1
|
Likhodii S, Chin AC, Baskin LB. Role of therapeutic drug monitoring to identify clinically significant drug–herbal supplement interaction. Ther Drug Monit 2024:515-544. [DOI: 10.1016/b978-0-443-18649-3.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Sile I, Teterovska R, Onzevs O, Ardava E. Safety Concerns Related to the Simultaneous Use of Prescription or Over-the-Counter Medications and Herbal Medicinal Products: Survey Results among Latvian Citizens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6551. [PMID: 37623137 PMCID: PMC10454617 DOI: 10.3390/ijerph20166551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The use of herbal medicines is increasing worldwide. While the safety profile of many herbal medicines is promising, the data in the literature show important interactions with conventional drugs that can expose individual patients to high risk. The aim of this study was to investigate the experience of the use of herbal medicines and preparations and the risks of interactions between herbal and conventional medicines among Latvian citizens. Data were collected between 2019 and 2021 using a structured questionnaire designed for pharmacy customers in Latvia. Electronic databases such as Drugs.com, Medscape, and European Union herbal monographs were reviewed for the risk of drug interactions and potential side effects when herbal medicines were involved. The survey included 504 respondents. Of all the participants, 77.8% used herbal preparations. Most of the participants interviewed used herbal remedies based on the recommendation of the pharmacist or their own initiative. A total of 38.3% found the use of herbal remedies safe and harmless, while 57.3% of respondents regarded the combination of herbal and regular drugs as unsafe. The identified herbal medicines implicated in the potential risk of serious interactions were grapefruit, St. John's wort, and valerian. As the risks of herb-drug interactions were identified among the respondents, in the future, both pharmacy customers and healthcare specialists should pay more attention to possible herb-drug interactions of over-the-counter and prescription medications.
Collapse
Affiliation(s)
- Inga Sile
- Department of Applied Pharmacy, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
| | - Renate Teterovska
- Department of Pharmaceutical Chemistry, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- Department of Pharmacy, Riga Stradins University Red Cross Medical College, 5 J. Asara Street, LV-1009 Riga, Latvia;
| | - Oskars Onzevs
- Department of Commerce, Turība University, 68 Graudu Street, LV-1058 Riga, Latvia;
| | - Elita Ardava
- Department of Pharmacy, Riga Stradins University Red Cross Medical College, 5 J. Asara Street, LV-1009 Riga, Latvia;
| |
Collapse
|
3
|
Bertuccioli A, Cardinali M, Di Pierro F, Magi S, Zonzini G. A Practical Perspective on the Use of Botanicals During the COVID-19 Pandemic: From Proven to Potential Interactions. J Med Food 2022; 25:1-11. [PMID: 34788575 PMCID: PMC8787711 DOI: 10.1089/jmf.2021.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we examined the top 10 nutraceutical products sold in Italian pharmacies and parapharmacies as well as hypermarkets and supermarkets; in the first, three product categories saw the greatest increase in sales (vitamins and minerals, immunostimulants, and sleep products) for the 12-month period between October 2019 and October 2020 (including first pandemic wave of SARS-CoV-2). We are investigating their respective formulas and isolating the botanicals that are used to make them. Many of these products have undergone preclinical and clinical studies. We performed a systematic literature search in the MEDLINE database using PubMed and Google Scholar from November 15, 2020 to December 15, 2020 (including studies carried out between 1980 and 2020). The search terms that were used included the complete name of the medicinal plant in English or Latin and the terms "cytochrome" or "drug interactions," crossing, respectively, the Latin name and English common names with "cytochrome" and "drug interactions." The search included in vitro and in vivo studies describing the effects of interaction between the plant (extract or botanical medicine) and human cytochromes. Despite their great complexity, there is decidedly limited clinical data on botanical medicine. In fact, of the 28 botanicals that were examined, only 2 (Citrus paradisi and Rhodiola rosea) show in vivo pharmacological interactions in human subjects. On the contrary, for the other botanicals, there is only weak evidence of dubious clinical significance or potential interactions shown in animal models or in vitro without clinical confirmation. This study provides a rational assessment of the most widely used products, including those used in self-medication, to simplify patient management during the COVID-19 health emergency.
Collapse
Affiliation(s)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Francesco Di Pierro
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, Brescia, Italy
- Scientific & Research Department, Velleja Research, Milano, Italy
| | - Simone Magi
- Italian Association of Fitness e Medicine (AIFeM), Ravenna, Italy
| | - Giordano Zonzini
- Italian Association of Fitness e Medicine (AIFeM), Ravenna, Italy
| |
Collapse
|
4
|
Truong VL, Jun M, Jeong WS. Phytochemical and Over-The-Counter Drug Interactions: Involvement of Phase I and II Drug-Metabolizing Enzymes and Phase III Transporters. J Med Food 2021; 24:786-805. [PMID: 34382862 DOI: 10.1089/jmf.2021.k.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Consumption of plant-derived natural products and over-the-counter (OTC) drugs is increasing on a global scale, and studies of phytochemical-OTC drug interactions are becoming more significant. The intake of dietary plants and herbs rich in phytochemicals may affect drug-metabolizing enzymes (DMEs) and transporters. These effects may lead to alterations in pharmacokinetics and pharmacodynamics of OTC drugs when concomitantly administered. Some phytochemical-drug interactions benefit patients through enhanced efficacy, but many interactions cause adverse effects. This review discusses possible mechanisms of phytochemical-OTC drug interactions mediated by phase I and II DMEs and phase III transporters. In addition, current information is summarized for interactions between phytochemicals derived from fruits, vegetables, and herbs and OTC drugs, and counseling is provided on appropriate and safe use of OTC drugs.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Mira Jun
- Brain Busan 21 Plus Program, Department of Food Science and Nutrition, Graduate School, Center for Silver-Targeted Biomaterials, Dong-A University, Busan, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
