1
|
Huang Q, Yi W, Fan J, Chen R, Ma X, Chen Z, Wu W, Qian L. Effects supplementation of novel multi-enzyme on laying performance, egg quality, and intestinal health and digestive function of laying hens. Poult Sci 2024; 103:104461. [PMID: 39504823 PMCID: PMC11570941 DOI: 10.1016/j.psj.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the effects of multi-enzyme supplementation on various aspects of laying hens, including laying performance, egg quality, intestinal health and digestive function. In total, 384 Jingfen No.6 laying hens at 65-week-age were randomly assigned to four distinct dietary treatments: a basal diet (CON), CON supplemented with 150 g/t multi-enzyme (T1), CON with 300 g/t multi-enzyme (T2), and 600 g/t multi-enzyme (T3). A significant linear (P = 0.044) and quadratic (P = 0.014) increase was observed in the laying rate, while the feed/egg ratio exhibited a linear (P = 0.001) and quadratic (P < 0.001) decrease with increasing multi-enzyme supplementation. Additionally, linear (P < 0.05) and quadratic (P < 0.05) increases were observed in yolk rate and haugh unit with increasing levels of multi-enzyme supplementation. The trypsin activity in the duodenum and crude protein digestibility showed linear (P < 0.05) and quadratic (P < 0.05) increase with the addition of multi-enzyme. Furthermore, lipase and amylase activities in the duodenum increased quadratically (P = 0.041) and linearly (P = 0.040), respectively. Both jejunal and ileal digesta viscosities showed linear (P < 0.05) and quadratic (P < 0.05) decrease with the increasing addition of multi-enzyme. Moreover, multi-enzyme supplementation significantly increased (P < 0.05) the number of goblet cells in the intestinal of the treatment groups. The mRNA expression of Occludin-1, mucin 2 (MUC-2), large neutral amino acids transporter small subunit 1 (LAT-1) in the jejunum were significantly increased (P < 0.05) in the treatment groups (T1, T2 and T3) compared to the CON group. Additionally, the mRNA expression of solute carrier family 6-member 19 (B0AT-1) and large neutral amino acids transporter small subunit 4 (LAT-4) were significantly evaluated (P < 0.05) in the T2 and T3 groups, respectively. In conclusion, multi-enzyme supplementation enhanced digestive enzyme activities and intestinal barrier function, reduced intestinal digesta viscosity, and regulated mRNA expression of intestinal amino acid and lipid transporter genes, thereby improving crude protein digestibility and positively affecting laying performance and egg quality in hens.
Collapse
Affiliation(s)
- Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wuzhou Yi
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jinghui Fan
- Hainan Institute of Zhejiang University, Sanya 572025, PR China
| | - Rui Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhou Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, PR China
| | - Wenzi Wu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, PR China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Sweetalana, Nataneli S, Huang S, Mooney JA, Szpiech ZA. Genotypic and phenotypic consequences of domestication in dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592072. [PMID: 38746159 PMCID: PMC11092585 DOI: 10.1101/2024.05.01.592072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Runs of homozygosity (ROH) are genomic regions that arise when two copies of identical haplotypes are inherited from a shared common ancestor. In this study, we leverage ROH to identify associations between genetic diversity and non-disease phenotypes in Canis lupus familiaris (dogs). We find significant association between the ROH inbreeding coefficient (FROH) and several phenotypic traits. These traits include height, weight, lifespan, muscled, white coloring of the head and chest, furnishings, and fur length. After correcting for population structure, we identified more than 45 genes across the examined quantitative traits that exceed the threshold for suggestive significance. We observe distinct distributions of inbreeding and elevated levels of long ROH in modern breed dogs compared to more ancient breeds, which aligns with breeding practices during Victorian era breed establishment. Our results highlight the impact of non-additive variation and of polygenicity on complex quantitative phenotypes in dogs due to domestication and the breed formation bottleneck.
Collapse
Affiliation(s)
- Sweetalana
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Shirin Nataneli
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Shengmiao Huang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jazlyn A Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, USA
| |
Collapse
|
3
|
Schroeder M, Fuenzalida B, Yi N, Shahnawaz S, Gertsch J, Pellegata D, Ontsouka E, Leiva A, Gutiérrez J, Müller M, Brocco MA, Albrecht C. LAT1-dependent placental methionine uptake is a key player in fetal programming of metabolic disease. Metabolism 2024; 153:155793. [PMID: 38295946 DOI: 10.1016/j.metabol.2024.155793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
The Developmental Origins of Health and Disease hypothesis sustains that exposure to different stressors during prenatal development prepares the offspring for the challenges to be encountered after birth. We studied the gestational period as a particularly vulnerable window where different stressors can have strong implications for fetal programming of the offspring's life-long metabolic status via alterations of specific placentally expressed nutrient transporters. To study this mechanism, we used a murine prenatal stress model, human preeclampsia, early miscarriage, and healthy placental tissue samples, in addition to in vitro models of placental cells. In stressed mice, placental overexpression of L-type amino acid transporter 1 (Lat1) and subsequent global placental DNA hypermethylation was accompanied by fetal and adult hypothalamic dysregulation in global DNA methylation and gene expression as well as long-term metabolic abnormalities exclusively in female offspring. In human preeclampsia, early miscarriage, and under hypoxic conditions, placental LAT1 was significantly upregulated, leading to increased methionine uptake and global DNA hypermethylation. Remarkably, subgroups of healthy term placentas with high expression of stress-related genes presented increased levels of placental LAT1 mRNA and protein, DNA and RNA hypermethylation, increased methionine uptake capacity, one-carbon metabolic pathway disruption, higher methionine concentration in the placenta and transport to the fetus specifically in females. Since LAT1 mediates the intracellular accumulation of methionine, global DNA methylation, and one-carbon metabolism in the placenta, our findings hint at a major sex-specific global response to a variety of prenatal stressors affecting placental function, epigenetic programming, and life-long metabolic disease and provide a much-needed insight into early-life factors predisposing females/women to metabolic disorders.
Collapse
Affiliation(s)
- Mariana Schroeder
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| | - Barbara Fuenzalida
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Nan Yi
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Saira Shahnawaz
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan; Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Jürg Gertsch
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Daniele Pellegata
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Edgar Ontsouka
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Andrea Leiva
- Faculty of Medicine and Science, Universidad of San Sebastian, Santiago, Chile
| | - Jaime Gutiérrez
- Faculty of Medicine and Science, Universidad of San Sebastian, Santiago, Chile
| | - Martin Müller
- Division of Gynecology and Obstetrics, Lindenhofgruppe, Bern, Switzerland
| | - Marcela A Brocco
- Institute of Biotechnological Research, University of San Martín, Buenos Aires, Argentina
| | - Christiane Albrecht
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
5
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
6
|
Xu P, Guo J, Jin Y, Lee SC, Li Z, Kong L, Liu M, Niu X, Liu Y, Bai G, Ren L, Ren B, Fan L, Zhao M, Wang L. Toxic effects of maternal cadmium exposure on the metabolism and transport system of amino acids in the maternal livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114726. [PMID: 36898312 DOI: 10.1016/j.ecoenv.2023.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fetal growth restriction (FGR) is one of the most common obstetric diseases, and affects approximately 10 % of all pregnancies worldwide. Maternal cadmium (Cd) exposure is one of the factors that may increase the risk of the development of FGR. However, its underlying mechanisms remain largely unknown. In this study, using Cd-treated mice as an experimental model, we analyzed the levels of some nutrients in the circulation and the fetal livers by biochemical assays; the expression patterns of several key genes involved in the nutrient uptake and transport, and the metabolic changes in the maternal livers were also examined by quantitative real-time PCR and gas chromatography-time of flight-mass spectrometry method. Our results showed that, the Cd treatment specifically reduced the levels of total amino acids in the peripheral circulation and the fetal livers. Concomitantly, Cd upregulated the expressions of three amino acid transport genes (SNAT4, SNAT7 and ASCT1) in the maternal livers. The metabolic profiling of maternal livers also revealed that, several amino acids and their derivatives were also increased in response to the Cd treatment. Further bioinformatics analysis indicated that the experimental treatment activated the metabolic pathways, including the alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, arginine and proline metabolism. These findings suggest that maternal Cd exposure activate the amino acid metabolism and increase the amino acid uptake in the maternal liver, which reduces the supply of amino acids to the fetus via the circulation. We suspect that this underlies the Cd-evoked FGR.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Lvliang Comprehensive Test Center, Lvliang 033000, China.
