1
|
Iraniparast M, Kumar N, Sokolov I. Single ultrabright fluorescent silica nanoparticles can be used as individual fast real-time nanothermometers. MATERIALS HORIZONS 2025. [PMID: 40200685 DOI: 10.1039/d4mh01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Optical-based nanothermometry represents a transformative approach for precise temperature measurements at the nanoscale, which finds versatile applications across biology, medicine, and electronics. The assembly of ratiometric fluorescent 40 nm nanoparticles designed to serve as individual nanothermometers is introduced here. These nanoparticles exhibit unprecedented sensitivity (11% K-1) and temperature resolution (128 K Hz-1/2 W cm-2), outperforming existing optical nanothermometers by factors of 2-6 and 455, respectively. The enhanced performance is attributed to the encapsulation of fluorescent molecules with high density inside the mesoporous matrix. It becomes possible after incorporating hydrophobic groups into the silica matrix, which effectively prevents water ingress and dye leaking. A practical application of these nanothermometers is demonstrated using confocal microscopy, showcasing their ability to map temperature distributions accurately. This methodology is compatible with any fluorescent microscope capable of recording dual fluorescent channels in any transparent medium or on a sample surface. This work not only sets a new benchmark for optical nano-thermometry but also provides a relatively simple yet powerful tool for exploring thermal phenomena at the nanoscale across various scientific domains.
Collapse
Affiliation(s)
- Mahshid Iraniparast
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Nishant Kumar
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Ahmed T, Alam KT. Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme. AAPS PharmSciTech 2025; 26:68. [PMID: 39984771 DOI: 10.1208/s12249-025-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood-brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| | - Kazi Tasnuva Alam
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh
| |
Collapse
|
3
|
Lopinski GP, Kodra O, Kunc F, Kennedy DC, Couillard M, Johnston LJ. X-ray photoelectron spectroscopy of metal oxide nanoparticles: chemical composition, oxidation state and functional group content. NANOSCALE ADVANCES 2025:d4na00943f. [PMID: 39898279 PMCID: PMC11780326 DOI: 10.1039/d4na00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Surface chemistry drives the interaction of a material with its surroundings, therefore it can be used to understand and influence the fate of nanomaterials when used as functional materials or when released to the environment. Here we have used X-ray photoelectron spectroscopy (XPS) to probe the chemical composition, oxidation state and functional group content of the near surface region of four families of commercially available metal oxide nanoparticles from several different suppliers. The analyzed nanoparticles varied in size and surface functionalization (unfunctionalized vs. amine, stearic acid, and PVP-coated samples). Survey and high-resolution scans have provided information on the atomic composition of the samples, including an estimate of the stoichiometry of the metal oxide, the presence of functional groups and the identification and quantification of any impurities on the surface. The presence of significant impurities for some samples and the variation from the expected oxidation state in other cases are relevant to studies of the environmental and health impacts of these materials as well as their use in applications. The functional group content measured by XPS shows a similar trend to earlier quantitative nuclear magnetic resonance (qNMR) data for aminated samples. This indicates that XPS can be a complementary probe of surface functional group content in cases where the functional group contains a unique element not otherwise present on the nanoparticles.
Collapse
Affiliation(s)
- Gregory P Lopinski
- Metrology Research Centre, National Research Council Canada Ottawa ON K1A 0R6 Canada
| | - Oltion Kodra
- Clean Energy Innovation Research Centre, National Research Council Canada Ottawa ON K1A 0R6 Canada
| | - Filip Kunc
- Metrology Research Centre, National Research Council Canada Ottawa ON K1A 0R6 Canada
| | - David C Kennedy
- Metrology Research Centre, National Research Council Canada Ottawa ON K1A 0R6 Canada
| | - Martin Couillard
- Clean Energy Innovation Research Centre, National Research Council Canada Ottawa ON K1A 0R6 Canada
| | - Linda J Johnston
- Metrology Research Centre, National Research Council Canada Ottawa ON K1A 0R6 Canada
| |
Collapse
|
4
|
Santos S, Costa CS, Paraguassu W, Silva CWC, Otubo L, Souza KS, Correa BS, Miranda-Filho AA, Ferreira WL, Carbonari AW, Cabrera-Pasca GA. Synthesis and Local Characterization of CoO Nanoparticles in Distinct Phases: Unveiling Polymorphic Structures. ACS OMEGA 2024; 9:42883-42894. [PMID: 39464482 PMCID: PMC11500130 DOI: 10.1021/acsomega.4c05308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
The advancement of functional nanomaterials has become a major focus of recent research, driven by the exceptional properties these materials display compared to their macroscopic (bulk) counterparts. Cobalt oxide nanoparticles (CoO-NPs) stand out primarily for their catalytic and magnetic properties, which can enable a range of technological applications, such as advanced catalysts, drug delivery systems, implants, prosthetics, sensors. However, in addition to the dependence on factors such as size, morphology, and functionalization, the properties of CoO-NPs are significantly influenced by the crystal structure. Therefore, local investigation into the polymorphic structures of CoO at the nanometric scale may provide new insights into the local structural and magnetic characteristics of these systems. In this report, we address the synthesis and local characterization of cobalt oxide (CoO) nanoparticles in the rock-salt cubic fcc-CoO and Wurtzite hpc-CoO phases, obtained through thermal decomposition. We analyze the influence of oleylamine and oleic acid ligands on the structural and morphological control of these systems. The obtained nanoparticles were characterized using conventional techniques such as X-ray diffraction (XRD), transmission electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Local characterization was carried out by the perturbed angular correlation (PAC) nuclear technique using the radioactive tracer 111In(111Cd). Measurements were conducted at 295 and 10 K to investigate possible magnetic phase transitions in these systems. XRD results confirmed the formation of fcc-CoO and hcp-CoO phases. The phase fcc was obtained with the pair of oleylamine and oleic acid ligands, while the phase hcp phase was synthesized using only oleylamine. Additionally, nanoparticles synthesized with oleylamine and oleic acid exhibited better morphological control compared to those produced with only oleylamine. Raman spectroscopy analyses suggest a phase transformation process resulting in Co3O4. PAC results for hyperfine interactions at the 111In(111Cd) probe nucleus, indicate that the hcp-CoO phase shows smaller hyperfine magnetic interactions (B hf = 1 T) compared to the fcc-CoO phase (B hf = 17 T). This suggests the mechanism of superexchange interactions, which are strongly influenced by the Co-O-Co bond angle, which is 110° for the hpc-CoO phase and 180° for the fcc-CoO phase due to the geometries of the systems.