5
|
Wang K, Gao Q, Zhang T, Rao J, Ding L, Qiu F. Inhibition of CYP2C9 by natural products: insight into the potential risk of herb-drug interactions. Drug Metab Rev 2020; 52:235-257. [DOI: 10.1080/03602532.2020.1758714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
6
|
Miyauchi-Wakuda S, Kagota S, Maruyama-Fumoto K, Shiokawa Y, Yamada S, Shinozuka K. Acanthopanax senticosus Root Extract Exerts Dual Action on Mouse Ileal Smooth Muscle Function, Leading to Modulation of Gastrointestinal Motility. Biol Pharm Bull 2020; 43:817-822. [DOI: 10.1248/bpb.b19-01027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shino Miyauchi-Wakuda
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Kana Maruyama-Fumoto
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Yayoi Shiokawa
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Kazumasa Shinozuka
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| |
Collapse
|
7
|
Ji B, Liu S, Xue Y, He X, Man VH, Xie XQ, Wang J. Prediction of Drug-Drug Interactions Between Opioids and Overdosed Benzodiazepines Using Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation. Drugs R D 2020; 19:297-305. [PMID: 31482303 PMCID: PMC6738369 DOI: 10.1007/s40268-019-00282-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Researchers have long been interested in the potential drug–drug interactions (DDIs) between opioids and benzodiazepines. However, much remains unknown concerning the interactions between these two drug classes. The objective of this work is to study the mechanism underlying the DDIs between opioids and benzodiazepines from the perspective of their pharmacokinetic (PK) interactions. A PK interaction occurs when two drugs are metabolized by the same cytochrome P450 enzymes and is one of the most common reasons for DDIs. Methods We quantitatively predicted the DDIs between three opioids (fentanyl, oxycodone and buprenorphine) and four benzodiazepines (alprazolam, diazepam, midazolam and triazolam) using a physiologically based pharmacokinetic (PBPK) modeling approach. A set of PBPK models was first constructed for these common opioids and benzodiazepines using SimCYP software, and the DDIs between them were then explored at various dosages. Results Our simulation results suggested there were no PK interactions between normal doses of opioids and benzodiazepines; but weak interactions can be expected with the combination of opioids and overdosed benzodiazepines. Particular attention should be given to the combination of fentanyl and overdosed alprazolam since a PK interaction can be observed between them. Conclusion Our results appear to indicate that pharmacodynamics may play a more important role than PKs in causing DDIs between opioids and benzodiazepines. This study also demonstrated that molecular modeling can be a very useful tool to mitigate the problem of “missing metabolic reaction parameters” in PK modeling and simulation. Electronic supplementary material The online version of this article (10.1007/s40268-019-00282-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| | - Ying Xue
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace, St Pittsburgh, PA 15261 USA
| |
Collapse
|
8
|
Özdemir Z, Bildziukevich U, Wimmerová M, Macůrková A, Lovecká P, Wimmer Z. Plant Adaptogens: Natural Medicaments for 21st
Century? ChemistrySelect 2018. [DOI: 10.1002/slct.201702682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zülal Özdemir
- University of Chemistry and Technology in Prague, Faculty of Food and Biochemical Technology; Department of Chemistry of Natural Compounds; Technická 5 16628 Prague 6 Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic; Isotope Laboratory; Vídeňská 1083 14220 Prague 4 Czech Republic
| | - Uladzimir Bildziukevich
- University of Chemistry and Technology in Prague, Faculty of Food and Biochemical Technology; Department of Chemistry of Natural Compounds; Technická 5 16628 Prague 6 Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic; Isotope Laboratory; Vídeňská 1083 14220 Prague 4 Czech Republic
| | - Martina Wimmerová
- University of Chemistry and Technology in Prague, Faculty of Food and Biochemical Technology; Department of Chemistry of Natural Compounds; Technická 5 16628 Prague 6 Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic; Isotope Laboratory; Vídeňská 1083 14220 Prague 4 Czech Republic
| | - Anna Macůrková
- University of Chemistry and Technology in Prague, Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Technická 5 16628 Prague 6 Czech Republic
| | - Petra Lovecká
- University of Chemistry and Technology in Prague, Faculty of Food and Biochemical Technology; Department of Biochemistry and Microbiology; Technická 5 16628 Prague 6 Czech Republic
| | - Zdeněk Wimmer
- University of Chemistry and Technology in Prague, Faculty of Food and Biochemical Technology; Department of Chemistry of Natural Compounds; Technická 5 16628 Prague 6 Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic; Isotope Laboratory; Vídeňská 1083 14220 Prague 4 Czech Republic
| |
Collapse
|
9
|
Awortwe C, Makiwane M, Reuter H, Muller C, Louw J, Rosenkranz B. Critical evaluation of causality assessment of herb-drug interactions in patients. Br J Clin Pharmacol 2018; 84:679-693. [PMID: 29363155 DOI: 10.1111/bcp.13490] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this review was to assess the severity of adverse drug reactions (ADRs) due to herb-drug interactions (HDI) in patients taking herbs and prescribed medications based on published evidence. Electronic databases of PubMed, the Cochrane Library, Medline and Scopus were searched for randomized or nonrandomized clinical studies, case-control and case reports of HDI. The data were extracted and the causal relationship of ADRs as consequences of HDI assessed using Horn's drug interaction probability scale or Roussel Uclaf Causality Assessment Method scoring systems. The mechanism of interaction was ascertained using Stockley's herbal medicine interaction companion. Forty-nine case reports and two observational studies with 15 cases of ADRs were recorded. The majority of the patients were diagnosed with cardiovascular diseases (30.60%), cancer (22.45%) and renal transplants (16.32%) receiving mostly warfarin, alkylating agents and cyclosporine, respectively. HDI occurred in patients resulting in clinical ADRs with different severity. Patients may poorly respond to therapeutic agents or develop toxicity due to severe HDI, which in either scenario may increase the cost of treatment and/or lead to or prolong patient hospitalization. It is warranted to increase patient awareness of the potential interaction between herbs and prescribed medicines and their consequences to curb HDI as a potential health problem.