| | - Jing Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yaling Jin
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shao Chin Lee
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhilang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Kong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ming Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai 201300, China
| | - Guoqiang Bai
- Lvliang Comprehensive Test Center, Lvliang 033000, China
| | - Lu Ren
- The Eleventh Clinical College of Shanxi Medical University, Lvliang People's Hospital, Lvliang 033000, China
| | - Bei Ren
- Institute of Drug Testing Technology, Shanxi Provincial Inspection and Testing Center, Taiyuan 030001, China
| | - Linxiao Fan
- Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals (Basel) 2023; 13:ani13071189. [PMID: 37048445 PMCID: PMC10093496 DOI: 10.3390/ani13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457 Essen, Germany
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
8
|
Zhao X, Sakamoto S, Wei J, Pae S, Saito S, Sazuka T, Imamura Y, Anzai N, Ichikawa T. Contribution of the L-Type Amino Acid Transporter Family in the Diagnosis and Treatment of Prostate Cancer. Int J Mol Sci 2023; 24:ijms24076178. [PMID: 37047148 PMCID: PMC10094571 DOI: 10.3390/ijms24076178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The L-type amino acid transporter (LAT) family contains four members, LAT1~4, which are important amino acid transporters. They mainly transport specific amino acids through cell membranes, provide nutrients to cells, and are involved in a variety of metabolic pathways. They regulate the mTOR signaling pathway which has been found to be strongly linked to cancer in recent years. However, in the field of prostate cancer (PCa), the LAT family is still in the nascent stage of research, and the importance of LATs in the diagnosis and treatment of prostate cancer is still unknown. Therefore, this article aims to report the role of LATs in prostate cancer and their clinical significance and application. LATs promote the progression of prostate cancer by increasing amino acid uptake, activating the mammalian target of rapamycin (mTOR) pathway and downstream signals, mediating castration-resistance, promoting tumor angiogenesis, and enhancing chemotherapy resistance. The importance of LATs as diagnostic and therapeutic targets for prostate cancer was emphasized and the latest research results were introduced. In addition, we introduced selective LAT1 inhibitors, including JPH203 and OKY034, which showed excellent inhibitory effects on the proliferation of various tumor cells. This is the future direction of amino acid transporter targeting therapy drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Jiaxing Wei
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Sangjon Pae
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shinpei Saito
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomokazu Sazuka
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yusuke Imamura
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
9
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
10
|
Collao N, Akohene-Mensah P, Nallabelli J, Binet ER, Askarian A, Lloyd J, Niemiro GM, Beals JW, van Vliet S, Rajgara R, Saleh A, Wiper-Bergeron N, Paluska SA, Burd NA, De Lisio M. The Role of L-type Amino Acid Transporter 1 (Slc7a5) During In Vitro Myogenesis. Am J Physiol Cell Physiol 2022; 323:C595-C605. [PMID: 35848618 DOI: 10.1152/ajpcell.00162.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Satellite cells are required for muscle regeneration, remodeling, and repair through their activation, proliferation, and differentiation; however, how dietary factors regulate this process remains poorly understood. The L-Type amino acid transporter 1 (LAT1) transports amino acids, such as leucine, into mature myofibers, which then stimulates protein synthesis and anabolic signaling. However, whether LAT1 is expressed on myoblasts and is involved in regulating myogenesis is unknown. The aim of this study was to characterize the expression and functional relevance of LAT1 during different stages of myogenesis and in response to growth and atrophic conditions in vitro. We determined that LAT1 is expressed by C2C12 and human primary myoblasts, and its gene expression is lower during differentiation (p<0.05). Pharmacological inhibition and genetic knockdown of LAT1 impaired myoblast viability, differentiation, and fusion (all p<0.05). LAT1 protein content in C2C12 myoblasts was not significantly altered in response to different leucine concentrations in cell culture media or in two in vitro atrophy models. However, LAT1 content was decreased in myotubes under atrophic conditions in vitro (p<0.05). These findings indicate that LAT1 is stable throughout myogenesis and in response to several in vitro conditions that induce muscle remodeling. Further, amino acid transport through LAT1 is required for normal myogenesis in vitro.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | | | - Julian Nallabelli
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Emileigh R Binet
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Ali Askarian
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Jessica Lloyd
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Grace M Niemiro
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph W Beals
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stephan van Vliet
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rashida Rajgara
- Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Aisha Saleh
- Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Scott A Paluska
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas A Burd
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.,Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Molecular mechanism of nutrient uptake in developing embryos of oviparous cloudy catshark (Scyliorhinus torazame). PLoS One 2022; 17:e0265428. [PMID: 35290397 PMCID: PMC8923501 DOI: 10.1371/journal.pone.0265428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Forms of embryonic nutrition are highly diverse in cartilaginous fishes, which contain oviparity, yolk-sac viviparity and several types of matrotrophic viviparity (histotrophy, oophagy, and placentotrophy). The molecular mechanisms of embryonic nutrition are poorly understood in these animals as few species are capable of reproducing in captivity. Oviparous cartilaginous fishes solely depend on yolk nutrients for their growth and development. In the present study, we compared the contribution to embryonic nutrition of the embryonic intestine with the yolk sac membrane (YSM). RNA-seq analysis was performed on the embryonic intestine and YSM of the oviparous cloudy catshark Scyliorhinus torazame to identify candidate genes involved in nutrient metabolism to further the understanding of nutrient utilization of developing embryos. RNA-seq discovery was subsequently confirmed by quantitative PCR analysis and we identified increases in several amino acid transporter genes (slc3a1, slc6a19, slc3a2, slc7a7) as well as genes involved in lipid absorption (apob and mtp) in the intestine after ‘pre-hatching’, which is a developmental event marked by an early opening of the egg case about 4 months before hatching. Although a reciprocal decrease in the nutritional role of YSM was expected after the intestine became functional, we observed similar increases in gene expression among amino acid transporters, lipid absorption molecules, and lysosomal cathepsins in the extraembryonic YSM in late developmental stages. Ultrastructure of the endodermal cells of YSM showed that yolk granules were incorporated by endocytosis, and the number of granules increased during development. Furthermore, the digestion of yolk granules in the YSM and nutrient transport through the basolateral membrane of the endodermal cells appeared to be enhanced after pre-hatching. These findings suggest that nutrient digestion and absorption is highly activated in both intestine and YSM after pre-hatching in catshark embryos, which supports the rapid growth at late developmental stages.