Collapse
Affiliation(s)
- Suzilene
V. Santos
- Programa
de Pós-Graduação em Ciência e Engenharia
de Materiais − PPGCEM, Universidade
Federal do Pará (UFPA), Ananindeua, Pará 67130-660, Brazil
| | - Cleidilane S. Costa
- Faculdade
de Ciências Exatas e Tecnologia, Universidade Federal do Pará (UFPA), Abaetetuba, Pará 684440-000, Brazil
| | - Waldeci Paraguassu
- Programa
de Pós-Graduação em Ciência e Engenharia
de Materiais − PPGCEM, Universidade
Federal do Pará (UFPA), Ananindeua, Pará 67130-660, Brazil
| | - Crystian W. C. Silva
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
| | - Larissa Otubo
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
| | - Katiusse S. Souza
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
| | - Bruno S. Correa
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
| | - Arnaldo A. Miranda-Filho
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
| | - Wanderson L. Ferreira
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
| | - Artur W. Carbonari
- Instituto
de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, São
Paulo 05508-000, Brazil
- EP
Department, European Organization for Nuclear
Research (CERN), Geneva CH-1211, Switzerland
| | - Gabriel A. Cabrera-Pasca
- Faculdade
de Ciências Exatas e Tecnologia, Universidade Federal do Pará (UFPA), Abaetetuba, Pará 684440-000, Brazil
| |
Collapse
|
5
|
Kumar V, Ahire JJ, R A, Nain S, Taneja NK. Microencapsulation of riboflavin-producing Lactiplantibacillus Plantarum MTCC 25,432 and Evaluation of its Survival in Simulated Gastric and Intestinal Fluid. Probiotics Antimicrob Proteins 2024; 16:1365-1375. [PMID: 37402071 DOI: 10.1007/s12602-023-10115-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Microencapsulation is an optimistic method for the delivery of live microbial cells through different food products. In this study, riboflavin-producing probiotic strain Lactiplantibacillus plantarum MTCC 25,432 was encapsulated using a spray drying technique with different wall materials including Inulin, maltodextrin (MD), and MD + Inulin (1:1). The obtained spray dried powder was investigated for probiotic viability, encapsulation efficiency, particle size, water activity, moisture content, hygroscopicity, bulk and tapped densities, storage stabilities, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Besides this, the viability of the free and encapsulated probiotic cells was tested under simulated gastric and intestinal fluid conditions. In the results, microcapsules produced with the combination of MD + Inulin showed higher dry powder yield (36.5%) and viability of L. plantarum MTCC 25,432 (7.4 log CFU / g) as compared with individual coating materials. Further characterization revealed that MD + Inulin microcapsules are spherical (3.50 ± 1.61 μm in diameter) in shape with concavities, showed the highest encapsulation efficiency (82%), low water activity (0.307), moisture content (3.67%) and good survival ability at low pH (pH 2.0 and 3.0), high bile salt concentrations (1.0% and 2.0%), and long storage conditions. No differences in FTIR spectra were observed among the tested samples. However, TGA showed enhanced thermal stability of probiotic-loaded microcapsules when MD + Inulin was used together. In conclusion, MD + Inulin could be a potential encapsulation material for riboflavin-producing probiotic bacteria L. plantarum MTCC 25,432.
Collapse
Affiliation(s)
- Vikram Kumar
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | | | - Amrutha R
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | - Sahil Nain
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India.
- Centre for Advanced Translational Research in Food Nanobiotechnology (CATR-FNB), NIFTEM, Sonepat, Haryana, India.
| |
Collapse
|
6
|
Surendra D, Kumar CP, Nandini C, Chamaraja N, Raghu AV, Majani SS, Shivamallu C, Shati AA, Alfaifi MY, Elbehairi SEI, Sridhara Setty PB, Kollur SP. Synthesis, characterization and assessment of anticancer potency of oxcarbazepine with folic acid conjugated Fe2O3 nanostructures as nano-drugs. J Mol Struct 2024; 1306:137842. [DOI: 10.1016/j.molstruc.2024.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
7
|
Mehrooz N, Gharibshahi R, Jafari A, Shadan B, Delavari H, Sadeghnejad S. Assessment of heavy oil recovery mechanisms using in-situ synthesized CeO 2 nanoparticles. Sci Rep 2024; 14:11652. [PMID: 38773210 PMCID: PMC11109190 DOI: 10.1038/s41598-024-62393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
This project investigated the impact of low-temperature, in-situ synthesis of cerium oxide (CeO2) nanoparticles on various aspects of oil recovery mechanisms, including changes in oil viscosity, alterations in reservoir rock wettability, and the resulting oil recovery factor. The nanoparticles were synthesized using a microemulsion procedure and subjected to various characterization analyses. Subsequently, these synthesized nanoparticles were prepared and injected into a glass micromodel, both in-situ and ex-situ, to evaluate their effectiveness. The study also examined the movement of the injected fluid within the porous media. The results revealed that the synthesized CeO2 nanoparticles exhibited a remarkable capability at low temperatures to reduce crude oil viscosity by 28% and to lighten the oil. Furthermore, the addition of CeO2 nanoparticles to the base fluid (water) led to a shift in the wettability of the porous medium, resulting in a significant reduction in the oil drop angle from 140° to 20°. Even a minimal presence of CeO2 nanoparticles (0.1 wt%) in water increased the oil production factor from 29 to 42%. This enhancement became even more pronounced at a concentration of 0.5 wt%, where the oil production factor reached 56%. Finally, it was found that the in-situ injection, involving the direct synthesis of CeO2 nanoparticles within the reservoir using precursor salts solution and reservoir energy, led to an 11% enhancement in oil production efficiency compared to the ex-situ injection scenario, where the nanofluid is prepared outside the reservoir and then injected into it.
Collapse
Affiliation(s)
- Nafiseh Mehrooz
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Reza Gharibshahi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Behrad Shadan
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hamid Delavari
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Saeid Sadeghnejad
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Syafira RS, Devi MJ, Gaffar S, Irkham, Kurnia I, Arnafia W, Einaga Y, Syakir N, Noviyanti AR, Hartati YW. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor. ACS APPLIED BIO MATERIALS 2024; 7:950-960. [PMID: 38303668 DOI: 10.1021/acsabm.3c00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or coronavirus disease 2019 (COVID-19), is still spreading worldwide; therefore, the need for rapid and accurate detection methods remains relevant to maintain the spread of this infectious disease. Electrochemical immunosensors are an alternative method for the rapid detection of the SARS-CoV-2 virus. Herein, we report the development of a screen-printed carbon electrode immunosensor using a hydroxyapatite-gold nanocomposite (SPCE/HA-Au) directly spray-coated with the immobilization receptor binding domain (RBD) Spike to increase the conductivity and surface electrode area. The HA-Au composite synthesis was optimized using the Box-Behnken method, and the resulting composite was characterized by UV-vis spectrophotometry, TEM-EDX, and XRD analysis. The specific interaction of RBD Spike with immunoglobulin G (IgG) antibodies was evaluated by differential pulse voltammetry and electrochemical impedance spectroscopy methods in a [Fe(CN)6]4-/3- solution redox system. The IgG was detected with a detection limit of 0.0561 pg mL-1, and the immunosensor had selectivity and stability of 103-122% and was stable until week 7 with the influence of storage conditions. Also, the immunosensor was tested using real samples from human serum, where the results were confirmed using the chemiluminescent microparticle immunoassay (CMIA) method and showed satisfactory results. Therefore, the developed electrochemical immunosensor can rapidly and accurately detect SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Wyanda Arnafia
- Department of Animal Infectious Diseases and Veterinary Public Health, IPB University, Jl. Raya Dramaga, Bogor, West Java 16680, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Norman Syakir
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
9
|