Collapse
Affiliation(s)
- Charles Awortwe
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.,Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Memela Makiwane
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Christo Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| |
Collapse
|
10
|
Abstract
Natural health products (or dietary supplements) refer to those products found in oral dosage forms, containing 1 or more active ingredients considered to be a nutrient, an herbal product, or any other nonnutrient/nonherbal substance. Their use continues to increase in the general population and in patients seen by nutrition support clinicians. Aside from an appraisal of product safety and effectiveness, attention should be paid to the potential for these product ingredients to interact with medication. Estimates are that at least 15 million adults in the United States are at risk for supplement-drug interactions. These can occur through both pharmacokinetic and pharmacodynamic mechanisms. This review describes the influence of dietary supplements on both the disposition and the effect of medication and provides numerous examples. Patients at greatest risk for interactions are those with chronic disease, who use multiple medications-particularly those with a narrow therapeutic range-have genetic variants in drug metabolism, impaired organ function, and are at either end of the age spectrum. Knowledge of the specific effects on drug absorption, metabolism, and effect is still incomplete. Relative to the large number of possible interactions between supplements and medication, only a small number of combinations have been examined or reported. The greatest limiting factor remains the quality or reliability of the existing evidence, as many widely accepted interactions are only theoretical based either on in vitro data or known pharmacology. A distinction needs to be clearly drawn between "documented" interactions and "potential" interactions. Although drug-drug interactions have been widely recognized, supplement-drug interactions may be as important to recognize, report, and manage.
Collapse
Affiliation(s)
- Joseph Boullata
- Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| |
Collapse
|
11
|
Ma BL, Ma YM. Pharmacokinetic herb–drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev 2016; 48:1-26. [DOI: 10.3109/03602532.2015.1124888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
13
|
Yu Y, Liu Y, Li Q, Sun J, Lin H, Liu G. Effects of Guanxinning injection on rat cytochrome P450 isoforms activities in vivo and in vitro. Xenobiotica 2014; 45:481-7. [PMID: 25495039 DOI: 10.3109/00498254.2014.993002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. We aimed to investigate the regulatory effects of Guanxinning injection (GXNI) on activities of cytochrome P1A2 (CYP1A2), CYP2C11, CYP2D1 and CYP3A1/2 by probe drugs in rats in vivo and in vitro. 2. GXNI-treated and blank control groups were administered GXNI and physiological saline by caudal vein for 14 days consecutively, then they were given the probe drugs of caffeine (10 mg/kg), tolbutamide (10 mg/kg), metoprolol (20 mg/kg) and dapsone (10 mg/kg) by intraperitoneal injection. The blood samples were collected at different times for ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Changes of the pharmacokinetics parameters between the GXNI-treated and the blank control groups were used to evaluate the effects of GXNI on the four CYP450 isoforms in rats in vivo. After blood collection, the livers of rats were taken and made microsomes for in vitro tests. The relevant metabolites of phenacetin, tolbutamide, dextromethorphan and testosterone were analyzed quantitatively by high-performance liquid chromatography (HPLC) after microsome incubation. The statistical differences between the two groups were observed to detect the effects of GXNI on the four CYP450 isoforms in rats in vitro. 3. The in vivo and in vitro results demonstrated that GXNI could induce CYP1A2 activity in rats, but had no significant effects on CYP2C11, CYP2D1 and CYP3A1/2.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | | | | | | | | | | |
Collapse
|
14
|
Biotechnological production of eleutherosides: current state and perspectives. Appl Microbiol Biotechnol 2014; 98:7319-29. [DOI: 10.1007/s00253-014-5899-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
15
|
Guo S, Liu Y, Lin Z, Tai S, Yin S, Liu G. Effects of eleutheroside B and eleutheroside E on activity of cytochrome P450 in rat liver microsomes. Altern Ther Health Med 2014; 14:1. [PMID: 24383621 PMCID: PMC3880977 DOI: 10.1186/1472-6882-14-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro. METHOD Probe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites. RESULTS The results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively. CONCLUSIONS These results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs.
Collapse
|
16
|
Abad Martínez MJ, del Olmo LMB, Benito PB. Interactions Between Natural Health Products and Antiretroviral Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63430-6.00006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Liu G. A Response to the Letter of Iba on Liu et al
., 2012. Effects of Panax notoginseng
Saponins on the Activities of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in Rats In Vivo. Phytother Res
26: 1113-1118. Phytother Res 2013; 28:152-3. [DOI: 10.1002/ptr.5078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaofeng Liu
- Department of Pharmacy; the Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| |
Collapse
|
18
|
Zeng C, He F, Xia C, Zhang H, Xiong Y. Identification of the active components in Shenmai injection that differentially affect Cyp3a4-mediated 1'-hydroxylation and 4-hydroxylation of midazolam. Drug Metab Dispos 2013; 41:785-90. [PMID: 23340957 DOI: 10.1124/dmd.112.048025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Shenmai injection (SMI) is a popular herbal preparation that is widely used for the treatment of atherosclerotic coronary heart disease and viral myocarditis. In our previous study, SMI was shown to differentially affect CYP3A4-mediated 1'-hydroxylation and 4-hydroxylation of midazolam (MDZ). The present study was conducted to identify the active components in SMI responsible for the differential effects on MDZ metabolism, using in vitro incubation systems (rat and human liver microsomes and a recombinant CYP3A4 system) to measure 1'-hydroxylation and 4-hydroxylation of MDZ. First, different fractions of SMI were obtained by gradient elution on an solid phase extraction system and individually tested for their effects on MDZ metabolism. The results demonstrated that lipid-soluble constituents were likely to be the predominant active components of SMI. Second, the possible active components were gradually separated on an high-performance liquid chromatography system under different conditions and individually tested in vitro for their effects on MDZ metabolism. Third, the active component obtained in the above experiment was collected and subjected to structural analysis, and identified as panaxytriol (PXT). Finally, it was validated that PXT had significant differential effects on 1'-hydroxylation and 4-hydroxylation of MDZ in various in vitro systems that were similar to those of SMI. We conclude that PXT is the constituent of SMI responsible for the differential effects on CYP3A4-mediated 1'-hydroxylation and 4-hydroxylation of MDZ.
