1
|
Xie Y, Zeng Q, Chen Z, Song J, Wang F, Liu D, Sun X, Zhang Y, Huang Q. Dysregulation of sphingolipid metabolism contributes to the pathogenesis of chronic myeloid leukemia. Cell Death Dis 2025; 16:282. [PMID: 40221405 PMCID: PMC11993578 DOI: 10.1038/s41419-025-07594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Chronic myeloid leukemia (CML) is primarily driven by the BCR::ABL1 oncoprotein, which has potent tyrosine kinase activity. BCR::ABL1 has been shown to facilitate several metabolic processes, including glycolysis, lipid synthesis, and protein synthesis in vitro. However, the altered metabolic profile in vivo remains poorly understood. Using Scl/tTA-BCR::ABL1 mice as a model, we conducted an analysis of plasma metabolites at different stages following BCR::ABL1 induction. Metabolites involved in sphingolipid and thiamine metabolism were significantly altered at the early stage of CML, while the tricarboxylic acid (TCA) cycle metabolites were altered during disease progression. Among these metabolic changes, sphingolipid metabolism is of particular significance. Inhibition of sphingolipid metabolism had a more pronounced effect on the growth and survival fate of K562 cells compared to thiamine metabolism inhibition. Furthermore, knockdown of sphingosine kinase 1 (SPHK1) resulted in extensive metabolic remodeling, affecting lipid, energy, and heme metabolism. Pharmacological targeting of sphingolipid metabolism appeared to attenuate the development of CML. Our study also demonstrated that BCR::ABL1 triggers ERK-dependent phosphorylation of SphK1, leading to aberrant activation of sphingolipid metabolism, which in turn has a positive feedback effect on BCR/ABL expression. These findings highlight the dominant role of sphingolipid metabolism in BCR::ABL1-induced metabolic reprogramming in CML.
Collapse
MESH Headings
- Sphingolipids/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Animals
- Humans
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Mice
- K562 Cells
- Phosphorylation
- Thiamine/metabolism
Collapse
Affiliation(s)
- Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghua Zeng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Chen
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiachun Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Can İzlimek U, Karagün B, Gürkan E. Venotoclax associated hypothyroidism in a patient with acute myeloid leukemia. J Oncol Pharm Pract 2025:10781552251331601. [PMID: 40223334 DOI: 10.1177/10781552251331601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
IntroductionVenetoclax is a selective inhibitor of BCL2. While its combination with hypomethylating agents (HMAs) is associated with manageable side effects, thyroid dysfunction has not been previously reported.Case ReportWe present the case of a 62-year-old female with relapsed/refractory AML who was treated with azacitidine and venetoclax. Within a month, she developed hypothyroidism with elevated TSH (42.86 µIU/mL) and low FT4 (0.34 ng/dL). Baseline thyroid function tests were normal.Management & OutcomeUltrasonography showed a diffusely enlarged thyroid gland, and thyroid autoantibodies were negative, ruling out autoimmune thyroiditis.Thyroid hormone replacement therapy was initiated, normalizing thyroid function, while venetoclax was continued due to its efficacy.DiscussionThis case highlights a rare, non-autoimmune thyroid dysfunction associated with venetoclax. The absence of autoantibodies suggests a mechanism unrelated to autoimmunity, emphasizing the need for thyroid monitoring during venetoclax therapy.
Collapse
Affiliation(s)
- Uğur Can İzlimek
- Department of Internal Medicine, Cukurova Medical School, Adana, Turkey
| | - Barış Karagün
- Department of Endocrinology and Metabolism Diseases, Cukurova Medical School, Adana, Turkey
| | - Emel Gürkan
- Department of Hematology, Cukurova Medical School, Adana, Turkey
| |
Collapse
|
3
|
Wang J, Wang Y, Zhou H, Yu G, Xu H, Gao D, Li M, Wang Y, Xu B. Identification of the specific characteristics of neuroendocrine prostate cancer: Immune status, hub genes and treatment. Transl Oncol 2025; 54:102320. [PMID: 39999729 PMCID: PMC11908612 DOI: 10.1016/j.tranon.2025.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Castration-resistant prostate cancer (CRPC) marks the advanced phase of prostate malignancy, manifested through two principal subtypes: castration-resistant adenocarcinoma (CRPC-adeno) and neuroendocrine prostate cancer (NEPC). This study aims to identify unique central regulatory genes, assess the immunological landscape, and explore potential therapeutic strategies specifically tailored to NEPC. We discovered 1444 differentially expressed genes (DEGs) distinguishing between the two cancer types and identified 12 critical hub genes. Notably, CHST1, MPPED2, and RIPPLY3 emerged as closely associated with the immune cell infiltration pattern, establishing them as top candidates. Prognostic analysis highlighted the potential critical roles of CHST1 and MPPED2 in prostate cancer development, findings corroborated through in vitro and in vivo assays. Moreover, we validated the functions and expression levels of CHST1, MPPED2, and RIPPLY3 in NEPC using cell lines, animal models and human tissues. In the final step, we found that imatinib might be the drug specific to NEPC, which was further confirmed by in vitro cell assay. Our results revealed the clinical characteristics, molecular features, immune cell infiltration pattern in CRPC-adeno and NEPC, and identified and confirmed CHST1, MPPED2, and RIPPLY3 as the critical genes in the development in prostate cancer and NEPC. We also predicted and validated imatinib as the potential specific drugs to NEPC.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yu Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Minglun Li
- Urologic and Hematologic Oncology, Department of Radiation Oncology, LMU, University Hospital, Munich, Germany.
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China.
| |
Collapse
|
4
|
Krasner M, Barbiro-Michaely E, Abu-Shach UB, Onn A, Broday L, Gerber D. OncoFlow: A multiplexed microfluidic platform for personalized drug sensitivity assessment. N Biotechnol 2025; 87:105-111. [PMID: 40074170 DOI: 10.1016/j.nbt.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/16/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
While biomarker-guided treatments and NGS-based approaches are refining precision medicine, they are not universally applicable. The gap between the genomic characterization of tumors and their functional behavior is becoming increasingly evident. There is an escalating demand for functional assays that can customize cancer treatments for individual patients and bridge this gap. We have developed OncoFlow, an integrated microfluidic platform that automates viability assays. This platform customizes treatment options by assessing the functional responses of a patient's tumor cells to a specific drug panel. This study specifically addressed non-small cell lung adenocarcinoma (NSCLC) in patients presenting pleural effusion. We used the NCI-H2228 adenocarcinoma cell line, which harbors the EML4-ALK fusion oncogene, to develop and fine-tune the viability assay. Cells cultivated in microfluidic chambers were treated with various concentrations of the tyrosine kinase inhibitors alectinib and crizotinib, and the cytotoxic effects were measured. The results were consistent with those from conventional cell culture methods, thereby validating the assay's reliability. Next, pleural effusion samples from six NSCLC patients, four of them harboring the EML4-ALK rearrangement were tested with alectinib and crizotinib using the OncoFlow system. Monitoring and analysis of cell viability showed varied sensitivities to crizotinib, while all samples exhibited resistance to alectinib. These findings underscore OncoFlow's potential to enhance physician decision-making and customize treatment plans, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Matan Krasner
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Efrat Barbiro-Michaely
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Onn
- Thoracic Cancer Unit, Cancer Center, Sheba Medical Center, Tel HaShomer, Ramat Gan 52621, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Doron Gerber
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
5
|
Liu CJ, Wang LK, Tsai FM. The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury. Curr Issues Mol Biol 2025; 47:176. [PMID: 40136430 PMCID: PMC11941228 DOI: 10.3390/cimb47030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapeutic agents play a crucial role in cancer treatment. However, their use is often associated with significant adverse effects, particularly cardiotoxicity. Drugs such as anthracyclines (e.g., doxorubicin) and platinum-based agents (e.g., cisplatin) cause mitochondrial damage, which is one of the main mechanisms underlying cardiotoxicity. These drugs induce oxidative stress, leading to an increase in reactive oxygen species (ROS), which in turn damage the mitochondria in cardiomyocytes, resulting in impaired cardiac function and heart failure. Mitochondria-targeted antioxidants (MTAs) have emerged as a promising cardioprotective strategy, offering a potential solution. These agents efficiently scavenge ROS within the mitochondria, protecting cardiomyocytes from oxidative damage. Recent studies have shown that MTAs, such as elamipretide, SkQ1, CoQ10, and melatonin, significantly mitigate chemotherapy-induced cardiotoxicity. These antioxidants not only reduce oxidative damage but also help maintain mitochondrial structure and function, stabilize mitochondrial membrane potential, and prevent excessive opening of the mitochondrial permeability transition pore, thus preventing apoptosis and cardiac dysfunction. In this review, we integrate recent findings to elucidate the mechanisms of chemotherapy-induced cardiotoxicity and highlight the substantial therapeutic potential of MTAs in reducing chemotherapy-induced heart damage. These agents are expected to offer safer and more effective treatment options for cancer patients in clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Liu
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Veterinary Diagnostic Division, National Laboratory Animal Center, National Institutes of Applied Research, Taipei City 115, Taiwan;
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
6
|
Angus F, Liao WC, Adekoya V, Chen LC. The effect of healthcare professional-implemented interventions on adherence to oral targeted therapy in patients with cancer: a systematic review and meta-analysis. Support Care Cancer 2025; 33:110. [PMID: 39820769 PMCID: PMC11739221 DOI: 10.1007/s00520-024-09136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE This study investigated the impact of healthcare professional-led interventions on adherence to oral targeted therapy and identified the behavior change techniques (BCTs) underpinning the interventions. METHODS A systematic search of MEDLINE, Embase, APA PsycInfo, CINAHL Plus, PubMed, and Web of Science up to July 2024 identified randomized controlled trials and cohort studies involving adult patients (≥ 18 years) with cancer on oral targeted therapy receiving healthcare professional-led interventions to improve adherence. Adherence-related outcomes, including proportions of patients continuing treatments or with a medication possession ratio (MPR) ≥ 90%, were compared between intervention and control (usual care) groups. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) and heterogeneity (I2 statistic) were reported. Differences in median time to treatment discontinuation were calculated and synthesized where applicable. Interventions were categorized using the BCT taxonomy. RESULTS This review included 11 studies (1,654 patients). The pooled results for proportions of patients continuing treatment (OR 17.91; 95%CI 3.18, 100.73; I2 < 0.1%) or with an MPR ≥ 90% (OR 3.67; 95%CI 1.98, 6.80; I2 < 0.1%) showed a significantly favorable outcome in the intervention group compared to the control group. In two studies, the median time to treatment discontinuation was longer in the intervention group than in the control group. The most commonly used BCTs were "credible source" (n = 11), "problem-solving" (n = 9), "instruction on how to perform a behavior" (n = 9), and "pharmacological support" (n = 8). CONCLUSION Despite limited evidence, healthcare professional-led interventions significantly improve treatment adherence. Future studies should tailor strategies for individual needs and apply BCTs in designing effective interventions. PROSPERO registered: no. CRD42024571808.