Kurup M, Kumar M, Ramanathan S, Rajappa MC. The Biogenetic Synthesis of Metallic Nanoparticles and the Role they Play in the Anti-inflammatory Drug Treatment. Curr Drug Discov Technol 2024; 21:e180723218848. [PMID: 37464822 DOI: 10.2174/1570163820666230718123544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Nanoscience and nanotechnology have resulted in the continuous development of new nanomaterials with remarkable properties that make them appealing for pharmaceutical applications. The biocompatibility of metallic nanoparticles is of increasing interest for research scientists currently working towards developing novel nano-based medicines, industrial chemicals, and antigens. There is also a particular interest in using them to counter mutations that up-regulate inflammation enhancers to produce a range of inflammation-related pathologies. AIM The following review discusses the anti-inflammatory mechanisms of metallic bioconjugated (silver, gold, zinc oxide, titanium dioxide, and selenium) nanoparticles. The current study focuses on nanoparticle manufacturing technologies and the inflammatory response. METHODOLOGY A thorough search was conducted in several databases, including Scopus, Embase, Cochrane, and PubMed. The search terms used included: Alzheimer's disease, mechanism of action, neuroinflammation, the reaction of Mast cells to stress and neuroinflammation. The study included all publications published in English. RESULTS Green-synthesised nanoparticles can suppress the NF-B and cyclooxygenase-2 pathways, preventing the production of proinflammatory cytokines and ROS scavenging mechanisms. Metallic nanoparticles with anti-inflammatory properties, such as stability and specific targeting, have been briefly discussed. CONCLUSION The current research focuses on metallic nanoparticles employed as anti-inflammatory medication molecules, although nanoparticles have applications in various areas (medicine, chemical engineering, and agriculture). Nanoparticles have a large surface-to-volume ratio, which can help them to penetrate cell membranes, and because of their solid ligand-binding capabilities, nanoparticles have been used in the medical treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Meena Kurup
- Department of Pharmacy, Vinayaka Missions College of Pharmacy, VMRF (DU), Salem, Tamil Nadu, India
| | - Mohan Kumar
- Department of Pharmaceutical Chemistry, Vinayaka Missions College of Pharmacy, VMRF (DU), Salem, Tamil Nadu, India
| | | | - Margret Chandira Rajappa
- Department of Pharmacy, Vinayaka Missions College of Pharmacy, VMRF (DU), Salem, Tamil Nadu, India
| |
Collapse
|
10
|
Panneer NK, Venkatraman C, Bachan N, Wilson JJ, Edwin MA, Jesudasan AR, Joseph MS. Ecofriendly sol-gel-derived dye-sensitized solar cells with aluminium-doped tin oxide photoanode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60524-60537. [PMID: 37036651 DOI: 10.1007/s11356-023-26733-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
The manuscript reports the fabrication of an eco-friendly sol gel dye-sensitized solar cell (DSSC) based on aluminium (Al)-doped tin oxide nanoparticles with different concentrations (0.5, 1, and 5 mol%) of Al providing enhanced optical and electrical properties than its bare counterparts. The physical, chemical, optical, and electrical properties of the as-synthesized nanoparticles were studied using different analytical tools. X-ray diffraction (XRD) study reveals the crystal structure of the prepared samples ascribed to SnO2 nanoparticles uniformly with reduced crystallite size for Al-doped SnO2 nanoparticles. Field emission scanning electron microscope (FESEM) analysis reveals narrowing of particle size on doping with the Al, substantially enhancing the optical and surface characteristic features of the SnO2 nanoparticles. Photoconductivity studies indicate that all the samples have a good linear response with the increment of electric field in dark and photocurrent attributing to better photoconversion capability of the samples. Further, the optimized Al-doped SnO2 and bare SnO2 nanoparticles were subjected to sophisticated analytical studies such as high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS) for the better insight into their properties. The as-prepared Al-doped SnO2 nanoparticles in the present study record good optical, surface, and electrical properties which enhance their compatibility for possible photovoltaic applications especially in dye-sensitized solar cells as an environmentally safe alternate energy solution. Further, the current density-voltage (J-V) characteristics of the optimized Al-SnO2 and bare SnO2 photoanode component were probed for their suitability in DSSCs which disclosed enriched efficiency upon doping with aluminium nanoparticles.
Collapse
Affiliation(s)
- Naveen Kumar Panneer
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Chandrakala Venkatraman
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Neena Bachan
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Jothi Jeyarani Wilson
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Merlin Arnold Edwin
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Antony Robinson Jesudasan
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India
| | - Merline Shyla Joseph
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600 034, India.
| |
Collapse
|
11
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Lestari TF, Setiyono R, Tristina N, Sofiatin Y, Hartati YW. The optimization of electrochemical immunosensors to detect epithelial sodium channel as a biomarker of hypertension. ADMET AND DMPK 2023; 11:211-226. [PMID: 37325112 PMCID: PMC10262218 DOI: 10.5599/admet.1629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Indexed: 11/07/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a transmembrane protein that regulates the balance of sodium salt levels in the body through its expression in various tissues. The increase in sodium salt in the body is related to the expression of ENaC, thereby increasing blood pressure. Therefore, overexpression of the ENaC protein can be used as a biomarker for hypertension. The detection of ENaC protein using anti-ENaC in the biosensor system has been optimized with the Box-Behnken experimental design. The steps carried out in this research are screen-printed carbon electrode modification with gold nanoparticles, then anti-ENaC was immobilized using cysteamine and glutaraldehyde. Optimum conditions of the experiment, such as anti-ENaC concentration, glutaraldehyde incubation time, and anti-ENaC incubation time, were optimized using the Box-Behnken experimental design to determine the factors that influence the increase in immunosensor current response and the optimum conditions obtained were then applied to variations in ENaC protein concentrations. The optimum experimental conditions for anti-ENaC concentration were 2.5 μg/mL, the glutaraldehyde incubation time was 30 minutes, and the anti-ENaC incubation time was 90 minutes. The developed electrochemical immunosensor has a detection limit of 0.0372 ng/mL and a quantification limit of 0.124 ng/mL for the ENaC protein concentration range of 0.09375 to 1.0 ng/mL. Thus, the immunosensor generated from this study can be used to measure the concentration of normal urine samples and those of patients with hypertension.
Collapse
Affiliation(s)
- Tias F.H. Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | - Riyanto Setiyono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | - Nina Tristina
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Yulia Sofiatin
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| |
Collapse
|
13
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
14
|
Labuda J, Barek J, Gajdosechova Z, Goenaga-Infante H, Johnston LJ, Mester Z, Shtykov S. Analytical chemistry of engineered nanomaterials: Part 1. Scope, regulation, legislation, and metrology (IUPAC Technical Report). PURE APPL CHEM 2023. [DOI: 10.1515/pac-2021-1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Analytical chemistry is crucial for understanding the complex behavior observed for engineered nanomaterials (ENMs). A variety of analytical chemistry techniques and methodological approaches are used for isolation/purification and determination of the composition of pristine nanomaterials and for the detection, identification, and quantification of nanomaterials in nano-enabled consumer products and the complex matrices found in cosmetics, food, and environmental and biological samples. Adequate characterization of ENMs also requires physicochemical characterization of number of other properties, including size, shape, and structure. The requirement for assessment of a number of ENM properties frequently requires interdisciplinary approaches and multi-modal analysis methods. This technical report starts with an overview of ENMs definitions and classification, their properties, and analytical scenarios encountered with the analysis of both pristine nanomaterials and complex matrices containing different nanomaterials. An evaluation of the current status regarding nanomaterial identification and characterization for regulatory purposes and legislation, including emerging regulations and related scientific opinions, is provided. The technical report also presents a large and critical overview of the metrology of nanomaterials, including available reference materials and the development and validation of standardized methods that are currently available to address characterization and analysis challenges. The report focuses mainly on chemical analysis techniques and thus it is complementary to previous IUPAC technical reports focused on characterizing the physical parameters of ENMs and on nanotoxicology.
