1
|
Koishikawa T, Kazuki K, Ohnishi R, Okita K, Mizuno T, Abe S, Nanchi I, Masago Y, Yamazaki K, Ohzeki JI, Kusuhara H, Kazuki Y. Development of an OATP1-humanized transchromosomic mouse model for prediction of hepatic drug uptake in humans. Drug Metab Dispos 2025; 53:100028. [PMID: 40023577 DOI: 10.1016/j.dmd.2024.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/13/2024] [Indexed: 03/04/2025] Open
Abstract
Transchromosomic technology using mouse artificial chromosomes (MACs) offers a promising approach for transferring gene clusters into host organisms. This study focused on the multispecific organic anion-transporting polypeptides (OATPs) in the liver, which exhibit significant species differences between mice (Oatp1a1/Slco1a1, Oatp1a4/Slco1a4, Oatp1b2/Slco1b2) and humans (OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3). We generated an OATP1-humanized transchromosomic mouse model using a MAC vector (hOATP1-MAC mice) by transferring the human OATP1 gene cluster (SLCO1C1-SLCO1B3-SLCO1B7-SLCO1B1-SLCO1A2, 700 kbp) via an MAC into Slco1a/1b cluster knockout (KO) mice (Oatp1-KO). The human OATP1 genes were expressed in a tissue-specific manner. Plasma concentrations of the OATP1B biomarkers, coproporphyrin I and III, which were 7.2- and 23.3-fold higher in Oatp1-KO mice than in wild-type mice, were decreased by 68% and 96% in hOATP1-MAC mice, respectively. A pharmacokinetics study using pitavastatin revealed greater total body clearance (168 mL/min/kg) in hOATP1-MAC mice than in Oatp1-KO mice (100 mL/min/kg) but lower clearance than in wild-type mice (484 mL/min/kg), with bioavailability ranging from 0.66 to 0.77. In addition, drug-drug interactions were investigated using rifampicin, an OATP1B inhibitor. Rifampicin (60 mg/kg orally) increased the area under the plasma concentration-time curves of orally administered pitavastatin and grazoprevir in hOATP1-MAC mice, but not of asunaprevir. These findings demonstrated the functional expression of OATP1B1 and OATP1B3 in the mouse liver and their significant role in the systemic elimination of substrates. This is the first study to introduce multiple solute carrier drug transporter genes using artificial chromosome technology, highlighting its potential to overcome species differences in drug transport. SIGNIFICANCE STATEMENT: Transchromosomic technology holds promise for addressing species differences by introducing multiple solute carrier drug transporter genes such as OATP1. Mice OATP1-humanized using a mouse artificial chromosome vector demonstrated enhanced clearance of endogenous OATP1B biomarkers and probe drugs.
Collapse
Affiliation(s)
- Tomoki Koishikawa
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Rina Ohnishi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Koki Okita
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Isamu Nanchi
- Laboratory for Innovative Therapy Research, Shionogi & Co, Ltd, Osaka, Japan
| | - Yusaku Masago
- Laboratory for Innovative Therapy Research, Shionogi & Co, Ltd, Osaka, Japan
| | - Kyotaro Yamazaki
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Jun-Ichiro Ohzeki
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan; Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Yonago, Tottori, Japan.
| |
Collapse
|
2
|
Sychterz C, Shen H, Zhang Y, Sinz M, Rostami‐Hodjegan A, Schmidt BJ, Gaohua L, Galetin A. A close examination of BCRP's role in lactation and methods for predicting drug distribution into milk. CPT Pharmacometrics Syst Pharmacol 2024; 13:1856-1869. [PMID: 39292199 PMCID: PMC11578132 DOI: 10.1002/psp4.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Breastfeeding is the most complete nutritional method of feeding infants, but several impediments affect the decision to breastfeed, including questions of drug safety for medications needed during lactation. Despite recent FDA guidance, few labels provide clear dosing advice during lactation. Physiologically based pharmacokinetic modeling (PBPK) is well suited to mechanistically explore pharmacokinetics and dosing paradigms to fill gaps in the absence of extensive clinical studies and complement existing real-world data. For lactation-focused PBPK (Lact-PBPK) models, information on system parameters (e.g., expression of drug transporters in mammary epithelial cells) is sparse. The breast cancer resistance protein (BCRP) is expressed on the apical side of mammary epithelial cells where it actively transports drugs/substrates into milk (reported milk: plasma ratios range from 2 to 20). A critical review of BCRP and its role in lactation was conducted. Longitudinal changes in BCRP mRNA expression have been identified in women with a maximum reached around 5 months postpartum. Limited data are available on the ontogeny of BCRP in infant intestine; however, data indicate lower BCRP abundance in infants compared to adults. Current status of incorporation of drug transporter information in Lact-PBPK models to predict active secretion of drugs into breast milk and consequential exposure of breast-fed infants is discussed. In addition, this review highlights novel clinical tools for evaluation of BCRP activity, namely a potential non-invasive BCRP biomarker (riboflavin) and liquid biopsy that could be used to quantitatively elucidate the role of this transporter without the need for administration of drugs and to inform Lact-PBPK models.
Collapse
Affiliation(s)
- Caroline Sychterz
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Hong Shen
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | | - Amin Rostami‐Hodjegan
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Certara Predictive Technologies, Certara UKSheffieldUK
| | | | - Lu Gaohua
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
3
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Rostami-Hodjegan A, Al-Majdoub ZM, von Grabowiecki Y, Yee KL, Sahoo S, Breitwieser W, Galetin A, Gibson C, Achour B. Dealing With Variable Drug Exposure Due to Variable Hepatic Metabolism: A Proof-of-Concept Application of Liquid Biopsy in Renal Impairment. Clin Pharmacol Ther 2024; 116:814-823. [PMID: 38738484 DOI: 10.1002/cpt.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/20/2024] [Indexed: 05/14/2024]
Abstract
Precision dosing strategies require accounting for between-patient variability in pharmacokinetics (PK), affecting drug exposure, and in pharmacodynamics (PD), affecting response achieved at the same drug concentration at the site of action. Although liquid biopsy for assessing different levels of molecular drug targets has yet to be established, individual characterization of drug elimination pathways using liquid biopsy has recently been demonstrated. The feasibility of applying this approach in conjunction with modeling tools to guide individual dosing remains unexplored. In this study, we aimed to individualize physiologically-based pharmacokinetic (PBPK) models based on liquid biopsy measurements in plasma from 25 donors with different grades of renal function who were previously administered oral midazolam as part of a microdose cocktail. Virtual twin models were constructed based on demographics, renal function, and hepatic expression of relevant pharmacokinetic pathways projected from liquid biopsy output. Simulated exposure (AUC) to midazolam was in agreement with observed data (AFE = 1.38, AAFE = 1.78). Simulated AUC variability with three dosing approaches indicated higher variability with uniform dosing (14-fold) and stratified dosing (13-fold) compared with individualized dosing informed by liquid biopsy (fivefold). Further, exosome screening revealed mRNA expression of 532 targets relevant to drug metabolism and disposition (169 enzymes and 361 transporters). Data related to these targets can be used to further individualize PBPK models for pathways relevant to PK of other drugs. This study provides additional verification of liquid biopsy-informed PBPK modeling approaches, necessary to advance strategies that seek to achieve precise dosing from the start of treatment.
Collapse
Affiliation(s)
- Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
- Certara, Princeton, New Jersey, USA
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | | | - Ka Lai Yee
- Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sudhakar Sahoo
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Wolfgang Breitwieser
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | | | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
5
|
Prieto Garcia L, Vildhede A, Nordell P, Ahlström C, Montaser AB, Terasaki T, Lennernäs H, Sjögren E. Physiologically based pharmacokinetics modeling and transporter proteomics to predict systemic and local liver and muscle disposition of statins. CPT Pharmacometrics Syst Pharmacol 2024; 13:1029-1043. [PMID: 38576225 PMCID: PMC11179708 DOI: 10.1002/psp4.13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Statins are used to reduce liver cholesterol levels but also carry a dose-related risk of skeletal muscle toxicity. Concentrations of statins in plasma are often used to assess efficacy and safety, but because statins are substrates of membrane transporters that are present in diverse tissues, local differences in intracellular tissue concentrations cannot be ruled out. Thus, plasma concentration may not be an adequate indicator of efficacy and toxicity. To bridge this gap, we used physiologically based pharmacokinetic (PBPK) modeling to predict intracellular concentrations of statins. Quantitative data on transporter clearance were scaled from in vitro to in vivo conditions by integrating targeted proteomics and transporter kinetics data. The developed PBPK models, informed by proteomics, suggested that organic anion-transporting polypeptide 2B1 (OATP2B1) and multidrug resistance-associated protein 1 (MRP1) play a pivotal role in the distribution of statins in muscle. Using these PBPK models, we were able to predict the impact of alterations in transporter function due to genotype or drug-drug interactions on statin systemic concentrations and exposure in liver and muscle. These results underscore the potential of proteomics-guided PBPK modeling to scale transporter clearance from in vitro data to real-world implications. It is important to evaluate the role of drug transporters when predicting tissue exposure associated with on- and off-target effects.