Collapse
|
12
|
Wassie T, Duan X, Xie C, Wang R, Wu X. Dietary Enteromorpha polysaccharide-Zn supplementation regulates amino acid and fatty acid metabolism by improving the antioxidant activity in chicken. J Anim Sci Biotechnol 2022; 13:18. [PMID: 35074004 PMCID: PMC8785591 DOI: 10.1186/s40104-021-00648-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background Enteromorpha prolifera (E. prolifera) polysaccharide has become a promising feed additive with a variety of physiological activities, such as anti-oxidant, anti-cancer, anti-diabetic, immunomodulatory, hypolipidemic, and cation chelating ability. However, whether Enteromorpha polysaccharide-trace element complex supplementation regulates amino acid and fatty acid metabolism in chicken is largely unknown. This study was conducted to investigate the effects of E. prolifera polysaccharide (EP)-Zn supplementation on growth performance, amino acid, and fatty acid metabolism in chicken. Methods A total of 184 one-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with 8 replicates, 12 chickens per replicate, and fed either the basal diet (control group) or basal diet plus E. prolifera polysaccharide-Zinc (400 mg EP-Zn/kg diet). Results Dietary EP-Zn supplementation significantly increased (P < 0.05) the body weight, average daily gain, muscle antioxidant activity, serum HDL level, and reduced serum TG and LDL concentration. In addition, dietary EP-Zn supplementation could modulate ileal amino acid digestibility and upregulate the mRNA expression of amino acid transporter genes in the jejunum, ileum, breast muscle, and liver tissues (P < 0.05). Compared with the control group, breast meat from chickens fed EP-Zn had higher (P < 0.05) Pro and Asp content, and lower (P < 0.05) Val, Phe, Gly, and Cys free amino acid content. Furthermore, EP-Zn supplementation upregulated (P < 0.05) the mRNA expressions of mTOR and anti-oxidant related genes, while down-regulated protein degradation related genes in the breast muscle. Breast meat from EP-Zn supplemented group had significantly lower (P < 0.05) proportions of Σn-3 PUFA, and a higher percentage of Σn-6 PUFA and the ratio of n-6/n-3 PUFA. Besides, EP-Zn supplementation regulated lipid metabolism by inhibiting the gene expression of key enzymes involved in the fatty acid synthesis and activating genes that participated in fatty acid oxidation in the liver tissue. Conclusions It is concluded that EP-Zn complex supplementation regulates apparent ileal amino acid digestibility, enhances amino acid metabolism, and decreases oxidative stress-associated protein breakdown, thereby improving the growth performance. Furthermore, it promotes fatty acid oxidation and restrains fat synthesis through modulating lipid metabolism-related gene expression. Graphical abstract ![]()
Collapse
|
13
|
Taslimifar M, Faltys M, Kurtcuoglu V, Verrey F, Makrides V. Analysis of L-leucine amino acid transporter species activity and gene expression by human blood brain barrier hCMEC/D3 model reveal potential LAT1, LAT4, B 0AT2 and y +LAT1 functional cooperation. J Cereb Blood Flow Metab 2022; 42:90-103. [PMID: 34427144 PMCID: PMC8721536 DOI: 10.1177/0271678x211039593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the CNS, amino acid (AA) neurotransmitters and neurotransmitter precursors are subject to tight homeostatic control mediated by blood-brain barrier (BBB) solute carrier amino acid transporters (AATs). Since the BBB is composed of multiple closely apposed cell types and opportunities for human in vivo studies are limited, we used in vitro and computational approaches to investigate human BBB AAT activity and regulation. Quantitative real-time PCR (qPCR) of the human BBB endothelial cell model hCMEC/D3 (D3) was used to determine expression of selected AAT, tight junction (TJ), and signal transduction (ST) genes under various culture conditions. L-leucine uptake data were interrogated with a computational model developed by our group for calculating AAT activity in complex cell cultures. This approach is potentially applicable to in vitro cell culture drug studies where multiple "receptors" may mediate observed responses. Of 7 Leu AAT genes expressed by D3 only the activity of SLC7A5-SLC3A2/LAT1-4F2HC (LAT1), SLC43A2/LAT4 (LAT4) and sodium-dependent AATs, SLC6A15/B0AT2 (B0AT2), and SLC7A7/y+LAT1 (y+LAT1) were calculated to be required for Leu uptake. Therefore, D3 Leu transport may be mediated by a potentially physiologically relevant functional cooperation between the known BBB AAT, LAT1 and obligatory exchange (y+LAT1), facilitative diffusion (LAT4), and sodium symporter (B0AT2) transporters.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Martin Faltys
- Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Department of Intensive Care Medicine, University Hospital, University of Bern, Bern, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - François Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Victoria Makrides
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,EIC BioMedical Labs, Norwood, MA, USA
| |
Collapse
|
14
|
Xi Y, Zhang D, Liang Y, Shan Z, Teng X, Teng W. Proteomic Analysis of the Intestinal Resistance to Thyroid Hormone Mouse Model With Thyroid Hormone Receptor Alpha Mutations. Front Endocrinol (Lausanne) 2022; 13:773516. [PMID: 35574030 PMCID: PMC9095823 DOI: 10.3389/fendo.2022.773516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone is critical during the development of vertebrates and affects the function of many organs and tissues, especially the intestine. Triiodothyronine (T3) is the active form and can bind to thyroid hormone nuclear receptors (TRs) to play a vital role in the development of vertebrates. The resistance to thyroid hormone α, as seen in patients, has been mimicked by the ThraE403X mutation. To investigate the mechanisms underlying the effect of TRα1 on intestinal development, the present study employed proteomic analysis to identify differentially expressed proteins (DEPs) in the distal ileum between homozygous ThraE403X/E403X and wild-type Thra+/+ mice. A total of 1,189 DEPs were identified, including 603 upregulated and 586 downregulated proteins. Proteomic analysis revealed that the DEPs were highly enriched in the metabolic process, the developmental process, the transporter of the nutrients, and the intestinal immune system-related pathway. Of these DEPs, 20 proteins were validated by parallel reaction monitoring analysis. Our intestinal proteomic results provide promising candidates for future studies, as they suggest novel mechanisms by which TRα1 may influence intestinal development, such as the transport of intestinal nutrients and the establishment of innate and adaptive immune barriers of the intestine.
Collapse
Affiliation(s)
- Yue Xi
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Liang
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaochun Teng, ; Weiping Teng,
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaochun Teng, ; Weiping Teng,
| |
Collapse
|
15
|
Liu X, Bennison SA, Robinson L, Toyo-oka K. Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sci 2021; 12:brainsci12010056. [PMID: 35053800 PMCID: PMC8774252 DOI: 10.3390/brainsci12010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in severe neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the 17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein, is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1. Although these three proteins are known to be responsible for neuronal migration defects in MDS, there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about their functions in neurodevelopment, especially in neuronal migration. This review will summarize the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of other molecules in the MDS critical regions in neuronal migration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Sarah A. Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Lozen Robinson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
- Correspondence: ; Tel.: +1-(215)-991-8288
| |
Collapse
|
16
|
Daane JM, Blum N, Lanni J, Boldt H, Iovine MK, Higdon CW, Johnson SL, Lovejoy NR, Harris MP. Modulation of bioelectric cues in the evolution of flying fishes. Curr Biol 2021; 31:5052-5061.e8. [PMID: 34534441 PMCID: PMC9172250 DOI: 10.1016/j.cub.2021.08.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023]
Abstract
Changes to allometry, or the relative proportions of organs and tissues within organisms, is a common means for adaptive character change in evolution. However, little is understood about how relative size is specified during development and shaped during evolution. Here, through a phylogenomic analysis of genome-wide variation in 35 species of flying fishes and relatives, we identify genetic signatures in both coding and regulatory regions underlying the convergent evolution of increased paired fin size and aerial gliding behaviors. To refine our analysis, we intersected convergent phylogenomic signatures with mutants with altered fin size identified in distantly related zebrafish. Through these paired approaches, we identify a surprising role for an L-type amino acid transporter, lat4a, and the potassium channel, kcnh2a, in the regulation of fin proportion. We show that interaction between these genetic loci in zebrafish closely phenocopies the observed fin proportions of flying fishes. The congruence of experimental and phylogenomic findings point to conserved, non-canonical signaling integrating bioelectric cues and amino acid transport in the establishment of relative size in development and evolution.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA; Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA.
| | - Nicola Blum
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA
| | - Jennifer Lanni
- Department of Biology, Wheaton College, Norton, MA 02766, USA
| | - Helena Boldt
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Charles W Higdon
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C-1A4, Canada
| | - Matthew P Harris
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02124, USA; Department of Genetics, Harvard Medical School, Boston, MA 02124, USA.
| |
Collapse
|
17
|
Bröer S, Gauthier-Coles G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J Nutr 2021; 152:16-28. [PMID: 34718668 PMCID: PMC8754572 DOI: 10.1093/jn/nxab342] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acid homeostasis is maintained by import, export, oxidation, and synthesis of nonessential amino acids, and by the synthesis and breakdown of protein. These processes work in conjunction with regulatory elements that sense amino acids or their metabolites. During and after nutrient intake, amino acid homeostasis is dominated by autoregulatory processes such as transport and oxidation of excess amino acids. Amino acid deprivation triggers processes such as autophagy and the execution of broader transcriptional programs to maintain plasma amino acid concentrations. Amino acid transport plays a crucial role in the absorption of amino acids in the intestine, the distribution of amino acids across cells and organs, the recycling of amino acids in the kidney, and the recycling of amino acids after protein breakdown.
Collapse
|
18
|
Romanet S, Aschenbach JR, Pieper R, Zentek J, Htoo JK, Whelan RA, Mastrototaro L. Expression of proposed methionine transporters along the gastrointestinal tract of pigs and their regulation by dietary methionine sources. GENES AND NUTRITION 2021; 16:14. [PMID: 34488623 PMCID: PMC8422629 DOI: 10.1186/s12263-021-00694-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Given the key role of methionine (Met) in biological processes like protein translation, methylation, and antioxidant defense, inadequate Met supply can limit performance. This study investigated the effect of different dietary Met sources on the expression profile of various Met transporters along the gastrointestinal tract (GIT) of pigs. METHODS A total of 27 pigs received a diet supplemented with 0.21% DL-Met, 0.21% L-Met, or 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). Changes in mRNA expression of B0AT1, ATB0,+, rBAT, ASCT2, IMINO, LAT4, y+LAT1, LAT2, and SNAT2 were evaluated in the oral mucosa, cardia, fundus, pylorus, duodenum, proximal jejunum, middle jejunum, ileum, cecum, proximal colon, and distal colon, complemented by protein expression analysis of B0AT1, ASCT2, LAT2, and LAT4. RESULTS Expression of all investigated transcripts differed significantly along the GIT. B0AT1, rBAT, y+LAT1, LAT2, and LAT4 showed strongest mRNA expression in small intestinal segments. ASCT2, IMINO, and SNAT2 were similarly expressed along the small and large intestines but expression differed in the oral mucosa and stomach. ATB0,+ showed highest mRNA expression in large intestinal tissues, cardia, and pylorus. In pigs fed DL-Met, mRNA expression of ASCT2 was higher than in pigs fed DL-HMTBA in small intestinal tissues and mRNA expression of IMINO was lower than in pigs fed L-Met in large intestinal tissues. Dietary DL-HMTBA induced a stronger mRNA expression of basolateral uptake systems either in the small (LAT2) or large (y+LAT1) intestine. Protein expression of B0AT1 was higher in the middle jejunum and ileum in pigs fed DL-Met when compared with the other Met supplements. LAT4 expression was higher in pigs fed DL-HMTBA when compared with DL-Met (small intestine) and L-Met (small intestine, oral mucosa, and stomach). CONCLUSION A high expression of several Met transporters in small intestinal segments underlines the primary role of these segments in amino acid absorption; however, some Met transporters show high transcript and protein levels also in large intestine, oral mucosa, and stomach. A diet containing DL-Met has potential to increase apical Met transport in the small intestine, whereas a diet containing DL-HMTBA has potential to increase basolateral Met transport in the small intestine and, partly, other gastrointestinal tissues.