Collapse
Affiliation(s)
- Jan Labuda
- Institute of Analytical Chemistry , Slovak University of Technology in Bratislava , Bratislava , Slovakia
| | - Jiří Barek
- Department of Analytical Chemistry , Charles University in Prague , Prague , Czech Republic
| | | | | | | | - Zoltan Mester
- National Research Council Canada , Ottawa , ON K1A 0R6 , Canada
| | - Sergei Shtykov
- Institute of Chemistry , Saratov State University , Saratov , Russia
| |
Collapse
|
15
|
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amina Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Aleena Shoukat
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
16
|
Bertoldo Stefanello L, Pinto Teixeira E, Almeida Iglesias B, Valandro Soares M, Alexandre Antunes Soares F, Monteiro B, Luísa Kloster C, de Bona da Silva C, Antonio Villetti M, Borsali R. Carbohydrate-based block copolymer nanoparticles: Novel nanocarrier for delivery of chlorine-aluminum phthalocyanine for use in photodynamic therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Total oxidation of benzene over cerium oxide-impregnated two-dimensional MWW zeolites obtained by environmental synthesis using Brazilian rice husk silica agro-industrial waste. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Köktürk M, Altindag F, Nas MS, Calimli MH. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol Trace Elem Res 2022; 200:2455-2467. [PMID: 34313947 DOI: 10.1007/s12011-021-02821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Bimetallic nanoparticles are synthesized using two different metal elements and used recently in many fields. However, limited studies related to the ecotoxic effects of nanoparticles available in the literature. The purpose of this study is to synthesize and characterize bimetallic PdCu/MWCNT and PdNi/MWCNT NPs and investigate their ecotoxic effects on earthworms. For this purpose, we injected approximately 20 µL of various concentrations of bimetallic PdCu/MWCNT and PdNi/MWCNT NPs (1, 10, 100, 1000, and 2000 mg/L) into the coelomic space of earthworms. We evaluated survival rate, malformations, reactive oxygen species (ROS) level, 8-OHdG content, and histopathological changes in earthworms at the 48th hour after exposure. PdCu/MWCNT and PdNi/MWCNT NPs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) pattern, and Raman-scattering spectroscopy. Toxicological examinations showed that PdCu/MWCNT NPs reduced the survival rate of earthworms (2000 mg/L, 84%) and caused various malformations (various lesions, thinning, swelling, and rupture), but nonsignificant effects of survival rate and malformations were observed in earthworms using PdNi/MWCNT NPs. The histopathological examinations of earthworm tissues exposed with PdNi/MWCNT determined that tissues in all treatment groups had a normal histological appearance. However, at a concentration of 2000 mg/L of PdCu/MWCNT NPs, atrophy in the longitudinal muscle layer and less degenerative cells in the epidermis layer were observed in earthworm tissues. It was determined that PdNi/MWCNT and PdCu/MWCNT NPs caused significant increases in ROS levels and 8-OHdG activity in earthworm tissues after 48 h. Finally, our results demonstrated that the toxicity of PdNi/MWCNT NPs was detected to be lower than PdCu/MWCNT NPs. However, both nanoparticles may pose a toxicological risk at high concentrations (1000 and 2000 mg/L). These findings will provide valuable information to studies on the use of PdNi/MWCNT NPs in wastewater treatment systems, industrial and medical fields, which have been determined to have less ecotoxicological risk.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdır University, Igdır, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, University of Igdır, Igdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, University of Igdır, Igdır, Turkey.
| |
Collapse
|
19
|
Nothling MD, Bailey CG, Fillbrook LL, Wang G, Gao Y, McCamey DR, Monfared M, Wong S, Beves JE, Stenzel MH. Polymer Grafting to Polydopamine Free Radicals for Universal Surface Functionalization. J Am Chem Soc 2022; 144:6992-7000. [PMID: 35404602 DOI: 10.1021/jacs.2c02073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modifying surfaces using free radical polymerization (FRP) offers a means to incorporate the diverse physicochemical properties of vinyl polymers onto new materials. Here, we harness the universal surface attachment of polydopamine (PDA) to "prime" a range of different surfaces for free radical polymer attachment, including glass, cotton, paper, sponge, and stainless steel. We show that the intrinsic free radical species present in PDA can serve as an anchor point for subsequent attachment of propagating vinyl polymer macroradicals through radical-radical coupling. Leveraging a straightforward, twofold soak-wash protocol, FRP over the PDA-functionalized surfaces results in covalent polymer attachment on both porous and nonporous substrates, imparting new properties to the functionalized materials, including enhanced hydrophobicity, fluorescence, or temperature responsiveness. Our strategy is then extended to covalently incorporate PDA nanoparticles into organo-/hydrogels via radical cross-linking, yielding tunable PDA-polymer composite networks. The propensity of PDA free radicals to quench FRP is studied using in situ 1H nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, revealing a surface area-dependent macroradical scavenging mechanism that underpins PDA-polymer conjugation. By combining the arbitrary surface attachment of PDA with the broad physicochemical properties of vinyl polymers, our strategy provides a straightforward route for imparting unlimited new functionality to practically any surface.
Collapse
Affiliation(s)
- Mitchell D Nothling
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher G Bailey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lucy L Fillbrook
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Guannan Wang
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yijie Gao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marzieh Monfared
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sandy Wong
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
20
|
Ghalkhani M, Sohouli E, Khaloo SS, Vaziri MH. Architecting of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer/Ag-Cs-Gr QDs/NTiO 2. CHEMOSPHERE 2022; 293:133597. [PMID: 35031253 DOI: 10.1016/j.chemosphere.2022.133597] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Given the many issues bacterial infections cause to humans and the necessity for their detection, in this work we developed a robust aptasensor for prompt, ultrasensitive, and selective analysis of staphylococcus aureus bacterium (S. aureus). A nanocomposite of Ag nanoparticles, chitosan, graphene quantum dots, and nitrogen-doped TiO2 nanoparticles (Ag-Cs-Gr QDs/NTiO2) was synthesized, and thoroughly characterized by XRD, FT-IR, and FE-SEM spectroscopic methods. The surface of screen-printed carbon electrodes modified with Ag-Cs-Gr QDs/NTiO2 nanocomposite was utilized as a compatible platform for aptamer attachment. The aptasensor accurately determined S. aureus in the dynamic range of 10-5 × 108 CFU/mL with detection limit of 3.3 CFU/mL. The monitoring of the practical performance of aptasensor in human serum samples revealed its superiority over the conventional methods (relative recovery of 96.25-103.33%). The Ag-Cs-Gr QDs/NTiO2-based aptasensor offers facile, biocompatibility, good repeatability, reproducibility (RSD = 3.66%), label free and stabile strategy for sensitive S. aureus analysis free from biomolecules interferences in actual specimens.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Esmail Sohouli
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, Khan A, Kalusalingam A, Ng PW. A review and revisit of nanoparticles for antimicrobial drug delivery. J Med Life 2022; 15:328-335. [PMID: 35449993 PMCID: PMC9015166 DOI: 10.25122/jml-2021-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022] Open
Abstract
Antimicrobials are widely used to treat bacteria, viruses, fungi, and protozoa. Therefore, research and development of newer types of antimicrobials are important. Antimicrobial resistance has emerged as a major challenge to the healthcare system, although various alternative antimicrobials have been proposed. However, none of these show consistent and comparable efficacy to antimicrobials in clinical trials. More recently, nanoparticles have emerged as a potential solution to antimicrobial agents to overcome antimicrobial resistance. This article revisits and updates applications of various types of nanoparticles for the delivery of antimicrobial agents and their characterization. Though nanoparticle technology has some limitations, it provides an innovative approach to pharmaceutical technology. Furthermore, nanoparticles offer a variety of advantages, such as enhancement of solubility and permeation, leading to better efficacy. In this article, approaches commonly employed to improve antimicrobial therapy are discussed. These approaches have advantages and applications and provide a broader opportunity for pharmaceutical scientists to choose the proper method per the desired outcome.
Collapse
Affiliation(s)
- Kai Bin Liew
- Corresponding Author: Kai Bin Liew, Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park H, Kim JS, Hong S, Ha ES, Nie H, Zhou QT, Kim MS. Tableting process-induced solid-state polymorphic transition. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-021-00556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zaib M, Jamil M, Shahzadi T, Farooq U. Ultrasonic green synthesis of different nickel nanoparticles and their application in Cr(VI) removal studies. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1983836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maria Zaib
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Misbah Jamil
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Tayyaba Shahzadi
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Umar Farooq
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
24
|
Garcia A, Wang K, Bedier F, Benavides M, Wan Z, Wang S, Wang Y. Plasmonic Imaging of Electrochemical Reactions at Individual Prussian Blue Nanoparticles. Front Chem 2021; 9:718666. [PMID: 34552911 PMCID: PMC8450507 DOI: 10.3389/fchem.2021.718666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Prussian blue is an iron-cyanide-based pigment steadily becoming a widely used electrochemical sensor in detecting hydrogen peroxide at low concentration levels. Prussian blue nanoparticles (PBNPs) have been extensively studied using traditional ensemble methods, which only provide averaged information. Investigating PBNPs at a single entity level is paramount for correlating the electrochemical activities to particle structures and will shed light on the major factors governing the catalyst activity of these nanoparticles. Here we report on using plasmonic electrochemical microscopy (PEM) to study the electrochemistry of PBNPs at the individual nanoparticle level. First, two types of PBNPs were synthesized; type I synthesized with double precursors method and type II synthesized with polyvinylpyrrolidone (PVP) assisted single precursor method. Second, both PBNPs types were compared on their electrochemical reduction to form Prussian white, and the effect from the different particle structures was investigated. Type I PBNPs provided better PEM sensitivity and were used to study the catalytic reduction of hydrogen peroxide. Progressively decreasing plasmonic signals with respect to increasing hydrogen peroxide concentration were observed, demonstrating the capability of sensing hydrogen peroxide at a single nanoparticle level utilizing this optical imaging technique.