Collapse
Affiliation(s)
- Luna Prieto Garcia
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Anna Vildhede
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Pär Nordell
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Christine Ahlström
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Ahmed B. Montaser
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Hans Lennernäs
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
| | - Erik Sjögren
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Mashayekhi-Sardoo H, Rezaee R, Riahi-Zanjani B, Karimi G. Alleviation of microcystin-leucine arginine -induced hepatotoxicity: An updated overview. Toxicon 2024; 243:107715. [PMID: 38636613 DOI: 10.1016/j.toxicon.2024.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Contamination of surface waters is a major health threat for all living creatures. Some types of blue-green algae that naturally occur in fresh water, are able to produce various toxins, like Microcystins (MCs). Microcystin-leucine arginine (MC-LR) produced by Microcystis aeruginosa is the most toxic and abundant isoforms of MCs, and it causes hepatotoxicity. The present article reviews preclinical experiments examined different treatments, including herbal derivatives, dietary supplements and drugs against MC-LR hepatotoxicity. METHODS We searched scientific databases Web of Science, Embase, Medline (PubMed), Scopus, and Google Scholar using relevant keywords to find suitable studies until November 2023. RESULTS MC-LR through Organic anion transporting polypeptide superfamily transporters (OATPs) penetrates and accumulates in hepatocytes, and it inhibits protein phosphatases (PP1 and PP2A). Consequently, MC-LR disturbs many signaling pathways and induces oxidative stress thus damages cellular macromolecules. Some protective agents, especially plants rich in flavonoids, and natural supplements, as well as chemoprotectants were shown to diminish MC-LR hepatotoxicity. CONCLUSION The reviewed agents through blocking the OATP transporters (nontoxic nostocyclopeptide-M1, captopril, and naringin), then inhibition of MC-LR uptake (naringin, rifampin, cyclosporin-A, silymarin and captopril), and finally at restoration of PPAse activity (silybin, quercetin, morin, naringin, rifampin, captopril, azo dyes) exert hepatoprotective effect against MC-LR.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazard Research Center, Jiroft University of Medical Sciences, Jiroft, Iran; Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Yan Z, Ma L, Hwang N, Huang J, Kenny JR, Hop CECA. Using the Dynamic Well-Stirred Model to Extrapolate Hepatic Clearance of Organic Anion-Transporting Polypeptide Transporter Substrates without Assuming Albumin-Mediated Hepatic Drug Uptake. Drug Metab Dispos 2024; 52:548-554. [PMID: 38604729 DOI: 10.1124/dmd.124.001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (f D), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (f u) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter-mediated uptake clearance, and that clearance under-prediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of albumin-mediated hepatic drug uptake as currently hypothesized. Instead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance. SIGNIFICANCE STATEMENT: The traditional well-stirred model (WSM) consistently underpredicts organin anion-transporting polypeptide transporter (OATP)-mediated hepatic uptake clearance, hypothetically due to the albumin-mediated hepatic drug uptake. In this manuscript, we apply the dynamic WSM to extrapolate hepatic clearance of the OATP substrates, and our results show significant improvements in clearance prediction without assuming albumin-mediated hepatic drug uptake.
Collapse
Affiliation(s)
- Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Li Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Nicky Hwang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Julie Huang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| |
Collapse
|
8
|
Kaci H, Bakos É, Needs PW, Kroon PA, Valentová K, Poór M, Özvegy-Laczka C. The 2-aminoethyl diphenylborinate-based fluorescent method identifies quercetin and luteolin metabolites as substrates of Organic anion transporting polypeptides, OATP1B1 and OATP2B1. Eur J Pharm Sci 2024; 196:106740. [PMID: 38437885 DOI: 10.1016/j.ejps.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Organic anion transporting polypeptides (OATPs), OATP1B1 and OATP2B1 are membrane proteins mediating the cellular uptake of chemically diverse organic compounds. OATP1B1 is exclusively expressed in hepatocytes and plays a key role in hepatic detoxification. The ubiquitously expressed OATP2B1 promotes the intestinal absorption of orally administered drugs. Flavonoids are widely found in foods and beverages, and many of them can inhibit OATP function, resulting in food-drug interactions. In our previous work, we have shown that not only luteolin (LUT) and quercetin (Q), but also some of their metabolites can inhibit OATP1B1 and OATP2B1 activity. However, data about the potential direct transport of these flavonoids by OATPs have been incomplete. Hence, in the current study, we developed a simple, fluorescence-based method for the measurement of intracellular flavonoid levels. The method applies a cell-permeable small molecule (2-aminoethyl diphenylborinate, 2-APB), that, upon forming a complex with flavonoids, results in their fluorescence enhancement. This way the direct uptake of LUT and Q, and also their metabolites' could be investigated both by confocal microscopy and in a fluorescence plate reader in living cells. With this approach we identified quercetin-3'-O-sulfate, luteolin-3'-O-glucuronide, luteolin-7-O-glucuronide and luteolin-3'-O-sulfate as substrates of both OATP1B1 and OATP2B1. Our results highlight that OATP1B1 and OATP2B1 can be key participants in the transmembrane movement of LUT and Q conjugates with otherwise low cell permeability. In addition, the novel method developed in this study can be a good completion to existing fluorescence-based assays to investigate OATP function.
Collapse
Affiliation(s)
- Hana Kaci
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest Pázmány Péter sétány 1/C, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| | - Paul W Needs
- Food, Microbiome & Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Paul A Kroon
- Food, Microbiome & Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Miklós Poór
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| |
Collapse
|
9
|
Courchesne M, Manrique G, Bernier L, Moussa L, Cresson J, Gutzeit A, Froehlich JM, Koh DM, Chartrand-Lefebvre C, Matoori S. Gender Differences in Pharmacokinetics: A Perspective on Contrast Agents. ACS Pharmacol Transl Sci 2024; 7:8-17. [PMID: 38230293 PMCID: PMC10789139 DOI: 10.1021/acsptsci.3c00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gender is an important risk factor for adverse drug reactions. Women report significantly more adverse drug reactions than men. There is a growing consensus that gender differences in drug PK is a main contributor to higher drug toxicity in women. These differences stem from physiological differences (body composition, plasma protein concentrations, and liver and kidney function), drug interactions, and comorbidities. Contrast agents are widely used to enhance diagnostic performance in computed tomography and magnetic resonance imaging. Despite their broad use, these contrast agents can lead to important adverse reactions including hypersensitivity reactions, nephropathy, and hyperthyroidism. Importantly, female gender is one of the main risk factors for contrast agent toxicity. As these adverse reactions may be related to gender differences in PK, this perspective aims to describe distribution and elimination pathways of commonly used contrast agents and to critically discuss gender differences in these processes.
Collapse
Affiliation(s)
- Myriam Courchesne
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Gabriela Manrique
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Laurie Bernier
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Leen Moussa
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Jeanne Cresson
- Clinical
Research Group, Klus Apotheke Zurich, 8032 Zurich, Switzerland
| | - Andreas Gutzeit
- Department
of Health Sciences and Medicine, University
of Lucerne, Frohburgstaße 3, 6002 Luzern, Switzerland
- Institute
of Radiology and Nuclear Medicine and Breast Center St. Anna, Hirslanden Klinik St. Anna, 6006 Lucerne, Switzerland
- Department
of Radiology, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Dow-Mu Koh
- Cancer Research
UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Carl Chartrand-Lefebvre
- Radiology
Department, Centre Hospitalier de l’Université
de Montréal (CHUM), Montreal, Quebec H2X 3E4, Canada
- Centre
de Recherche du Centre Hospitalier de l’Université de
Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Simon Matoori
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
10
|
Lash LH. A Novel Approach to Predicting Organic Anion Transporting Polypeptide Function in Human Hepatic Drug Disposition and Biliary Clearance. J Pharmacol Exp Ther 2023; 387:131-134. [PMID: 37844920 DOI: 10.1124/jpet.123.001754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 10/18/2023] Open
Affiliation(s)
- Lawrence Harold Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
11
|
Miyake T, Tsutsui H, Hirabayashi M, Tachibana T. Quantitative Prediction of OATP-Mediated Disposition and Biliary Clearance Using Human Liver Chimeric Mice. J Pharmacol Exp Ther 2023; 387:135-149. [PMID: 37142442 DOI: 10.1124/jpet.123.001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Drug biliary clearance (CLbile) in vivo is among the most difficult pharmacokinetic parameters to predict accurately and quantitatively because biliary excretion is influenced by metabolic enzymes, transporters, and passive diffusion across hepatocyte membranes. The purpose of this study is to demonstrate the use of Hu-FRG mice [Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice transplanted with human-derived hepatocytes] to quantitatively predict human organic anion transporting polypeptide (OATP)-mediated drug disposition and CLbile To predict OATP-mediated disposition, six OATP substrates (atorvastatin, fexofenadine, glibenclamide, pitavastatin, pravastatin, and rosuvastatin) were administered intravenously to Hu-FRG and Mu-FRG mice (FRG mice transplanted with mouse hepatocytes) with or without rifampicin as an OATP inhibitor. We calculated the hepatic intrinsic clearance (CLh,int) and the change of hepatic clearance (CLh) caused by rifampicin (CLh ratio). We compared the CLh,int of humans with that of Hu-FRG mice and the CLh ratio of humans with that of Hu-FRG and Mu-FRG mice. For predicting CLbile, 20 compounds (two cassette doses of 10 compounds) were administered intravenously to gallbladder-cannulated Hu-FRG and Mu-FRG mice. We evaluated the CLbile and investigated the correlation of human CLbile with that of Hu-FRG and Mu-FRG mice. We found good correlations between humans and Hu-FRG mice in CLh,int (100% within threefold) and CLh ratio (R2 = 0.94). Moreover, we observed a much better relationship between humans and Hu-FRG mice in CLbile (75% within threefold). Our results suggest that OATP-mediated disposition and CLbile can be predicted using Hu-FRG mice, making them a useful in vivo drug discovery tool for quantitatively predicting human liver disposition. SIGNIFICANCE STATEMENT: OATP-mediated disposition and biliary clearance of drugs are likely quantitatively predictable using Hu-FRG mice. The findings can enable the selection of better drug candidates and the development of more effective strategies for managing OATP-mediated DDIs in clinical studies.
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Haruka Tsutsui
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Manabu Hirabayashi
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| |
Collapse
|
12
|
Cheong EJY, Chin SY, Ng ZW, Yap TJ, Cheong EZB, Wang Z, Chan ECY. Unraveling Complexities in the Absorption and Disposition Kinetics of Abiraterone via Iterative PBPK Model Development and Refinement. Clin Pharmacokinet 2023; 62:1243-1261. [PMID: 37405634 DOI: 10.1007/s40262-023-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Abiraterone is a first-in-class inhibitor of cytochrome P450 17A1 (CYP17A1), and its pharmacokinetic (PK) profile is susceptible to intrinsic and extrinsic variabilities. Potential associations between abiraterone concentrations and pharmacodynamic consequences in prostate cancer may demand further dosage optimization to balance therapeutic outcomes. Consequently, we aim to develop a physiologically based pharmacokinetic (PBPK) model for abiraterone via a middle-out approach to prospectively interrogate the untested, albeit clinically relevant, scenarios. METHODS To characterize in vivo hydrolysis of prodrug abiraterone acetate (AA) and supersaturation of abiraterone, in vitro aqueous solubility data, biorelevant measurements, and supersaturation and precipitation parameters were utilized for mechanistic absorption simulation. CYP3A4-mediated N-oxidation and sulfotransferase 2A1-catalyzed sulfation of abiraterone were subsequently quantified in human liver subcellular systems. Iterative PBPK model refinement involved evaluation of potential organic anion transporting polypeptide (OATP)-mediated abiraterone uptake in transfected cells in the absence and presence of albumin. RESULTS The developed PBPK model recapitulated the duodenal concentration-time profile of both AA and abiraterone after simulated AA administration. Our findings established abiraterone as a substrate of hepatic OATP1B3 to recapitulate its unbound metabolic intrinsic clearance. Further consideration of a transporter-induced protein-binding shift established accurate translational scaling factors and extrapolated the sinusoidal uptake process. Subsequent simulations effectively predicted the PK of abiraterone upon single and multiple dosing. CONCLUSION Our systematic development of the abiraterone PBPK model has demonstrated its application for the prospective interrogation of the individual or combined influences of potential interindividual variabilities influencing the systemic exposure of abiraterone.