Collapse
Affiliation(s)
- Stella Romanet
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - John K Htoo
- Evonik Operations GmbH, Animal Nutrition Services, Hanau-Wolfgang, Germany
| | - Rose A Whelan
- Evonik Operations GmbH, Animal Nutrition Services, Hanau-Wolfgang, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| |
Collapse
|
19
|
Citrulline, Biomarker of Enterocyte Functional Mass and Dietary Supplement. Metabolism, Transport, and Current Evidence for Clinical Use. Nutrients 2021; 13:nu13082794. [PMID: 34444954 PMCID: PMC8398474 DOI: 10.3390/nu13082794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
L-Citrulline is a non-essential but still important amino acid that is released from enterocytes. Because plasma levels are reduced in case of impaired intestinal function, it has become a biomarker to monitor intestinal integrity. Moreover, oxidative stress induces protein citrullination, and antibodies against anti-citrullinated proteins are useful to monitor rheumatoid diseases. Citrullinated histones, however, may even predict a worse outcome in cancer patients. Supplementation of citrulline is better tolerated compared to arginine and might be useful to slightly improve muscle strength or protein balance. The following article shall provide an overview of L-citrulline properties and functions, as well as the current evidence for its use as a biomarker or as a therapeutic supplement.
Collapse
|
20
|
Jian H, Miao S, Liu Y, Li H, Zhou W, Wang X, Dong X, Zou X. Effects of Dietary Valine Levels on Production Performance, Egg Quality, Antioxidant Capacity, Immunity, and Intestinal Amino Acid Absorption of Laying Hens during the Peak Lay Period. Animals (Basel) 2021; 11:1972. [PMID: 34209447 PMCID: PMC8300305 DOI: 10.3390/ani11071972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to assess the impact of dietary valine levels on layer production performance, egg quality, immunity, and intestinal amino acid absorption of laying hens during the peak lay period. For this purpose, a total of 960 33-week-old Fengda No.1 laying hens were randomly divided into five experimental groups and fed with valine at the following different levels in a feeding trial that lasted 8 weeks: 0.59, 0.64, 0.69, 0.74, and 0.79%, respectively. Productive performances were recorded throughout the whole rearing cycle and the egg quality, serum indexes, and small intestine transporters expression were assessed at the end of the experiment after slaughter (41 weeks) on 12 hens per group. Statistical analysis was conducted by one-way ANOVA followed by LSD multiple comparison tests with SPSS 20.0 (SPSS, Chicago, IL, USA). The linear and quadratic effects were tested by SPSS 20.0. Egg mass, laying rate, broken egg rate, and feed conversion ratio were significantly improved with increasing dietary valine levels. However, the egg weight, eggshell thickness, albumen height, Haugh unit, and egg yolk color were significantly decreased with increasing dietary valine levels. Serum catalase (CAT), immunoglobulin A (IgA) and IgM levels, and malondialdehyde (MDA) levels were negative responses to valine-treated laying hens. Dietary supplemented valine enhanced the trypsin activity of duodenum chime and promoted the mRNA expression levels of ATB0,+, and LAT4 in the jejunum and corresponding serum free Ile, Lys, Phe, Val, and Tyr level. However, valine treatment significantly downregulated the mRNA expression levels of PePT1, B0AT1, LAT1, and SNAT2 in the small intestines and corresponding serum free Arg, His, Met, Thr, Ala, Asp, Glu, Gly, and Ser level. Our results suggest that 0.79% valine dietary supplementation can improve production performance by promoting amino acid nutrient uptake and utilization, and suggest a supplement of 0.79% valine to diet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoting Zou
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.M.); (Y.L.); (H.L.); (W.Z.); (X.W.); (X.D.)
| |
Collapse
|
21
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
22
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
23
|
Marsh B, Blelloch R. Single nuclei RNA-seq of mouse placental labyrinth development. eLife 2020; 9:e60266. [PMID: 33141023 PMCID: PMC7669270 DOI: 10.7554/elife.60266] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
The placenta is the interface between mother and fetus in all eutherian species. However, our understanding of this essential organ remains incomplete. A substantial challenge has been the syncytial cells of the placenta, which have made dissociation and independent evaluation of the different cell types of this organ difficult. Here, we address questions concerning the ontogeny, specification, and function of the cell types of a representative hemochorial placenta by performing single nuclei RNA sequencing (snRNA-seq) at multiple stages of mouse embryonic development focusing on the exchange interface, the labyrinth. Timepoints extended from progenitor-driven expansion through terminal differentiation. Analysis by snRNA-seq identified transcript profiles and inferred functions, cell trajectories, signaling interactions, and transcriptional drivers of all but the most highly polyploid cell types of the placenta. These data profile placental development at an unprecedented resolution, provide insights into differentiation and function across time, and provide a resource for future study.
Collapse
Affiliation(s)
- Bryan Marsh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
24
|
Owaydhah WH, Ashton N, Verrey F, Glazier JD. Differential expression of system L amino acid transporter subtypes in rat placenta and yolk sac. Placenta 2020; 103:188-198. [PMID: 33160252 DOI: 10.1016/j.placenta.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Amino acid transport across the placenta is crucial for fetal growth. In rodent models, the visceral yolk sac (referred to as yolk sac hereafter) is also likely to contribute to fetal amino acid provision. System L amino acid transporters mediate the transport of essential amino acids. System L activity is mediated by light chains LAT1 (Slc7a5) and LAT2 (Slc7a8) which form functional complexes by heterodimeric linkage to CD98 (Slc3a2). LAT4 (Slc43a2) is monomeric, possessing overlapping amino acid substrate specificity with LAT1 and LAT2. METHODS This study investigates the expression of these LAT subtypes in fetus-matched rat placenta and yolk sac. RESULTS Slc7a5, Slc7a8 and Slc43a2 transcripts were expressed in placenta and yolk sac with similar expression patterns between sexes. LAT1 expression was significantly higher in placenta than yolk sac. Conversely, LAT2 and LAT4 expression was significantly higher in yolk sac than placenta; CD98 expression was comparable. LAT1, LAT2, LAT4 and CD98 were distributed to rat placental labyrinth zone (LZ) and junctional zone (JZ). LAT1 and LAT4 demonstrated higher expression in LZ, whilst LAT2 was more intensely distributed to JZ. LAT1, LAT2, LAT4 and CD98 were expressed in yolk sac, with punctate LAT1 staining to endodermal cell cytoplasm, contrasting with the intense LAT2, LAT4 and CD98 endodermal cell basolateral distribution, accounting for greater LAT2 and LAT4 expression in yolk sac compared to placenta. CONCLUSION LAT1, LAT2 and LAT4 are expressed in rat placenta and yolk sac implicating a combined role for these LAT subtypes in supporting fetal growth and development.