Collapse
Affiliation(s)
- Fiona Angus
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Pharmacy Department, Christie NHS Foundation Trust, Manchester, UK.
| | - Wan-Chuen Liao
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- College of Medicine, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Victoria Adekoya
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Li-Chia Chen
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
7
|
Koolivand Z, Bahreini F, Rayzan E, Rezaei N. Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations. Heliyon 2025; 11:e41355. [PMID: 39811307 PMCID: PMC11730532 DOI: 10.1016/j.heliyon.2024.e41355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Acute myeloid leukemia is the expansion of leukemic stem cells which might originate from a stem cell or a progenitor which has acquired self-renewal capacity. An aggregation of leukemic blasts in bone marrow, peripheral blood, and extramedullary tissue will result in acute myeloid leukemia. The main difficulty in treating acute myeloid leukemia is multidrug resistance, leading to treatment failure. This unfortunate phenomenon is practically elevated because of apoptosis inhibition in tumor cells. Two general apoptotic pathways are the Bcl-2 regulated pathway (the intrinsic pathway) and the death receptor pathway. Deficiencies in each of these apoptotic pathways can cause the usual resistance mechanism in this disease. This article reviews and highlights different antiapoptotic pathways, currently-used treatments, and new findings in this field, which may lead to the development of treatment methods for acute myeloid leukemia.
Collapse
Affiliation(s)
- Zahra Koolivand
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Dhawale SA, Mokale SN, Dabhade PS. Discovery of Novel Pyrimidine Based Small Molecule Inhibitors as VEGFR-2 Inhibitors: Design, Synthesis, and Anti-cancer Studies. Curr Comput Aided Drug Des 2025; 21:38-49. [PMID: 38185893 DOI: 10.2174/0115734099269413231018065351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane- 1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized. METHODS Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger. RESULTS In comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 μM), compound SP2 revealed promising cytotoxic activity (IC50 = 4.07 and 4.98 μM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC50 = 6.82 μM) against the reference drug, Cabozantinib (IC50 = 0.045 μM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study. CONCLUSION The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Sachin A Dhawale
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, 431001, M.S. India
| | - Santosh N Mokale
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Pratap S Dabhade
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| |
Collapse
|
9
|
Qi X, Wang F, Thomas L, Ma S, Palen K, Lu Y, Sheinin Y, Gershan J, Fu L, Chen G. Protein tyrosine phosphatase PTPH1 potentiates receptor tyrosine kinase HER2 oncogenesis via a PDZ-coupled and phosphorylation-driven scaffold. Am J Cancer Res 2024; 14:5734-5751. [PMID: 39803648 PMCID: PMC11711543 DOI: 10.62347/jrhh6478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis. PTPH1 de-phosphorylates HER2 and reciprocally increases HER2 protein expression dependent on cellular content. PTPH1 itself can be phosphorylated at S459 by redundant kinases p38γ and/or PBK, thereby distinctively regulating expression and/or turnover of scaffold proteins. Moreover, PTPH1 and HER2 cooperate to increase PBK and Yap1 transcription thus acting as an additional mechanism to activate the scaffold. PTPH1 protein levels are higher in HER2+ breast cancer in which their phosphorylated forms are inversely correlated, indicating an integrated oncogenic activity through coordinated PTPH1 phosphorylation and HER2 de-phosphorylation. Combinational, but not individual, application of scaffold-kinases' inhibitors suppresses xenograft growth in mice. Thus, a PDZ-coupled and phosphorylation-driven scaffold can integrate proliferative signaling of enzymatically distinct proteins as a super-oncogene and as a target for combination therapy.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Fang Wang
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, China
| | - Linda Thomas
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Shao Ma
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Department of Breast Surgery, Qilu Hospital of Shandong UniversityJinan 250012, Shandong, China
| | - Katie Palen
- Division of Pediatric Hematology and Oncology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Yan Lu
- Zhejiang Provincial Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital and Institute of Translational Medicine, Zhejiang University of MedicineHangzhou 310006, Zhejiang, China
| | - Yuri Sheinin
- Department of Pathology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Jill Gershan
- Division of Pediatric Hematology and Oncology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Liwu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical CenterMilwaukee, Wisconsin 53226, USA
| |
Collapse
|
10
|
Moore EK, Strazza M, Hu X, Tymm C, Paiola M, Shannon MJ, Xie X, Bukhari S, Lerrer S, Mace EM, Winchester R, Mor A. PAG orchestrates T cell immune synapse function by binding to actin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625440. [PMID: 39677716 PMCID: PMC11642767 DOI: 10.1101/2024.11.29.625440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many immunotherapies impact T cell function by impacting the immune synapse. While immunotherapy is extremely successful in some patients, in many others, it fails to help or causes complications, including immune-related adverse events. Phosphoprotein Associated with Glycosphingolipid Rich Microdomains 1 (PAG) is a transmembrane scaffold protein with importance in T cell signaling. PAG has 10 tyrosine phosphorylation sites where many kinases and phosphatases bind. PAG is palmitoylated, so it localizes in lipid rafts of the membrane, and contains a C-terminal PDZ domain to link to the actin cytoskeleton. As a link between signaling-protein-rich membrane regions and the actin cytoskeleton, PAG is an exciting and novel target for manipulating immune function. Here, we sought to determine if PAG works with actin to control T cell synapse organization and function. We found that PAG and actin dynamics are tightly coordinated during synapse maturation. A PDZ domain mutation disrupts the PAG-actin interaction, significantly impairing synapse formation, stability, and function. To assess the impact of the PDZ mutation functionally in vivo, we employed a mouse model of type IV hypersensitivity and an OVA-tumor mouse model. In both systems, mice with T cells expressing PDZ-mutant PAG had diminished immune responses, including impaired cytotoxic function. These findings highlight the importance of the PAG-actin link for effective T cell immune synapse formation and function. The results of our study suggest that targeting PAG is a promising approach for modulating immune responses and treating immune-related diseases. One Sentence Summary Adaptor protein PAG links to the actin cytoskeleton, and this link is essential for T cell synapse formation and cytotoxic function.
Collapse
|
11
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
12
|
Tang W, Li F, Zheng H, Zhao J, Wei H, Xiong X, Chen H, Zhang C, Xie W, Zhang P, Gong G, Ying M, Guo Q, Wang Q, Fu J. Prognostic Value of Baseline Skeletal Muscle Index in Colorectal Cancer Patients Treated with Fruquintinib: A multi-center real world analysis. Int J Colorectal Dis 2024; 39:186. [PMID: 39565368 PMCID: PMC11579071 DOI: 10.1007/s00384-024-04747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The Skeletal Muscle Index (SMI) serves as an objective metric for assessing nutritional status in patients with malignant tumors. Research has found baseline nutritional status can influence both the efficacy and prognosis of targeted anti-tumor therapies, with growth factor tyrosine kinase inhibitors frequently inducing drug-related sarcopenia. Fruquintinib has received approval for the treatment of metastatic colorectal cancer. This study examines the prognostic significance of baseline SMI in patients with metastatic colorectal cancer undergoing treatment with fruquintinib. Additionally, the study investigates the incidence of SMI reduction following fruquintinib therapy to assess its impact on patient prognosis. METHODS A retrospective multicenter study was conducted to analyze patients with metastatic colorectal cancer who received fruquintinib treatment across eight medical centers in Eastern China. The muscle area at the third lumbar vertebra was assessed, and both baseline and post-treatment SMI values were calculated independently. The relationship between SMI and patient survival was subsequently examined. RESULTS The median progression-free survival (PFS) for the cohort of 105 patients was 4.2 months (95% CI, 3.7 to 4.9 months), while the median overall survival (OS) was 10.2 months (95% CI, 9.0 to 12.7 months). Notably, the baseline SMI prior to the initiation of fruquintinib therapy exhibited a significant correlation with OS (P = 0.0077). Multivariate analysis indicated that baseline SMI serves as an independent prognostic factor for OS (P = 0.005). Furthermore, after Propensity Score Matching (PSM) analysis, there was still a significant correlation between baseline SMI and OS. Among the patients, 28.87% developed sarcopenia following oral administration of fruquintinib. However, no statistically significant difference in OS was observed between the group with reduced SMI and the group without SMI reduction after treatment with fruquintinib. CONCLUSION The baseline SMI was identified as an independent prognostic factor for OS and may influence the survival outcomes of patients with metastatic colorectal cancer undergoing treatment with fruquintinib. Despite the potential of fruquintinib to induce sarcopenia, no significant correlation was observed between changes in SMI following treatment and patient survival.
Collapse
Affiliation(s)
- Wanfen Tang
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Fakai Li
- Department of Respiratory and Critical Care, Jinhua Guangfu Cancer Hospital, Zhejiang, China
| | - Hongjuan Zheng
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Jinglei Zhao
- Department of Medical Oncology, Jinhua Guangfu Cancer Hospital, Zhejiang, China
| | - Hangping Wei
- Department of Medical Oncology, Affiliated Dongyang Hospital, Wenzhou Medical University, Zhejiang, China
| | - Xuerong Xiong
- Department of Oncology, Pujiang People's Hospital, Zhejiang, China
| | - Hailang Chen
- Department of Oncology, Lanxi People's Hospital, Zhejiang, China
| | - Cui Zhang
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Weili Xie
- Department of Oncology, Affiliated Yiwu Hospital, Hangzhou Normal University, Zhejiang, China
| | - Penghai Zhang
- Department of Oncology, Yongkang Traditional Chinese Medicine Hospital, Zhejiang, China
| | - Guangrong Gong
- Department of Radiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Mingliang Ying
- Department of Radiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qiusheng Guo
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Qinghua Wang
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China.
| |
Collapse
|
13
|
Alsulaimany M, El-Hddad SSA, Akrim ZSM, Aljohani AKB, Almohaywi B, Alatawi OM, Almadani SA, Alharbi HY, Aljohani MS, Miski SF, Alghamdi R, El-Adl K. Exploration of cytotoxicity of iodoquinazoline derivatives as inhibitors of both VEGFR-2 and EGFR T790M: Molecular docking, ADMET, design, and syntheses. Arch Pharm (Weinheim) 2024; 357:e2400389. [PMID: 39088827 DOI: 10.1002/ardp.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Novel inhibitors of epidermal growth factor receptor (EGFR)T790M/vascular endothelial growth factor receptor-2 (VEGFR-2) were synthesized based on the iodoquinazoline scaffold linked to different heteroaromatic, aromatic, and/or aliphatic moieties. The novel derivatives were in vitro examined for anticancer activities against A549, HCT116, michigan cancer foundation-7 (MCF-7), and HepG2 cells. Molecular modeling was applied to discover their orientation of binding with both VEGFR-2 and EGFR active sites. Compounds 8d, 8c, 6d, and 6c indicated the highest cytotoxicity with IC50 = 6.00, 6.90, 6.12 and 6.24 µM, 7.05, 7.35, 6.80, and 6.80 µM, 5.75, 7.50, 6.90, and 6.95 µM, and 6.55, 7.88, 7.44, and 7.10 µM against the A549, HepG2, HCT116, and MCF-7 cell lines, correspondingly. The cytotoxicity against normal VERO (normal african green monkey kidney cells) of the extremely active eight compounds 6a-d and 8a-d was evaluated. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 45.66-51.83 μM. Furthermore, inhibition assays for both the EGFRT790M and VEGFR-2 enzymes were done for all compounds. Remarkable inhibition of EGFRT790M activity was achieved with compounds 6d, 8d, 6c, and 8c at IC50 = 0.35, 0.42, 0.48, and 0.50 µM correspondingly. Moreover, remarkable inhibition of VEGFR-2 activity was achieved with compounds 8d, 8c, 6d, and 6c at IC50 = 0.92, 0.95, 1.00, and 1.20 µM correspondingly. As planned, derivatives 6d, 8d, 6c, and 8c presented exceptional inhibition of both EGFRT790M/VEGFR-2 activities. Finally, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were made for the highly active four compounds 6c, 6d, 8c, and 8d in comparison with erlotinib and sorafenib as reference standards.