Collapse
Affiliation(s)
- Adaly Garcia
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Kinsley Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Fatima Bedier
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Miriam Benavides
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, United States.,School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, United States.,School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
25
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
26
|
Varma S, Dey S, S P D. Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting Their Fate. Curr Pharm Biotechnol 2021; 23:679-706. [PMID: 34264182 DOI: 10.2174/1389201022666210714145356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Efficient and controlled internalization of NPs into the cells depends on their physicochemical properties and dynamics of the plasma membrane. NPs-cell interaction is a complex process that decides the fate of NPs internalization through different endocytosis pathways. OBJECTIVE The aim of this review is to highlight the physicochemical properties of synthesized nanoparticles (NPs) and their interaction with the cellular-dynamics and pathways like phagocytosis, pinocytosis, macropinocytosis, clathrin, and caveolae-mediated endocytosis and the involvement of effector proteins domain such as clathrin, AP2, caveolin, Arf6, Cdc42, dynamin and cell surface receptors during the endocytosis process of NPs. METHOD An electronic search was performed to explore the focused reviews and research articles on types of endocytosis and physicochemical properties of nanoparticles and their impact on cellular internalizations. The search was limited to peer-reviewed journals in the PubMed database. RESULTS This article discusses in detail how different types of NPs and their physicochemical properties such as size, shape, aspect ratio, surface charge, hydrophobicity, elasticity, stiffness, corona formation, surface functionalization changes the pattern of endocytosis in the presence of different pharmacological blockers. Some external forces like a magnetic field, electric field, and ultrasound exploit the cell membrane dynamics to permeabilize them for efficient internalization with respect to fundamental principles of membrane bending and pore formation. CONCLUSION This review will be useful to attract and guide the audience to understand the endocytosis mechanism and their pattern with respect to physicochemical properties of NPs to improve their efficacy and targeting to achieve the impactful outcome in drug-delivery and theranostics applications.
Collapse
Affiliation(s)
- Sameer Varma
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| | - Smita Dey
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| | - Dhanabal S P
- Department of Pharmacognosy & Phytopharmacy, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| |
Collapse
|
27
|
The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021; 11:life11070682. [PMID: 34357054 PMCID: PMC8307574 DOI: 10.3390/life11070682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Even though there are various types of cancer, this pathology as a whole is considered the principal cause of death worldwide. Lung cancer is known as a heterogeneous condition, and it is apparent that genome modification presents a significant role in the occurrence of this disorder. There are conventional procedures that can be utilized against diverse cancer types, such as chemotherapy or radiotherapy, but they are hampered by the numerous side effects. Owing to the many adverse events observed in these therapies, it is imperative to continuously develop new and improved strategies for managing individuals with cancer. Nanomedicine plays an important role in establishing new methods for detecting chromosomal rearrangements and mutations for targeted chemotherapeutics or the local delivery of drugs via different types of nano-particle carriers to the lungs or other organs or areas of interest. Because of the complex signaling pathways involved in developing different types of cancer, the need to discover new methods for prevention and detection is crucial in producing gene delivery materials that exhibit the desired roles. Scientists have confirmed that nanotechnology-based procedures are more effective than conventional chemotherapy or radiotherapy, with minor side effects. Several nanoparticles, nanomaterials, and nanosystems have been studied, including liposomes, dendrimers, polymers, micelles, inorganic nanoparticles, such as gold nanoparticles or carbon nanotubes, and even siRNA delivery systems. The cytotoxicity of such nanosystems is a debatable concern, and nanotechnology-based delivery systems must be improved to increase the bioavailability, biocompatibility, and safety profiles, since these nanosystems boast a remarkable potential in many biomedical applications, including anti-tumor activity or gene therapy. In this review, the nanosystems involved in treating lung cancer and its associated challenges are discussed.
Collapse
|
28
|
Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. NANO CONVERGENCE 2021; 8:20. [PMID: 34236537 PMCID: PMC8266951 DOI: 10.1186/s40580-021-00270-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/02/2023]
Abstract
The last two decades have witnessed explosive growth in the field of nanoengineering and nanomedicine. In particular, engineered nanoparticles have garnered great attention due to their potential to enable new capabilities such as controlled and targeted drug delivery for treatment of various diseases. With rapid progress in nanoparticle research, increasing efforts are being made to develop new technologies for in vitro modeling and analysis of the efficacy and safety of nanotherapeutics in human physiological systems. Organ-on-a-chip technology represents the most recent advance in this effort that provides a promising approach to address the limitations of conventional preclinical models. In this paper, we present a concise review of recent studies demonstrating how this emerging technology can be applied to in vitro studies of nanoparticles. The specific focus of this review is to examine the use of organ-on-a-chip models for toxicity and efficacy assessment of nanoparticles used in therapeutic applications. We also discuss challenges and future opportunities for implementing organ-on-a-chip technology for nanoparticle research.
Collapse
Affiliation(s)
- Shawn Kang
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
| | - Sunghee Estelle Park
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
29
|
Kapoor RT, Salvadori MR, Rafatullah M, Siddiqui MR, Khan MA, Alshareef SA. Exploration of Microbial Factories for Synthesis of Nanoparticles - A Sustainable Approach for Bioremediation of Environmental Contaminants. Front Microbiol 2021; 12:658294. [PMID: 34149647 PMCID: PMC8212957 DOI: 10.3389/fmicb.2021.658294] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The nanomaterials synthesis is an intensifying research field due to their wide applications. The high surface-to-volume ratio of nanoparticles and quick interaction capacity with different particles make them as an attractive tool in different areas. Conventional physical and chemical procedures for development of metal nanoparticles become outmoded due to extensive production method, energy expenditure and generation of toxic by-products which causes significant risks to the human health and environment. Hence, there is a growing requirement to search substitute, non-expensive, reliable, biocompatible and environmental friendly methods for development of nanoparticles. The nanoparticles synthesis by microorganisms has gained significant interest due to their potential to synthesize nanoparticles in various sizes, shape and composition with different physico-chemical properties. Microbes can be widely applied for nanoparticles production due to easy handling and processing, requirement of low-cost medium such as agro-wastes, simple scaling up, economic viability with the ability of adsorbing and reducing metal ions into nanoparticles through metabolic processes. Biogenic synthesis of nanoparticles offers clean, non-toxic, environmentally benign and sustainable approach in which renewable materials can be used for metal reduction and nanoparticle stabilization. Nanomaterials synthesized through microbes can be used as a pollution abatement tool as they also contain multiple functional groups that can easily target pollutants for efficient bioremediation and promotes environmental cleanup. The objective of the present review is to highlight the significance of micro-organisms like bacteria, actinomycetes, filamentous fungi, yeast, algae and viruses for nanoparticles synthesis and advantages of microbial approaches for elimination of heavy metals, dyes and wastewater treatment.