Collapse
Affiliation(s)
- Caiwen Zeng
- Clinical Pharmacology Institute, Nanchang University, Bayi road 461, Nanchang, People’s Republic of China
| | | | | | | | | |
Collapse
|
19
|
Juszczak GR, Swiergiel AH. Recreational Use of D-Lysergamide from the Seeds of Argyreia Nervosa, Ipomoea Tricolor, Ipomoea Violacea, and Ipomoea Purpurea in Poland. J Psychoactive Drugs 2013; 45:79-93. [DOI: 10.1080/02791072.2013.763570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Grzegorz R. Juszczak
- a Department of Animal Behavior , Institute of Genetics and Animal Breeding , Jastrzebiec , Poland
| | - Artur H. Swiergiel
- a Department of Animal Behavior , Institute of Genetics and Animal Breeding , Jastrzebiec , Poland
- b Department of Human and Animal Physiology , Institute of Biology, University of Gdansk , Gdansk , Poland
| |
Collapse
|
20
|
|
21
|
Muthiah YD, Ong CE, Sulaiman SA, Tan SC, Ismail R. In-vitro inhibitory effect of Tualang honey on cytochrome P450 2C8 activity. J Pharm Pharmacol 2012; 64:1761-9. [DOI: 10.1111/j.2042-7158.2012.01551.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Objectives
To investigate the effect of Tualang honey on cytochrome P450 2C8 (CYP2C8) activity in vitro using an amodiaquine N-desethylase assay.
Methods
CYP2C8 and NADPH cytochrome P450 reductase was cotransformed, expressed and harvested. The incubation assay contained expressed proteins, MgCl2, NADP, glucose 6-phosphate, glucose-6-phosphate dehydrogenase, potassium phosphate buffer, and amodiaquine. The rate of conversion of amodiaquine to desethylamodiaquine, the metabolite, was determined using a high performance liquid chromatography (HPLC) method. The inhibition parameters, IC50 (concentration of inhibitor causing 50% inhibition of original enzyme activity) and apparent inhibition constant (Ki) values were determined.
Key findings
The recombinant proteins were successfully expressed and used to investigate the effect of Tualang honey on CYP2C8 activity. The activity was measured by the rate of metabolism of amodiaquine to desethylamodiaquine determined using a successfully developed HPLC method. Kinetic parameters as determined by nonlinear least-squares regression and evaluated with Aikeike's goodness of fit criteria revealed that Tualang honey competitively inhibited CYP2C8 activity in a dose-dependent manner. Maximum inhibition of 80% occurred at 0.01% honey. The IC50 and Ki values were (10.0 ± 3.0) × 10−3% and (5.1 ± 0.5) × 10−3% w/v, respectively.
Conclusions
This study has provided evidence for the in vitro inhibition of CYP2C8-mediated amodiaquine N-desethylase activity by Tualang honey. It revealed that honey, through this inhibition, may have the potential to cause in-vivo drug–food interaction with drugs metabolized by CYP2C8.
Collapse
Affiliation(s)
- Yasotha Devi Muthiah
- Pharmacogenetics & Novel Therapeutics Cluster, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Chin Eng Ong
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Siti Amrah Sulaiman
- Department of Pharmacology, School of Medical Sciences, Kubang Kerian, Kelantan, Malaysia
| | - Soo Choon Tan
- Pharmacogenetics & Novel Therapeutics Cluster, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Rusli Ismail
- Pharmacogenetics & Novel Therapeutics Cluster, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
22
|
Izzo AA. Interactions between herbs and conventional drugs: overview of the clinical data. Med Princ Pract 2012; 21:404-28. [PMID: 22236736 DOI: 10.1159/000334488] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 10/05/2011] [Indexed: 12/25/2022] Open
Abstract
This article provides an overview of the clinical evidence of interactions between herbal and conventional medicines. Herbs involved in drug interactions--or that have been evaluated in pharmacokinetic trials--are discussed in this review. While many of the interactions reported are of limited clinical significance and many herbal products (e.g. black cohosh, saw palmetto, echinacea, hawthorn and valerian) seem to expose patients to minor risk under conventional pharmacotherapy, a few herbs, notably St. John's wort, may provoke adverse events sufficiently serious to endanger the patients' health. Healthcare professionals should remain vigilant for potential interactions between herbal medicines and prescribed drugs, especially when drugs with a narrow therapeutic index are used.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
23
|
Chin AC, Baskin LB. Effect of Herbal Supplement–Drug Interactions on Therapeutic Drug Monitoring. Ther Drug Monit 2012. [DOI: 10.1016/b978-0-12-385467-4.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Herb-drug interactions: Focus on metabolic enzymes and transporters. Arch Pharm Res 2011; 34:1843-63. [DOI: 10.1007/s12272-011-1106-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/26/2022]
|
25
|
Bilgi N, Bell K, Ananthakrishnan AN, Atallah E. Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann Pharmacother 2010; 44:926-8. [PMID: 20332334 DOI: 10.1345/aph.1m715] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To report a case of imatinib-induced hepatotoxicity after concurrent ginseng ingestion in a patient with chronic myelogenous leukemia (CML). CASE SUMMARY A 26-year-old man with CML who had taken imatinib 400 mg daily for 7 years with no complications presented with right upper quadrant pain. Laboratory test results included alanine aminotransferase 1069 U/L, aspartate aminotransferase 481 U/L, alkaline phosphatase 124 IU/L, total bilirubin 1.4 mg/dL, albumin 4.0 g/dL, and international normalized ratio 1.08. Liver biopsy showed acute lobular hepatitis favoring a drug-induced etiology, and a diagnosis of imatinib-induced hepatotoxicity was made. The patient's only lifestyle modification prior to the diagnosis of hepatotoxicity was daily ingestion of Panax ginseng via energy drinks for the past 3 months. Both imatinib and ginseng were discontinued, and the patient was treated with a short course of corticosteroids. Imatinib was later restarted at the same dose with no recurrent elevations in his liver enzyme levels. DISCUSSION Imatinib-associated hepatotoxicity usually presents within 1-2 years of therapy initiation, with the median time to hepatotoxicity being 100 days. Ginseng is an herb that is not known to be hepatotoxic. In vivo, ginseng is known to inhibit CYP3A4, the primary enzyme involved in the metabolism of imatinib. We propose that our patient's late-onset imatinib-associated hepatotoxicity was due to an interaction between ginseng and imatinib through CYP3A4. Based on the Naranjo probability scale, it is probable that imatinib caused this patient's hepatotoxicity, and the Horn drug interaction probability scale also indicates a probable interaction between imatinib and ginseng. CONCLUSIONS This case emphasizes the importance of continuous monitoring of liver function tests even after several years of imatinib therapy and the importance of advising patients to avoid ginseng and any other over-the-counter herbal supplements that may interact with imatinib.