Collapse
Affiliation(s)
- Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | | | - Zuhir S M Akrim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Omar Almukhtar University Al-Bayda, Libya
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Hussam Y Alharbi
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Abdel-Rahman AAH, El-Bayaa MN, Sobhy A, El-Ganzoury EM, Nossier ES, Awad HM, El-Sayed WA. Novel quinazolin-4-one based derivatives bearing 1,2,3-triazole and glycoside moieties as potential cytotoxic agents through dual EGFR and VEGFR-2 inhibitory activity. Sci Rep 2024; 14:24980. [PMID: 39443462 PMCID: PMC11500008 DOI: 10.1038/s41598-024-73171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
The toxicity that was caused by the developed medications for anticancer treatment is, unfortunately, an earnest problem stemming from the various involved targets, and accordingly, intense research for overcoming such a phenomenon remains indispensable. In the current inquiry, an innovative category of substituted quinazoline-based glycosides incorporating a core of 1,2,3-triazole and attached to distinct acetylated likewise deprotected sugar segments are created and produced synthetically. The resulted 1,2,3-triazolyl-glycosides products were investigated for their ability to cause cytotoxicity to several human cancer cell lines. The quinazoline based glycosyl-1,2,3-triazoles 10-13 with free hydroxy sugar moiety revealed excellent potency against (IC50 range = 5.70-8.10 µM, IC50 Doxorubicin = 5.6 ± 0.30 µM, IC50 Erlotinib = 4.3 ± 0.1 µM). against MCF-7 cancer cell line. In addition, the derived glycosides incorporating quinazolinone and triazole core 6-13 with acetylated and deprotected sugar parts showed excellent and superior potency against HCT-116 (IC50 range = 2.90-6.40 µM). The potent products were revealed as safe cytotoxic agents as indicated by their studied safety profiles. Additional research of promising candidates inhibitory analysis performed against EGFR and VEGFR-2. The hydroxylated glycosides incorporating triazole and quinazoline system 11 and 13 with N-methyl substitution of quinazolinone, gave excellent potency against EGFR (IC50 = 0.35 ± 0.11 and 0.31 ± 0.06 µM, correspondingly) since glycoside 13 revealed comparable IC50 (3.20 ± 0.15 µM) to sorafenib against VEGFR-2. For more understanding of its action mode, it was analyzed how the 1,2,3-triazolyl glycoside 13 made an effect on the apoptosis induction and the arrest of the cell cycle. It was revealed that it had the ability to stop HCT-116 cells in their cell cycle's G1 stage. Moreover, the influence of quinazolinone-1,2,3-triazole-glycoside 13 upon p53, Bax, and Bcl-2 levels in HCT-116 units was also studied for future approaches toward its behavior. Additionally, the latter derivative may trigger apoptosis, as indicated by a significant increase in apoptotic cells. Furthermore, molecular docking was simulated to make an obvious validation and comprehension acquirement of the binding's characteristics also attractions among the most forceful compounds side by side with their aimed enzymes.
Collapse
Affiliation(s)
- Adel A-H Abdel-Rahman
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Mohamed N El-Bayaa
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Asmaa Sobhy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman M El-Ganzoury
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Wael A El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
15
|
Deng Q, Huang Y, Zeng J, Li X, Zheng X, Guo L, Shi J, Bai L. Recent advancements in the small-molecule drugs for hepatocellular carcinoma (HCC): Structure-activity relationships, pharmacological activities, and the clinical trials. Biomed Pharmacother 2024; 179:117343. [PMID: 39180795 DOI: 10.1016/j.biopha.2024.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world and the sixth leading cause of cancer death worldwide, and it is urgent to find safe and effective drugs for treatment. As an important therapeutic method, small-molecule drugs are continually being updated to achieve improved therapeutic effects. The purpose of this study was to investigate the structural effects of various FDA-listed small-molecule drugs sorafenib, cabozantinib, lenvatinib, and regorafenib on the corresponding HCC targets and possible structural optimization methods, and to explore the mechanism for identifying potential therapeutic drugs that offer better efficacy and fewer side effects. METHODS The structure-activity relationship, pharmacological actions, and clinical applications of small-molecule drugs were reviewed by referencing MEDLINE, Web of Science, CNKI, and other databases, summarizing and integrating the relevant content. RESULTS The results showed that small-molecule drugs can inhibit HCC primarily by forming hydrogen bonds with Glu885, Asp1046, and Cys919 on the HCC target. HCC can be targeted by inhibiting the activation of multiple pathways, blocking the conduction of downstream signaling, and reducing the formation of tumor blood vessels. In general, small-molecule drugs primarily target four key receptors in HCC: VEGFR, PDGFR, EGFR, and FGFR, to achieve effective treatment. CONCLUSIONS By revealing their structure-activity relationships, pharmacological actions, and clinical trials, small-molecule drugs can offer broad prospects for the development of new medications.
Collapse
Affiliation(s)
- Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Guo
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Qi Y, Deng SM, Wang KS. Receptor tyrosine kinases in breast cancer treatment: unraveling the potential. Am J Cancer Res 2024; 14:4172-4196. [PMID: 39417188 PMCID: PMC11477839 DOI: 10.62347/kivs3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer is a multifactorial disease driven by acquired genetic and epigenetic changes that lead to aberrant regulation of cellular signaling pathways. Receptor tyrosine kinases (RTKs), a class of critical receptors, are involved in the initiation and progression of breast cancer. RTKs are cell surface receptors with unique structures and biological characteristics, which respond to environmental signals by initiating signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway, Janus kinase (JAK)/signal transducer, activator of transcription (STAT) pathway, and phosphoinositide 3-kinase (PI3K)/AKT pathway. The critical role of RTKs makes them suitable targets for breast cancer treatment. Targeted therapies against RTKs have been developed in recent years, evaluated in clinical trials, and approved for several cancer types, including breast cancer. However, breast cancer displays molecular heterogeneity and exhibits different therapeutic responses to various drug types, leading to limited effectiveness of targeted therapy against RTKs. In this review, we summarize the structural and functional characteristics of selected RTKs and discuss the mechanisms and current status of drug therapy involving different protein tyrosine kinases in breast cancer progression.
Collapse
Affiliation(s)
- Yu Qi
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Shu-Min Deng
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Kuan-Song Wang
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
17
|
Kabir MZ, Tayyab H, Erkmen C, Mohamad SB, Uslu B. Comprehensive views toward the biomolecular recognition of an anticancer drug, leflunomide with human serum albumin. J Biomol Struct Dyn 2024; 42:7257-7271. [PMID: 37529911 DOI: 10.1080/07391102.2023.2239931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
Biomolecular association of an anticancer drug, leflunomide (LEF) with human serum albumin (HSA), the leading ligands carrier in human circulation was characterized using biophysical (i.e., fluorescence, absorption and voltammetric) methods and computational (i.e., molecular docking and molecular dynamics simulation) techniques. Evaluations of fluorescence, absorption and voltammetric findings endorsed the complex formation between LEF and HSA. An inverse relationship of Stern-Volmer constant-temperature and hyperchromic shift of the protein's absorption signal with addition of LEF confirmed the LEF quenched the HSA fluorescence through static process. Moderate nature of binding strength (binding constant = 2.76-4.77 × 104 M-1) was detected towards the LEF-HSA complexation, while the association process was naturally driven via hydrophobic interactions, van der Waals interactions and hydrogen bonds, as evident from changes in entropy (ΔS= + 19.91 J mol-1 K-1) and enthalpy (ΔH = - 20.09 kJ mol-1), and molecular docking assessments. Spectral analyses of synchronous and three-dimensional fluorescence validated microenvironmental fluctuations near Trp and Tyr residues upon LEF binding to the protein. LEF association with HSA significantly defended temperature-induced destabilization of the protein. Although LEF was found to attach to HSA at Sudlow's sites I and II, but exhibited greater preference toward its site I, as detected by the investigations of competitive site-marker displacement. Molecular dynamics simulation assessment revealed that the complex attained equilibrium throughout simulations, showing the LEF-HSA complex constancy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Zahirul Kabir
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Hafsa Tayyab
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cem Erkmen
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Choi YJ. Cancer treatment-induced bone loss. Korean J Intern Med 2024; 39:731-745. [PMID: 38439172 PMCID: PMC11384245 DOI: 10.3904/kjim.2023.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024] Open
Abstract
Cancer treatment-induced bone loss (CTBL) is associated with anti-tumor treatments, including endocrine therapies, chemotherapeutic treatments, radiotherapy, glucocorticoids, and tyrosine kinase inhibitors. Osteoporosis, characterized by the loss of bone mass, can increase the risk of fractures, leading to mortality and long-term disability, even after cancer remission. Cancer and osteoporosis have marked clinical and pathogenetic similarities. Both have a multifactorial etiology, affect the geriatric population, and markedly influence quality of life. Lifestyle management, including calcium and vitamin D supplementation, is recommended but the supporting evidence is limited. Oral and injectable bisphosphonates are effective for osteoporosis and malignant bone disease. Bisphosphonates increase bone mineral density (BMD) in patients with CTBL. Denosumab is also used in the management of CTBL; in clinical trials, it improved BMD and reduced the risk of fracture. Currently, there are no bone anabolic therapies for patients with cancer. Appropriate therapies are necessary to maintain optimal bone health, particularly in patients at heightened risk.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
19
|
Niu W, Zhang H, Ma X, Liang H, Qiao Z, Wang Z, Niu L. Etoposide, cisplatin, and sintilimab combined with anlotinib in successful treatment of adrenocortical carcinoma with lung metastasis: a case report. Front Oncol 2024; 14:1403762. [PMID: 39220648 PMCID: PMC11361937 DOI: 10.3389/fonc.2024.1403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare malignant tumor that occurs in the adrenal cortex. It has a high degree of malignancy and comparatively poor overall prognosis. Surgery is the standard curative therapy for localized ACC patients. The combination regimen of etoposide, doxorubicin, cisplatin (EDP) plus mitotane has been considered as the standardized chemotherapy regimen for advanced ACC. However, new effective regimens are emerging for specific conditions in metastatic ACC. Case presentation We report a case of a 66-year-old man diagnosed with metastatic ACC who had a large left adrenal mass (110 mm × 87 mm) and multiple metastases in both lungs. The patient was treated with EP and sintilimab for six cycles; anlotinib was introduced after the third cycle. Follow-ups after the second to fourth cycles found significantly reduced lung metastases with all imaging examinations indicating partial response (PR) status. The patient received maintenance therapy thereafter with sintilimab plus anlotinib. Until recently, the patient's lung metastases and the left adrenal gland area mass (39mm × 29mm) have disappeared, and no disease progression has been observed. The progression-free survival of this patient has been extended to approximately 31 months, in sharp contrast to a median survival time of 12 months for majority of advanced ACC. The main adverse events during treatment were appetite loss and grade I myelosuppression and revealed only grade I hypertension and grade I hypothyroidism. Conclusion This case highlights the remarkable response of our patient's ACC to treatment with a novel combination of EP and sintilimab combined with anlotinib. Our findings suggest a safe and more effective combination therapeutic option for patients with adrenocortical carcinoma.