Collapse
Affiliation(s)
- Wejdan H Owaydhah
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, St Mary's Hospital, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - François Verrey
- Institute of Physiology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Jocelyn D Glazier
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
25
|
Maric S, Flüchter P, Guglielmetti LC, Staerkle RF, Sasse T, Restin T, Schneider C, Holland-Cunz SG, Crenn P, Vuille-Dit-Bille RN. Plasma citrulline correlates with basolateral amino acid transporter LAT4 expression in human small intestine. Clin Nutr 2020; 40:2244-2251. [PMID: 33077272 PMCID: PMC7546687 DOI: 10.1016/j.clnu.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Plasma citrulline, a non-protein amino acid, is a biochemical marker of small intestine enterocyte mass in humans. Indeed, citrulline is highly correlated with residual bowel length in patients with short bowel syndrome. It is known to be synthesised in epithelial cells of the small intestine from other amino acids (precursors). Citrulline is then released into systemic circulation and interconverted into arginine in kidneys. If plasma citrulline concentration depends on abundance of intestinal amino acid transporters is not known. The aim of the present study was to explore whether plasma citrulline concentration correlates with the expression of intestinal amino acid transporters. Furthermore, we assessed if arginine in urine correlates with plasma citrulline. METHODS Duodenal samples, blood plasma and urine were collected from 43 subjects undergoing routine gastroduodenoscopy. mRNA expression of seven basolateral membrane amino acid transporters/transporter subunits were assessed by real-time PCR. Plasma and urine amino acid concentrations of citrulline, its precursors and other amino acids were analysed using High Performance Liquid Chromatography measurements. Amino acid transporter mRNA expression was correlated with blood plasma and urine levels of citrulline and its precursors using Spearman's rank correlation. Likewise, urine arginine was correlated with plasma citrulline. RESULTS Plasma citrulline correlated with the mRNA expression of basolateral amino acid transporter LAT4 (Spearman's r = 0.467, p = 0.028) in small intestine. None of the other basolateral membrane transporters/transporter subunits assessed correlated with plasma citrulline. Plasma citrulline correlated with urinary arginine, (Spearman's r = 0.419, p = 0.017), but not with urinary citrulline or other proteinogenic amino acids in the urine. CONCLUSIONS In this study, we showed for the first time that small intestinal basolateral LAT4 expression correlates with plasma citrulline concentration. This finding indicates that LAT4 has an important function in mediating citrulline efflux from enterocytes. Furthermore, urine arginine correlated with plasma citrulline, indicating arginine in the urine as possible additional marker for small intestine enterocyte mass. Finally, basolateral LAT4 expression along the human small intestine was shown for the first time.
Collapse
Affiliation(s)
- Stefano Maric
- University of Basel, School of Medicine, Basel, Switzerland
| | | | | | - Ralph Fabian Staerkle
- Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Tom Sasse
- Department of Cardiology, University Hospital of Zurich, Switzerland
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Switzerland; Newborn Research Zurich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Pascal Crenn
- Hepato-gastroenterology and Nutrition, Hôpital Ambroise Paré, APHP-Université Paris Saclay, Boulogne Billancourt, France
| | - Raphael Nicolas Vuille-Dit-Bille
- Institute of Physiology, University of Zurich, Switzerland; Department of Pediatric Surgery, University Children's Hospital of Basel, Switzerland.
| |
Collapse
|
26
|
Rajendran A, Poncet N, Oparija-Rogenmozere L, Herzog B, Verrey F. Tissue-specific deletion of mouse basolateral uniporter LAT4 (Slc43a2) reveals its crucial role in small intestine and kidney amino acid transport. J Physiol 2020; 598:5109-5132. [PMID: 32841365 PMCID: PMC7693055 DOI: 10.1113/jp280234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Key points LAT4 is a broadly expressed uniporter selective for essential branched chain amino acids, methionine and phenylalanine, which are involved in epithelial transport. Its global deletion leads to an early malnutrition‐like phenotype and death within 10 days after birth. Here, we tested the impact of deleting LAT4 selectively in the mouse intestine. This affected slightly the absorption of amino acids (AAs) and delayed gastrointestinal motility; however, it had no major phenotypic effect, even when combined with aromatic AA uniporter TAT1 knockout (KO). Conversely, kidney tubule‐selective deletion of LAT4 led to a substantial aminoaciduria that strongly increased under a high protein diet. Combining a partial tubular LAT4 deletion with TAT1 KO implicated their synergistic action on AA reabsorption. These results show that LAT4 plays an important role for kidney AA reabsorption, but that its functional role in intestinal AA absorption is largely dispensable.
Abstract Amino acid (AA) transporter LAT4 (Slc43a2) functions as facilitated diffusion uniporter for essential neutral AAs and is highly expressed at the basolateral membrane of small intestine (SI) and kidney tubule epithelia. Previously, we showed that LAT4 global knockout (KO) mice were born at the expected Mendelian ratio but died within 10 days. Their failure to gain weight and a severe malnutrition‐like phenotype contrasted with apparently normal feeding, suggesting a severe intestinal AA absorption defect. In the present study, using conditional global and tissue‐specific LAT4 KO mouse models, we nullified this hypothesis, demonstrating that the selective lack of intestinal LAT4 does not impair postnatal development, although it leads to an absorption defect accompanied by delayed gastrointestinal motility. Kidney tubule‐specific LAT4 KO led to a substantial aminoaciduria as a result of a reabsorption defect of AAs transported by LAT4 and of other AAs that are substrates of the antiporter LAT2, demonstrating, in vivo, the functional co‐operation of these two transporters. The major role played by basolateral uniporters in the kidney was further supported by the observation that, in mice lacking TAT1, another neutral AA uniporter, a partial LAT4 KO led to a synergistic increase of urinary AA loss. Surprisingly in the SI, the same combined KO induced no major effect, suggesting yet unknown compensatory mechanisms. Taken together, the lethal malnutrition‐like phenotype observed previously in LAT4 global KO pups is suggested to be the consequence of a combinatorial effect of LAT4 deletion in the SI, kidney and presumably other tissues. LAT4 is a broadly expressed uniporter selective for essential branched chain amino acids, methionine and phenylalanine, which are involved in epithelial transport. Its global deletion leads to an early malnutrition‐like phenotype and death within 10 days after birth. Here, we tested the impact of deleting LAT4 selectively in the mouse intestine. This affected slightly the absorption of amino acids (AAs) and delayed gastrointestinal motility; however, it had no major phenotypic effect, even when combined with aromatic AA uniporter TAT1 knockout (KO). Conversely, kidney tubule‐selective deletion of LAT4 led to a substantial aminoaciduria that strongly increased under a high protein diet. Combining a partial tubular LAT4 deletion with TAT1 KO implicated their synergistic action on AA reabsorption. These results show that LAT4 plays an important role for kidney AA reabsorption, but that its functional role in intestinal AA absorption is largely dispensable.
Collapse
Affiliation(s)
| | - Nadège Poncet
- Institute of Physiology University of Zurich, Zurich, Switzerland
| | | | - Brigitte Herzog
- Institute of Physiology University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology University of Zurich, Zurich, Switzerland.,NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Oparija-Rogenmozere L, Rajendran A, Poncet N, Camargo SMR, Verrey F. Phosphorylation of mouse intestinal basolateral amino acid uniporter LAT4 is controlled by food-entrained diurnal rhythm and dietary proteins. PLoS One 2020; 15:e0233863. [PMID: 32470053 PMCID: PMC7259769 DOI: 10.1371/journal.pone.0233863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Adaptive regulation of epithelial transporters to nutrient intake is essential to decrease energy costs of their synthesis and maintenance, however such regulation is understudied. Previously we demonstrated that the transport function of the basolateral amino acid uniporter LAT4 (Slc43a2) is increased by dephosphorylation of serine 274 (S274) and nearly abolished by dephosphorylation of serine 297 (S297) when expressed in Xenopus oocytes. Phosphorylation changes in the jejunum of food-entrained mice suggested an increase in LAT4 transport function during food expectation. Thus, we investigated further how phosphorylation, expression and localization of mouse intestinal LAT4 respond to food-entrained diurnal rhythm and dietary protein content. In mice entrained with 18% protein diet, LAT4 mRNA was not submitted to diurnal regulation, unlike mRNAs of luminal symporters and antiporters. Only in duodenum, LAT4 protein expression increased during food intake. Concurrently, S274 phosphorylation was decreased in all three small intestinal segments, whereas S297 phosphorylation was increased only in jejunum. Interestingly, during food intake, S274 phosphorylation was nearly absent in ileum and accompanied by strong phosphorylation of mTORC1 target S6. Entraining mice with 8% protein diet provoked a shift in jejunal LAT4 localization from the cell surface to intracellular stores and increased S274 phosphorylation in both jejunum and ileum during food anticipation, suggesting decreased transport function. In contrast, 40% dietary protein content led to increased LAT4 expression in jejunum and its internalization in ileum. Ex vivo treatments of isolated intestinal villi fraction demonstrated that S274 phosphorylation was stimulated by protein kinase A. Rapamycin-sensitive insulin treatment and amino acids increased S297 phosphorylation, suggesting that the response to food intake might be regulated via the insulin-mTORC1 pathway. Ghrelin, an oscillating orexigenic hormone, did not affect phosphorylation of intestinal LAT4. Overall, we show that phosphorylation, expression and localization of intestinal mouse LAT4 responds to diurnal and dietary stimuli in location-specific manner.