Collapse
Affiliation(s)
- Naveen Bilgi
- Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
26
|
Kennedy DA, Seely D. Clinically based evidence of drug-herb interactions: a systematic review. Expert Opin Drug Saf 2010; 9:79-124. [PMID: 20021292 DOI: 10.1517/14740330903405593] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Healthcare practitioners are deeply concerned about drug-herb interactions and how concurrent administration may affect both the safety and effectiveness of prescribed drugs. Interactions between botanical medicines and synthetic drugs can be clinically relevant and it is important to understand what kinds of interactions are possible. Better knowledge in this area will help avoid negative interactions and may also help enable synergistic interactions. AREAS COVERED IN THIS REVIEW Includes articles related to the investigation of Western botanicals or whole herbal extracts in human subjects, investigating either the impact on Cytochrome P450 isoenzymes or an assessment of specific drug-herb interactions within a clinical trial. Searches were conducted in both Pubmed and EMBASE from inception to March 2009. WHAT THE READER WILL GAIN Knowledge regarding specific interactions to consider in clinical practice. The reader will also gain an appreciation of the complexities associated with the area of drug-herb interactions. Summary tables of relevant drug-herb interactions are presented both for the individual herbs included and at the level of the CYP450 enzymes. TAKE HOME MESSAGE Knowledge of drug-herb interactions is limited and much more research needs to be done to further document clinically relevant interactions. Even though preclinical data are often poorly generalizable to the human situation, caution must be taken in the absence of clinical evidence especially where drugs with narrow therapeutic windows are concerned.
Collapse
Affiliation(s)
- Deborah A Kennedy
- Department of Research & Clinical Epidemiology, The Canadian College of Naturopathic Medicine, 1255 Sheppard Avenue East, Toronto, ON M2K 1E2, Canada
| | | |
Collapse
|
27
|
Effects of Acanthopanax senticosus HARMS extract on drug transport in human intestinal cell line Caco-2. J Nat Med 2009; 64:55-62. [DOI: 10.1007/s11418-009-0371-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
|
28
|
Differential effect of Shenmai injection, a herbal preparation, on the cytochrome P450 3A-mediated 1′-hydroxylation and 4-hydroxylation of midazolam. Chem Biol Interact 2009; 180:440-8. [DOI: 10.1016/j.cbi.2009.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Complications of traditional Chinese/herbal medicines (TCM)--a guide for perplexed oncologists and other cancer caregivers. Support Care Cancer 2008; 17:231-40. [PMID: 19009311 DOI: 10.1007/s00520-008-0526-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cancer patients often seek complementary or alternative medicines to supplement or replace treatments prescribed by licensed medical practitioners. Traditional Chinese/herbal medicine (TCM) is a popular complementary intervention among cancer patients of Asian ethnicity, many of whom take it during their conventional treatment. Few of these patients inform their doctors, however, creating a risk of unexpected sequelae arising from either pharmacologic toxicity, unsuitable dosing, interactions with anti-cancer drugs or other medications, adulteration, or idiosyncratic reactions. If unrecognized, these problems may be misattributed to conventional treatment toxicity or disease progression, and remedial action may be inappropriate or delayed. GOALS OF WORK The purpose of this review is to help oncologists recognize the common presentations of TCM-related problems in cancer patients-such as abnormal liver function tests, unexpectedly severe myelosuppression, hemostatic defects, renal functional impairment, or suspected drug interactions-and to teach strategies by which these problems can be anticipated, prevented, or managed. CONCLUSION Through sensitive understanding of the reasons favoring TCM usage, oncologists can gain the trust and respect of their TCM-using patients while ensuring the safety and efficacy of conventional anticancer treatments.
Collapse
|
30
|
Andrade ASA, Hendrix C, Parsons TL, Caballero B, Yuan CS, Flexner CW, Dobs AS, Brown TT. Pharmacokinetic and metabolic effects of American ginseng (Panax quinquefolius) in healthy volunteers receiving the HIV protease inhibitor indinavir. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2008; 8:50. [PMID: 18713456 PMCID: PMC2542349 DOI: 10.1186/1472-6882-8-50] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/19/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Complementary and alternative medicine (CAM) use is prevalent among HIV-infected patients to reduce the toxicity of antiretroviral therapy. Ginseng has been used for treatment of hyperglycemia and insulin resistance, a common side effect of some HIV-1 protease inhibitors (PI). However, it is unknown whether American ginseng (AG) can reverse insulin resistance induced by the PI indinavir (IDV), and whether these two agents interact pharmacologically. We evaluated potential pharmacokinetic interactions between IDV and AG, and assessed whether AG improves IDV-induced insulin resistance. METHODS After baseline assessment of insulin sensitivity using the insulin clamp technique, healthy volunteers received IDV 800 mg q8 h for 3 days and then IDV and AG 1g q8h for 14 days. IDV pharmacokinetics and insulin sensitivity were assessed before and after AG co-administration. RESULTS There was no difference in the area-under the plasma-concentration-time curve after the co-administration of AG, compared to IDV alone (n = 13). Although insulin-stimulated glucose disposal per unit of insulin (M/I) decreased by an average of 14.8 +/- 5.9% after 3 days of IDV (from 0.113 +/- 0.012 to 0.096 +/- 0.014 mg/kgFFM/min per muU/ml of insulin, p = 0.03, n = 11), M/I remained unchanged after co-administration of IDV and AG. CONCLUSION IDV decreases insulin sensitivity, which is unaltered by AG co-administration. AG does not significantly affect IDV pharmacokinetics.
