease. As airway fibroblasts and airway smooth muscle cells are recognized as central players in the development and progression of asthma and COPD, we will focus on the role of cAMP signalling in their function in relation to airway function and plasticity. We will recapture on the recent identification of cAMP-sensing multi-protein complexes maintained by cAMP effectors, including A-kinase anchoring proteins (AKAPs), proteins kinase A (PKA), exchange protein directly activated by cAMP (Epac), cAMP-elevating seven-transmembrane (7TM) receptors and phosphodiesterases (PDEs) and we will report on findings indicating that the pertubation of compartmentalized cAMP signalling correlates with the pathopysiology of obstructive lung diseases. Future challenges include studies on cAMP dynamics and compartmentalization in the lung and the development of novel drugs targeting these systems for therapeutic interventions in chronic obstructive inflammatory diseases.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Center of Pharmacy, University of Groningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Jeyaraj SC, Unger NT, Eid AH, Mitra S, Paul El-Dahdah N, Quilliam LA, Flavahan NA, Chotani MA. Cyclic AMP-Rap1A signaling activates RhoA to induce α(2c)-adrenoceptor translocation to the cell surface of microvascular smooth muscle cells. Am J Physiol Cell Physiol 2012; 303:C499-511. [PMID: 22621783 DOI: 10.1152/ajpcell.00461.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular signaling by the second messenger cyclic AMP (cAMP) activates the Ras-related small GTPase Rap1 through the guanine exchange factor Epac. This activation leads to effector protein interactions, activation, and biological responses in the vasculature, including vasorelaxation. In vascular smooth muscle cells derived from human dermal arterioles (microVSM), Rap1 selectively regulates expression of G protein-coupled α(2C)-adrenoceptors (α(2C)-ARs) through JNK-c-jun nuclear signaling. The α(2C)-ARs are generally retained in the trans-Golgi compartment and mobilize to the cell surface and elicit vasoconstriction in response to cellular stress. The present study used human microVSM to examine the role of Rap1 in receptor localization. Complementary approaches included murine microVSM derived from tail arteries of C57BL6 mice that express functional α(2C)-ARs and mice deficient in Rap1A (Rap1A-null). In human microVSM, increasing intracellular cAMP by direct activation of adenylyl cyclase by forskolin (10 μM) or selectively activating Epac-Rap signaling by the cAMP analog 8-pCPT-2'-O-Me-cAMP (100 μM) activated RhoA, increased α(2C)-AR expression, and reorganized the actin cytoskeleton, increasing F-actin. The α(2C)-ARs mobilized from the perinuclear region to intracellular filamentous structures and to the plasma membrane. Similar results were obtained in murine wild-type microVSM, coupling Rap1-Rho-actin dynamics to receptor relocalization. This signaling was impaired in Rap1A-null murine microVSM and was rescued by delivery of constitutively active (CA) mutant of Rap1A. When tested in heterologous HEK293 cells, Rap1A-CA or Rho-kinase (ROCK-CA) caused translocation of functional α(2C)-ARs to the cell surface (~4- to 6-fold increase, respectively). Together, these studies support vascular bed-specific physiological role of Rap1 and suggest a role in vasoconstriction in microVSM.
Collapse
Affiliation(s)
- Selvi C Jeyaraj
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
von der Weid PY, Rehal S, Dyrda P, Lee S, Mathias R, Rahman M, Roizes S, Imtiaz MS. Mechanisms of VIP-induced inhibition of the lymphatic vessel pump. J Physiol 2012; 590:2677-91. [PMID: 22451438 DOI: 10.1113/jphysiol.2012.230599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lymphatic vessels serve as a route by which interstitial fluid, protein and other macromolecules are returned to the blood circulation and immune cells and antigens gain access to lymph nodes. Lymph flow is an active process promoted by rhythmical contraction-relaxation events occurring in the collecting lymphatic vessels. This lymphatic pumping is an intrinsic property of the lymphatic muscles in the vessel wall and consequent to action potentials. Compromised lymphatic pumping may affect lymph and immune cell transport, an action which could be particularly detrimental during inflammation. Importantly, many inflammatory mediators alter lymphatic pumping. Vasoactive intestinal peptide (VIP) is a neuro- and immuno-modulator thought to be released by nerve terminals and immune cells in close proximity to lymphatic vessels. We demonstrated the presence of the peptide in lymphatic vessels and in the lymph and examined the effects of VIP on mesenteric collecting lymphatic vessels of the guinea pig using pharmacological bioassays, intracellular microelectrode electrophysiology, immunofluorescence and quantitative real-time PCR. We showed that VIP alters lymphatic pumping by decreasing the frequency of lymphatic contractions and hyperpolarizing the lymphatic muscle membrane potential in a concentration-dependent manner. Our data further suggest that these effects are mainly mediated by stimulation of the VIP receptor VPAC2 located on the lymphatic muscle and the downstream involvement of protein kinase A (PKA) and ATP-sensitive K⁺ (KATP) channels. Inhibition of lymphatic pumping by VIP may compromise lymph drainage, oedema resolution and immune cell trafficking to the draining lymph nodes.