Collapse
Affiliation(s)
- Lalita Oparija-Rogenmozere
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Anuradha Rajendran
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nadège Poncet
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Simone M R Camargo
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,NCCR Kidney.CH, Zurich, Switzerland
| |
Collapse
|
28
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Fagundes NS, Milfort MC, Williams SM, Da Costa MJ, Fuller AL, Menten JF, Rekaya R, Aggrey SE. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poult Sci 2020; 99:67-75. [PMID: 32416854 PMCID: PMC7587823 DOI: 10.3382/ps/pez588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Imbalance in nutrients can affect digestibility of amino acids by altering gene expression of amino acid transporters. We investigated digestibility and molecular transporters of essential amino acids in chickens fed a methionine-deficient diet. A total of 40 chicks (23 D old) were randomly assigned to either a control (0.49% methionine) or a deficient (0.28%) diet until 41 D when they were sampled for Pectoralis (P.) major, kidney, ileum, and hypothalamus for mRNA expression analysis. The ileal content was collected for apparent ileal digestibility (AID) analysis. Birds fed the deficient diet had reduced growth and worse feed efficiency compared to control. The AID of methionine was similar between both groups. The AID of other essential amino acids was higher in the deficient group than control. mRNA expression of b0,+ AT and LAT4 were upregulated in the ileum and kidney but LAT1 was downregulated only in kidney of the deficient group compared to control. In the P. major, SNAT1, SNAT2, and CAT1 were upregulated in the deficient group compared to control. A diet deficiency in methionine affects digestibility of essential amino acids and cysteine, but not the digestibility of methionine. The change in digestibility is reflected in the mRNA expression of amino acid transporters across different tissues.
Collapse
Affiliation(s)
- Naiara S Fagundes
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602; Department of Animal Science, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Marie C Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Susan M Williams
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Manuel J Da Costa
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Alberta L Fuller
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - José F Menten
- Department of Animal Science, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Samuel E Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
30
|
Walk CL, Olukosi OA. Influence of graded concentrations of phytase in high-phytate diets on growth performance, apparent ileal amino acid digestibility, and phytate concentration in broilers from hatch to 28 D post-hatch. Poult Sci 2019; 98:3884-3893. [PMID: 30877747 DOI: 10.3382/ps/pez106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 01/07/2023] Open
Abstract
An experiment was conducted to evaluate graded doses of phytase in high-phytate diets. Ross 308, male broilers (n = 600) were assigned to one of 4 diets, with 10 replicate pens/diet and 15 birds/replicate pen. Diets were a nutrient adequate positive control (PC), a negative control (NC) diet with a reduction of Ca by 0.22%, available P by 0.20%, energy by 120 kcal/kg, and amino acids by 1 to 5% compared with the PC. The NC diet was supplemented with 0, 2,000, or 4,000 phytase units (FTU)/kg. Phytase increased (linear, P < 0.05) weight gain from hatch to day 18. Birds fed the NC + 4000 FTU/kg ate and gained more (P < 0.05) than birds fed the PC. The apparent ileal digestibility (AID) of all nutrients and amino acids were reduced (P < 0.05) in birds fed the NC compared with birds fed the PC. Phytase increased (linear, P < 0.10) AID of most nutrients. Digestibility was lower (P < 0.10) in birds fed the NC + 4000 FTU/kg compared with birds fed the PC. Using daily intake and AID to determine digestible nutrient intake resulted in no differences between birds fed the PC or NC + 4000 FTU/kg diets. Digestible intake of methionine or glutamate was better correlated with BW gain (P < 0.0001) than AID (P > 0.10). Phytase reduced (linear, P < 0.01) phytate concentration and increased inositol (linear, P < 0.01), phytate hydrolysis (linear, P < 0.05), and jejunal expression (linear, P < 0.05) of SNAT-1 and LAT-4 transporters. Supplementation of increasing doses of phytase in high-phytate, low-nutrient dense diets improved gain and digestibility through nearly complete phytate destruction. Digestible nutrient intake may be a better indication of broiler gain than AID alone.
Collapse
Affiliation(s)
- C L Walk
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK
| | - O A Olukosi
- Monogastric Science Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK.,Department of Poultry Science, University of Georgia, Athens 30602, USA
| |
Collapse
|
31
|
To VPTH, Masagounder K, Loewen ME. SLC transporters ASCT2, B 0 AT1-like, y + LAT1, and LAT4-like associate with methionine electrogenic and radio-isotope flux kinetics in rainbow trout intestine. Physiol Rep 2019; 7:e14274. [PMID: 31705630 PMCID: PMC6841986 DOI: 10.14814/phy2.14274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/21/2019] [Indexed: 01/08/2023] Open
Abstract
Methionine (Met) is an important building block and metabolite for protein biosynthesis. However, the mechanism behind its absorption in the fish gut has not been elucidated. Here, we describe the fundamental properties of Met transport along trout gut at µmol/L and mmol/L concentration. Both electrogenic and unidirectional DL-[14 C]Met flux were employed to characterize Met transporters in Ussing chambers. Exploiting the differences in gene expression between diploid (2N) and triploid (3N) and intestinal segment as tools, allowed the association between gene and methionine transport. Specifically, three intestinal segments including pyloric caeca (PC), midgut (MG), and hindgut (HG) were assessed. Results at 0-150 µmol/L concentration demonstrated that the DL-Met was most likely transported by apical transporter ASCT2 (SLC1A5) and recycled by basolateral transporter y+ LAT1 (SLC7A7) due to five lines of observation: (1) lack of Na+ -independent kinetics, (2) low expression of B0 AT2-like gene, (3) Na+ -dependent, high-affinity (Km , µmol/L ranges) kinetics in DL-[14 C]Met flux, (4) association mRNA expression with the high-affinity kinetics and (5) electrogenic currents induced by Met. Results at 0.2-20 mmol/L concentration suggested that the DL-Met transport is likely transported by B0 AT1-like (SLC6A19-like) based on gene expression, Na+ -dependence and low-affinity kinetics (Km , mmol/L ranges). Similarly, genomic and gene expression analysis suggest that the basolateral exit of methionine was primarily through LAT4-like transporter (SLC43A2-like). Conclusively, DL-Met uptake in trout gut was most likely governed by Na+ -dependent apical transporters ASCT2 and B0 AT1-like and released through basolateral LAT4-like, with some recycling through y+ LAT1. A comparatively simpler model than that previously described in mammals.
Collapse
Affiliation(s)
- Van P. T. H. To
- Veterinary Biomedical SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Matthew E. Loewen
- Veterinary Biomedical SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
32
|
Chen Q, Wang C, Zhao FQ, Liu J, Liu H. Effects of methionine partially replaced by methionyl-methionine dipeptide on intestinal function in methionine-deficient pregnant mice. J Anim Physiol Anim Nutr (Berl) 2019; 103:1610-1618. [PMID: 31106911 DOI: 10.1111/jpn.13126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
This study was to compare the effects of parenteral supplementation of methionyl-methionine (Met-Met) or Met on intestinal barrier function in Met-deficient pregnant mice. Pregnant mice were randomly divided into three groups. The Control group was provided a diet containing Met and received i.p. injection of saline. The Met group was fed the same diet but without Met and received daily i.p. injection of 35% of the Met contained in the control diet. The Met-Met group was treated the same as the Met group, except that 25% of the Met injected was replaced with Met-Met. Met-Met promoted villus surface area in ileum compared with Met alone. In addition, the mRNA abundance of amino acid and glucose transporters in the small intestine was altered with Met-Met. Moreover, Met-Met increased tight junction protein and decreased apoptosis-related proteins expression in the jejunum and ileum. These results suggest that Met-Met can promote intestinal function over Met alone in Met-deficient mice.
Collapse
Affiliation(s)
- Qiong Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Gomes F, Watanabe L, Vianez J, Nunes M, Cardoso J, Lima C, Schneider H, Sampaio I. Comparative analysis of the transcriptome of the Amazonian fish species Colossoma macropomum (tambaqui) and hybrid tambacu by next generation sequencing. PLoS One 2019; 14:e0212755. [PMID: 30802266 PMCID: PMC6388931 DOI: 10.1371/journal.pone.0212755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background The C. macropomum is a characiform fish from the Amazon basin that has been hybridized with other pacu species to produce commercial hybrids, such as the tambacu. However, little is known of the functional genomics of the parental species or these hybrid forms. The transcriptome of C. macropomum and tambacu were sequenced using 454 Roche platform (pyrosequencing) techniques to characterize the domains of Gene Ontology (GO) and to evaluate the levels of gene expression in the two organisms. Results The 8,188,945 reads were assembled into 400,845 contigs. A total of 58,322 contigs were annotated with a predominance of biological processes for both organisms, as determined by Gene Ontology (GO). Similar numbers of metabolic pathways were identified in both the C. macropomum and the tambacu, with the metabolism category presenting the largest number of transcripts. The BUSCO analysis indicated that our assembly was more than 40% complete. We identified 21,986 genes for the two fishes. The P and Log2FC values indicated significant differences in the levels of gene expression, with a total of 600 up-regulated genes. Conclusion In spite of the lack of a reference genome, the functional annotation was successful, and confirmed a considerable difference in the specificity and levels of gene expression between the two organisms. This report provides a comprehensive baseline for the genetic management of these commercially important fishes, in particular for the identification of specific genes that may represent markers involved in the immunity, growth, and fertility of these organisms, with potential practical applications in aquaculture management.