Collapse
Affiliation(s)
- Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Sheng Yuan Chin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Zheng Wei Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ting Jian Yap
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ervin Zhi Bin Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ziteng Wang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
13
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
14
|
Li W, Iusuf D, Sparidans RW, Wagenaar E, Wang Y, de Waart DR, Martins MLF, van Hoppe S, Lebre MC, van Tellingen O, Beijnen JH, Schinkel AH. Organic anion-transporting polypeptide 2B1 knockout and humanized mice; insights into the handling of bilirubin and drugs. Pharmacol Res 2023; 190:106724. [PMID: 36907287 DOI: 10.1016/j.phrs.2023.106724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dilek Iusuf
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Els Wagenaar
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 71, 1105 BK, Amsterdam, the Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Leow JWH, Ang XJ, Chan ECY. Development and verification of a physiologically based pharmacokinetic model of dronedarone and its active metabolite N-desbutyldronedarone: Application to prospective simulation of complex drug-drug interaction with rivaroxaban. Br J Clin Pharmacol 2023; 89:1873-1890. [PMID: 36683488 DOI: 10.1111/bcp.15670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/14/2022] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
AIMS Despite potential enzyme- and transporter-mediated drug-drug interactions (DDIs) between dronedarone and rivaroxaban in atrial fibrillation (AF) patients, pharmacokinetic/pharmacodynamic data remain limited to guide clinical practice. We aimed to develop, verify and validate a physiologically based pharmacokinetic (PBPK) model of dronedarone and its major metabolite, N-desbutyldronedarone (NDBD), to prospectively interrogate this clinically relevant DDI in healthy and mild renal impairment populations. METHODS The middle-out development of our PBPK model combined literature-derived or in-house in vitro data, predicted in silico data and in vivo clinical data. Model verification was performed for intravenous and oral (single and multiple) dosing regimens. Model validation for the accurate prediction of cytochrome P450 (CYP)3A4- and P-glycoprotein-mediated DDI utilized simvastatin and digoxin as respective victim drugs. Rivaroxaban-specific inhibitory parameters of dronedarone and/or NDBD against CYP3A4, CYP2J2, OAT3 and P-glycoprotein were incorporated into the PBPK-DDI model for prospective dronedarone-rivaroxaban DDI simulation. RESULTS Dronedarone and NDBD PK following clinically relevant doses of 400 mg dronedarone across single and multiple oral dosing were accurately simulated by incorporating effect of auto-inactivation on dose nonlinearities. Following successful model validation, nondose-adjusted rivaroxaban-dronedarone DDI in healthy and mild renal impairment populations revealed simulated rivaroxaban area under the plasma concentration-time curve up to 24 h fold change greater than dose exposure equivalence (0.70-1.43) at 1.65 and 1.84, respectively. Correspondingly, respective major bleeding risk was 4.24 and 4.70% compared with threshold of 4.5% representing contraindicated rivaroxaban-ketoconazole DDI. CONCLUSION Our PBPK-DDI model predicted clinically significant dronedarone-rivaroxaban DDI in both healthy and mild renal impairment subjects. Greater benefit vs. risk could be achieved with rivaroxaban dose reductions to at least 15 mg in mild renal impairment subjects on concomitant dronedarone and rivaroxaban.
Collapse
Affiliation(s)
| | - Xiao Jun Ang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
16
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
17
|
Ou Y, Wang R, Chu GCY, Elmadbouh OHM, Lim A, Chung LWK, Edderkaoui M, Zhang Y, Pandol SJ. Novel DZ-SIM Conjugate Targets Cancer Mitochondria and Prolongs Survival in Pancreatic Ductal Adenocarcinoma. ADVANCED THERAPEUTICS 2022; 5:2200021. [PMID: 36590644 PMCID: PMC9797106 DOI: 10.1002/adtp.202200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease with no effective therapeutics. We have developed a novel targeted therapy drug consisting of a tumor-targeting ligand, near-infrared (NIR) organic heptamethine carbocyanine dye (HMCD), and HMG-CoA inhibitor simvastatin (SIM), and assessed its efficacy in PDAC. PDAC cell specific targeting of DZ-SIM was measured by determining the fluorescence in cells and animals. Mitochondrial bioenergetics and functions were measured by Seahorse and flow cytometry, respectively. Apoptosis was assessed by DNA fragmentation, AnnexinV/Propidium Iodide staining, and TUNEL. Markers of cell invasion, epithelial-to-mesenchymal transition, and cancer stemness were measured. The effect of DZ-SIM on survival, tumor growth and metastasis was measured in the Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) transgenic mice and in syngeneic and subcutaneous PDAC models. NIR fluorescence imaging showed specific localization of DZ-SIM to cancer, but not to normal cells and tissues. DZ-SIM significantly inhibited tumor growth and re-sensitized therapeutically resistant PDAC cells to conventional therapies. DZ-SIM killed cancer cells through unique pathways involving decreasing mitochondrial bioenergetics, including oxygen consumption and ATP production, and increasing ROS production. Mitochondrial depletion prevented the effect of DZ-SIM. Administration of DZ-SIM in 3 PDAC animal models resulted in a marked increase in survival and a decrease in tumor growth and metastasis.
Collapse
Affiliation(s)
- Yan Ou
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- 2nd affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruoxiang Wang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gina Chia-Yi Chu
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Omer Hany Miligy Elmadbouh
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adrian Lim
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland Wei-Kuo Chung
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mouad Edderkaoui
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- University of California at Los Angeles, California
| | - Yi Zhang
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen Jacob Pandol
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
- University of California at Los Angeles, California
| |
Collapse
|
18
|
Mori A, Masuda T, Ito S, Ohtsuki S. Human Hepatic Transporter Signature Peptides for Quantitative Targeted Absolute Proteomics: Selection, Digestion Efficiency, and Peptide Stability. Pharm Res 2022; 39:2965-2978. [PMID: 36131112 DOI: 10.1007/s11095-022-03387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Quantitative targeted absolute proteomics (QTAP) quantifies proteins by measuring the signature peptides produced from target proteins by trypsin digestion. The selection of signature peptides is critical for reliable peptide quantification. The purpose of this study was to comprehensively assess the digestion efficiency and stability of tryptic peptides and to identify optimal signature peptides for human hepatic transporters and membrane marker proteins. METHODS The plasma membrane fraction of the human liver was digested at different time points and the peptides were comprehensively quantified using quantitative proteomics. Transporters and membrane markers were quantified using the signature peptides by QTAP. RESULTS Tryptic peptides were classified into clusters with low digestion efficiency, low stability, and high digestion efficiency and stability. Using the cluster information, we found that a proline residue next to the digestion site or the peptide position in or close to the transmembrane domains lowers digestion efficiency. A peptide containing cysteine at the N-terminus or arginine-glycine lowers peptide stability. Based on this information and the time course of peptide quantification, optimal signature peptides were identified for human hepatic transporters and membrane markers. The quantification of transporters with multiple signature peptides yielded consistent absolute values with less than 30% of coefficient variants in human liver microsomes and homogenates. CONCLUSIONS The signature peptides selected in the present study enabled the reliable quantification of human hepatic transporters. The QTAP protocol using these optimal signature peptides provides quantitative data on hepatic transporters usable for integrated pharmacokinetic studies.
Collapse
Affiliation(s)
- Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
19
|
Dalla C, Pavlidi P, Sakelliadou DG, Grammatikopoulou T, Kokras N. Sex Differences in Blood–Brain Barrier Transport of Psychotropic Drugs. Front Behav Neurosci 2022; 16:844916. [PMID: 35677576 PMCID: PMC9169874 DOI: 10.3389/fnbeh.2022.844916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of neuropsychiatric disorders relies on the effective delivery of therapeutic molecules to the target organ, the brain. The blood–brain barrier (BBB) hinders such delivery and proteins acting as transporters actively regulate the influx and importantly the efflux of both endo- and xeno-biotics (including medicines). Neuropsychiatric disorders are also characterized by important sex differences, and accumulating evidence supports sex differences in the pharmacokinetics and pharmacodynamics of many drugs that act on the brain. In this minireview we gather preclinical and clinical findings on how sex and sex hormones can influence the activity of those BBB transporter systems and affect the brain pharmacokinetics of psychotropic medicines. It emerges that it is not well understood which psychotropics are substrates for each of the many and not well-studied brain transporters. Indeed, most evidence originates from studies performed in peripheral tissues, such as the liver and the kidneys. None withstanding, accumulated evidence supports the existence of several sex differences in expression and activity of transport proteins, and a further modulating role of gonadal hormones. It is proposed that a closer study of sex differences in the active influx and efflux of psychotropics from the brain may provide a better understanding of sex-dependent brain pharmacokinetics and pharmacodynamics of psychotropic medicines.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai-Georgia Sakelliadou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tatiana Grammatikopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Nikolaos Kokras,
| |
Collapse
|
20
|
Matsunaga K, Fukunaga S, Abe J, Takeuchi H, Kitamoto S, Tomigahara Y. Comparative hepatotoxicity of a herbicide, epyrifenacil, in humans and rodents by comparing the dynamics and kinetics of its causal metabolite. JOURNAL OF PESTICIDE SCIENCE 2021; 46:333-341. [PMID: 34908893 PMCID: PMC8640676 DOI: 10.1584/jpestics.d21-026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
A new herbicide, epyrifenacil (S-3100), inhibits protoporphyrinogen oxidase (PPO) in plants. Repeated administration of epyrifenacil in laboratory animals led to some toxicological changes related to PPO inhibition, e.g., hepatotoxicity caused by porphyrin accumulation and anemia caused by the inhibition of heme biosynthesis. In vitro studies revealed that an ester-cleaved metabolite, S-3100-CA, is predominant in mammals, exhibits PPO-inhibitory activity, and thus is the cause of epyrifenacil-induced toxicity. To assess the human risk, the effects of species differences on the dynamics (PPO inhibition) and kinetics (liver uptake) of epyrifenacil were evaluated separately. The results of in vitro assays revealed an approximately tenfold weaker inhibition of PPO by S-3100-CA in humans than in rodents and six- to thirteen-fold less hepatic uptake of S-3100-CA in humans than in mice. Finally, it was suggested that humans are less sensitive to the toxicity of epyrifenacil than are rodents, although further mechanistic research is highly anticipated.