Collapse
Affiliation(s)
- Wenjing Niu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Haimei Zhang
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Hua Liang
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Zhongshi Qiao
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Zheng Wang
- Department of Oncology, Zhucheng People’s Hospital, Weifang, China
| | - Lifeng Niu
- School of Clinical Medicine, Binzhou Medical University, Binzhou, China
| |
Collapse
|
20
|
Ferrari SM, Patrizio A, Stoppini G, Elia G, Ragusa F, Balestri E, Botrini C, Rugani L, Barozzi E, Mazzi V, La Motta C, Antonelli A, Fallahi P. Recent advances in the use of tyrosine kinase inhibitors against thyroid cancer. Expert Opin Pharmacother 2024; 25:1667-1676. [PMID: 39161995 DOI: 10.1080/14656566.2024.2393281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Oncogenic tyrosine kinases (TK) are enzymes that play a key role in cell growth and proliferation and their mutations can lead to uncontrolled cell growth and development of aggressive cancer. This knowledge has led to the development of new classes of drugs, Tyrosine kinase inhibitors (TKI). They target oncogenic kinases who are associated with advanced radioactive iodine (RAI) refractory TC, which is not able to uptake RAI anymore and/or still grows between consecutive treatments with Iodine 131 (I131). AREAS COVERED Since Lenvatinib and Sorafenib approval, several other molecular inhibitors have been studied and then introduced for the treatment of aggressive and refractory thyroid cancer (TC), and, although the development of adverse effects or tumor resistance mechanisms, more and more compounds are still under investigation. The literature search was executed in PubMed and ClinicalTrials.gov to identify relevant articles and clinical trials published until December 2023. EXPERT OPINION In the context of clinical trials, driven by the presence of specific molecular mutations or even in the absence of both conditions, systemic therapy TKIs are valuable weapons to be used in patients affected by aggressive forms of TC, waiting for further expansion of the treatment landscape with more efficacious and safer drugs.
Collapse
Affiliation(s)
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giulio Stoppini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Licia Rugani
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Emilio Barozzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Choi JE, Qiao Y, Kryczek I, Yu J, Gurkan J, Bao Y, Gondal M, Tien JCY, Maj T, Yazdani S, Parolia A, Xia H, Zhou J, Wei S, Grove S, Vatan L, Lin H, Li G, Zheng Y, Zhang Y, Cao X, Su F, Wang R, He T, Cieslik M, Green MD, Zou W, Chinnaiyan AM. PIKfyve controls dendritic cell function and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582543. [PMID: 38464258 PMCID: PMC10925294 DOI: 10.1101/2024.02.28.582543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gurkan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mahnoor Gondal
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - JiaJia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael D. Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Braegelmann J, Führer D, Tan S. [Endocrine side effects of tumor treatment]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:681-689. [PMID: 38874811 DOI: 10.1007/s00108-024-01731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Targeted and immune-based treatments represent significant innovations in oncology and impressively improve the prognosis of many tumor diseases. Their now widespread use as a standard treatment for several malignant diseases increasingly requires knowledge of how to deal with new adverse events (AE) induced by oncological agents in centers and routine practice [12, 13]. For example, the blockade of specific checkpoints of the inhibitory immune system by immune checkpoint inhibitors (ICI) causes the loss of immune tolerance to the body's own tissue with the occurrence of endocrine immune-related AE (irAE) in approximately 10% of patients treated with ICI [3, 11]. Targeted treatments, such as with tyrosine kinase inhibitors (TKI), mammalian target of rapamycin (mTOR) and phosphoinositide 3‑kinase (PI3K) inhibitors often lead to disorders of glucose metabolism and thyroid gland dysfunction. The challenges of maintaining bone health during endocrine therapy in patients with prostate and hormone receptor-positive breast cancer and in the endocrine follow-up care of childhood cancer survivors are well-known and are becoming increasingly more important for the long-term prognosis and quality of life [5, 20]. However, although the recommendations for a systematic management of endocrine side effects of these relatively new tumor therapies can be found in guidelines, they are not yet established in routine clinical care [15, 19]. A close interdisciplinary cooperation is required for optimal care of people with cancer [7]. The development of such interdisciplinary cross-sectoral treatment structures is important as tumor treatment is primarily carried out by hematologists or oncologists, while the management of AE induced by oncological agents increasingly involves primary care physicians including internists and in the case of endocrine AE requires the specific expertise of endocrinologists and diabetologists.
Collapse
Affiliation(s)
- Johanna Braegelmann
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Universitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Dagmar Führer
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Universitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Susanne Tan
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Universitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Deutschland.
| |
Collapse
|
23
|
Pantazi D, Alivertis D, Tselepis AD. Underlying Mechanisms of Thrombosis Associated with Cancer and Anticancer Therapies. Curr Treat Options Oncol 2024; 25:897-913. [PMID: 38862694 DOI: 10.1007/s11864-024-01210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
Cancer-associated thrombosis (CAT) has been identified as the second most prevalent cause of death after cancer itself. Moreover, the risk of thrombotic events in cancer patients increases due to anticancer drugs, such as tyrosine kinase inhibitors (TKIs). Venous thromboembolism (VTE) as well as arterial thromboembolic (ATE) events are present in CAT. Although VTE occurs more frequently, ATE events are very significant and in some cases are more dangerous than VTE. Guidelines for preventing thrombosis refer mainly VTE as well as the contribution of ATE events. Several factors are involved in thrombosis related to cancer, but the whole pathomechanism of thrombosis is not clear and may differ between patients. The activation of the coagulation system and the interaction of cancer cells with other cells including platelets, endothelial cells, monocytes, and neutrophils are promoted by a hypercoagulable state caused by cancer. We present an update on the pathomechanisms of CAT and the effect of anticancer drugs, mainly targeted therapies with a focus on TKIs. Considering the risk of bleeding associated with anticoagulation in each cancer patient, the anticoagulation strategy may involve the use of FXIa inhibitors, direct oral anticoagulants, and low-molecular-weight heparin. Further research would be valuable in developing strategies for reducing CAT.
Collapse
Affiliation(s)
- Despoina Pantazi
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece.
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| | - Alexandros D Tselepis
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| |
Collapse
|
24
|
Choi JE, Qiao Y, Kryczek I, Yu J, Gurkan J, Bao Y, Gondal M, Tien JCY, Maj T, Yazdani S, Parolia A, Xia H, Zhou J, Wei S, Grove S, Vatan L, Lin H, Li G, Zheng Y, Zhang Y, Cao X, Su F, Wang R, He T, Cieslik M, Green MD, Zou W, Chinnaiyan AM. PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nat Commun 2024; 15:5487. [PMID: 38942798 PMCID: PMC11213953 DOI: 10.1038/s41467-024-48931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 06/30/2024] Open
Abstract
Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Yuanyuan Qiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gurkan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi Bao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mahnoor Gondal
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - JiaJia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Lasagni S, Critelli RM, Milosa F, Saltini D, Schepis F, Romanzi A, Dituri F, Serino G, Di Marco L, Pivetti A, Scianò F, Giannelli G, Villa E. Differential Impact of Tumor Endothelial Angiopoietin-2 and Podoplanin in Lymphatic Endothelial Cells on HCC Outcomes with Tyrosine Kinase Inhibitor Treatment According to Sex. Biomedicines 2024; 12:1424. [PMID: 39061998 PMCID: PMC11273995 DOI: 10.3390/biomedicines12071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Curative treatments are available to a minority of patients, as HCC is often diagnosed at an advanced stage. For patients with unresectable and multifocal HCC, tyrosine kinase inhibitor drugs (TKIs) are the only potential treatment option. Despite extensive research, predictors of response to these therapies remain elusive. This study aimed to analyze the biological and histopathological characteristics of HCC patients treated with TKIs, focusing on angiogenesis and lymphangiogenesis. Immunohistochemistry quantified the expression of angiopoietin-2 (Ang2), lymphatic endothelial cells (LEC) podoplanin, and C-type Lectin Domain Family 2 (CLEC-2), key factors in neoangiogenesis and lymphangiogenesis. An increased expression of endothelial Ang2 and LEC podoplanin predicted a lower risk of metastasis. Female patients had significantly longer overall survival and survival on TKIs, associated with higher tumor expression of endothelial Ang2 and LEC podoplanin. Moreover, LEC podoplanin expression and a longer time on TKIs were independently correlated with improved survival on TKI therapy at Cox regression analysis. These findings suggest that endothelial Ang2 and LEC podoplanin could be potential biomarkers for predicting treatment outcomes and guiding therapeutic strategies in HCC patients treated with TKIs.
Collapse
Affiliation(s)
- Simone Lasagni
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
- Clinical and Experimental Medicine Program, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Rosina Maria Critelli
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
| | - Fabiola Milosa
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
| | - Dario Saltini
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
| | - Filippo Schepis
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
| | - Adriana Romanzi
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
- Clinical and Experimental Medicine Program, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Francesco Dituri
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.D.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.D.); (G.S.); (G.G.)
| | - Lorenza Di Marco
- Clinical and Experimental Medicine Program, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Alessandra Pivetti
- Gastroenterology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.P.); (F.S.)
| | - Filippo Scianò
- Gastroenterology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.P.); (F.S.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.D.); (G.S.); (G.G.)
| | - Erica Villa
- Gastroenterology Unit, Chimomo Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.L.); (R.M.C.); (F.M.); (D.S.); (F.S.); (A.R.)
| |
Collapse
|
26
|
Abbas HAS, Nossier ES, El-Manawaty MA, El-Bayaa MN. New sulfonamide-based glycosides incorporated 1,2,3-triazole as cytotoxic agents through VEGFR-2 and carbonic anhydrase inhibitory activity. Sci Rep 2024; 14:13028. [PMID: 38844493 PMCID: PMC11156913 DOI: 10.1038/s41598-024-62864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
New sulfonamide-triazole-glycoside hybrids derivatives were designed, synthesised, and investigated for anticancer efficacy. The target glycosides' cytotoxic activity was studied with a panel of human cancer cell lines. Sulfonamide-based derivatives, 4, 7 and 9 exhibited promising activity against HepG-2 and MCF-7 (IC50 = 8.39-16.90 μM against HepG-2 and 19.57-21.15 μM against MCF-7) comparing with doxorubicin (IC50 = 13.76 ± 0.45, 17.44 ± 0.46 μM against HepG-2 and MCF-7, rescpectively). To detect the probable action mechanism, the inhibitory activity of these targets was studied against VEGFR-2, carbonic anhydrase isoforms hCA IX and hCA XII. Compoumds 7 and 9 gave favorable potency (IC50 = 1.33, 0.38 μM against VEGFR-2, 66, 40 nM against hCA IX and 7.6, 3.2 nM against hCA XII, respectively), comparing with sorafenib and SLC-0111 (IC50 = 0.43 μM, 53 and 4.8 nM, respectively). Moreover, the docking simulation was assessed to supply better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes that was used for further modification in the anticancer field.