Collapse
Affiliation(s)
- Pierre-Yves von der Weid
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Itoh T, Kajikuri J. Characteristics of the actions by which 5-HT affects electrical and mechanical activities in rabbit jugular vein. Br J Pharmacol 2012; 164:979-91. [PMID: 21449974 DOI: 10.1111/j.1476-5381.2011.01373.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE 5-HT is known to be a potent vasospasmogenic agonist in various arteries. However, in veins the vasomodulating actions of 5-HT, and the underlying mechanisms, remain to be fully clarified. Here, we characterized the actions by which 5-HT affects electrical and mechanical activities in the rabbit jugular vein. EXPERIMENTAL APPROACH Membrane potential and isometric tension were measured in endothelium-intact and -denuded preparations. Localization of 5-HT receptor subtypes was examined immunohistochemically. KEY RESULTS 5-HT induced a transient then a small, sustained smooth muscle cell hyperpolarization in endothelium-intact strips. In endothelium-denuded strips, 5-HT induced only a sustained hyperpolarization, and this was changed to a depolarization by the selective 5-HT(7) receptor inhibitor SB269970. This depolarization was inhibited by the 5-HT(2A) receptor blocker sarpogrelate. 5-HT induced a relaxation of PGF(2α) -induced contracted strips that was similar in endothelium-intact and -denuded preparations. The latter relaxation was changed to contraction by SB269970 and this contraction was inhibited by sarpogrelate. Immunoreactive responses against endothelial and smooth muscle 5-HT(2A) receptors and smooth muscle 5-HT(7) receptors were identified in the vein. The 5-HT-induced relaxation of the PGF(2α) contraction was inhibited by the cAMP-dependent protein kinase inhibitor Rp-cAMPS and by the AC inhibitor SQ22536. CONCLUSIONS AND IMPLICATIONS These results indicate that 5-HT activates both smooth muscle 5-HT(7) receptors (to produce relaxation) and smooth muscle 5-HT(2A) receptors (to produce contraction) in rabbit jugular vein. We suggest that in this particular vein, the 5-HT(2A) receptor-induced depolarization and contraction are masked by the 5-HT(7) receptor-induced responses, possibly via actions mediated by cAMP.
Collapse
Affiliation(s)
- Takeo Itoh
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Japan.