Collapse
Affiliation(s)
- Kohei Matsunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Hayato Takeuchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Yoshitaka Tomigahara
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| |
Collapse
|
21
|
Medwid S, Price HR, Taylor DP, Mailloux J, Schwarz UI, Kim RB, Tirona RG. Organic Anion Transporting Polypeptide 2B1 (OATP2B1) Genetic Variants: In Vitro Functional Characterization and Association With Circulating Concentrations of Endogenous Substrates. Front Pharmacol 2021; 12:713567. [PMID: 34594217 PMCID: PMC8476882 DOI: 10.3389/fphar.2021.713567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1, gene SLCO2B1) is an uptake transporter that is thought to determine drug disposition and in particular, the oral absorption of medications. At present, the clinical relevance of SLCO2B1 genetic variation on pharmacokinetics is poorly understood. We sought to determine the functional activity of 5 of the most common missense OATP2B1 variants (c.76_84del, c.601G>A, c.917G>A, c.935G>A, and c.1457C>T) and a predicted dysfunctional variant (c.332G>A) in vitro. Furthermore, we measured the basal plasma concentrations of endogenous OATP2B1 substrates, namely estrone sulfate, dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate, coproporphyrin I (CPI), and CPIII, and assessed their relationships with SLCO2B1 genotypes in 93 healthy participants. Compared to reference OATP2B1, the transport activities of the c.332G>A, c.601G>A and c.1457C>T variants were reduced among the substrates examined (estrone sulfate, DHEAS, CPI, CPIII and rosuvastatin), although there were substrate-dependent effects. Lower transport function of OATP2B1 variants could be explained by diminished cell surface expression. Other OATP2B1 variants (c.76-84del, c.917G>A and c.935G>A) had similar activity to the reference transporter. In the clinical cohort, the SLCO2B1 c.935G>A allele was associated with both higher plasma CPI (42%) and CPIII (31%) concentrations, while SLCO2B1 c.917G>A was linked to lower plasma CPIII by 28% after accounting for the effects of age, sex, and SLCO1B1 genotypes. No association was observed between SLCO2B1 variant alleles and estrone sulfate or DHEAS plasma concentrations, however 45% higher plasma pregnenolone sulfate level was associated with SLCO2B1 c.1457C>T. Taken together, we found that the impacts of OATP2B1 variants on transport activities in vitro were not fully aligned with their associations to plasma concentrations of endogenous substrates in vivo. Additional studies are required to determine whether circulating endogenous substrates reflect OATP2B1 activity.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Hayley R Price
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Daniel P Taylor
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jaymie Mailloux
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Richard B Kim
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Rommel G Tirona
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Kikuchi R, Chiou WJ, Durbin KR, Savaryn JP, Ma J, Emami Riedmaier A, de Morais SM, Jenkins GJ, Bow DAJ. Quantitation of Plasma Membrane Drug Transporters in Kidney Tissue and Cell Lines Using a Novel Proteomic Approach Enabled a Prospective Prediction of Metformin Disposition. Drug Metab Dispos 2021; 49:938-946. [PMID: 34330717 DOI: 10.1124/dmd.121.000487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
The successful prospective incorporation of in vitro transporter kinetics in physiologically based pharmacokinetic (PBPK) models to describe drug disposition remains challenging. Although determination of scaling factors to extrapolate in vitro to in vivo transporter kinetics has been facilitated by quantitative proteomics, no robust assessment comparing membrane recoveries between different cells/tissues has been made. HEK293 cells overexpressing OCT2, MATE1, and MATE2K or human kidney cortex were homogenized and centrifuged to obtain the total membrane fractions, which were subsequently subjected to liquid-liquid extraction followed by centrifugation and precipitation to isolate plasma membrane fractions. Plasma membrane recoveries determined by quantitation of the marker Na+/K+-ATPase in lysate and plasma membrane fractions were ≤20% but within 3-fold across different cells and tissues. A separate study demonstrated that recoveries are comparable between basolateral and apical membranes of renal proximal tubules, as measured by Na+/K+-ATPase and γ-glutamyl transpeptidase 1, respectively. The plasma membrane expression of OCT2, MATE1, and MATE2K was quantified and relative expression factors (REFs) were determined as the ratio between the tissue and cell concentrations. Corrections using plasma membrane recovery had minimal impact on REF values (<2-fold). In vitro transporter kinetics of metformin were extrapolated to in vivo using the corresponding REFs in a PBPK model. The simulated metformin exposures were within 2-fold of clinical exposure. These results demonstrate that transporter REFs based on plasma membrane expression enable a prediction of transporter-mediated drug disposition. Such REFs may be estimated without the correction of plasma membrane recovery when the same procedure is applied between different matrices. SIGNIFICANCE STATEMENT: Transporter REFs based on plasma membrane expression enable in vitro-in vivo extrapolation of transporter kinetics. Plasma membrane recoveries as determined by the quantification of sodium-potassium adenosine triphosphatase were comparable between the in vitro and in vivo systems used in the present study, and therefore had minimal impact on the transporter REF values.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | - William J Chiou
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | - Kenneth R Durbin
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | - John P Savaryn
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | - Junli Ma
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | | | - Sonia M de Morais
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | - Gary J Jenkins
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | - Daniel A J Bow
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| |
Collapse
|
23
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
24
|
Liang X, Lai Y. Overcoming the shortcomings of the extended-clearance concept: a framework for developing a physiologically-based pharmacokinetic (PBPK) model to select drug candidates involving transporter-mediated clearance. Expert Opin Drug Metab Toxicol 2021; 17:869-886. [PMID: 33793347 DOI: 10.1080/17425255.2021.1912012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction:Human pharmacokinetic (PK) prediction can be a significant challenge to drug candidates undergoing transporter-mediated clearance, when only animal data and in vitro human parameters are available in the drug discovery stage.Areas covered:The extended clearance concept (ECC) that incorporates the processes of hepatic uptake, passive diffusion, metabolism and biliary secretion has been adapted to determine the rate-determining process of hepatic clearance and drug-drug interactions (DDIs). However, since the ECC is derived from the well-stirred model and does not consider the liver as a drug distribution organ to reflect the time-dependent variation of drug concentrations between the liver and plasma, it can be misused for compound selection in drug discovery.Expert opinion:The PBPK model consists of a set of differential equations of drug mass balance, and can overcome the shortcomings of the ECC in predicting human PK. The predictability, relevance and reliability of the model and the scaling factors for IVIVE must be validated using either the measured liver concentrations or DDI data with known transporter inhibitors, or both, in monkeys. A human PBPK model that incorporates in vitro human data and SFs obtained from the validated monkey PBPK model can be used for compound selection in the drug discovery phase.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
25
|
Takita H, Barnett S, Zhang Y, Ménochet K, Shen H, Ogungbenro K, Galetin A. PBPK Model of Coproporphyrin I: Evaluation of the Impact of SLCO1B1 Genotype, Ethnicity, and Sex on its Inter-Individual Variability. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:137-147. [PMID: 33289952 PMCID: PMC7894406 DOI: 10.1002/psp4.12582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of OATP1B activity and associated drug-drug interactions. In this study, a minimal physiologically-based pharmacokinetic model was developed to investigate the impact of OATP1B1 genotype (c.521T>C), ethnicity, and sex on CPI pharmacokinetics and interindividual variability in its baseline. The model implemented mechanistic descriptions of CPI hepatic transport between liver blood and liver tissue and renal excretion. Key model parameters (e.g., endogenous CPI synthesis rate, and CPI hepatic uptake clearance) were estimated by fitting the model simultaneously to three independent CPI clinical datasets (plasma and urine data) obtained from white (n = 16, men and women) and Asian-Indian (n = 26, all men) subjects, with c.521 variants (TT, TC, and CC). The optimized CPI model successfully described the observed data using c.521T>C genotype, ethnicity, and sex as covariates. CPI hepatic active was 79% lower in 521CC relative to the wild type and 42% lower in Asian-Indians relative to white subjects, whereas CPI synthesis was 23% higher in male relative to female subjects. Parameter sensitivity analysis showed marginal impact of the assumption of CPI synthesis site (blood or liver), resulting in comparable recovery of plasma and urine CPI data. Lower magnitude of CPI-drug interaction was simulated in 521CC subjects, suggesting the risk of underestimation of CPI-drug interaction without prior OATP1B1 genotyping. The CPI model incorporates key covariates contributing to interindividual variability in its baseline and highlights the utility of the CPI modeling to facilitate the design of prospective clinical studies to maximize the sensitivity of this biomarker.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Shelby Barnett
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Liu J, Cui JY, Lu YF, Corton JC, Klaassen CD. Sex-, Age-, and Race/Ethnicity-Dependent Variations in Drug-Processing and NRF2-Regulated Genes in Human Livers. Drug Metab Dispos 2021; 49:111-119. [PMID: 33162398 PMCID: PMC7804821 DOI: 10.1124/dmd.120.000181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Individual variations in xenobiotic metabolism affect the sensitivity to diseases. In this study, the impacts of sex, age, and race/ethnicity on drug-processing genes and nuclear factor erythroid 2-related factor 2 (NRF2) genes in human livers were examined via QuantiGene multiplex suspension array (226 samples) and quantitative polymerase chain reaction (qPCR) (247 samples) to profile the expression of nuclear receptors, cytochrome P450s, conjugation enzymes, transporters, bile acid metabolism, and NRF2-regulated genes. Sex differences were found in expression of about half of the genes, but in general the differences were not large. For example, females had higher transcript levels of catalase, glutamate-cysteine ligase catalytic subunit (GCLC), heme oxygenase 1 (HO-1), Kelch-like ECH-associated protein 1 (KEAP1), superoxide dismutase 1, and thioredoxin reductase-1 compared with males via qPCR. There were no apparent differences due to age, except children had higher glutamate-cysteine ligase modifier subunit (GCLM) and elderly had higher multidrug resistance protein 3. African Americans had lower expression of farnesoid X receptor (FXR) but higher expression of HO-1, Caucasians had higher expression of organic anion transporter 2, and Hispanics had higher expression of FXR, SULT2A1, small heterodimer partner, and bile salt export pump. An examination of 34 diseased and control human liver samples showed that compared with disease-free livers, fibrotic livers had higher NAD(P)H-quinone oxidoreductase 1 (NQO1), GCLC, GCLM, and NRF2; hepatocellular carcinoma had higher transcript levels of NQO1 and KEAP1; and steatotic livers had lower GCLC, GCLM, and HO-1 expression. In summary, in drug-processing gene and NRF2 genes, sex differences were the major findings, and there were no apparent age differences, and race/ethnicity differences occurred for a few genes. These descriptive findings could add to our understanding of the sex-, age-, and race/ethnicity-dependent differences in drug-processing genes as well as NRF2 genes in normal and diseased human livers. SIGNIFICANCE STATEMENT: In human liver drug-processing and nuclear factor erythroid 2-related factor 2 genes, sex differences were the main finding. There were no apparent differences due to age, except children had higher glutamate-cysteine ligase modifier subunit, and elderly had higher multidrug resistance protein 3. African Americans had lower expression of farnesoid X receptor (FXR) but higher expression of heme oxygenase 1, Caucasians had higher expression of organic anion transporter 2, and Hispanics had higher expression of FXR, small heterodimer partner, SULT2A1, and bile salt export pump.