Collapse
Affiliation(s)
- Adriana SA Andrade
- Division of Infectious Diseases, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Hendrix
- Division of Clinical Pharmacology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Teresa L Parsons
- Division of Clinical Pharmacology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Benjamin Caballero
- Department of Human Nutrition, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Charles W Flexner
- Division of Clinical Pharmacology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Adrian S Dobs
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Todd T Brown
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
31
|
Liang Y, Zhao S. Progress in understanding of ginsenoside biosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:415-21. [PMID: 18557901 DOI: 10.1111/j.1438-8677.2008.00064.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ginseng is an economically important medicinal plant. The major bioactive ingredients of ginseng are ginsenosides, which are triterpene saponins. Because of difficulties in ginseng cultivation and the low productivity of ginseng cell and tissue culture, it has become important to improve ginsenoside levels by using metabolic engineering based on the biosynthetic pathway of ginsenosides. During the last decade, substantial advances have been made in biosynthesis of ginsenosides. This review is concerned with recent developments in our understanding of the biosynthesis of ginsenosides.
Collapse
Affiliation(s)
- Y Liang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China.
| | | |
Collapse
|
32
|
NOWACK RAINER. Review Article: Cytochrome P450 enzyme, and transport protein mediated herb–drug interactions in renal transplant patients: Grapefruit juice, St John's Wort – and beyond! (Review Article). Nephrology (Carlton) 2008; 13:337-47. [DOI: 10.1111/j.1440-1797.2008.00940.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Tushar T, Vinod T, Rajan S, Shashindran C, Adithan C. Effect of Honey on CYP3A4, CYP2D6 and CYP2C19 Enzyme Activity in Healthy Human Volunteers. Basic Clin Pharmacol Toxicol 2007; 100:269-72. [PMID: 17371531 DOI: 10.1111/j.1742-7843.2006.00039.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Honey is a common food supplement but not many studies have studied honey and drug interaction. This study investigates the influence of 7 days of honey administration on the activity of CYP3A4, CYP2D6 and CYP2C19 drug-metabolizing enzymes in healthy volunteers by using appropriate biomarker and probe drugs. A within-group pharmacokinetic study was done in 12 healthy volunteers. Urine samples (0-8 hr) were collected after administration of 30 mg of oral dextromethorphan (probe drug for CYP2D6) for analysis of dextromethorphan and dextrorphan. A plasma sample (4 hr) was collected after administration of 200 mg of oral proguanil (probe drug for CYP2C19) for the analysis of proguanil and cycloguanil. Urine samples (0-24 hr) were collected for the analysis of 6beta-hydroxycortisol (biomarker for CYP3A4). The volunteers were administered honey for 7 days. Subsequently blood and urine samples were collected after drug dosing as before. These samples were analysed for drug and metabolite concentrations in urine and plasma using high performance liquid chromatography method. Seven days of honey administration resulted in statistically significant increase in 24-hr urinary excretion of 6beta-hydroxycortisol. However, the metabolic ratios of dextromethorphan and proguanil were not significantly altered after 7 days of honey administration. Honey obtained from Western Ghats of southern India may induce CYP3A4 enzyme activity but not CYP2D6 and CYP2C19 enzyme activities.
Collapse
Affiliation(s)
- Tewari Tushar
- Department of Pharmacology, Jawaharlal Institute of Post-graduate Medical Education and Research, Pondicherry, India
| | | | | | | | | |
Collapse
|
34
|
Lee LS, Andrade ASA, Flexner C. HIV/AIDS: Interactions between Natural Health Products and Antiretroviral Drugs: Pharmacokinetic and Pharmacodynamic Effects. Clin Infect Dis 2006; 43:1052-9. [PMID: 16983620 DOI: 10.1086/507894] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/01/2006] [Indexed: 02/02/2023] Open
Abstract
Concurrent use of natural health products (NHPs) with antiretroviral drugs (ARVs) is widespread among human immunodeficiency virus-infected patients. This article reviews the clinical pharmacokinetic and pharmacodynamic interactions between NHPs and ARVs. Many NHPs are complex mixtures and are likely to contain organic compounds that may induce and/or inhibit drug metabolizing enzymes and drug transporters. Although the weight of evidence for the effects of certain NHPs varies and many studies of these products lack scientific rigor, it has been observed that St. John's wort clearly induces cytochrome P450 3A4 and P-glycoprotein and reduces protease inhibitor and nonnucleoside reverse-transcriptase inhibitor concentrations, thereby increasing the likelihood of therapeutic failure. Limited clinical research suggests that intake of garlic and vitamin C results in reductions in ARV concentrations. The intake of milk thistle, Echinacea species, and goldenseal inhibits cytochrome P450 enzymes in vitro and may increase ARV concentrations, but by clinically unimportant amounts. Intake of fish oil reduces ARV-induced hypertriglyceridemia without significantly affecting lopinavir concentrations. Before recommending the use of NHPs as adjuncts to ARV use, studies should first exclude significant pharmacokinetic interactions and ensure that ARV efficacy is maintained.