| | | |
Collapse
|
40
|
Garland CJ, Yarova PL, Jiménez-Altayó F, Dora KA. Vascular hyperpolarization to β-adrenoceptor agonists evokes spreading dilatation in rat isolated mesenteric arteries. Br J Pharmacol 2012; 164:913-21. [PMID: 21244369 DOI: 10.1111/j.1476-5381.2011.01224.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE β-Adrenoceptor stimulation causes pronounced vasodilatation associated with smooth muscle hyperpolarization. Although the hyperpolarization is known to reflect K(ATP) channel activation, it is not known to what extent it contributes to vasodilatation. EXPERIMENTAL APPROACH Smooth muscle membrane potential and tension were measured simultaneously in small mesenteric arteries in a wire myograph. The spread of vasodilatation over distance was assessed in pressurized arteries following localized intraluminal perfusion of either isoprenaline, adrenaline or noradrenaline. KEY RESULTS Isoprenaline stimulated rapid smooth muscle relaxation associated at higher concentrations with robust hyperpolarization. Noradrenaline or adrenaline evoked a similar hyperpolarization to isoprenaline if the α(1)-adrenoceptor antagonist prazosin was present. With each agonist, glibenclamide blocked hyperpolarization without reducing relaxation. Focal, intraluminal application of isoprenaline, noradrenaline or adrenaline during block of α(1)-adrenoceptors evoked a dilatation that spread along the entire length of the isolated artery. This response was endothelium-dependent and inhibited by glibenclamide. CONCLUSIONS AND IMPLICATIONS Hyperpolarization is not essential for β-adrenoceptor-mediated vasodilatation. However, following focal β-adrenoceptor stimulation, this hyperpolarization underlies the ability of vasodilatation to spread along the artery wall. The consequent spread of vasodilatation is dependent upon the endothelium and likely to be of physiological relevance in the coordination of tissue blood flow.
Collapse
Affiliation(s)
- C J Garland
- Department of Pharmacology, University of Oxford, UK.
| | | | | | | |
Collapse
|
41
|
Shi WW, Yang Y, Shi Y, Jiang C. K(ATP) channel action in vascular tone regulation: from genetics to diseases. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2012; 64:1-13. [PMID: 22348955 PMCID: PMC4132831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ATP-sensitive potassium (K(ATP)) channels are widely distributed in vasculatures, and play an important role in the vascular tone regulation. The K(ATP) channels consist of 4 pore-forming inward rectifier K(+) channel (Kir) subunits and 4 regulatory sulfonylurea receptors (SUR). The major vascular isoform of K(ATP) channels is composed of Kir6.1/SUR2B, although low levels of other subunits are also present in vascular beds. The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function. The Kir6.1/SUR2B channel is regulated by intracellular ATP and ADP. The channel is a common target of several vasodilators and vasoconstrictors. Endogenous vasopressors such as arginine vasopressin and α-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the K(ATP) channels, while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase K(ATP) channel activity by activating the adenylate cyclase-cAMP-protein kinase A (PKA) pathway. PKC phosphorylates a cluster of 4 serine residues at C-terminus of Kir6.1, whereas PKA acts on Ser1387 in the nucleotide binding domain 2 of SUR2B. The Kir6.1/SUR2B channel is also inhibited by oxidants including reactive oxygen species allowing vascular regulation in oxidative stress. The molecular basis underlying such a channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues, especially Cys176, in Kir6.1. Furthermore, the channel activity is augmented in endotoxemia or septic shock, as a result of the upregulation of Kir6.1/SUR2B expression. Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by lipopolysaccharides and perhaps other toll-like receptor ligands as well. In this review, we summarize the vascular K(ATP) channel regulation under physiological and pathophysiological conditions, and discuss the importance of K(ATP) channel as a potentially useful target in the treatment and prevention of cardiovascular diseases.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Animals
- Endotoxemia/metabolism
- Endotoxemia/physiopathology
- Humans
- KATP Channels/genetics
- KATP Channels/physiology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/physiology
- Receptors, Drug/genetics
- Receptors, Drug/physiology
- Shock, Septic/metabolism
- Shock, Septic/physiopathology
- Sulfonylurea Receptors
- Vasoconstriction/physiology
- Vasodilation/physiology
- Vasomotor System/physiology
Collapse
Affiliation(s)
- Wei-Wei Shi
- Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, Emory University, Atlanta, GA 30308, USA.