Collapse
Affiliation(s)
- Jie Liu
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Julia Yue Cui
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Yuan-Fu Lu
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - J Christopher Corton
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, Kansas (J.L., J.Y.C., Y.-F.L., C.D.K.); Zunyi Medical University, Zunyi, China (J.L.,Y.-F.L.); University of Washington, Seattle, Washington (J.Y.C); and Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, North Carolina (J.L., J.C.C.)
| |
Collapse
|
27
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
28
|
Yagi R, Masuda T, Ogata S, Mori A, Ito S, Ohtsuki S. Proteomic Evaluation of Plasma Membrane Fraction Prepared from a Mouse Liver and Kidney Using a Bead Homogenizer: Enrichment of Drug-Related Transporter Proteins. Mol Pharm 2020; 17:4101-4113. [PMID: 32902293 DOI: 10.1021/acs.molpharmaceut.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantifying the protein levels of drug transporters in plasma membrane fraction helps elucidate the function of these transporters. In this study, we conducted a proteomic evaluation of enriched drug-related transporter proteins in plasma membrane fraction prepared from mouse liver and kidney tissues using the membrane protein extraction kit and a bead homogenizer. Crude and plasma membrane fractions were prepared using either the Dounce or bead homogenizer, and protein levels were determined using quantitative proteomics. In liver tissues, the plasma membrane fractions were more enriched in transporter proteins than the crude membrane fractions; the average enrichment ratios of plasma-to-crude membrane fractions were 3.31 and 6.93 using the Dounce and bead homogenizers, respectively. The concentrations of transporter proteins in plasma membrane fractions determined using the bead homogenizer were higher than those determined using the Dounce homogenizer. Meanwhile, in kidney tissues, the plasma membrane fractions were enriched in transporters localized in the brush-border membrane to the same degree for both the homogenizers; however, the membrane fractions obtained using either homogenizer were not enriched in Na+/K+-ATPase and transporters localized in the basolateral membrane. These results indicate that fractionation, using the bead homogenizer, yielded transporter-enriched plasma membrane fractions from mouse liver and kidney tissues; however, no enrichment of basolateral transporters was observed in plasma membrane fractions prepared from kidney tissues.
Collapse
Affiliation(s)
- Ryotaro Yagi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
29
|
Kalluri HV, Kikuchi R, Coppola S, Schmidt J, Mohamed MEF, Bow DAJ, Salem AH. Coproporphyrin I Can Serve as an Endogenous Biomarker for OATP1B1 Inhibition: Assessment Using a Glecaprevir/Pibrentasvir Clinical Study. Clin Transl Sci 2020; 14:373-381. [PMID: 33048456 PMCID: PMC7877830 DOI: 10.1111/cts.12888] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are involved in the disposition of a variety of commonly prescribed drugs. The evaluation of OATP1B1/1B3 inhibition potential by investigational drugs is of interest during clinical drug development due to various adverse events associated with increased exposures of their substrates. Regulatory guidance documents on the in vitro assessment of OATP1B1/1B3 inhibition potential are conservative with up to a third of predictions resulting in false positives. This work investigated the utility of OATP1B1/1B3 endogenous biomarkers, coproporphyrin (CP)‐I and CP‐III, to assess clinical inhibition of OATP1B1/1B3 and potentially eliminate the need for prospective clinical drug‐drug interaction (DDI) studies. Correlations between CP‐I exposures and various OATP1B1 static DDI predictions were also evaluated. Glecaprevir/pibrentasvir (GLE/PIB) 300/120 mg fixed‐dose combination is known to cause clinical inhibition of OATP1B1/1B3. In a clinical study evaluating the relative bioavailability of various formulations of GLE/PIB regimen, CP‐I peak plasma concentration (Cmax) ratio and 0–16‐hour area under the concentration‐time curve (AUC0–16) ratio relative to baseline increased with increasing GLE exposures, whereas there was a modest correlation between GLE exposure and CP‐III Cmax ratio but no correlation with CP‐III AUC0–16 ratio. This suggests that CP‐I is superior to CP‐III as an endogenous biomarker for evaluation of OATP1B1 inhibition. There was a significant correlation between CP‐I and GLE Cmax (R2 = 0.65; P < 0.001) across individual subjects. Correlation analysis between GLE OATP1B1 R values and CP‐I exposures (Cmax ratio and AUC0–16 ratio) suggests that an R value of > 3 can predict a biologically meaningful inhibition of OATP1B1 when the inhibitor clinical pharmacokinetic parameters are available.
Collapse
Affiliation(s)
- Hari V Kalluri
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., North Chicago, Illinois, USA
| | - Ryota Kikuchi
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois, USA
| | - Sheryl Coppola
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., North Chicago, Illinois, USA
| | - Jeffrey Schmidt
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois, USA
| | | | - Daniel A J Bow
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois, USA
| | - Ahmed H Salem
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., North Chicago, Illinois, USA.,Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Assessment of α-amanitin toxicity and effects of silibinin and penicillin in different in vitro models. Toxicol In Vitro 2020; 67:104921. [PMID: 32599260 DOI: 10.1016/j.tiv.2020.104921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
Abstract
Silibinin (Sil) is used as hepatoprotective drug and is approved for therapeutic use in amanitin poisoning. In our study we compared Sil-bis-succinate (SilBS), a water-soluble drug approved for i.v.-administration, with Sil solved in ethanol (SilEtOH), which is normally used in research. We challenged monocultures or 3D-microtissues consisting of HepG2 cells or primary hepatocytes with α-amanitin and treated with SILBS, SILEtOH, penicillin and combinations thereof. Cell viability and the integrity of the microtissues was monitored. Finally, the expression of the transporters OATP1B1 and B3 was analyzed by qRT-PCR. We demonstrated that primary hepatocytes were more sensitive to α-amanitin compared to HepG2. Primary hepatocytes cultures were protected by SilBS and SilEtOH independent of penicillin from the cytotoxic effects of α-amanitin. Subsequent studies of the expression profile of the transporters OATP1B1/B3 revealed that primary hepatocytes do express both whereas in HepG2 cells they were hardly detectable. Our study showed that SilBS has significant advantage over SilEtOH with no additional benefit of penicillin. Moreover, HepG2 cells may not represent an appropriate model to investigate Amanita phalloides poisoning in vitro with focus on OATP transporters since these cells are lacking sensitivity towards α-amanitin probably due to missing cytotoxicity-associated transporters suggesting that primary hepatocytes should be preferred in this context.
Collapse
|
31
|
Székely V, Patik I, Ungvári O, Telbisz Á, Szakács G, Bakos É, Özvegy-Laczka C. Fluorescent probes for the dual investigation of MRP2 and OATP1B1 function and drug interactions. Eur J Pharm Sci 2020; 151:105395. [PMID: 32473861 DOI: 10.1016/j.ejps.2020.105395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Detoxification in hepatocytes is a strictly controlled process, in which the governed action of membrane transporters involved in the uptake and efflux of potentially dangerous molecules has a crucial role. Major transporters of hepatic clearance belong to the ABC (ATP Binding Cassette) and Solute Carrier (SLC) protein families. Organic anion-transporting polypeptide OATP1B1 (encoded by the SLCO1B1 gene) is exclusively expressed in the sinusoidal membrane of hepatocytes, where it mediates the cellular uptake of bile acids, bilirubin, and also that of various drugs. The removal of toxic molecules from hepatocytes to the bile is accomplished by several ABC transporters, including P-glycoprotein (ABCB1), MRP2 (ABCC2) and BCRP (ABCG2). Owing to their pharmacological relevance, monitoring drug interaction with OATP1B1/3 and ABC proteins is recommended. Our aim was to assess the interaction of recently identified fluorescent OATP substrates (various dyes used in cell viability assays, pyranine, Cascade Blue hydrazide (CB) and sulforhodamine 101 (SR101)) (Bakos et al., 2019; Patik et al., 2018) with MRP2 and ABCG2 in order to find fluorescent probes for the simultaneous characterization of both uptake and efflux processes. Transport by MRP2 and ABCG2 was investigated in inside-out membrane vesicles (IOVs) allowing a fast screen of the transport of membrane impermeable substrates by efflux transporters. Next, transcellular transport of shared OATP and ABC transporter substrate dyes was evaluated in MDCKII cells co-expressing OATP1B1 and MRP2 or ABCG2. Our results indicate that pyranine is a general substrate of OATP1B1, OATP1B3 and OATP2B1, and we find that the dye Live/Dead Violet and CB are good tools to investigate ABCG2 function in IOVs. Besides their suitability for MRP2 functional tests in the IOV setup, pyranine, CB and SR101 are the first dual probes that can be used to simultaneously measure OATP1B1 and MRP2 function in polarized cells by a fluorescent method.