Collapse
Affiliation(s)
- Hebat-Allah S Abbas
- Department of Photochemistry, National Research Centre, Cairo, 12622, Egypt.
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - May A El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed N El-Bayaa
- Department of Photochemistry, National Research Centre, Cairo, 12622, Egypt
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| |
Collapse
|
27
|
Yang F, Yan L, Ji J, Lou Y, Zhu J. HER2 puzzle pieces: Non-Coding RNAs as keys to mechanisms, chemoresistance, and clinical outcomes in Ovarian cancer. Pathol Res Pract 2024; 258:155335. [PMID: 38723327 DOI: 10.1016/j.prp.2024.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer (OC) presents significant challenges, characterized by limited treatment options and therapy resistance often attributed to dysregulation of the HER2 signaling pathway. Non-coding RNAs (ncRNAs) have emerged as key players in regulating gene expression in OC. This comprehensive review underscores the pivotal role of ncRNAs in modulating HER2 signaling, with a specific focus on their mechanisms, impact on chemoresistance, and prognostic/diagnostic implications. MicroRNAs, long non-coding RNAs, and circular RNAs have been identified as essential regulators in the modulation of the HER2 pathway. By directly targeting key components of the HER2 axis, these ncRNAs influence its activation and downstream signaling cascades. Dysregulated ncRNAs have been closely associated with chemoresistance, leading to treatment failures and disease progression in OC. Furthermore, distinct expression profiles of ncRNAs hold promise as reliable prognostic and diagnostic markers, facilitating personalized treatment strategies and enhancing disease outcome assessments. A comprehensive understanding of how ncRNAs intricately modulate HER2 signaling is imperative for the development of targeted therapies and the improvement of patient outcomes. The integration of ncRNA profiles into clinical practice has the potential to enhance prognostic and diagnostic accuracy in the management of ovarian cancer. Further research efforts are essential to validate the clinical utility of ncRNAs and elucidate their precise roles in the regulation of HER2 signaling. In conclusion, ncRNAs play a crucial role in governing HER2 signaling in ovarian cancer, impacting chemoresistance and providing valuable prognostic and diagnostic insights. The exploration of ncRNA-mediated HER2 modulation offers promising avenues for the development of personalized treatment approaches, ultimately advancing patient care and outcomes in OC.
Collapse
Affiliation(s)
- Fangwei Yang
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China.
| | - Lixiang Yan
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Junnan Ji
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Yunxia Lou
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Jinlu Zhu
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| |
Collapse
|
28
|
Gach-Janczak K, Drogosz-Stachowicz J, Janecka A, Wtorek K, Mirowski M. Historical Perspective and Current Trends in Anticancer Drug Development. Cancers (Basel) 2024; 16:1878. [PMID: 38791957 PMCID: PMC11120596 DOI: 10.3390/cancers16101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is considered one of the leading causes of death in the 21st century. The intensive search for new anticancer drugs has been actively pursued by chemists and pharmacologists for decades, focusing either on the isolation of compounds with cytotoxic properties from plants or on screening thousands of synthetic molecules. Compounds that could potentially become candidates for new anticancer drugs must have the ability to inhibit proliferation and/or induce apoptosis in cancer cells without causing too much damage to normal cells. Some anticancer compounds were discovered by accident, others as a result of long-term research. In this review, we have presented a brief history of the development of the most important groups of anticancer drugs, pointing to the fact that they all have many side effects.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.J.); (K.W.)
| | | | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.J.); (K.W.)
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.J.); (K.W.)
| | - Marek Mirowski
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
29
|
Kokkorakis N, Zouridakis M, Gaitanou M. Mirk/Dyrk1B Kinase Inhibitors in Targeted Cancer Therapy. Pharmaceutics 2024; 16:528. [PMID: 38675189 PMCID: PMC11053710 DOI: 10.3390/pharmaceutics16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising pharmacological target in cancer since it is overexpressed in many tumors, and its overexpression is correlated with patients' poor prognosis. Mirk/Dyrk1B acts as a negative cell cycle regulator, maintaining the survival of quiescent cancer cells and conferring their resistance to chemotherapies. Many studies have demonstrated the valuable therapeutic effect of Mirk/Dyrk1B inhibitors in cancer cell lines, mouse xenografts, and patient-derived 3D-organoids, providing a perspective for entering clinical trials. Since the majority of Mirk/Dyrk1B inhibitors target the highly conserved ATP-binding site, they exhibit off-target effects with other kinases, especially with the highly similar Dyrk1A. In this review, apart from summarizing the data establishing Dyrk1B as a therapeutic target in cancer, we highlight the most potent Mirk/Dyrk1B inhibitors recently reported. We also discuss the limitations and perspectives for the structure-based design of Mirk/Dyrk1B potent and highly selective inhibitors based on the accumulated structural data of Dyrk1A and the recent crystal structure of Dyrk1B with AZ191 inhibitor.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, 11521 Athens, Greece;
| |
Collapse
|
30
|
Chen L, Zhang Y, Zhang YX, Wang WL, Sun DM, Li PY, Feng XS, Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J Pharm Anal 2024; 14:100899. [PMID: 38634061 PMCID: PMC11022103 DOI: 10.1016/j.jpha.2023.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (μ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Lan Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Peng-Yun Li
- Institute of Pharmacology and Toxicology Institution, National Engineering Research Center for Strategic Drugs, Beijing, 100850, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| |
Collapse
|
31
|
Costanzo V, Ratre YK, Andretta E, Acharya R, Bhaskar LVKS, Verma HK. A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies. Curr Treat Options Oncol 2024; 25:465-495. [PMID: 38372853 DOI: 10.1007/s11864-023-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Cardiotoxicity has emerged as a serious outcome catalyzed by various therapeutic targets in the field of cancer treatment, which includes chemotherapy, radiation, and targeted therapies. The growing significance of cancer drug-induced cardiotoxicity (CDIC) and radiation-induced cardiotoxicity (CRIC) necessitates immediate attention. This article intricately unveils how cancer treatments cause cardiotoxicity, which is exacerbated by patient-specific risks. In particular, drugs like anthracyclines, alkylating agents, and tyrosine kinase inhibitors pose a risk, along with factors such as hypertension and diabetes. Mechanistic insights into oxidative stress and topoisomerase-II-B inhibition are crucial, while cardiac biomarkers show early damage. Timely intervention and prompt treatment, especially with specific agents like dexrazoxane and beta-blockers, are pivotal in the proactive management of CDIC.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764, Munich, Germany.
| |
Collapse
|
32
|
Mougeot JLC, Beckman MF, Alexander AS, Hovan AJ, Hasséus B, Legert KG, Johansson JE, von Bültzingslöwen I, Brennan MT, Mougeot FB. Single nucleotide polymorphisms conferring susceptibility to leukemia and oral mucositis: a multi-center pilot study of patients prior to conditioning therapy for hematopoietic cell transplant. Support Care Cancer 2024; 32:220. [PMID: 38467943 DOI: 10.1007/s00520-024-08408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Leukemias have been associated with oral manifestations, reflecting susceptibility to cancer therapy-induced oral mucositis. We sought to identify SNPs associated with both leukemia and oral mucositis (OM). METHODS Whole exome sequencing was performed on leukemia and non-cancer blood disorder (ncBD) patients' saliva samples (N = 50) prior to conditioning therapy. WHO OM grading scores were determined: moderate to severe (OM2-4) vs. none to mild (OM0-1). Reads were processed using Trim Galorev0.6.7, Bowtie2v2.4.1, Samtoolsv1.10, Genome Analysis Toolkit (GATK)v4.2.6.1, and DeepVariantv1.4.0. We utilized the following pipelines: P1 analysis with PLINK2v3.7, SNP2GENEv1.4.1 and MAGMAv1.07b, and P2 [leukemia (N = 42) vs. ncBDs (N = 8)] and P3 [leukemia + OM2-4 (N = 18) vs. leukemia + OM0-1 (N = 24)] with Z-tests of genotypes and protein-protein interaction determination. GeneCardsSuitev5.14 was used to identify phenotypes (P1 and P2, leukemia; P3, oral mucositis) and average disease-causing likelihood and DGIdb for drug interactions. P1 and P2 genes were analyzed with CytoScape plugin BiNGOv3.0.3 to retrieve overrepresented Gene Ontology (GO) terms and Ensembl's VEP for SNP outcomes. RESULTS In P1, 457 candidate SNPs (28 genes) were identified and 21,604 SNPs (1016 genes) by MAGMAv1.07b. Eighteen genes were associated with "leukemia" per VarElectv5.14 analysis and predicted to be deleterious. In P2 and P3, 353 and 174 SNPs were significant, respectively. STRINGv12.0 returned 77 and 32 genes (C.L. = 0.7) for P2 and P3, respectively. VarElectv5.14 determined 60 genes from P2 associated with "leukemia" and 11 with "oral mucositis" from P3. Overrepresented GO terms included "cellular process," "signaling," "hemopoiesis," and "regulation of immune response." CONCLUSIONS We identified candidate SNPs possibly conferring susceptibility to develop leukemia and oral mucositis.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Micaela F Beckman
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam S Alexander
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allan J Hovan
- BC Cancer, Oral Oncology and Dentistry, Vancouver, BC, Canada
| | - Bengt Hasséus
- Department of Oral Medicine and Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Garming Legert
- Department of Dental Medicine, University Dental Clinic, Karolinska Institutet, Huddinge, Sweden
| | - Jan-Erik Johansson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Michael T Brennan
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
33
|
Aljohani AKB, El-Adl K, Almohaywi B, Alatawi OM, Alsulaimany M, El-Morsy A, Almadani SA, Alharbi HY, Aljohani MS, Abdulhaleem M FA, Osman HEM, Mohamady S. Anticancer evaluations of iodoquinazoline substituted with allyl and/or benzyl as dual inhibitors of EGFR WT and EGFR T790M: design, synthesis, ADMET and molecular docking. RSC Adv 2024; 14:7964-7980. [PMID: 38454937 PMCID: PMC10916743 DOI: 10.1039/d4ra00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Fifteen new iodoquinazoline derivatives, 5a,b to 18, are reported in this study and their anticancer evaluation as dual inhibitors of EGFRWT and EGFRT790M. The new derivatives were designed according to the target of structural requirements of receptors. Cytotoxicity of our compounds was evaluated against MCF-7, A549, HCT116 and HepG2 cell lines using MTT assay. Compounds 18, 17 and 14b showed the highest anticancer effects with IC50 = 5.25, 6.46, 5.68 and 5.24 μM, 5.55, 6.85, 5.40 and 5.11 μM and 5.86, 7.03, 6.15 and 5.77 μM against HepG2, MCF-7, HCT116 and A549 cell lines, respectively. The eight highly effective compounds 10, 13, 14a, 14b, 15, 16, 17 and 18 were inspected against VERO normal cell lines to evaluate their cytotoxicity. Our conclusion was that compounds 10, 13, 14a, 14b, 15, 16, 17 and 18 possessed low toxicity against VERO normal cells with IC50 increasing from 43.44 to 52.11 μM. All compounds were additionally assessed for their EGFRWT and EGFRT790M inhibitory activities. Additionally, their ability to bind with EGFRWT and EGFR receptors was confirmed by molecular docking. Compound 17 exhibited the same inhibitory activity as erlotinib. Compounds 10, 13, 14b, 16 and 18 excellently inhibited VEGFR-2 activity with IC50 ranging from 0.17 to 0.50 μM. Moreover, compounds 18, 17, 14b and 16 remarkably inhibited EGFRT790M activity with IC50 = 0.25, 0.30, 0.36 and 0.40 μM respectively. As planned, compounds 18, 17 and 14b showed excellent dual EGFRWT/EGFRT790M inhibitory activities. Finally, our compounds 18, 17 and 14b displayed good in silico ADMET calculated profiles.