| | | | | | | |
Collapse
|
42
|
Roscioni SS, Maarsingh H, Elzinga CRS, Schuur J, Menzen M, Halayko AJ, Meurs H, Schmidt M. Epac as a novel effector of airway smooth muscle relaxation. J Cell Mol Med 2011; 15:1551-63. [PMID: 20716113 PMCID: PMC3823199 DOI: 10.1111/j.1582-4934.2010.01150.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dysfunctional regulation of airway smooth muscle tone is a feature of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle contraction is directly associated with changes in the phosphorylation of myosin light chain (MLC), which is increased by Rho and decreased by Rac. Although cyclic adenosine monophosphate (cAMP)-elevating agents are believed to relieve bronchoconstriction mainly via activation of protein kinase A (PKA), here we addressed the role of the novel cAMP-mediated exchange protein Epac in the regulation of airway smooth muscle tone. Isometric tension measurements showed that specific activation of Epac led to relaxation of guinea pig tracheal preparations pre-contracted with methacholine, independently of PKA. In airway smooth muscle cells, Epac activation reduced methacholine-induced MLC phosphorylation. Moreover, when Epac was stimulated, we observed a decreased methacholine-induced RhoA activation, measured by both stress fibre formation and pull-down assay whereas the same Epac activation prevented methacholine-induced Rac1 inhibition measured by pull-down assay. Epac-driven inhibition of both methacholine-induced muscle contraction by Toxin B-1470, and MLC phosphorylation by the Rac1-inhibitor NSC23766, were significantly attenuated, confirming the importance of Rac1 in Epac-mediated relaxation. Importantly, human airway smooth muscle tissue also expresses Epac, and Epac activation both relaxed pre-contracted human tracheal preparations and decreased MLC phosphorylation. Collectively, we show that activation of Epac relaxes airway smooth muscle by decreasing MLC phosphorylation by skewing the balance of RhoA/Rac1 activation towards Rac1. Therefore, activation of Epac may have therapeutical potential in the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tilley DG. G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res 2011; 109:217-30. [PMID: 21737817 DOI: 10.1161/circresaha.110.231225] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors signal through a variety of mechanisms that impact cardiac function, including contractility and hypertrophy. G protein-dependent and G protein-independent pathways each have the capacity to initiate numerous intracellular signaling cascades to mediate these effects. G protein-dependent signaling has been studied for decades and great strides continue to be made in defining the intricate pathways and effectors regulated by G proteins and their impact on cardiac function. G protein-independent signaling is a relatively newer concept that is being explored more frequently in the cardiovascular system. Recent studies have begun to reveal how cardiac function may be regulated via G protein-independent signaling, especially with respect to the ever-expanding cohort of β-arrestin-mediated processes. This review primarily focuses on the impact of both G protein-dependent and β-arrestin-dependent signaling pathways on cardiac function, highlighting the most recent data that illustrate the comprehensive nature of these mechanisms of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, and Center for Translational Medicine, Thomas Jefferson University, 1025 Walnut Street, 402 College Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
44
|
Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011; 23:1257-66. [DOI: 10.1016/j.cellsig.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/14/2022]
|
45
|
Leech CA, Dzhura I, Chepurny OG, Kang G, Schwede F, Genieser HG, Holz GG. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:236-47. [PMID: 21782840 DOI: 10.1016/j.pbiomolbio.2011.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.
Collapse
Affiliation(s)
- Colin A Leech
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Zieba BJ, Artamonov MV, Jin L, Momotani K, Ho R, Franke AS, Neppl RL, Stevenson AS, Khromov AS, Chrzanowska-Wodnicka M, Somlyo AV. The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem 2011; 286:16681-92. [PMID: 21454546 PMCID: PMC3089510 DOI: 10.1074/jbc.m110.205062] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/11/2011] [Indexed: 11/06/2022] Open
Abstract
Agonist activation of the small GTPase, RhoA, and its effector Rho kinase leads to down-regulation of smooth muscle (SM) myosin light chain phosphatase activity, an increase in myosin light chain (RLC(20)) phosphorylation and force. Cyclic nucleotides can reverse this process. We report a new mechanism of cAMP-mediated relaxation through Epac, a GTP exchange factor for the small GTPase Rap1 resulting in an increase in Rap1 activity and suppression of RhoA activity. An Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP ("007"), significantly reduced agonist-induced contractile force, RLC(20), and myosin light chain phosphatase phosphorylation in both intact and permeabilized vascular, gut, and airway SMs independently of PKA and PKG. The vasodilator PGI(2) analog, cicaprost, increased Rap1 activity and decreased RhoA activity in intact SMs. Forskolin, phosphodiesterase inhibitor isobutylmethylxanthine, and isoproterenol also significantly increased Rap1-GTP in rat aortic SM cells. The PKA inhibitor H89 was without effect on the 007-induced increase in Rap1-GTP. Lysophosphatidic acid-induced RhoA activity was reduced by treatment with 007 in WT but not Rap1B null fibroblasts, consistent with Epac signaling through Rap1B to down-regulate RhoA activity. Isoproterenol-induced increase in Rap1 activity was inhibited by silencing Epac1 in rat aortic SM cells. Evidence is presented that cooperative cAMP activation of PKA and Epac contribute to relaxation of SM. Our findings demonstrate a cAMP-mediated signaling mechanism whereby activation of Epac results in a PKA-independent, Rap1-dependent Ca(2+) desensitization of force in SM through down-regulation of RhoA activity. Cyclic AMP inhibition of RhoA is mediated through activation of both Epac and PKA.