Collapse
Affiliation(s)
- Lawrence S Lee
- Division of Clinical Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
35
|
van den Bout-van den Beukel CJP, Koopmans PP, van der Ven AJAM, De Smet PAGM, Burger DM. Possible drug-metabolism interactions of medicinal herbs with antiretroviral agents. Drug Metab Rev 2006; 38:477-514. [PMID: 16877262 DOI: 10.1080/03602530600754065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Herbal medicines are widely used by HIV patients. Several herbal medicines have been shown to interact with antiretroviral drugs, which might lead to drug failure. We have aimed to provide an overview of the modulating effects of Western and African herbal medicines on antiretroviral drug-metabolizing and transporting enzymes, focusing on potential herb-antiretroviral drug interactions. Echinacea, garlic, ginkgo, milk thistle, and St. John's wort have the potential to cause significant interactions. In vitro and in vivo animal studies also indicated other herbs with a potential for interactions; however, most evidence is based on in vitro studies. Further pharmacokinetic studies to unveil potential Western and especially African herb-antiretroviral drug interactions are urgently required, and the clinical significance of these interactions should be assessed.
Collapse
|
36
|
Liu Y, Zhang JW, Li W, Ma H, Sun J, Deng MC, Yang L. Ginsenoside Metabolites, Rather Than Naturally Occurring Ginsenosides, Lead to Inhibition of Human Cytochrome P450 Enzymes. Toxicol Sci 2006; 91:356-64. [PMID: 16547074 DOI: 10.1093/toxsci/kfj164] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is still an argument about ginseng-prescription drug interactions. To evaluate the influence on cytochrome P450 (P450) activities of ginseng in the present study, the influence on P450 activities of naturally occurring ginsenosides and their degradation products in human gut lumen was assayed by using human liver microsomes and cDNA-expressed CYP3A4. The results showed that the naturally occurring ginsenosides exhibited no inhibition or weak inhibition against human CYP3A4, CYP2D6, CYP2C9, CYP2A6, or CYP1A2 activities; however, their main intestinal metabolites demonstrated a wide range of inhibition of the P450-mediated metabolism. There was no mechanism-based inhibition found on these P450 isoforms. It is noteworthy that Compound K, protopanaxadiol (Ppd), and protopanaxatriol (Ppt) all exhibited moderate inhibition against CYP2C9 activity, and Ppd and Ppt also exhibited potent competitive inhibition against CYP3A4 activity. We suggest that after oral administration, naturally occurring ginsenosides might influence hepatic P450 activity in vivo via their intestinal metabolites.
Collapse
Affiliation(s)
- Yong Liu
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Combined utilization with herbal products and prescribed drugs: A result from health examinee-based national survey. HEALTH POLICY AND MANAGEMENT 2006. [DOI: 10.4332/kjhpa.2006.16.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
38
|
Mills E, Wu P, Johnston BC, Gallicano K, Clarke M, Guyatt G. Natural health product-drug interactions: a systematic review of clinical trials. Ther Drug Monit 2005; 27:549-57. [PMID: 16175124 DOI: 10.1097/01.ftd.0000170880.95267.90] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interactions between natural health products (NHP) and prescription medications are of increasing concern. This paper aims to identify all clinical trials of NHP-drug interactions. To determine the prevalence and outcomes of clinical investigations of NHP-drug pharmacokinetic interactions, electronic databases were searched from inception through March 2004, as well as reference lists from published reports and experts in the field for unpublished studies. Eligible studies were clinical investigations of the interaction between a NHP and the metabolism of a regulated medication in humans. Studies were excluded that only investigated the metabolism of an NHP or examined food-drug or NHP-NHP interactions. Two reviewers selected studies for inclusion and independently extracted data. Forty-seven trials were identified, studying an average of 14 participants/study (95% confidence interval [CI] 11-18), examined drug interactions with 19 different herbal preparations. All trials were pharmacokinetic studies, 41 of healthy volunteers and 6 of patients. Ten different herbal medicines as well as 5 different traditional herbal concoctions were studied. Potentially clinically significant drug interactions were observed with St. John wort (16/24 studies), garlic (2/5 studies), and American ginseng (1 study). Research on NHP-drug interactions is limited in number and scope. With the exception of St. John wort, clinicians and the public do not have information that permits strong inferences about interactions between NHPs and conventional medications.
Collapse
Affiliation(s)
- Edward Mills
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Herbal medicines are mixtures of more than one active ingredient. The multitude of pharmacologically active compounds obviously increases the likelihood of interactions taking place. Hence, the likelihood of herb-drug interactions is theoretically higher than drug-drug interactions, if only because synthetic drugs usually contain single chemical entities. Case reports and clinical studies have highlighted the existence of a number of clinically important interactions, although cause-and-effect relationships have not always been established. Herbs and drugs may interact either pharmacokinetically or pharmacodynamically. Through induction of cytochrome P450 enzymes and/or P-glycoprotein, some herbal products (e.g. St John's wort) have been shown to lower the plasma concentration (and/or the pharmacological effect) of a number of conventional drugs, including cyclosporine, indinavir, irinotecan, nevirapine, oral contraceptives and digoxin. The majority of such interactions involves medicines that require regular monitoring of blood levels. To date there is less evidence relating to the pharmacodynamic interaction. However, for many of the interactions discussed here, the understanding of the mechanisms involved is incomplete. Taking herbal agents may represent a potential risk to patients under conventional pharmacotherapy.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
40
|
|
41
|
Donovan JL, DeVane CL, Chavin KD, Wang JS, Gibson BB, Gefroh HA, Markowitz JS. Multiple night-time doses of valerian (Valeriana officinalis) had minimal effects on CYP3A4 activity and no effect on CYP2D6 activity in healthy volunteers. Drug Metab Dispos 2004; 32:1333-6. [PMID: 15328251 DOI: 10.1124/dmd.104.001164] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valerian (Valeriana officinalis) is a popular dietary supplement. The objective of this study was to assess the influence of a valerian extract on the activity of the drug-metabolizing enzymes cytochrome P450 2D6 (CYP2D6) and 3A4. Probe drugs dextromethorphan (30 mg; CYP2D6 activity) and alprazolam (2 mg; CYP3A4 activity) were administered orally to healthy volunteers (n = 12) at baseline and again after exposure to two 500-mg valerian tablets (1000 mg) nightly for 14 days. The valerian supplement contained a total valerenic acid content of 5.51 mg/tablet. Dextromethorphan to dextorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after valerian treatment. The DMR was 0.214 +/- 0.025 at baseline and 0.254 +/- 0.026 after valerian supplementation (p > 0.05). For alprazolam, the maximum concentration in plasma was significantly increased after treatment with valerian (25 +/- 7 ng/ml versus 31 +/- 8 ng/ml; p < 0.05). There were no significant differences in other pharmacokinetic parameters at baseline and after valerian exposure (all p values > or = 0.05; time to reach maximum concentration in plasma, 3.0 +/- 3.2 versus 3.1 +/- 2.1 h; area under the plasma concentration versus time curve, 471 +/- 183 versus 539 +/- 240 hx ng x ml(-1); half-life of elimination, 13.5 +/- 4.3 versus 12.2 +/- 5.6 h). Our results indicate that although a modest increase was observed in the alprazolam Cmax, typical doses of valerian are unlikely to produce clinically significant effects on the disposition of medications dependent on the CYP2D6 or CYP3A4 pathways of metabolism.