Collapse
Affiliation(s)
- Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 47512 Saudi Arabia
| | - Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Hussam Y Alharbi
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | - Majed S Aljohani
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | | | - Hanan E M Osman
- Biology Department, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Botany and Microbiology Department, Al-Azhar University Cairo 11651 Egypt
| | - Samy Mohamady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt Cairo Egypt
| |
Collapse
|
34
|
Mugiya T, Mothibe M, Khathi A, Ngubane P, Sibiya N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: a review. Front Pharmacol 2024; 15:1355171. [PMID: 38362147 PMCID: PMC10867135 DOI: 10.3389/fphar.2024.1355171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of β-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.
Collapse
Affiliation(s)
- Takudzwa Mugiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
35
|
Mourya A, Prajapati N. Precision Deuteration in Search of Anticancer Agents: Approaches to Cancer Drug Discovery. Cancer Biother Radiopharm 2024; 39:1-18. [PMID: 37585602 DOI: 10.1089/cbr.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Cancer chemotherapy has been shifted from conventional cytotoxic drug therapy to selective and target-specific therapy after the findings about DNA changes and proteins that are responsible for cancer. A large number of newer drugs were discovered as targeted therapy for particular types of neoplastic disease. The initial discovery includes the development of the first in the category, imatinib, a Bcr-Abl tyrosine kinase inhibitor (TKI) for the treatment of chronic myelocytic leukemia in 2001. But the joy did not last for long as the drug developed a point mutation within the ABL1 kinase domain of BCR-ABL1, which subsequently led to the discovery of many other TKIs. Resistance was observed for newer TKIs a few years after their launching, but the use of TKIs in life-threatening cancer therapy is considered as far better compared with the risks of disease because of its target specificity and hence less toxicity. In search of a better anticancer agent, the physiochemical properties of the lead molecule have been modified for its efficacy toward disease and delay in the development of resistance. Deuteration in the drug molecule is one of such modifications that alter the pharmacokinetic properties, generally its metabolism, as compared with its pharmacodynamic effects. Precision deuteration in many anticancer drugs has been carried out to search for better drugs for cancer. In this review, the majority of anticancer drugs and molecules for which deuteration was applied to get better anticancer molecules were discussed. This review will provide a complete guide about the benefits of deuteration in cancer chemotherapy.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Discovery
Collapse
Affiliation(s)
- Aman Mourya
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Navnit Prajapati
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
36
|
Mohamed AA, El-Hddad SSA, Aljohani AKB, Khedr F, Alatawi OM, Keshek DE, Ahmed S, Alsulaimany M, Almadani SA, El-Adl K, Hanafy NS. Iodoquinazoline-derived VEGFR-2 and EGFR T790M dual inhibitors: Design, synthesis, molecular docking and anticancer evaluations. Bioorg Chem 2024; 143:107062. [PMID: 38150938 DOI: 10.1016/j.bioorg.2023.107062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Herein, we report the synthesis of a series of new fourteen iodoquinazoline derivatives 7a-c to 13a-e and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The new derivatives were designed according to the target receptors structural requirements. The compounds were evaluated for their cytotoxicity against HepG2, MCF-7, HCT116 and A549 cancer cell lines using MTT assay. Compound 13e showed the highest anticancer activities with IC50 = 5.70, 7.15, 5.76 and 6.50 µM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Compounds 7c, 9b and 13a-d exhibited very good anticancer effects against the tested cancer cell lines. The highly effective six derivatives 7c, 10, 13b, 13c, 13d and 13e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Our conclusion revealed that compounds 7c, 10, 13b, 13c, 13d and 13e possessed low toxicity against VERO normal cells with IC50 prolonging from 41.66 to 53.99 μM. Also compounds 7a-c to 13a-e were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Also, their ability to bind with both EGFR and VEGFR-2 receptors was examined by molecular modeling. Compounds 13e, 13d, 7c and 13c excellently inhibited VEGFR-2 activity with IC50 = 0.90, 1.00, 1.25 and 1.50 µM respectively. Moreover, Compounds 13e, 7c, 10 and 13d excellently inhibited EGFRT790M activity with IC50 = 0.30, 0.35, 0.45 and 0.47 µM respectively. Finally, our derivatives 7b, 13d and 13e showed good in silico calculated ADMET profile.
Collapse
Affiliation(s)
- Abeer A Mohamed
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt; Egyptian Drug Authority (EDA), 51 Wezaret El-Zeraa St, Dokki, Giza, A. R., Egypt
| | | | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Doaa E Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box7388, Makkah 21955, Sudia Arabia; Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Sahar Ahmed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt; Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Noura S Hanafy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
37
|
Tendulkar CP, Dessai PG, Mamle Desai S, Kadam A. Docking, Synthesis and Evaluation of 4-hydroxy-1-phenyl-2(1H)-quinolone Derivatives as Anticancer Agents. Curr Drug Discov Technol 2024; 21:e190723218893. [PMID: 37469155 DOI: 10.2174/1570163820666230719110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The estimated number of cancer cases in India for the year 2022 was found to be 14,61,427. The development of chemotherapeutic agents has reduced the mortality rate, however, they have high toxicity which is a disadvantage. Many researchers have found out that quinolin-2- one possesses anticancer activity, with this background we thought of synthesizing the quinolin-2-one derivatives. OBJECTIVE This study aimed to carry out docking, synthesis, characterization, and evaluation of 2-(2- (4-Hydroxy-2-oxoquinolin-1(2H)-yl)phenyl/ substituted phenyl)-3-(phenylamino) thiazolidon-4-one derivatives (IVa-g) as an anticancer agent. METHOD Diphenylamine and malonic acid treated with phosphoryl chloride gave compound I, which on formylation afforded compound II, which on reaction with various substituted aromatic phenylhydrazine derivatives gave compounds IIIa-g, which on further reaction with thioglycolic acid and anhydrous zinc chloride yielded the compounds IVa-g. RESULT Among all the synthesized novel derivatives, compounds IV a-d showed 50% lysis in the IC50 range of 25-50μg for the A549 cell line, and compounds IVa, and IVb showed 50% lysis in the IC50 range of 25-50μg for the MDA-MB cell line. The compound, 3-((4-fluorophenyl)amino)-2-(2-(4- hydroxy-2-oxoquinolin-1(2H)-yl)phenyl)thiazolidin-4-one (IVg) was found to be the most active against both the cell line, A549 and MDA-MB with IC50 value of 0.0298μmol and 0.0338μmol respectively. The docking results revealed that the synthesized compounds exhibited well-conserved hydrogen bonding with one or more amino acid residues in the active pocket of EGFR tyrosine kinase domain with 4-anilinoquinazoline inhibitor erlotinib (PDB ID:1M17). Compound IVg showed the highest MolDock score of -137.813 compared to the standard drug Imatinib having a MolDock score of -119.354. CONCLUSION Compound IVg showed the highest MolDock score and was also found to be most potent against both the cell line, A549, and MDA-MB.
Collapse
Affiliation(s)
- Chaitali Prabhu Tendulkar
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Shivlingrao Mamle Desai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Amrita Kadam
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| |
Collapse
|
38
|
Olgen S, Kaleli SNB, Karaca BT, Demirel UU, Bristow HK. Synthesis and Anticancer Activity of Novel Indole Derivatives as Dual EGFR/SRC Kinase Inhibitors. Curr Med Chem 2024; 31:3798-3817. [PMID: 37365789 DOI: 10.2174/0929867330666230626143911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Recent studies showed that the cooperation between c-SRC and EGFR is responsible for more aggressive phenotype in diverse tumors, including glioblastomas and carcinomas of the colon, breast, and lung. Studies show that combination of SRC and EGFR inhibitors can induce apoptosis and delay the acquired resistance to chemotherapy. Therefore, such combination may lead to a new therapeutic strategy for the treatment of EGFR-mutant lung cancer. Osimertinib was developed as a third-generation EGFR-TKI to combat the toxicity of EGFR mutant inhibitors. Due to the resistance and adverse reaction of osimertinib and other kinase inhibitors, 12 novel compounds structurally similar to osimertinib were designed and synthesized. METHODS Compounds were synthesized by developing novel original synthesis methods and receptor interactions were evaluated through a molecular docking study. To evaluate their inhibitory activities against EGFR and SRC kinase, in vitro enzyme assays were used. Anticancer potencies were determined using lung, breast, prostate (A549, MCF6, PC3) cancer cell lines. Compounds were also tested against normal (HEK293) cell line to evaluate their cyctotoxic effects. RESULTS Although, none of compounds showed stronger inhibition compared to osimertinib in the EGFR enzyme inhibition studies, compound 16 showed the highest efficacy with an IC50 of 1.026 μM. It also presented potent activity against SRC kinase with an IC50 of 0.002 μM. Among the tested compounds, the urea containing derivatives 6-11 exhibited a strong inhibition profile (80.12-89.68%) against SRC kinase in comparison to the reference compound dasatinib (93.26%). Most of the compounds caused more than 50% of cell death in breast, lung and prostate cancer cell lines and weak toxicity for normal cells in comparison to reference compounds osimertinib, dasatinib and cisplatin. Compound 16 showed strong cytotoxicity on lung and prostate cancer cells. Treatment of prostate cancer cell lines with the most active compound, 16, significantly increased the caspase-3 (8-fold), caspase-8 (6-fold) and Bax (5.7-fold) levels and decreased the Bcl-2 level (2.3-fold) compared to the control group. These findings revealed that the compound 16 strongly induces apoptosis in the prostate cancer cell lines. CONCLUSION Overall kinase inhibition, cytotoxicity and apoptosis assays presented that compound 16 has dual inhibitory activity against SRC and EGFR kinases while maintaining low toxicity against normal cells. Other compounds also showed considerable activity profiles in kinase and cell culture assays.