Collapse
Affiliation(s)
- Bartosz J. Zieba
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
- the Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mykhaylo V. Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Aaron S. Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ronald L. Neppl
- the Department of Cardiology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Andra S. Stevenson
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Alexander S. Khromov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | | | - Avril V. Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
47
|
Smani T, Calderon E, Rodriguez-Moyano M, Dominguez-Rodriguez A, Diaz I, Ordóñez A. Urocortin-2 induces vasorelaxation of coronary arteries isolated from patients with heart failure. Clin Exp Pharmacol Physiol 2011; 38:71-6. [PMID: 21105894 DOI: 10.1111/j.1440-1681.2010.05466.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Urocortin-2 (Ucn2) is a vasoactive peptide belonging to the corticotrophin-releasing factor (CRF) family that has potent cardiovascular actions. It has been suggested that Ucn2 participates in the pathophysiology of heart failure. However, little is known about the mechanisms underlying the action of Ucn2 in human coronary arteries. The aim of the present study was to assess the effects of Ucn2 on the vascular tone of human coronary arteries dissected from heart failure patients. 2. Human coronary arteries were dissected from the hearts of patients subjected to orthotopic heart transplantation. Coronary arteries were obtained from 17 patients with heart failure due to dilated cardiomyopathy of ischaemic origin in Stage III-IV of the New York Heart Association classification. Changes in tone were measured in arterial rings using force transducers. 3. Application of increasing concentrations of Ucn2 (5-20 nmol/L) to arterial rings precontracted with agonists induced dose-dependent relaxation of the coronary artery, which was independent of endothelial cell activation. Furthermore, the inhibition of the adenylyl cyclase by MDL-12 (100 nmol/L) and protein kinase A (PKA) by H89 (1 μmol/L) prevented Ucn2-mediated relaxation of coronary artery rings. 4. The results of the present study suggest that, in heart failure patients, Ucn2 could be useful in modulating coronary artery circulation independent of endothelial integrity through mechanisms that involve adenylyl cyclase activation and PKA stimulation. The findings warrant further investigation of the role of Ucn2 in circulatory regulation and its potential therapeutic application in heart disease.
Collapse
Affiliation(s)
- Tarik Smani
- Institute of Biomedicine from Seville, Universitary Hospital of Virgen del Rocío, University of Seville, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Mironov SL, Skorova EY. Stimulation of bursting in pre-Bötzinger neurons by Epac through calcium release and modulation of TRPM4 and K-ATP channels. J Neurochem 2011; 117:295-308. [PMID: 21281309 DOI: 10.1111/j.1471-4159.2011.07202.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exchange factor directly activated by cAMP (Epac) can couple cAMP production to the activation of particular membrane and cytoplasmic targets. Using patch-clamp recordings and calcium imaging in organotypic brainstem slices, we examined the role of Epac in pre-Bötzinger complex, an essential part of the respiratory network. The selective agonist 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT) sensitized calcium mobilisation from inositol-1,4,5-trisphosphate-sensitive internal stores that stimulated TRPM4 (transient receptor potential cation channel, subfamily M, Melastatin) channels and potentiated the bursts of action potentials. 8-pCPT actions were abolished after inhibition of phospholipase C with U73122 and depletion of calcium stores with thapsigargin. Caffeine-sensitive release channels were not modulated by 8-pCPT. Epac inhibited ATP-sensitive K(+) channels that also led to the enhancement of bursting by 8-pCPT. Bursting activity, spontaneous calcium transients and activity of TRPM4 and ATP-sensitive K(+) channels were potentiated after brief exposures to bradykinin and incubation with wortmannin produced opposite effects that can be explained by changes in phosphatidylinositol 4,5-bisphosphate levels. 8-pCPT stimulated the respiratory motor output in functionally intact preparations and the effects of bradykinin and wortmannin were identical to those observed in organotypic slices. The data thus indicate a novel pathway of controlling bursting activity in pre-Bötzinger complex neurons through Epac that can involved in reinforcement of the respiratory activity by cAMP.