Collapse
Affiliation(s)
- Riti T Kapoor
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Marcia R Salvadori
- Department of Microbiology, Biomedical Institute-II, University of São Paulo, São Paulo, Brazil
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Masoom R Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Moonis A Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shareefa A Alshareef
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Bayat M, Zargar M, Astarkhanova T, Pakina E, Ladan S, Lyashko M, Shkurkin SI. Facile Biogenic Synthesis and Characterization of Seven Metal-Based Nanoparticles Conjugated with Phytochemical Bioactives Using Fragaria ananassa Leaf Extract. Molecules 2021; 26:3025. [PMID: 34069463 PMCID: PMC8159137 DOI: 10.3390/molecules26103025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
In this investigation, for the first time, we used Fragaria ananassa (strawberry) leaf extract as a source of natural reducing, capping or stabilizing agents to develop an eco-friendly, cost-effective and safe process for the biosynthesis of metal-based nanoparticles including silver, copper, iron, zinc and magnesium oxide. Calcinated and non-calcinated zinc oxide nanoparticles also synthesized during a method different from our previous study. To confirm the successful formation of nanoparticles, different characterization techniques applied. UV-Vis spectroscopy, X-ray Diffraction (XRD) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), Photon Cross-Correlation Spectroscopy (PCCS) and Fourier Transformed Infrared Spectroscopy (FT-IR) were used to study the unique structure and properties of biosynthesized nanoparticles. The results show the successful formation of metal-based particles in the range of nanometer, confirmed by different characterization techniques. Finally, the presented approach has been demonstrated to be effective in the biosynthesis of metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Tamara Astarkhanova
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Elena Pakina
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Sergey Ladan
- All-Russian Scientific and Research Institute of Agrochemistry, Federal State Budgetary Institution, 344006 Moscow, Russia; (S.L.); (S.I.S.)
| | - Marina Lyashko
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Sergey I. Shkurkin
- All-Russian Scientific and Research Institute of Agrochemistry, Federal State Budgetary Institution, 344006 Moscow, Russia; (S.L.); (S.I.S.)
| |
Collapse
|
31
|
Gousiadou C, Marchese Robinson RL, Kotzabasaki M, Doganis P, Wilkins TA, Jia X, Sarimveis H, Harper SL. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish. Nanotoxicology 2021; 15:446-476. [PMID: 33586589 DOI: 10.1080/17435390.2021.1872113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The possibility of employing computational approaches like nano-QSAR or nano-read-across to predict nanomaterial hazard is attractive from both a financial, and most importantly, where in vivo tests are required, ethical perspective. In the present work, we have employed advanced Machine Learning techniques, including stacked model ensembles, to create nano-QSAR tools for modeling the toxicity of metallic and metal oxide nanomaterials, both coated and uncoated and with a variety of different core compositions, tested at different dosage concentrations on embryonic zebrafish. Using both computed and experimental descriptors, we have identified a set of properties most relevant for the assessment of nanomaterial toxicity and successfully correlated these properties with the associated biological responses observed in zebrafish. Our findings suggest that for the group of metal and metal oxide nanomaterials, the core chemical composition, concentration and properties dependent upon nanomaterial surface and medium composition (such as zeta potential and agglomerate size) are significant factors influencing toxicity, albeit the ranking of different variables is sensitive to the exact analysis method and data modeled. Our generalized nano-QSAR ensemble models provide a promising framework for anticipating the toxicity potential of new nanomaterials and may contribute to the transition out of the animal testing paradigm. However, future experimental studies are required to generate comparable, similarly high quality data, using consistent protocols, for well characterized nanomaterials, as per the dataset modeled herein. This would enable the predictive power of our promising ensemble modeling approaches to be robustly assessed on large, diverse and truly external datasets.
Collapse
Affiliation(s)
- C Gousiadou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - R L Marchese Robinson
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - M Kotzabasaki
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - P Doganis
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - T A Wilkins
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - X Jia
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - H Sarimveis
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - S L Harper
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.,Safer Nanomaterials and Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR, USA
| |
Collapse
|
32
|
Development of polyoxyethylene (2) oleyl ether-gliadin nanoparticles: Characterization and in vitro cytotoxicity. Eur J Pharm Sci 2021; 162:105849. [PMID: 33857638 DOI: 10.1016/j.ejps.2021.105849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Natural polymers have been widely investigated as materials for the delivery of active compounds as a consequence of their biocompatibility, low-cost and the opportunity they furnish to obtain micro- and nanostructures. In this investigation, commercial wheat gliadin was used as raw material with the aim of obtaining a vegetal protein-based nanoformulation to be used for various applications. The influence of non-ionic and anionic surfactants on the physico-chemical properties of gliadin nanoparticles was evaluated in order to propose a suitable candidate able to stabilize the colloidal structure. The use of Super Refined polyoxyethylene (2) oleyl ether gave the best results, promoting the formation of spherical-shaped nanosystems with a narrow size distribution. The oleyl ether-based emulsifier prevented the destabilization of the colloidal systems when pH- and temperature-dependent stress was applied. A freeze-dried formulation was obtained when mannose was used as a cryoprotectant. Polyoxyethylene (2) oleyl ether-stabilized nanosystems were shown to retain and release both hydrophilic and lipophilic model compounds in a controlled manner. The cytotoxicity of the surfactant-free and polyoxyethylene (2) oleyl ether-stabilized gliadin based nanosystems was assessed on human cells, both normal and tumoural, in order to investigate the concentrations of particles that can be used during in vitro experiments. Polyoxyethylene (2) oleyl ether-stabilized gliadin-based nanosystems are promising carriers for the delivery of several active compounds.
Collapse
|
33
|
Agboola O, Fayomi OSI, Ayodeji A, Ayeni AO, Alagbe EE, Sanni SE, Okoro EE, Moropeng L, Sadiku R, Kupolati KW, Oni BA. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. MEMBRANES 2021; 11:139. [PMID: 33669424 PMCID: PMC7920412 DOI: 10.3390/membranes11020139] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.
Collapse
Affiliation(s)
- Oluranti Agboola
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | | | - Ayoola Ayodeji
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Augustine Omoniyi Ayeni
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Edith E. Alagbe
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Samuel E. Sanni
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Emmanuel E. Okoro
- Department of Petroleum Engineering, Covenant University, Ota PMB 1023, Nigeria;
| | - Lucey Moropeng
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (L.M.); (R.S.)
| | - Rotimi Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (L.M.); (R.S.)
| | - Kehinde Williams Kupolati
- Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| | - Babalola Aisosa Oni
- Department of Chemical Engineering and Technology, China University of Petroleum, Beijing 102249, China;
| |
Collapse
|
34
|
Bhutta ZA, Ashar A, Mahfooz A, Khan JA, Saleem MI, Rashid A, Aqib AI, Kulyar MFEA, Sarwar I, Shoaib M, Nawaz S, Yao W. Enhanced wound healing activity of nano ZnO and nano Curcuma longa in third-degree burn. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01661-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
|
36
|
Lynch I, Afantitis A, Exner T, Himly M, Lobaskin V, Doganis P, Maier D, Sanabria N, Papadiamantis AG, Rybinska-Fryca A, Gromelski M, Puzyn T, Willighagen E, Johnston BD, Gulumian M, Matzke M, Green Etxabe A, Bossa N, Serra A, Liampa I, Harper S, Tämm K, Jensen ACØ, Kohonen P, Slater L, Tsoumanis A, Greco D, Winkler DA, Sarimveis H, Melagraki G. Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2493. [PMID: 33322568 PMCID: PMC7764592 DOI: 10.3390/nano10122493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a "nano" extension to the InChI standard.
Collapse
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Antreas Afantitis
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Thomas Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, 4057 Basel, Switzerland;
| | - Martin Himly
- Department Biosciences, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria;
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany;
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa; (N.S.); (M.G.)
| | - Anastasios G. Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Anna Rybinska-Fryca
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Maciej Gromelski
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Egon Willighagen
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Blair D. Johnston
- Department Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa; (N.S.); (M.G.)
- Haematology and Molecular Medicine, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg 2000, South Africa
| | - Marianne Matzke
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford OX10 8BB, UK; (M.M.); (A.G.E.)
| | - Amaia Green Etxabe
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford OX10 8BB, UK; (M.M.); (A.G.E.)
| | - Nathan Bossa
- LEITAT Technological Center, Circular Economy Business Unit, C/de La Innovació 2, 08225 Terrassa, Barcelona, Spain;
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (D.G.)