Collapse
Affiliation(s)
- Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010, Zeytinburnu, Istanbul, Turkey
| | - Sevde Nur Biltekin Kaleli
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul Medipol University, 34815 Beykoz-Istanbul, Turkey
| | - Banu Taktak Karaca
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Atlas University, İstanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Beykoz-Istanbul, Turkey
| | - Ural U Demirel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Hacer Karatas Bristow
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Beykoz-Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, 34815 Beykoz-Istanbul, Turkey
- C. Eugene Bennett Department of Chemistry, West Virgina University, 26506 Morgantown, West Virginia, USA
| |
Collapse
|
39
|
Chen S, Wang K, Wang Q. Mannose: A Promising Player in Clinical and Biomedical Applications. Curr Drug Deliv 2024; 21:1435-1444. [PMID: 38310442 DOI: 10.2174/0115672018275954231220101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 02/05/2024]
Abstract
Mannose, an isomer of glucose, exhibits a distinct molecular structure with the same formula but a different atom arrangement, contributing to its specific biological functions. Widely distributed in body fluids and tissues, particularly in the nervous system, skin, testes, and retinas, mannose plays a crucial role as a direct precursor for glycoprotein synthesis. Glycoproteins, essential for immune regulation and glycosylation processes, underscore the significance of mannose in these physiological activities. The clinical and biomedical applications of mannose are diverse, encompassing its anti-inflammatory properties, potential to inhibit bacterial infections, role in metabolism regulation, and suggested involvement in alleviating diabetes and obesity. Additionally, mannose shows promise in antitumor effects, immune modulation, and the construction of drug carriers, indicating a broad spectrum of therapeutic potential. The article aims to present a comprehensive review of mannose, focusing on its molecular structure, metabolic pathways, and clinical and biomedical applications, and also to emphasize its status as a promising therapeutic agent.
Collapse
Affiliation(s)
- Sijing Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kana Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Alsulaimany M, El-Adl K, Aljohani AKB, Alharbi HY, Alatawi OM, Aljohani MS, El-Morsy A, Almadani SA, Alsimaree AA, Salama SA, Keshek DE, Mohamed AA. Design, synthesis, docking, ADMET and anticancer evaluations of N-alkyl substituted iodoquinazoline derivatives as dual VEGFR-2 and EGFR inhibitors. RSC Adv 2023; 13:36301-36321. [PMID: 38093733 PMCID: PMC10716637 DOI: 10.1039/d3ra07700d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 11/30/2024] Open
Abstract
Fifteen new 1-alkyl-6-iodoquinazoline derivatives 5a-d to 9a-e were designed and synthesized and their anticancer activities were evaluated against HepG2, MCF-7, HCT116 and A549 cancer cell lines via dual targeting of EGFR and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. Compound 9c showed the highest anticancer activities with EC50 = 5.00, 6.00, 5.17 and 5.25 μM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Moreover, compounds 5d, 8b, 9a, 9b, 9d, and 9e exhibited very good anticancer effects against the tested cancer cell lines. The highly effective seven derivatives 5d, 8b, 9a-e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Compounds 9c, 9b, 9d, 9a, 9e and 5d excellently inhibited VEGFR-2 activity with IC50 = 0.85, 0.90, 0.90, 1.00, 1.20 and 1.25 μM respectively. Moreover, compounds 9c, 9d, 9e, 5d, 8b and 9b excellently inhibited EGFRT790M activity with IC50 = 0.22, 0.26, 0.30, 0.40, 0.45 and 0.50 μM respectively. Also, compounds 9c, 9d and 9e excellently inhibited EGFRWT activity with IC50 = 0.15, 0.20 and 0.25 μM respectively. As planned, compound 9c showed excellent dual EGFR/VEGFR-2 inhibitory activities. Consonantly, ADMET study was calculated in silico for the supreme three worthwhile compounds 9b, 9c and 9e in contrast to sorafenib and erlotinib as reference drugs. The obtained results concluded that, our compounds might be useful as prototype for design, optimization, adaptation and investigation to have more powerful and selective dual VEGFR-2/EGFRT790M inhibitors with higher antitumor activity.
Collapse
Affiliation(s)
- Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Hussam Y Alharbi
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 47512 Saudi Arabia
| | - Majed S Aljohani
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Kingdom of Saudi Arabia
| | - Doaa E Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University P.O Box7388 Makkah 21955 Sudia Arabia
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre Giza Egypt
| | - Abeer A Mohamed
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Egyptian Drug Authority (EDA) 51 Wezaret El-Zeraa St, Dokki Giza, A. R. Egypt
| |
Collapse
|
41
|
Hawas SS, El-Sayed SM, Elzahhar PA, Moustafa MA. New 2-alkoxycyanopyridine derivatives as inhibitors of EGFR, HER2, and DHFR: Synthesis, anticancer evaluation, and molecular modeling studies. Bioorg Chem 2023; 141:106874. [PMID: 37769524 DOI: 10.1016/j.bioorg.2023.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
New series of substituted 2-alkoxycyanopyridine derivatives were synthesized and evaluated for their in vitro and in vivo anticancer activities. Comparing the evaluated activities against cancer cell lines to the broad-spectrum anticancer doxorubicin, and the kinase inhibitor sorafenib, compounds 3a, 4b, 4c, 7a, and 8d demonstrated superior anticancer efficacy with elevated safety profiles and selectivity indices, particularly against MCF7 breast cancer. For exploration of their mechanism of action, assays for inhibition of EGFR, HER2 kinase, and DHFR were performed. The promising synthesized compounds exhibited potent dual kinase EGFR/HER2 inhibitory activity with IC50values of 0.248/0.156 μM for 4b and 0.138/0.092 μM for 4c. Additionally, with IC50 values of 0.138 and 0.193 M, respectively, 4b and 4c had the greatest DHFR inhibitory activity that was comparable to methotrexate. In the MCF7 breast cancer cell line, they caused arrest at the S phase of the cell cycle and exhibited apoptosis induction activity. With restored caspase-3 immunoexpression, the anti-breast cancer assay performed in vivo of 4b and 4c demonstrated a substantial decrease in tumor volume. Results from molecular modeling were in agreement with biological assays proving the importance of the 3-caynopyridine, two substituted phenyl rings attached to central pyridine ring, and propoxy side chain moieties for binding with the receptors. As 4c works by inhibiting both EGFR/HER2 kinase, DHFR enzymes, in addition to cellular apoptosis, it could be viewed as a model of compounds possessing a multi-targeting anticancer activity. Collectively, compounds 4b and 4c might represent prototypes for further development as anticancer molecules.
Collapse
Affiliation(s)
- Samia S Hawas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
42
|
Liguori L, Luciano A, Polcaro G, Ottaiano A, Cascella M, Perri F, Pepe S, Sabbatino F. Prior Anti-Angiogenic TKI-Based Treatment as Potential Predisposing Factor to Nivolumab-Mediated Recurrent Thyroid Disorder Adverse Events in mRCC Patients: A Case Series. Biomedicines 2023; 11:2974. [PMID: 38001973 PMCID: PMC10669217 DOI: 10.3390/biomedicines11112974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) have revolutionized the management of many types of solid tumors, including metastatic renal cell carcinoma (mRCC). Both sequential and combinatorial therapeutic strategies utilizing anti-PD-1 monoclonal antibodies (mAbs) and anti-angiogenic tyrosine kinase inhibitors (TKIs) have demonstrated to improve the survival of patients with mRCC as compared to standard therapies. On the other hand, both ICIs and TKIs are well known to potentially cause thyroid disorder adverse events (TDAEs). However, in the context of sequential therapeutic strategy, it is not clear whether prior anti-angiogenic TKI may increase the risk and/or the severity of ICI-related TDAEs. In this work, by describing and analyzing a case series of mRCC patients treated sequentially with prior TKIs and then with ICIs, we investigated the role of prior anti-angiogenic TKI-based treatment as a potential predisposing factor to anti-PD-1-mediated recurrent TDAEs, as well as its potential impact on the clinical characteristics of nivolumab-mediated recurrent TDAEs. Fifty mRCC patients were included in the analysis. TKI-mediated TDAEs were reported in ten out of fifty patients. TKI-mediated TDAEs were characterized by hypothyroidism in all ten patients. Specifically, 40%, 40% and 20% of patients presented grade 1, 2 and 3 hypothyroidisms, respectively. Following tumor progression and during anti-PD-1 nivolumab treatment, five out of ten patients developed anti-PD-1 nivolumab-mediated recurrent TDAEs. Anti-PD-1 nivolumab-mediated recurrent TDAEs were characterized by an early transient phase of thyrotoxicosis and a late phase of hypothyroidism in all five patients. The TDAEs were grade 1 and 2 in four and one patients, respectively. Prior anti-angiogenic TKI did not modify the clinical characteristics of nivolumab-mediated recurrent TDAEs. However, all five patients required an increased dosage of levothyroxine replacement therapy. In conclusion, our work suggests that prior anti-angiogenic TKI-based treatment significantly increases the risk of ICI-mediated recurrent TDAEs in patients with mRCC without modifying their clinical characteristics. The most relevant effect for these patients is the need to increase the dosage of lifelong levothyroxine replacement therapy.
Collapse
Affiliation(s)
- Luigi Liguori
- Oncology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (L.L.); (A.L.)
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (G.P.); (S.P.)
| | - Angelo Luciano
- Oncology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (L.L.); (A.L.)
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (G.P.); (S.P.)
| | - Giovanna Polcaro
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (G.P.); (S.P.)