Collapse
Affiliation(s)
- Virág Székely
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
| | - Izabel Patik
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Orsolya Ungvári
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Ágnes Telbisz
- Biomembrane research group, Institute of Enzymology, RCNS, H-1117 Budapest, Hungary
| | - Gergely Szakács
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Wien, Austria
| | - Éva Bakos
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
32
|
Chen M, Hu S, Li Y, Gibson AA, Fu Q, Baker SD, Sparreboom A. Role of Oatp2b1 in Drug Absorption and Drug-Drug Interactions. Drug Metab Dispos 2020; 48:419-425. [PMID: 32114507 PMCID: PMC7180048 DOI: 10.1124/dmd.119.090316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The organic anion transporting polypeptide (OATP)2B1 is localized on the basolateral membrane of hepatocytes and is expressed in enterocytes. Based on its distribution pattern and functional similarity to OATP1B-type transporters, OATP2B1 might have a role in the absorption and disposition of a range of xenobiotics. Although several prescription drugs, including hydroxymethylglutaryl-coenzyme A-CoA reductase inhibitors (statins) such as fluvastatin, are OATP2B1 substrates in vitro, evidence supporting the in vivo relevance of this transporter remains limited, and most has relied on substrate-inhibitor interactions resulting in altered pharmacokinetic properties of the victim drugs. To address this knowledge deficit, we developed and characterized an Oatp2b1-deficient mouse model and evaluated the impact of this transporter on the absorption and disposition of fluvastatin. Consistent with the intestinal localization of Oatp2b1, we found that the genetic deletion or pharmacological inhibition of Oatp2b1 was associated with decreased absorption of fluvastatin by 2- to 3-fold. The availability of a viable Oatp2b1-deficient mouse model provides an opportunity to unequivocally determine the contribution of this transporter to the absorption and drug-drug interaction potential of drugs. SIGNIFICANCE STATEMENT: The current investigation suggests that mice deficient in Oatp2b1 provide a valuable tool to study the in vivo importance of this transporter. In addition, our studies have identified novel potent inhibitors of OATP2B1 among the class of tyrosine kinase inhibitors, a rapidly expanding class of drugs used in various therapeutic areas that may cause drug-drug interactions with OATP2B1 substrates.
Collapse
Affiliation(s)
- Mingqing Chen
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Li
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alice A Gibson
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Qiang Fu
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sharyn D Baker
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Unger MS, Mudunuru J, Schwab M, Hopf C, Drewes G, Nies AT, Zamek-Gliszczynski MJ, Reinhard FBM. Clinically Relevant OATP2B1 Inhibitors in Marketed Drug Space. Mol Pharm 2020; 17:488-498. [PMID: 31834804 DOI: 10.1021/acs.molpharmaceut.9b00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OATP2B1 is an intestinal and hepatic drug uptake transporter. Intestinal OATP2B1 has been elucidated as the mechanism of unexpected clinical drug-drug interactions (DDIs), where drug exposure was unexpectedly decreased with unchanged half-life. Hepatic OATP2B1 may be an understudied clinical DDI mechanism. The aim of the present work was to understand the prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors in marketed drug space. HEK293 cells stably overexpressing human OATP2B1 or vector control were generated and cultured for 72 h in a 96-well format. OATP2B1-mediated uptake of dibromofluorescein (DBF) was found to be optimal at 10 μM concentration and 30 min incubation time. A total of 294 drugs (top 300 marketed drugs, excluding biologics and restricted drugs, supplemented with ∼100 small-molecule drugs) were screened for OATP2B1 inhibition at 10 μM. Drugs demonstrating ≥50% inhibition in this screen were advanced for IC50 determination, which was extrapolated to clinical intestinal and hepatic OATP2B1 inhibition as per 2017 FDA DDI guidance. Of the 294 drugs screened, 67 elicited ≥50% inhibition of OATP2B1-mediated DBF uptake at 10 μM screening concentration. For the 67 drugs flagged in the single-concentration inhibition screen, upon evaluation of a full concentration range, IC50 values could be determined for 58 drugs. OATP2B1 IC50 values established for these 58 drugs were extrapolated as potentially clinically relevant at the intestinal level for 38 orally administered drugs (Igut/IC50 ≥ 10), and 17 were flagged as potential clinical inhibitors of hepatic OATP2B1 uptake (1 + Iin,max,u/IC50 ≥ 1.1). This analysis of 294 drugs demonstrated prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors to be 13 and 6%, respectively. As OATP2B1-inhibitor drugs are not exceedingly rare, these results suggest that clinical OATP2B1 DDIs have been rarely observed because OATP2B1 is uncommonly the predominant determinant of drug disposition.
Collapse
Affiliation(s)
- Melissa S Unger
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Jennypher Mudunuru
- Drug Metabolism and Disposition , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry , University of Tübingen , 72074 Tübingen , Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Gerard Drewes
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany
| | | | | |
Collapse
|
34
|
Taskar KS, Pilla Reddy V, Burt H, Posada MM, Varma M, Zheng M, Ullah M, Emami Riedmaier A, Umehara KI, Snoeys J, Nakakariya M, Chu X, Beneton M, Chen Y, Huth F, Narayanan R, Mukherjee D, Dixit V, Sugiyama Y, Neuhoff S. Physiologically-Based Pharmacokinetic Models for Evaluating Membrane Transporter Mediated Drug-Drug Interactions: Current Capabilities, Case Studies, Future Opportunities, and Recommendations. Clin Pharmacol Ther 2019; 107:1082-1115. [PMID: 31628859 PMCID: PMC7232864 DOI: 10.1002/cpt.1693] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has been extensively used to quantitatively translate in vitro data and evaluate temporal effects from drug-drug interactions (DDIs), arising due to reversible enzyme and transporter inhibition, irreversible time-dependent inhibition, enzyme induction, and/or suppression. PBPK modeling has now gained reasonable acceptance with the regulatory authorities for the cytochrome-P450-mediated DDIs and is routinely used. However, the application of PBPK for transporter-mediated DDIs (tDDI) in drug development is relatively uncommon. Because the predictive performance of PBPK models for tDDI is not well established, here, we represent and discuss examples of PBPK analyses included in regulatory submission (the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the Pharmaceuticals and Medical Devices Agency (PMDA)) across various tDDIs. The goal of this collaborative effort (involving scientists representing 17 pharmaceutical companies in the Consortium and from academia) is to reflect on the use of current databases and models to address tDDIs. This challenges the common perceptions on applications of PBPK for tDDIs and further delves into the requirements to improve such PBPK predictions. This review provides a reflection on the current trends in PBPK modeling for tDDIs and provides a framework to promote continuous use, verification, and improvement in industrialization of the transporter PBPK modeling.
Collapse
Affiliation(s)
- Kunal S Taskar
- GlaxoSmithKline, DMPK, In Vitro In Vivo Translation, GSK R&D, Ware, UK
| | - Venkatesh Pilla Reddy
- AstraZeneca, Modelling and Simulation, Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Howard Burt
- Simcyp-Division, Certara UK Ltd., Sheffield, UK
| | | | | | - Ming Zheng
- Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | | | | | | | - Jan Snoeys
- Janssen Research and Development, Beerse, Belgium
| | | | - Xiaoyan Chu
- Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | | | - Yuan Chen
- Genentech, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
van der Made TK, Fedecostante M, Scotcher D, Rostami-Hodjegan A, Sastre Toraño J, Middel I, Koster AS, Gerritsen KG, Jankowski V, Jankowski J, Hoenderop JGJ, Masereeuw R, Galetin A. Quantitative Translation of Microfluidic Transporter in Vitro Data to in Vivo Reveals Impaired Albumin-Facilitated Indoxyl Sulfate Secretion in Chronic Kidney Disease. Mol Pharm 2019; 16:4551-4562. [PMID: 31525064 DOI: 10.1021/acs.molpharmaceut.9b00681] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoxyl sulfate (IxS), a highly albumin-bound uremic solute, accumulates in chronic kidney disease (CKD) due to reduced renal clearance. This study was designed to specifically investigate the role of human serum albumin (HSA) in IxS renal secretion via organic anion transporter 1 (OAT1) in a microfluidic system and subsequently apply quantitative translation of in vitro data to predict extent of change in IxS renal clearance in CKD stage IV relative to healthy. Conditionally immortalized human proximal tubule epithelial cells overexpressing OAT1 were incubated with IxS (5-200 μM) in the HSA-free medium or in the presence of either HSA or CKD-modified HSA. IxS uptake in the presence of HSA resulted in more than 20-fold decrease in OAT1 affinity (Km,u) and 37-fold greater in vitro unbound intrinsic clearance (CLint,u) versus albumin-free condition. In the presence of CKD-modified albumin, Km,u increased four-fold and IxS CLint,u decreased almost seven-fold relative to HSA. Fold-change in parameters exceeded differences in IxS binding between albumin conditions, indicating additional mechanism and facilitating role of albumin in IxS OAT1-mediated uptake. Quantitative translation of IxS in vitro OAT1-mediated CLint,u predicted a 60% decrease in IxS renal elimination as a result of CKD, in agreement with the observed data (80%). The findings of the current study emphasize the role of albumin in IxS transport via OAT1 and explored the impact of modifications in albumin on renal excretion via active secretion in CKD. For the first time, this study performed quantitative translation of transporter kinetic data generated in a novel microfluidic in vitro system to a clinically relevant setting. Knowledge gaps and future directions in quantitative translation of renal drug disposition from microphysiological systems are discussed.