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Stacey Harper
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall 105 SW 26th St., Corvallis, OR 97331, USA;
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia;
| | - Alexander CØ Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark;
| | - Pekka Kohonen
- Misvik Biology OY, Karjakatu 35 B, 20520 Turku, Finland;
| | - Luke Slater
- Institute of Cancer and Genomics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andreas Tsoumanis
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (D.G.)
| | - David A. Winkler
- Institute of Molecular Sciences, La Trobe University, Kingsbury Drive, Bundoora 3086, Australia;
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- CSIRO Data61, Pullenvale 4069, Australia
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Georgia Melagraki
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| |
Collapse
|
37
|
Garrido M, Gualandi L, Di Noja S, Filippini G, Bosi S, Prato M. Synthesis and applications of amino-functionalized carbon nanomaterials. Chem Commun (Camb) 2020; 56:12698-12716. [PMID: 33016290 DOI: 10.1039/d0cc05316c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted considerable attention in the scientific community both from a scientific and an industrial point of view. Fullerenes, carbon nanotubes (CNTs), graphene and carbon dots (CDs) are the most popular forms and continue to be widely studied. However, the general poor solubility of many of these materials in most common solvents and their strong tendency to aggregate remains a major obstacle in practical applications. To solve these problems, organic chemistry offers formidable help, through the exploitation of tailored approaches, especially when aiming at the integration of nanostructures in biological systems. According to our experience with carbon-based nanostructures, the introduction of amino groups is one of the best trade-offs for the preparation of functionalized nanomaterials. Indeed, amino groups are well-known for enhancing the dispersion, solubilization, and processability of materials, in particular of CNMs. Amino groups are characterized by basicity, nucleophilicity, and formation of hydrogen or halogen bonding. All these features unlock new strategies for the interaction between nanomaterials and other molecules. This integration can occur either through covalent bonds (e.g., via amide coupling) or in a supramolecular fashion. In the present Feature Article, the attention will be focused through selected examples of our approach to the synthetic pathways necessary for the introduction of amino groups in CNMs and the subsequent preparation of highly engineered ad hoc nanostructures for practical applications.
Collapse
Affiliation(s)
- Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Lorenzo Gualandi
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Simone Di Noja
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy. and Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain and Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
38
|
Alsharif N, Eshaghi B, Reinhard BM, Brown KA. Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles. NANO LETTERS 2020; 20:7536-7542. [PMID: 32986433 PMCID: PMC7834348 DOI: 10.1021/acs.nanolett.0c03004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the extensive use of biodegradable polyester nanoparticles for drug delivery, and reports of the strong influence of nanoparticle mechanics on nano-bio interactions, there is a lack of systematic studies on the mechanics of these nanoparticles under physiologically relevant conditions. Here, we report indentation experiments on poly(lactic acid) and poly(lactide-co-glycolide) nanoparticles using atomic force microscopy. While dried nanoparticles were found to be rigid at room temperature, their elastic modulus was found to decrease by as much as 30 fold under simulated physiological conditions (i.e., in water at 37 °C). Differential scanning calorimetry confirms that this softening can be attributed to the glass transition of the nanoparticles. Using a combination of mechanical and thermoanalytical characterization, the plasticizing effects of miniaturization, molecular weight, and immersion in water were investigated. Collectively, these experiments provide insight for experimentalists exploring the relationship between polymer nanoparticle mechanics and in vivo behavior.
Collapse
Affiliation(s)
- Nourin Alsharif
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Behnaz Eshaghi
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts, 02215, United States
| | - Björn M. Reinhard
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts, 02215, United States
| | - Keith A. Brown
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Physics Department and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Quesada-Cabrera R, Parkin IP. Qualitative Approaches Towards Useful Photocatalytic Materials. Front Chem 2020; 8:817. [PMID: 33024744 PMCID: PMC7516336 DOI: 10.3389/fchem.2020.00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
The long-standing crusade searching for efficient photocatalytic materials has resulted in a vast landscape of promising photocatalysts, as reflected by the number of reviews reported in the last decade. Virtually all of these reviews have focused on quantitative approaches aiming at developing an understanding of the underlying mechanisms behind photocatalytic behavior and the parameters that influence structure–function correlation. Less attention has been paid, however, to qualitative measures around the development and assessment of photocatalysts. These measures will contribute toward narrowing the range of potential photocatalytic materials for widespread applications. The current report provides a critical perspective over some of the main factors affecting the assessment of photocatalytic materials as a code of good practice. A case of study is also provided, where this qualitative analysis is applied to one of the most prolific materials of the last-decade, disorder-engineered, black titanium dioxide (TiO2).
Collapse
Affiliation(s)
- Raul Quesada-Cabrera
- Christopher-Ingold Laboratories, Materials Chemistry Center, Department of Chemistry, UCL (University College London), London, United Kingdom
| | - Ivan P Parkin
- Christopher-Ingold Laboratories, Materials Chemistry Center, Department of Chemistry, UCL (University College London), London, United Kingdom
| |
Collapse
|
40
|
Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2020; 18:1-24. [PMID: 32905714 DOI: 10.1080/17425247.2020.1822321] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The utilization of polymeric nanoparticles, as drug payloads, has been extensively prevailed in cancer therapy. However, the precise distribution of these nanocarriers is restrained by various physiological and cellular obstacles. Nanoparticles must avoid nonspecific interactions with healthy cells and in vivo compartments to circumvent these barriers. Since in vivo interactions of nanoparticles are mainly dependent on surface properties of nanoparticles, efficient control on surface constituents is necessary for the determination of nanoparticles' fate in the body. AREAS COVERED In this review, the surface-modified polymeric nanoparticles and their utilization in cancer treatment were elaborated. First, the interaction of nanoparticles with numerous in vivo barriers was highlighted. Second, different strategies to overcome these obstacles were described. Third, some inspiring examples of surface-modified nanoparticles were presented. Later, fabrication and characterization methods of surface-modified nanoparticles were discussed. Finally, the applications of these nanoparticles in different routes of treatments were explored. EXPERT OPINION Surface modification of anticancer drug-loaded polymeric nanoparticles can enhance the efficacy, selective targeting, and biodistribution of the anticancer drug at the tumor site.
Collapse
Affiliation(s)
- Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Shumaila Sarwar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan.,Faculty of Pharmacy, University of Sargodha , Sargodha, Pakistan
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing, Jiangsu, China
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University , Sakaka, Aljouf, Saudi Arabia
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences , Bahawalpur, Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Ihtasham Ur Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan.,Bioengineering, Engineering Department, Lancaster University , Lancaster, UK
| |
Collapse
|
41
|
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020; 25:E3731. [PMID: 32824172 PMCID: PMC7464532 DOI: 10.3390/molecules25163731] [Citation(s) in RCA: 632] [Impact Index Per Article: 126.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term "nanoparticle" stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Filipa Carreiró
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Ana M. Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Andreia Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Bárbara Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - D. Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643 001, Tamil Nadu, India;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60–355 Poznań, Poland;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Tras-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
42
|
Balog S. Hydrodynamic Radius of Polymer-Coated Nanoparticles Measured by Taylor Dispersion: A Mathematical Model. Anal Chem 2020; 92:10693-10699. [PMID: 32567303 DOI: 10.1021/acs.analchem.0c01837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This theoretical work addresses the characterization of polymer-coated nanoparticles via the analysis of Taylor dispersion experiments. Our focus is on determining the apparent hydrodynamic radius and the related accuracy bias, which results from polydispersity and optical-absorption-weighted averages. To that end, we construct a statistical model addressing joint distributions of particle core size and ligand surface density, which determine the hydrodynamic radius and optical absorption of such nanoparticles. Our model predicts that a polymer shell that is thick compared with the core radius results in a smaller bias than a thin shell, and the bias may become even negative when ligand surface density is sufficiently high.