Collapse
Affiliation(s)
- Fátima Gomes
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro, Bragança, PA, Brazil
- * E-mail:
| | - Luciana Watanabe
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro, Bragança, PA, Brazil
| | - João Vianez
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Márcio Nunes
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Jedson Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Clayton Lima
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Horacio Schneider
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro, Bragança, PA, Brazil
| | - Iracilda Sampaio
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro, Bragança, PA, Brazil
| |
Collapse
|
34
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
35
|
Oparija L, Rajendran A, Poncet N, Verrey F. Anticipation of food intake induces phosphorylation switch to regulate basolateral amino acid transporter LAT4 (SLC43A2) function. J Physiol 2018; 597:521-542. [PMID: 30379325 DOI: 10.1113/jp276714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Amino acid absorption requires luminal uptake into and subsequent basolateral efflux out of epithelial cells, with the latter step being critical to regulate the intracellular concentration of the amino acids. The basolateral essential neutral amino acid uniporter LAT4 (SLC43A2) has been suggested to drive the net efflux of non-essential and cationic amino acids via parallel amino acid antiporters by recycling some of their substrates; its deletion has been shown to cause defective postnatal growth and death in mice. Here we test the regulatory function of LAT4 phosphorylation sites by mimicking their phosphorylated and dephosphorylated states in Xenopus laevis oocytes and show that dephosphorylation of S274 and phosphorylation of S297 increase LAT4 membrane localization and function. Using new phosphorylation site-specific antibodies, we observe changes in LAT4 phosphorylation in mouse small intestine that correspond to its upregulation at the expected feeding time. These results strongly suggest that LAT4 phosphorylation participates in the regulation of transepithelial amino acid absorption. ABSTRACT The essential amino acid uniporters LAT4 and TAT1 are located at the basolateral side of intestinal and kidney epithelial cells and their transport function has been suggested to control the transepithelial (re)absorption of neutral and possibly also cationic amino acids. Uniporter LAT4 selectively transports the branched chain amino acids leucine, isoleucine and valine, and additionally methionine and phenylalanine. Its deletion leads to a postnatal growth failure and early death in mice. Since LAT4 has been reported to be phosphorylated in vivo, we hypothesized that phosphorylation regulates its function. Using Xenopus laevis oocytes, we tested the impact of LAT4 phosphorylation at Ser274 and Ser297 by expressing mutant constructs mimicking phosphorylated and dephosphorylated states. We then investigated the in vivo regulation of LAT4 in mouse small intestine using new phosphorylation site-specific antibodies and a time-restricted diet. In Xenopus oocytes, mimicking non-phosphorylation of Ser274 led to an increase in affinity and apparent surface membrane localization of LAT4, stimulating its transport activity, while the same mutation of Ser297 decreased LAT4's apparent surface expression and transport rate. In wild-type mice, LAT4 phosphorylation on Ser274 was uniform at the beginning of the inactive phase (ZT0). In contrast, at the beginning of the active phase (ZT12), corresponding to the anticipated feeding time, Ser274 phosphorylation was decreased and restricted to relatively large patches of cells, while Ser297 phosphorylation was increased. We conclude that phosphorylation of small intestinal LAT4 is under food-entrained circadian control, leading presumably to an upregulation of LAT4 function at the anticipated feeding time.
Collapse
Affiliation(s)
- Lalita Oparija
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Anuradha Rajendran
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nadège Poncet
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM. Immunomodulatory role of branched-chain amino acids. Nutr Rev 2018; 76:840-856. [PMID: 30124936 DOI: 10.1093/nutrit/nuy037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.
Collapse
Affiliation(s)
- Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Audrey Y Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marcelo M Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Sawa R, Nishida H, Yamamoto Y, Wake I, Kai N, Kikkawa U, Okimura Y. Growth hormone and Insulin-like growth factor-I (IGF-I) modulate the expression of L-type amino acid transporters in the muscles of spontaneous dwarf rats and L6 and C2C12 myocytes. Growth Horm IGF Res 2018; 42-43:66-73. [PMID: 30273774 DOI: 10.1016/j.ghir.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Branched-chain amino acids (BCAAs) have been reported to inhibit several types of muscle atrophy via the activation of the mechanistic target of rapamycin complex 1 (mTORC1). However, we previously found that BCAA did not activate mTORC1 in growth hormone (GH)-deficient spontaneous dwarf rats (SDRs), and that GH restored the stimulatory effect of BCAAs toward the mTORC1. The objective of this study was to determine whether GH or Insulin-like growth factor-I (IGF-I) stimulated the expression of L-type amino acid transporters (LATs) that delivered BCAAs, and whether LATs were involved in the mTORC1 activation. DESIGN After the continuous administration of GH, cross-sectional areas (CSAs) of muscle fibers and LAT mRNA levels in the skeletal muscles of SDRs were compared to those from the SDRs that received normal saline. The effect of GH and IGF-I on LAT mRNA levels were determined in L6 and C2C12 myocytes. The effects of 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), a blocker for LATs, and LAT1 siRNA on mTORC1 activation and cell functions were examined in C2C12 cells. RESULTS GH increased LAT1 and LAT4 mRNA levels in accordance with the increase in CSAs of muscle fibers in SDRs. IGF-I, and not GH, increased LAT1 mRNA levels in cultured L6 myocytes. IGF-I also increased LAT1 mRNA level in another myocyte line, C2C12. Furthermore, IGF-I reduced LAT3 and LAT4 mRNA levels in both cell lines. GH reduced LAT3 and LAT4 mRNA levels in L6 cells. BCH decreased basal C2C12 cell proliferation and reduced IGF-I-induced phosphorylation of 4E-BP1 and S6K, both of which are mTORC1 targets, but LAT1 siRNA did not affect the phosphorylation. This suggests that BCH may exert its effect via other pathway than LAT1. CONCLUSIONS IGF-I increased LAT1 mRNA level in myocytes. However, the role of LAT1 in IGF-I-induced mTORC1 activation and cell functions remains unclear.
Collapse
Affiliation(s)
- Ran Sawa
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Hikaru Nishida
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Yu Yamamoto
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ikumi Wake
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Noriko Kai
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ushio Kikkawa
- Division of Signal Functions, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiko Okimura
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan.
| |
Collapse
|
38
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
39
|
Habashy WS, Milfort MC, Adomako K, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poult Sci 2018; 96:2312-2319. [PMID: 28339933 DOI: 10.3382/ps/pex027] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
The present study was conducted to investigate the effect of heat stress (HS) on performance, digestibility, and molecular transporters of amino acids in broilers. Cobb 500 chicks were raised from hatch till 13 d in floor pens. At d 14, 48 birds were randomly and equally divided between a control group (25°C) and a HS treatment group (35°C). Birds in both treatment classes were individually caged and fed ad libitum on a diet containing 18.7% CP and 3,560 Kcal ME/Kg. Five birds per treatment at one and 12 d post treatment were euthanized and the Pectoralis major (P. major) and ileum were sampled for gene expression analysis. At d 33, ileal contents were collected and used for digestibility analysis. Broilers under HS had reduced growth and feed intake compared to controls. Although the apparent ileal digestibility (AID) was consistently higher for all amino acids in the HS group, it was not significant except for hydroxylysine. The amino acid consumption and retention were significantly lower in the HS group when compared to the control group. Meanwhile, the retention of amino acids per BWG was higher in the HS group when compared to the control group except for hydroxylysine and ornithine. The dynamics of amino acid transporters in the P. major and ileum was influenced by HS. In P. major and ileum tissues at d one, transporters SNAT1, SNAT2, SNAT7, TAT1, and b0,+AT, were down-regulated in the HS group. Meanwhile, LAT4 and B0AT were down-regulated only in the P. major in the treatment group. The amino acid transporters B0AT and SNAT7 at d 12 post HS were down-regulated in the P. major and ileum, but SNAT2 was down-regulated only in the ileum and TAT1 was down-regulated only in the P. major compared with the control group. These changes in amino acid transporters may explain the reduced growth in meat type chickens under heat stress.