Collapse
Affiliation(s)
- Thomas K van der Made
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| | | | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K.,Simcyp Division , Certara UK Limited , Sheffield S1 2BJ , U.K
| | | | | | | | - Karin G Gerritsen
- Department of Nephrology and Hypertension , University Medical Center Utrecht , Utrecht 3508 GA , The Netherlands
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research , RWTH Aachen University Hospital , Aachen 52074 , Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research , RWTH Aachen University Hospital , Aachen 52074 , Germany.,School for Cardiovascular Diseases , Maastricht University , Universiteitssingel 50 , Maastricht 6229 ER , The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
36
|
Prasad B, Achour B, Artursson P, Hop CECA, Lai Y, Smith PC, Barber J, Wisniewski JR, Spellman D, Uchida Y, Zientek M, Unadkat JD, Rostami-Hodjegan A. Toward a Consensus on Applying Quantitative Liquid Chromatography-Tandem Mass Spectrometry Proteomics in Translational Pharmacology Research: A White Paper. Clin Pharmacol Ther 2019; 106:525-543. [PMID: 31175671 PMCID: PMC6692196 DOI: 10.1002/cpt.1537] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Quantitative translation of information on drug absorption, disposition, receptor engagement, and drug-drug interactions from bench to bedside requires models informed by physiological parameters that link in vitro studies to in vivo outcomes. To predict in vivo outcomes, biochemical data from experimental systems are routinely scaled using protein quantity in these systems and relevant tissues. Although several laboratories have generated useful quantitative proteomic data using state-of-the-art mass spectrometry, no harmonized guidelines exit for sample analysis and data integration to in vivo translation practices. To address this gap, a workshop was held on September 27 and 28, 2018, in Cambridge, MA, with 100 experts attending from academia, the pharmaceutical industry, and regulators. Various aspects of quantitative proteomics and its applications in translational pharmacology were debated. A summary of discussions and best practices identified by this expert panel are presented in this "White Paper" alongside unresolved issues that were outlined for future debates.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Philip C Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jacek R Wisniewski
- Biochemical Proteomics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Spellman
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, PA
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
- Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield, UK
| |
Collapse
|
37
|
A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation. Sci Rep 2019; 9:9709. [PMID: 31273226 PMCID: PMC6609630 DOI: 10.1038/s41598-019-45778-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Population factors such as age, gender, ethnicity, genotype and disease state can cause inter-individual variability in pharmacokinetic (PK) profile of drugs. Primarily, this variability arises from differences in abundance of drug metabolizing enzymes and transporters (DMET) among individuals and/or groups. Hence, availability of compiled data on abundance of DMET proteins in different populations can be useful for developing physiologically based pharmacokinetic (PBPK) models. The latter are routinely employed for prediction of PK profiles and drug interactions during drug development and in case of special populations, where clinical studies either are not feasible or have ethical concerns. Therefore, the main aim of this work was to develop a repository of literature-reported DMET abundance data in various human tissues, which included compilation of information on sample size, technique(s) involved, and the demographic factors. The collation of literature reported data revealed high inter-laboratory variability in abundance of DMET proteins. We carried out unbiased meta-analysis to obtain weighted mean and percent coefficient of variation (%CV) values. The obtained %CV values were then integrated into a PBPK model to highlight the variability in drug PK in healthy adults, taking lamotrigine as a model drug. The validated PBPK model was extrapolated to predict PK of lamotrigine in paediatric and hepatic impaired populations. This study thus exemplifies importance of the DMET protein abundance database, and use of determined values of weighted mean and %CV after meta-analysis in PBPK modelling for the prediction of PK of drugs in healthy and special populations.
Collapse
|
38
|
Khatri R, Fallon JK, Rementer RJB, Kulick NT, Lee CR, Smith PC. Targeted quantitative proteomic analysis of drug metabolizing enzymes and transporters by nano LC-MS/MS in the sandwich cultured human hepatocyte model. J Pharmacol Toxicol Methods 2019; 98:106590. [PMID: 31158457 PMCID: PMC6701468 DOI: 10.1016/j.vascn.2019.106590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sandwich-cultured human hepatocytes (SCHHs) are the most common in vitro hepatocyte model used for studying hepatic drug disposition and hepatotoxicity. Targeted quantification of key DME and transporter protein expression is useful for in vitro-in vivo extrapolation of drug and xenobiotic clearance and developing corresponding PBPK models. However, established methods for comprehensive quantification of drug metabolizing enzyme (DMEs) and transporter expression in SCHHs are lacking. In this study, a targeted quantitative proteomic isotope dilution nanoLC-MS/MS method developed in our laboratory was adapted to quantify a panel of phase I & II DMEs and transporter proteins in SCHHs under basal and induced conditions. METHODS SCHHs were treated with known inducers of DMEs (Rifampin: PXR activator, CITCO: CAR activator) and transporters (CDCA: FXR activator) or with vehicle control (DMSO) for 72 h. Membrane protein was isolated from the SCHHs using a membrane extraction kit and 30 μg membrane protein was digested with trypsin. The resulting peptides were analyzed by isotope dilution nanoLC-MS/MS to quantify the DMEs and transporters. RESULTS Using the method, we could quantify fourteen phase I and ten phase II DMEs, and twelve uptake/efflux transporters, under basal and induced conditions in the SCHHs. Analysis showed donor to donor variation in basal protein levels of CYP450s, UGTs and transporters, and that basal protein expression of CYP450s and UGTs was higher than that of transporters. In addition, induction of key proteins in response to rifampin, CITCO and CDCA was observed. DISCUSSION We have successfully quantified protein abundance of multiple phase I and II DMEs and uptake and efflux transporters in SCHHs using a method previously developed in our laboratory. Our method is sufficiently sensitive to quantify inter-donor differences in protein concentrations at the basal level as well as changes in protein expression in response to endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Raju Khatri
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Rebecca J B Rementer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Natasha T Kulick
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
39
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
40
|
Li Z, Di L, Maurer TS. Theoretical Considerations for Direct Translation of Unbound Liver-to-Plasma Partition Coefficient from In Vitro to In Vivo. AAPS JOURNAL 2019; 21:43. [DOI: 10.1208/s12248-019-0314-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
|
41
|
Guo Y, Chu X, Parrott NJ, Brouwer KL, Hsu V, Nagar S, Matsson P, Sharma P, Snoeys J, Sugiyama Y, Tatosian D, Unadkat JD, Huang SM, Galetin A. Advancing Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro, Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clin Pharmacol Ther 2018; 104:865-889. [PMID: 30059145 PMCID: PMC6197917 DOI: 10.1002/cpt.1183] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This white paper examines recent progress, applications, and challenges in predicting unbound and total tissue and intra/subcellular drug concentrations using in vitro and preclinical models, imaging techniques, and physiologically based pharmacokinetic (PBPK) modeling. Published examples, regulatory submissions, and case studies illustrate the application of different types of data in drug development to support modeling and decision making for compounds with transporter-mediated disposition, and likely disconnects between tissue and systemic drug exposure. The goals of this article are to illustrate current best practices and outline practical strategies for selecting appropriate in vitro and in vivo experimental methods to estimate or predict tissue and plasma concentrations, and to use these data in the application of PBPK modeling for human pharmacokinetic (PK), efficacy, and safety assessment in drug development.
Collapse
Affiliation(s)
- Yingying Guo
- Investigational Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, DC0714, Indianapolis, IN 46285, USA; Tel: 317-277-4324
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 732-594-0977
| | - Neil J. Parrott
- Pharmaceutical Sciences, Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB #7569 Kerr Hall, Chapel Hill, NC 27599-7569, USA; Tel: (919) 962-7030
| | - Vicky Hsu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Swati Nagar
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, 3307 N Broad Street, Philadelphia PA 19140, USA; 215-707-9110
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden +46-(0)18-471 46 30
| | - Pradeep Sharma
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca R&D, Cambridge CB4 0WG, UK
| | - Jan Snoeys
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen R&D, Beerse, Belgium; Tel: +32-14606812
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, Yokohama 230-0045, Japan; Tel: (045) 506-1814
| | - Daniel Tatosian
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 908-464-2375
| | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA; 206-685-2869
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester M13 9PT, UK; + 44-161-275-6886
| |
Collapse
|
42
|
Navrátilová L, Applová L, Horký P, Mladěnka P, Pávek P, Trejtnar F. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1063-1071. [PMID: 29934673 DOI: 10.1007/s00210-018-1528-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The Ki values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.
Collapse
Affiliation(s)
- Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
43
|
Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM, Kim RB, Ray AS, Stocker SL, Unadkat JD, Wittwer MB, Xia C, Yee SW, Zhang L, Zhang Y. Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin Pharmacol Ther 2018; 104:890-899. [PMID: 30091177 DOI: 10.1002/cpt.1112] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).
Collapse
Affiliation(s)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut, USA
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Adrian S Ray
- Clinical Research, Gilead Sciences, Foster City, California, USA
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia & St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Cindy Xia
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Cambridge, Massachusetts, USA
| | - Sook-Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte, Wilmington, Delaware, USA
| | | |
Collapse
|
44
|
Mitra P, Weinheimer S, Michalewicz M, Taub ME. Prediction and Quantification of Hepatic Transporter-Mediated Uptake of Pitavastatin Utilizing a Combination of the Relative Activity Factor Approach and Mechanistic Modeling. Drug Metab Dispos 2018; 46:953-963. [PMID: 29666154 DOI: 10.1124/dmd.118.080614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Quantification of the fraction transported (ft) by a particular transporter will facilitate more robust estimations of transporter interactions. Using pitavastatin as a model uptake transporter substrate, we investigated the utility of the relative activity factor (RAF) approach and mechanistic modeling to estimate ft in hepatocytes. The transporters evaluated were organic anion-transporting polypeptides OATP1B1 and OATP1B3 and sodium-taurocholate cotransporting polypeptide. Transporter-expressing human embryonic kidney 293 cells and human hepatocytes were used for determining RAF values, which were then incorporated into the mechanistic model to simulate hepatocyte uptake of pitavastatin over time. There was excellent agreement between simulated and observed hepatocyte uptake of pitavastatin, indicating the suitability of this approach for translation of uptake from individual transporter-expressing cells to more holistic in vitro models. Subsequently, ft values were determined. The largest contributor to hepatocyte uptake of pitavastatin was OATP1B1, which correlates with what is known about the in vivo disposition of pitavastatin. The ft values were then used for evaluating in vitro-in vivo correlations of hepatic uptake inhibition with OATP inhibitors rifampicin and cyclosporine. Predictions were compared with previously reported plasma exposure changes of pitavastatin with these inhibitors. Although hepatic uptake inhibition of pitavastatin was 2-3-fold underpredicted, incorporation of scaling factors (SFs) into RAF values significantly improved the predictive ability. We propose that calibration of hepatocytes with standard transporter substrates and inhibitors would allow for determination of system-specific SFs, which could subsequently be used for refining predictions of clinical DDI potential for new chemical entities that undergo active hepatic uptake.