Collapse
Affiliation(s)
- Sandor Balog
- University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
43
|
Bartha C, Secu C, Matei E, Negrila C, Leca A, Secu M. Towards a Correlation between Structural, Magnetic, and Luminescence Properties of CeF 3:Tb 3+ Nanocrystals. MATERIALS 2020; 13:ma13132980. [PMID: 32635322 PMCID: PMC7372423 DOI: 10.3390/ma13132980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023]
Abstract
In this study, we report on the structural, magnetic, and optical properties of Tb3+-doped CeF3 nanocrystals prepared via a polyol-assisted route, followed by calcination. X-ray diffraction analysis and electron microscopy investigations have shown the formation of a dominant Ce0.75F3 nanocrystalline phase (of about 99%), with a relatively uniform distribution of nanocrystals about 15 nm in size. Magnetization curves showed typical paramagnetic properties related to the presence of Ce3+ and Tb3+ ions. The magnetic susceptibility showed a weak inflexion at about 150 K, assigned to the cerium ions’ crystal field splitting. Under UV light excitation of the Ce3+ ions, we observed Tb3+ green luminescence with a quantum yield of about 20%.
Collapse
|
44
|
Zhuravlev OE, Krotova NI, Voronchikhina LI. Influence of Concentration of Precursors and Solvent on the Size of Zinc Sulfide Nanoparticles Produced in Ionic Liquid Medium. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
46
|
Lach S, Jurczak P, Karska N, Kubiś A, Szymańska A, Rodziewicz-Motowidło S. Spectroscopic Methods Used in Implant Material Studies. Molecules 2020; 25:E579. [PMID: 32013172 PMCID: PMC7038083 DOI: 10.3390/molecules25030579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
It is recognized that interactions between most materials are governed by their surface properties and manifest themselves at the interface formed between them. To gain more insight into this thin layer, several methods have been deployed. Among them, spectroscopic methods have been thoroughly evaluated. Due to their exceptional sensitivity, data acquisition speed, and broad material tolerance they have been proven to be invaluable tools for surface analysis, used by scientists in many fields, for example, implant studies. Today, in modern medicine the use of implants is considered standard practice. The past two decades of constant development has established the importance of implants in dentistry, orthopedics, as well as extended their applications to other areas such as aesthetic medicine. Fundamental to the success of implants is the knowledge of the biological processes involved in interactions between an implant and its host tissue, which are directly connected to the type of implant material and its surface properties. This review aims to demonstrate the broad applications of spectroscopic methods in implant material studies, particularly discussing hard implants, surface composition studies, and surface-cell interactions.
Collapse
Affiliation(s)
- Sławomir Lach
- Correspondence: (S.L.); (S.R.-M.); Tel.: +48-58-523-5034 (S.L.); +48-58-523-5037 (S.R.-M.)
| | | | | | | | | | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (N.K.); (A.K.); (A.S.)
| |
Collapse
|
47
|
Mansuriya BD, Altintas Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E96. [PMID: 31878102 PMCID: PMC6982008 DOI: 10.3390/ma13010096] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
In the area of biomedicine, research for designing electrochemical sensors has evolved over the past decade, since it is crucial to selectively quantify biomarkers or pathogens in clinical samples for the efficacious diagnosis and/or treatment of various diseases. To fulfil the demand of rapid, specific, economic, and easy detection of such biomolecules in ultralow amounts, numerous nanomaterials have been explored to effectively enhance the sensitivity, selectivity, and reproducibility of immunosensors. Graphene quantum dots (GQDs) have garnered tremendous attention in immunosensor development, owing to their special attributes such as large surface area, excellent biocompatibility, quantum confinement, edge effects, and abundant sites for chemical modification. Besides these distinct features, GQDs acquire peroxidase (POD)-mimicking electro-catalytic activity, and hence, they can replace horseradish peroxidase (HRP)-based systems to conduct facile, quick, and inexpensive label-free immunoassays. The chief motive of this review article is to summarize and focus on the recent advances in GQD-based electrochemical immunosensors for the early and rapid detection of cancer, cardiovascular disorders, and pathogenic diseases. Moreover, the underlying principles of electrochemical immunosensing techniques are also highlighted. These GQD immunosensors are ubiquitous in biomedical diagnosis and conducive for miniaturization, encouraging low-cost disease diagnostics in developing nations using point-of-care testing (POCT) and similar allusive techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
48
|
Clausen PA, Kofoed-Sørensen V, Nørgaard AW, Sahlgren NM, Jensen KA. Thermogravimetry and Mass Spectrometry of Extractable Organics from Manufactured Nanomaterials for Identification of Potential Coating Components. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3657. [PMID: 31698885 PMCID: PMC6888238 DOI: 10.3390/ma12223657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Manufactured nanomaterials (MNMs) often have a surface-chemical modification in order to tailor their physicochemical properties, including also powder properties and miscibility. Surface-chemical modifications may influence the toxicological properties of the MNM, but the specific chemistry and extent are rarely described in detail in suppliers' technical data sheets. Chemical and quantitative information on any surface-chemical treatment, coating and functionalization are required for chemicals registration in Europe. Currently there is no globally accepted and documented approach to generate such data. Consequently, there is a continued research need to establish a structured approach to identify and quantify surface-chemical modifications. Here we present a tiered approach starting with screening for mass-loss during heating in a furnace or thermogravimetric analysis (TGA) followed by solvent extraction, and analysis by several mass spectrometry (MS) techniques depending on the target analytes. Thermal treatment was assumed to be able to quantify the amount of organic coating and MS was used to identify the extractable organic coatings after pressurized liquid extraction (PLE) using methanol at 200 °C. Volatile organic compounds in extracts were identified with gas chromatography and MS (GC-MS), non-volatile organic compounds with liquid chromatography MS (LC-MS), and polymeric compounds with matrix-assisted laser desorption ionization time-of-flight MS (MALDI-TOF-MS). The approach was demonstrated by analysis of 24 MNM, comprising titanium dioxide, synthetic amorphous silica, graphite, zinc oxide, silver, calcium carbonate, iron oxide, nickel-zinc-iron oxide, and organoclay. In extracts of 14 MNMs a range of organic compounds were identified and the main groups were silanes/siloxanes, fatty acids, fatty acid esters, quaternary ammonium compounds and polymeric compounds. In the remaining 10 MNMs no organic compounds were detected by MS, despite the fact an organic coating was indicated by TGA.
Collapse
Affiliation(s)
- Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (V.K.-S.); (A.W.N.); (N.M.S.)
| | - Vivi Kofoed-Sørensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (V.K.-S.); (A.W.N.); (N.M.S.)
| | - Asger W. Nørgaard
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (V.K.-S.); (A.W.N.); (N.M.S.)
- Novo Nordisk, DK-2760 Måløv, Denmark
| | - Nicklas Mønster Sahlgren
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (V.K.-S.); (A.W.N.); (N.M.S.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (V.K.-S.); (A.W.N.); (N.M.S.)
| |
Collapse
|
49
|
Páez MR, Ochoa-Muñoz Y, Rodriguez-Páez J. Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Liu Q, Aouidat F, Sacco P, Marsich E, Djaker N, Spadavecchia J. Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids Surf B Biointerfaces 2019; 185:110588. [PMID: 31654887 DOI: 10.1016/j.colsurfb.2019.110588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023]
Abstract
Galectins (Gal) are a family of dimeric lectins, composed by two galactoside-binding sites implicated in the regulation of cancer progression and immune responses. In this study, we report for the first time the synthesis and the physical-chemical characterization of galectin-1-complex-gold COOH-terminated polyethlenglicole (PEG)-coated NPs (Gal-1 IN PEG-AuNPs) and their ability to recognize glucose in an aqueous solution with a concentration varying from 10 mM to 100 pM. The chemical protocol consistsof three steps: (i) complexation between galectin-1Gal-1 and tetrachloroauric acid (HAuCl4) to form gold-protein grains; (ii) staking process of COOH-terminated polyethlenglicole molecules (PEG) onto Gal-1-Au complex and (iii) reduction of hybrid metal ions to obtain a colloidal stable solution. During the complexation, the spectral signatures related to the Gal-1 orientation on the gold surface have been found to change due to its protonation state. The effective glucose monitoring was detected by UV-vis, Raman spectroscopy and Transmission Electron Microscopy (TEM). Overall, we observed that the interaction is strongly dependent on the Gal-1 conformation at the surface of gold nanoparticles.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fatima Aouidat
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|