Collapse
Affiliation(s)
- Sergej L Mironov
- DFG-Center of Molecular Physiology of the Brain, Department of Neuro- and Sensory Physiology, Georg-August-University, Göttingen, Germany.
| | | |
Collapse
|
49
|
Orie NN, Clapp LH. Role of prostanoid IP and EP receptors in mediating vasorelaxant responses to PGI2 analogues in rat tail artery: Evidence for Gi/o modulation via EP3 receptors. Eur J Pharmacol 2010; 654:258-65. [PMID: 21185823 DOI: 10.1016/j.ejphar.2010.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/17/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
Prostanoid IP receptors coupled to Gs are thought to be the primary target for prostacyclin (PGI(2)) analogues. However, these agents also activate prostanoid EP(1-4) receptor subtypes to varying degrees, which are positively (EP(2/4)) or negatively (EP(3)) coupled to adenylate cyclase through Gs or Gi, respectively. We investigated the role of these receptors in modulating relaxation to PGI(2) analogues cicaprost, iloprost and treprostinil in pre-contracted segments of rat tail artery. Prostanoid IP (RO1138452), EP(4) (GW627368X), EP(3) (L-798106), EP(1-3) (AH6809), and EP(1) (SC-51322) receptor antagonists were used to determine each receptor contribution. The role of G(i/o) was investigated using pertussis toxin (PTX), while dependence on cAMP was determined using adenylate cyclase (2'5'dideoxyadenosine, DDA) and protein kinase A (2'-O-monobutyryladenosine- 3',5'-cyclic monophosphorothioate, Rp- isomer, Rp-2'-O-MB-cAMPS) inhibitors, and by measurement of tissue cAMP. All analogues caused relaxation which was significantly (P<0.01) inhibited by RO1138452; with maximum response to cicaprost, iloprost and treprostinil reduced by 51%, 66% and 37%, respectively. GW627368X had no effect when used alone, but in combination with RO1138452, caused a rightward shift of the curves for cicaprost and iloprost but not treprostinil. PTX treatment potentiated relaxation to all 3 analogues (P<0.01), as did L798106 and AH6809 but not SC-51322. Basal cAMP levels were higher in PTX-treated tissues and DDA- and Rp-2'-O-MB-cAMPs--sensitive responses increased to analogue concentrations <0.1μM. In conclusion, prostanoid EP(3) receptors via G(i/o) negatively modulate prostanoid IP receptor-mediated relaxation to cicaprost, iloprost and treprostinil. However, other pathways contribute to analogue-induced vasorelaxation, the nature of which remains unclear for treprostinil.
Collapse
Affiliation(s)
- Nelson N Orie
- BHF Laboratories, Department of Medicine, University College London, 5 University Street, London, WC1E 6JF, UK.
| | | |
Collapse
|
50
|
Leech CA, Dzhura I, Chepurny OG, Schwede F, Genieser HG, Holz GG. Facilitation of ß-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets 2010; 2:72-81. [PMID: 20428467 PMCID: PMC2860288 DOI: 10.4161/isl.2.2.10582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at K(ATP) channels was facilitated by 2’-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human ß-cell or rat INS-1 cell K(ATP) channels was left-shifted in the presence of 2’-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pCP T-2’-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca²(+)](i) was also measured. This effect of 8-pCP T-2’-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in K(ATP) channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close K(ATP) channels, to depolarize ß-cells and to promote insulin secretion.
Collapse
Affiliation(s)
- Colin A Leech
- Department of Medicine, State University of New York, Syracuse, USA.
| | | | | | | | | | | |
Collapse
|