Collapse
Affiliation(s)
- W S Habashy
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens 30602.,Department of Animal and Poultry Production, Damanhour University, Damanhour, Al-Behira, Egypt
| | - M C Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens 30602
| | - K Adomako
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Y A Attia
- Department of Animal and Poultry Production, Damanhour University, Damanhour, Al-Behira, Egypt.,Arid Land Agriculture Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - R Rekaya
- Department of Animal and Dairy Sciences, University of Georgia, Athens 30602
| | - S E Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens 30602
| |
Collapse
|
40
|
Vilches C, Boiadjieva-Knöpfel E, Bodoy S, Camargo S, López de Heredia M, Prat E, Ormazabal A, Artuch R, Zorzano A, Verrey F, Nunes V, Palacín M. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids. J Am Soc Nephrol 2018; 29:1624-1635. [PMID: 29610403 DOI: 10.1681/asn.2017111205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivoMethods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.
Collapse
Affiliation(s)
- Clara Vilches
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Emilia Boiadjieva-Knöpfel
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Susanna Bodoy
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain.,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simone Camargo
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Miguel López de Heredia
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and
| | - Esther Prat
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain; and
| | - Aida Ormazabal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain.,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) - CB07/08/0017, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - François Verrey
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Virginia Nunes
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain; and
| | - Manuel Palacín
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain; .,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and
| |
Collapse
|
41
|
Garibotto G, Verzola D, Vettore M, Tessari P. The contribution of muscle, kidney, and splanchnic tissues to leucine transamination in humans. Can J Physiol Pharmacol 2017; 96:382-387. [PMID: 28892650 DOI: 10.1139/cjpp-2017-0439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first steps of leucine utilization are reversible deamination to α-ketoisocaproic acid (α-KIC) and irreversible oxidation. Recently, the regulatory role of leucine deamination over oxidation was underlined in rodents. Our aim was to measure leucine deamination and reamination in the whole body, in respect to previously determined rates across individual organs, in humans. By leucine and KIC isotope kinetics, we determined whole-body leucine deamination and reamination, and we compared these rates with those already reported across the sampled organs. As an in vivo counterpart of the "metabolon" concept, we analysed ratios between oxidation and either deamination or reamination. Leucine deamination to KIC was greater than KIC reamination to leucine in the whole body (p = 0.005), muscles (p = 0.005), and the splanchnic area (p = 0.025). These rates were not significantly different in the kidneys. Muscle accounted for ≈60% and ≈78%, the splanchnic bed for ≈15% and ≈15%, and the kidney for ≈12% and ≈18%, of whole-body leucine deamination and reamination rates, respectively. In the kidney, percent leucine oxidation over either deamination or reamination was >3-fold greater than muscle and the splanchnic bed. Skeletal muscle contributes by the largest fraction of leucine deamination, reamination, and oxidation. However, in relative terms, the kidney plays a key role in leucine oxidation.
Collapse
Affiliation(s)
- Giacomo Garibotto
- a Nephrology, Dialysis and Transplantation Clinic, Department of Internal Medicine, University of Genova, Genova, Italy.,b IRCCS AOU San Martino-IST, Genova, Italy
| | - Daniela Verzola
- a Nephrology, Dialysis and Transplantation Clinic, Department of Internal Medicine, University of Genova, Genova, Italy.,b IRCCS AOU San Martino-IST, Genova, Italy
| | - Monica Vettore
- c Metabolism Division, Department of Medicine, University of Padova, Padova, Italy
| | - Paolo Tessari
- c Metabolism Division, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
42
|
Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 2017; 474:1935-1963. [PMID: 28546457 PMCID: PMC5444488 DOI: 10.1042/bcj20160822] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
Collapse
|
43
|
Taslimifar M, Oparija L, Verrey F, Kurtcuoglu V, Olgac U, Makrides V. Quantifying the relative contributions of different solute carriers to aggregate substrate transport. Sci Rep 2017; 7:40628. [PMID: 28091567 PMCID: PMC5238446 DOI: 10.1038/srep40628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B0AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB0,+ and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zurich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland
| | - Lalita Oparija
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Francois Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Ufuk Olgac
- The Interface Group, Institute of Physiology, University of Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Victoria Makrides
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Switzerland
| |
Collapse
|
44
|
Hayashi K, Anzai N. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J Gastrointest Oncol 2017; 9:21-29. [PMID: 28144396 PMCID: PMC5241523 DOI: 10.4251/wjgo.v9.i1.21] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/08/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023] Open
Abstract
L-type amino acid transporters (LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs (LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1 (SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review.
Collapse
|
45
|
Mastrototaro L, Sponder G, Saremi B, Aschenbach JR. Gastrointestinal methionine shuttle: Priority handling of precious goods. IUBMB Life 2016; 68:924-934. [PMID: 27753190 DOI: 10.1002/iub.1571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Lucia Mastrototaro
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| | - Behnam Saremi
- Evonik Nutrition & Care GmbH; Animal Nutrition-Animal Nutrition Services; Hanau Germany
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| |
Collapse
|
46
|
Zevenbergen C, Meima ME, Lima de Souza EC, Peeters RP, Kinne A, Krause G, Visser WE, Visser TJ. Transport of Iodothyronines by Human L-Type Amino Acid Transporters. Endocrinology 2015; 156:4345-55. [PMID: 26305885 DOI: 10.1210/en.2015-1140] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone (TH) transporters facilitate cellular TH influx and efflux, which is paramount for normal physiology. The L-type amino acid transporters LAT1 and LAT2 are known to facilitate TH transport. However, the role of LAT3, LAT4, and LAT5 is still unclear. Therefore, the aim of this study was to further characterize TH transport by LAT1 and LAT2 and to explore possible TH transport by LAT3, LAT4, and LAT5. FLAG-LAT1-5 constructs were transiently expressed in COS1 cells. LAT1 and LAT2 were cotransfected with the CD98 heavy chain. Cellular transport was measured using 10 nM (125)I-labeled T4, T3, rT3, 3,3'-T2, and 10 μM [(125)I]3'-iodotyrosine (MIT) as substrates. Intracellular metabolism of these substrates was determined in cells cotransfected with either of the LATs with type 1 or type 3 deiodinase. LAT1 facilitated cellular uptake of all substrates and LAT2 showed a net uptake of T3, 3,3'-T2, and MIT. Expression of LAT3 or LAT4 did not affect transport of T4 and T3 but resulted in the decreased cellular accumulation of 3,3'-T2 and MIT. LAT5 did not facilitate the transport of any substrate. Cotransfection with LAT3 or LAT4 strongly diminished the cellular accumulation of 3,3'-T2 and MIT by LAT1 and LAT2. These data were confirmed by metabolism studies. LAT1 and LAT2 show distinct preferences for the uptake of the different iodocompounds, whereas LAT3 and LAT4 specifically facilitate the 3,3'-T2 and MIT efflux. Together our findings suggest that different sets of transporters with specific influx or efflux capacities may cooperate to regulate the cellular thyroid state.
Collapse
Affiliation(s)
- Chantal Zevenbergen
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marcel E Meima
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Elaine C Lima de Souza
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Anita Kinne
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Gerd Krause
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center (C.Z., M.E.M., E.C.L.d.S., R.P.P., W.E.V., T.J.V.), Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands; and Department of Nuclear Magnetic Resonance-Supported Structural Biology (A.K., G.K.), Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| |
Collapse
|
47
|
Wang Q, Holst J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 2015; 5:1281-1294. [PMID: 26101697 PMCID: PMC4473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023] Open
Abstract
The L-type amino acid transporter (LAT) family are Na(+)-independent transporters, which deliver neutral amino acids into cells. The four LATs, LAT1 (SLC7A5), LAT2 (SLC7A8), LAT3 (SLC43A1) and LAT4 (SLC43A2), are responsible for the majority of cellular leucine uptake. They show increased expression in many cancers, and are critical for control of protein translation and cell growth through the mTORC1 pathway. The increased transporter expression observed in cancers is regulated by transcriptional pathways such as hormone receptors, c-myc and nutrient starvation responses. We review the expression and function of the LAT family in cancer, as well as the recent development of specific inhibitors targeting LAT1 or LAT3. These LAT family inhibitors may be useful adjuvant therapeutics in multiple cancers.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Program, Centenary InstituteCamperdown, Australia
- Sydney Medical School, University of SydneyAustralia
| | - Jeff Holst
- Origins of Cancer Program, Centenary InstituteCamperdown, Australia
- Sydney Medical School, University of SydneyAustralia
| |
Collapse
|