Collapse
Affiliation(s)
- Pallabi Mitra
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Samantha Weinheimer
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Meeghan Michalewicz
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| |
Collapse
|
45
|
Holmstock N, Oorts M, Snoeys J, Annaert P. MRP2 Inhibition by HIV Protease Inhibitors in Rat and Human Hepatocytes: A Quantitative Confocal Microscopy Study. Drug Metab Dispos 2018; 46:697-703. [PMID: 29523599 DOI: 10.1124/dmd.117.079467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/07/2018] [Indexed: 02/13/2025] Open
Abstract
Hepatic drug transporters play a pivotal role in the excretion of drugs from the body, in drug-drug interactions, as well as in drug-induced liver toxicity. Hepatocytes cultured in sandwich configuration are an advantageous model to investigate the interactions of drug candidates with apical efflux transporters in a biorelevant manner. However, the commonly used "offline" assays (i.e., that rely on measuring intracellular accumulated amounts after cell lysis) are time- and resource-consuming, and the data output is often highly variable. In the present study, we used confocal microscopy to investigate the inhibitory effect of all marketed HIV protease inhibitors (10 μM) on the apical efflux transporter multidrug resistance-associated protein 2 (MRP2; ABCC2) by visualizing the biliary accumulation of the fluorescent substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDF). This method was applied with sandwich-cultured human and rat hepatocytes. Alterations in the biliary excretion index of CDF were calculated on the basis of quantitative analysis of fluorescence intensities in the confocal images. In human hepatocytes, lopinavir followed by tipranavir, saquinavir, atazanavir, and darunavir were the most potent inhibitors of MRP2-mediated efflux of CDF. In rat hepatocytes, tipranavir inhibited Mrp2-mediated CDF efflux most potently, followed by lopinavir and nelfinavir. In conclusion, a comparison of these findings with previously published data generated in offline transporter inhibition assays indicates that this microscopy-based approach enables investigation of the inhibitory effect of drugs on efflux transporters in a very sensitive but nondestructive manner.
Collapse
Affiliation(s)
- Nico Holmstock
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| | - Marlies Oorts
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| | - Jan Snoeys
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| |
Collapse
|
46
|
Gao C, Liao MZ, Han LW, Thummel KE, Mao Q. Hepatic Transport of 25-Hydroxyvitamin D 3 Conjugates: A Mechanism of 25-Hydroxyvitamin D 3 Delivery to the Intestinal Tract. Drug Metab Dispos 2018; 46:581-591. [PMID: 29467214 PMCID: PMC5896369 DOI: 10.1124/dmd.117.078881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/15/2018] [Indexed: 12/18/2022] Open
Abstract
Vitamin D3 is an important prohormone critical for maintaining calcium and phosphate homeostasis in the body and regulating drug-metabolizing enzymes and transporters. 25-Hydroxyvitamin D3 (25OHD3), the most abundant circulating metabolite of vitamin D3, is further transformed to the biologically active metabolite 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) by CYP27B1 in the kidney and extrarenal tissues, and to nonactive metabolites by other cytochrome P450 enzymes. In addition, 25OHD3 undergoes sulfation and glucuronidation in the liver, forming two major conjugative metabolites, 25OHD3-3-O-sulfate (25OHD3-S) and 25OHD3-3-O-glucuronide (25OHD3-G), both of which were detected in human blood and bile. Considering that the conjugates excreted into the bile may be circulated to and reabsorbed from the intestinal lumen, deconjugated to 25OHD3, and then converted to 1α,25-(OH)2D3, exerting local intestinal cellular effects, it is crucial to characterize enterohepatic transport mechanisms of 25OHD3-S and 25OHD3-G, and thereby understand and predict mechanisms of interindividual variability in mineral homeostasis. In the present study, with plasma membrane vesicle and cell-based transport studies, we showed that 25OHD3-G is a substrate of multidrug resistance proteins 2 and 3, OATP1B1, and OATP1B3, and that 25OHD3-S is probably a substrate of breast cancer resistance protein, OATP2B1, and OATP1B3. We also demonstrated sinusoidal and canalicular efflux of both conjugates using sandwich-cultured human hepatocytes. Given substantial expression of these transporters in liver hepatocytes and intestinal enterocytes, this study demonstrates for the first time that transporters could play important roles in the enterohepatic circulation of 25OHD3 conjugates, providing an alternative pathway of 25OHD3 delivery to the intestinal tract, which could be critical for vitamin D receptor-dependent gene regulation in enterocytes.
Collapse
Affiliation(s)
- Chunying Gao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Lyrialle W Han
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
47
|
Matsunaga N, Fukuchi Y, Imawaka H, Tamai I. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay. Drug Metab Dispos 2018; 46:680-691. [PMID: 29352067 DOI: 10.1124/dmd.117.079236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Ikumi Tamai
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| |
Collapse
|
48
|
Mao J, Doshi U, Wright M, Hop CECA, Li AP, Chen Y. Prediction of the Pharmacokinetics of Pravastatin as an OATP Substrate Using Plateable Human Hepatocytes With Human Plasma Data and PBPK Modeling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:251-258. [PMID: 29388346 PMCID: PMC5915609 DOI: 10.1002/psp4.12283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
Abstract
Plateable human hepatocytes with human plasma were utilized to generate the uptake transporter kinetic data for pravastatin, an organic anion-transporting polypeptide (OATP) transporter substrate. The active hepatic uptake of pravastatin was determined with a Jmax value of 134.4 pmol/min/million cells and Km of 76.77 µM in plateable human hepatocytes with human plasma. The physiologically-based pharmacokinetic (PBPK) model with incorporation of these in vitro kinetic data successfully simulated the i.v. pharmacokinetic profile of pravastatin without applying scaling factor (the mean predicted area under the curve (AUC) is within 1.5-fold of the observed). Furthermore, the PBPK model also adequately described the oral plasma concentration-time profiles of pravastatin at different dose levels. The current investigation demonstrates an approach allowing us to build upon the translation of in vitro OATP uptake transporter data to in vivo, with a hope of utilizing the in vitro data for the prospective human pharmacokinetic (PK) prediction.
Collapse
Affiliation(s)
- Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Utkarsh Doshi
- In Vitro ADMET Laboratories Inc. (IVAL), Columbia, Maryland, USA
| | - Matthew Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Albert P Li
- In Vitro ADMET Laboratories Inc. (IVAL), Columbia, Maryland, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
49
|
Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative Expression of Hepatobiliary Transporters and Functional Uptake of Substrates in Hepatic Two-Dimensional Sandwich Cultures: A Comparative Evaluation of Upcyte and Primary Human Hepatocytes. Drug Metab Dispos 2018; 46:166-177. [PMID: 29212823 DOI: 10.1124/dmd.117.078238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 02/13/2025] Open
Abstract
Deficient functional expression of drug transporters incapacitates most hepatic cell lines as a reliable tool for evaluating transporter-mediated drug-drug interactions. Recently, genetically modified cells (referred to as upcyte hepatocytes) have emerged as an expandable, noncancerous source of human hepatic cells. Herein, we quantified mRNA and protein levels of key hepatobiliary transporters and we assessed associated uptake activity in short- and long-term cultures of upcyte human hepatocytes (UHH) in comparison to cryopreserved primary human hepatocytes (cPHH). Expression of canalicular efflux pumps, such as MRD1/ABCB1, MATE1/SLC47A1, and MRP2/ABCC2, was relatively well preserved in UHH. By contrast, long-term cultivation of UHH in a two-dimensional sandwich configuration [sandwich-cultured upcyte human hepatocytes (SCUHH)] was required to upregulate organic anion-transporting polypeptide OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, NTCP/SLC10A1, and OCT1/SLC22A1 mRNA expression, which correlated well with respective protein abundances. However, mRNA and protein levels of sinusoidal solute carrier transporters, except for NTCP and OATP2B1, remained low in SCUHH compared to sandwich-cultured cPHH. OCT1- and NTCP-mediated uptake of N-methyl-4-phenylpyridinium acetate and taurocholate was demonstrated in both hepatic models, whereas active uptake of OATP1B1/1B3-selective marker substrates, paralleled by markedly reduced SLCO1B1/1B3 expression, were not detectable in SCUHH. Uptake studies under Na+-depletion and excess of taurocholate confirmed the presence of functional NTCP protein and indicated that NTCP, apart from OATP2B1, contributed substantially to the overall hepatic uptake of rosuvastatin in SCUHH. In conclusion, our data suggest that SCUHH, despite their limitation for evaluating OATP1B1/1B3-mediated transport processes, retain NTCP, OATP2B1, and OCT1 transport activities and thus may be considered as a tool for elucidating compensatory uptake pathways for OATP1B1/1B3 substrates.
Collapse
Affiliation(s)
- Michelle Schaefer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Gaku Morinaga
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Akiko Matsui
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Gerhard Schänzle
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Daniel Bischoff
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Roderich D Süssmuth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| |
Collapse
|
50
|
Ishida K, Ullah M, Tóth B, Juhasz V, Unadkat JD. Successful Prediction of In Vivo Hepatobiliary Clearances and Hepatic Concentrations of Rosuvastatin Using Sandwich-Cultured Rat Hepatocytes, Transporter-Expressing Cell Lines, and Quantitative Proteomics. Drug Metab Dispos 2018; 46:66-74. [PMID: 29084782 DOI: 10.1124/dmd.117.076539] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023] Open
Abstract
We determined whether in vivo transporter-mediated hepatobiliary clearance (CL) and hepatic concentrations of rosuvastatin (RSV) in the rat could be predicted by transport activity in sandwich-cultured rat hepatocytes (SCRHs) and/or transporter-expressing cell lines scaled by differences in transporter protein expression between SCRHs, cell lines, and rat liver. The predicted hepatobiliary CLs and hepatic concentrations of RSV were compared with our previously published positron emission tomography imaging data. Sinusoidal uptake CL ([Formula: see text]) and efflux (canalicular and sinusoidal) CLs of [3H]-RSV in SCRHs were evaluated in the presence and absence of Ca2+ and in the absence and presence of 1 mM unlabeled RSV (to estimate passive diffusion CL). [Formula: see text] of RSV into cells expressing organic anion transporting polypeptide (Oatp) 1a1, 1a4, and 1b2 was also determined. Protein expression of Oatps in SCRHs and Oatp-expressing cells was quantified by liquid chromatography tandem mass spectrometry. SCRHs well predicted the in vivo RSV sinusoidal and canalicular efflux CLs but significantly underestimated in vivo [Formula: see text]. Oatp expression in SCRHs was significantly lower than that in the rat liver. [Formula: see text], based on RSV [Formula: see text] into Oatp-expressing cells (active transport) plus passive diffusion CL in SCRHs, scaled by the difference in protein expression in Oatp cells versus SCRH versus rat liver, was within 2-fold of that observed in SCRHs or in vivo. In vivo hepatic RSV concentrations were well predicted by Oatp-expressing cells after correcting [Formula: see text] for Oatp protein expression. This is the first demonstration of the successful prediction of in vivo hepatobiliary CLs and hepatic concentrations of RSV using transporter-expressing cells and SCRHs.
Collapse
Affiliation(s)
- Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Mohammed Ullah
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Beáta Tóth
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Viktoria Juhasz
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| |
Collapse
|