Collapse
Affiliation(s)
- Jennifer L Donovan
- Laboratory of Drug Disposition and Pharmacogenetics, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Donovan JL, Chavin KD, Devane CL, Taylor RM, Wang JS, Ruan Y, Markowitz JS. Green tea (Camellia sinensis) extract does not alter cytochrome p450 3A4 or 2D6 activity in healthy volunteers. Drug Metab Dispos 2004; 32:906-8. [PMID: 15319329 DOI: 10.1124/dmd.104.000083] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Green tea extract is a widely used dietary supplement. The objective of this study was to assess the influence of a decaffeinated green tea (DGT; Camellia sinensis) extract on the activity of the drug-metabolizing enzymes cytochrome P-450 2D6 and 3A4. Probe drugs dextromethorphan (30 mg, CYP2D6 activity) and alprazolam (ALPZ; 2 mg, CYP3A4 activity) were administered orally to healthy volunteers (n = 11) at baseline, and again after treatment with four DGT capsules/day for 14 days. Each DGT capsule contained 211 +/- 25 mg of green tea catechins and <1 mg of caffeine. Dextromethorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after DGT treatment. There were no significant differences in ALPZ pharmacokinetics at baseline and after DGT treatment (all P values >/= 0.05; maximum concentration in plasma, 33 +/- 8 versus 34 +/- 13 ng/ml; time to reach maximum concentration in plasma, 1.4 +/- 1.2 versus 1.4 +/- 1.2 h; area under the plasma concentration versus time curve, 480 +/- 119 versus 510 +/- 107 h. ng. ml(-1); half-life of elimination, 12.3 +/- 1.7 versus 13.1 +/- 3.4 h). The DMR was 0.053 +/- 0.045 at baseline and 0.041 +/- 0.032 after DGT supplementation (P > 0.05). The plasma concentration of the green tea flavonoid, (-)-epigallocatechin gallate, reached 1.3 +/- 1.8 microM 2 h after DGT treatment. Our results indicate that DGT is unlikely to alter the disposition of medications primarily dependent on the CYP2D6 or CYP3A4 pathways of metabolism.
Collapse
Affiliation(s)
- Jennifer L Donovan
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Jiang X, Williams KM, Liauw WS, Ammit AJ, Roufogalis BD, Duke CC, Day RO, McLachlan AJ. Effect of St John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol 2004; 57:592-9. [PMID: 15089812 PMCID: PMC1884493 DOI: 10.1111/j.1365-2125.2003.02051.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED M: The aim of this study was to investigate the effect of St John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin. METHODS This was an open-label, three-way crossover randomized study in 12 healthy male subjects, who received a single 25-mg dose of warfarin alone or after 14 days' pretreatment with St John's wort, or 7 days' pretreatment with ginseng. Dosing with St John's wort or ginseng was continued for 7 days after administration of the warfarin dose. Platelet aggregation, international normalized ratio (INR) of prothrombin time, warfarin enantiomer protein binding, warfarin enantiomer concentrations in plasma and S-7-hydroxywarfarin concentration in urine were measured. Statistical comparisons were made using anova and 90% confidence intervals are reported. RESULTS INR and platelet aggregation were not affected by treatment with St John's wort or ginseng. The apparent clearances of S-warfarin after warfarin alone or with St John's wort or ginseng were, respectively, 198 +/- 38 ml h(-1), 270 +/- 44 ml h(-1) and 220 +/- 29 ml h(-1). The respective apparent clearances of R-warfarin were 110 +/- 25 ml h(-1), 142 +/- 29 ml h(-1) and 119 +/- 20 ml h(-1) [corrected]. The mean ratio and 90% confidence interval (CI) of apparent clearance for S-warfarin was 1.29 (1.16, 1.46) and for R-warfarin it was 1.23 (1.11, 1.37) when St John's wort was coadministered. The mean ratio and 90% CI of AUC(0-168) of INR was 0.79 (0.70, 0.95) when St John's wort was coadministered. St John's wort and ginseng did not affect the apparent volumes of distribution or protein binding of warfarin enantiomers. CONCLUSIONS St John's wort significantly induced the apparent clearance of both S-warfarin and R-warfarin, which in turn resulted in a significant reduction in the pharmacological effect of rac-warfarin. Coadministration of warfarin with ginseng did not affect the pharmacokinetics or pharmacodynamics of either S-warfarin or R-warfarin.
Collapse
Affiliation(s)
- Xuemin Jiang
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Herbal Medicine. FOCUS ON ALTERNATIVE AND COMPLEMENTARY THERAPIES 2003; 8:440. [PMID: 32313448 PMCID: PMC7164059 DOI: 10.1211/fact.2003.00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|