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, INT IRCCS Foundation “G. Pascale”, 80131 Naples, Italy;
| | - Marco Cascella
- Unit of Anesthesiology, Intensive Care Medicine, and Pain, Department of Medicine, Surgery and Dentistry Medicine, University of Salerno, 84081 Baronissi, Italy;
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation “G. Pascale”, 80131 Naples, Italy;
| | - Stefano Pepe
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (G.P.); (S.P.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (G.P.); (S.P.)
| |
Collapse
|
43
|
Iwase T, Ito K, Nishimura T, Miyakawa K, Ryo A, Kobayashi H, Mitsunaga M. Photoimmunotechnology as a powerful biological tool for molecular-based elimination of target cells and microbes, including bacteria, fungi and viruses. Nat Protoc 2023; 18:3390-3412. [PMID: 37794073 DOI: 10.1038/s41596-023-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 10/06/2023]
Abstract
Microbial pathogens, including bacteria, fungi and viruses, can develop resistance to clinically used drugs; therefore, finding new therapeutic agents is an ongoing challenge. Recently, we reported the photoimmuno-antimicrobial strategy (PIAS), a type of photoimmunotechnology, that enables molecularly targeted elimination of a wide range of microbes, including the viral pathogen severe acute respiratory syndrome coronavirus 2 and the multidrug-resistant bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA). PIAS works in the same way as photoimmunotherapy (PIT), which has been used to treat recurrent head and neck cancer in Japan since 2020. Both PIAS and PIT use a monoclonal antibody conjugated to a phthalocyanine derivative dye that undergoes a shape change when photoactivated. This shape change induces a structural change in the antibody-dye conjugate, resulting in physical stress within the binding sites of the conjugate and disrupting them. Therefore, targeting accuracy and flexibility can be determined based on the specificity of the antibody used. In this protocol, we describe how to design a treatment strategy, label monoclonal antibodies with the dye and characterize the products. We provide detailed examples of how to set up and perform PIAS and PIT applications in vitro and in vivo. These examples are PIAS against microbes using MRSA as a representative subject, PIAS against viruses using severe acute respiratory syndrome coronavirus 2 in VeroE6/TMPRSS2 cells, PIAS against MRSA-infected animals, and in vitro and in vivo PIT against cancer cells. The in vitro and in vivo protocols can be completed in ~3 h and 2 weeks, respectively.
Collapse
Affiliation(s)
- Tadayuki Iwase
- Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kimihiro Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Mitsunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Ghorab MM, Soliman AM, El-Adl K, Hanafy NS. New quinazoline sulfonamide derivatives as potential anticancer agents: Identifying a promising hit with dual EGFR/VEGFR-2 inhibitory and radiosensitizing activity. Bioorg Chem 2023; 140:106791. [PMID: 37611529 DOI: 10.1016/j.bioorg.2023.106791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the synthesis of a series of new quinazoline sulfonamide conjugates 2-16 and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. The compounds were evaluated for their cytotoxicity against four cancer cell lines (HepG2, MCF-7, HCT116 and A549) using MTT assay. The most active compounds were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Compound 15 showed the most significant cytotoxic activity with IC50 = 0.0977 µM against MCF-7 and the most potent inhibitory activity against both EGFR and VEGFR with IC50 = 0.0728 and 0.0523 µM, respectively. Compound 15 was able to induce apoptosis in MCF-7 cells and cell cycle arrest at the G2/M phase. The relative safety profile of 15 was assessed using HEK-293 normal cell line and an ADMET profile was carried out. Radiosensitizing evaluation of 15 proved its significant ability to sensitize the cancer cell to the effect of radiation after being subjected to a single dose of 8 Gy gamma irradiation. Molecular docking studies revealed that 15 could bind to the ATP-binding site of EGF and VEGF receptors, inhibiting their activity.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Noura S Hanafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
45
|
Kaur A, Mandal D. Computational identification and exploration of novel FGFR tyrosine kinase inhibitors for the treatment of cholangiocarcinoma. J Biomol Struct Dyn 2023; 42:13153-13164. [PMID: 37897189 DOI: 10.1080/07391102.2023.2274975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Tyrosine kinase inhibitors are a specific drug class revolutionizing cancer treatment. FGFR (Fibroblast Growth Factor Receptor) is a member of the receptor tyrosine kinase family that has been involved in various alterations which have been increasingly recognized as critical molecular drivers in cholangiocarcinoma, a malignant tumor originating from bile duct epithelial cells. The paper focuses on stepwise computational investigations for the discovery of novel inhibitors of FGFR using pharmacophore modeling, virtual screening, docking, ADMET analysis, molecular dynamics, and knowledge-based structure-activity relationship. To begin with, we have considered a library of 120314868 compounds from the ZINC 15 database through pharmacophore modeling, which was narrowed down to 110 having binding affinity >-8.0 kcal mol-1. The 110 compounds were analyzed using virtual screening and compared with the FDA-approved drug pemigatinib, which provided the 34 hits with binding affinities >-6.5 kcal mol-1. Finally, the top 4 hits were considered for docking, and ADMET property analysis for drug-likeness. MD and MM-GBSA analysis were performed to predict the binding free energy of these chemicals and determine their stability. To gain insight into the structure and binding interactions of these compounds, knowledge-based SAR analyses were performed using their electrostatic potential maps computed with DFT. Several techniques were employed to build improved inhibitors based on these SAR, and they were then analyzed utilizing ADMET, MD studies, and MM-GBSA analyses. Finally, the results suggested that the identified four compounds and developed inhibitors from this current work can be employed effectively as prospective FGFR inhibitors for treating Cholangiocarcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amanpreet Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
46
|
Zhang Q, Jiao X, Lai X. Clinical Characters and Influence Factors of Immune Checkpoint Inhibitor-related Thyroid Dysfunction. J Clin Endocrinol Metab 2023; 108:2916-2923. [PMID: 37183427 PMCID: PMC10583978 DOI: 10.1210/clinem/dgad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
CONTEXT Explore the clinical characteristics and influencing factors of immune thyroid dysfunction (ITD) caused by immune checkpoint inhibitors (ICIs) in the treatment of malignant tumors. METHODS This was a retrospective study of cancer patients treated with ICIs between January 2019 and December 2021 at the Second Affiliated Hospital of Nanchang University. According to the occurrence of thyroid dysfunction, patients were divided into an ITD group and non-ITD group. We describe the clinical characteristics, autoantibody levels, and their impact on prognosis of patients with ICI-related ITD. RESULT A total of 560 cases meeting the criteria were included, with a median follow-up time of 11.0 months. The incidence of ITD was 50.7%. Baseline TSH levels (OR, 1.935/mcIU/L; 95% CI, 1.613-2.321; P < .001) and combination targeted therapy (OR, 2.101; 95% CI, 1.433-3.079; P < .001) were most strongly associated with the occurrence of ITD. The median time to ITD in patients receiving medication with ICIs was 73 (34.5-149) days. Of the 87 patients initially diagnosed with hyperthyroid ITD, 46 (52.9%) progressed to hypothyroidism over the course of the disease. Baseline anti-thyroglobulin antibody abnormalities were strongly associated with the occurrence of ITD (OR, 67.393; 95% CI, 5.637-805.656; P = .001). Overall survival was significantly lower in patients who did not develop ITD than in those who did (hazard ratio, 0.523; 95% CI, 0.599-0.97; P < .001). CONCLUSION The incidence of ICI-related ITD is high, and the course of the disease is rapidly changing, and thyroid function in patients treated with immunotherapy should be monitored to detect ITD and permit early intervention.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Xiaojuan Jiao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Xiaoyang Lai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| |
Collapse
|
47
|
Sahu A, Ahmad S, Imtiyaz K, Kizhakkeppurath Kumaran A, Islam M, Raza K, Easwaran M, Kurukkan Kunnath A, Rizvi MA, Verma S. In-silico and in-vitro study reveals ziprasidone as a potential aromatase inhibitor against breast carcinoma. Sci Rep 2023; 13:16545. [PMID: 37783782 PMCID: PMC10545834 DOI: 10.1038/s41598-023-43789-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Aromatase enzyme plays a fundamental role in the development of estrogen receptors, and due to this functionality, the enzyme has gained significant attention as a therapeutic for reproductive disorders and cancer diseases. The currently employed aromatase inhibitors have severe side effects whereas our novel aromatase inhibitor is more selective and less toxic, therefore has greater potential to be developed as a drug. The research framework of this study is to identify a potent inhibitor for the aromatase target by profiling molecular descriptors of the ligand and to find a functional pocket in the target by docking and MD simulations. For assessing cellular and metabolic activities as indicators of cell viability and cytotoxicity, in-vitro studies were performed by using the colorimetric MTT assay. Aromatase activities were determined by a fluorometric method. Cell morphology was assessed by phase-contrast light microscopy. Flow cytometry and Annexin V-FITC/PI staining assay determined cell cycle distribution and apoptosis. This study reports that CHEMBL708 (Ziprasidone) is the most promising compound that showed excellent aromatase inhibitory activity. By using better drug design methods and experimental studies, our study identified a novel compound that could be effective as a high-potential drug candidate against aromatase enzyme. We conclude that the compound ziprasidone effectively blocks the cell cycle at the G1-S phase and induces cancer cell death. Further, in-vivo studies are vital for developing ziprasidone as an anticancer agent. Lastly, our research outcomes based on the results of the in-silico experiments may pave the way for identifying effective drug candidates for therapeutic use in breast cancer.
Collapse
Affiliation(s)
- Ankita Sahu
- Tumour Biology Lab, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Imtiyaz
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Mojahidul Islam
- Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Murugesh Easwaran
- Nutritional Improvement of Crops, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Asha Kurukkan Kunnath
- Mumbai Research Center, ICAR-Central Institute of Fisheries Technology, Navi Mumbai, 400703, India
| | - Moshahid A Rizvi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saurabh Verma
- Tumour Biology Lab, ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
48
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of Expression Level of miR-3135b-5p in Blood Samples of Breast Cancer Patients Experiencing Chemotherapy-Induced Cardiotoxicity. Indian J Clin Biochem 2023; 38:536-540. [PMID: 37746544 PMCID: PMC10516830 DOI: 10.1007/s12291-022-01075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The efficacy of chemotherapeutics in the treatment of breast cancer is limited by cardiotoxicity, which could lead to irreversible heart failure. The evaluation of miRNA levels as a vital biomarker could predict cardiotoxicity induced by chemotherapy. According to our previous meta-analysis study on patients with heart failure, we found that miR-3135b had a significant increase in patients with heart failure. Therefore, the present study aimed to evaluate the expression level of miR-3135b in the blood sample of patients experiencing chemotherapy-induced cardiotoxicity. Blood samples were collected from breast cancer patients or breast cancer patients who had received chemotherapy and had not experienced any chemotherapy-induced cardiotoxicity (N = 37, control group) and breast cancer patients experiencing chemotherapy-induced cardiotoxicity after chemotherapy (N = 33). The expression level of miR-3135b was evaluated using real-time polymerase chain reaction (RT-PCR). The 2-ΔCt values of miR-3135b were compared between two groups. We observed a significant increase in the expression level of miR-3135b between patients experiencing chemotherapy-induced cardiotoxicity and the control group (P = 0.0001). Besides, the ejection fraction parameter was correlated with the expression level of miR-3135b (r = 0.5 and P = 0.0001). To sum up, miR-3135b might be useful as a promising circulating biomarker in predicting cardiotoxicity induced by chemotherapy. However, more studies are needed to validate miR-3135b as a biomarker for the diagnosis of chemotherapy-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01075-3.
Collapse
Affiliation(s)
- Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Centre, Najafabad branch, Islamic Azad university, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute , Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezar jerib Avenue, Isfahan, Iran
| |
Collapse
|
49
|
Alzain AA, Elbadwi FA, Mohamed SGA, Kushk KSA, Bafarhan RI, Alswiri SA, Khushaim SN, Hussein HGA, Abuhajras MYA, Mohamed GA, Ibrahim SRM. Exploring marine-derived compounds for MET signalling pathway inhibition in cancer: integrating virtual screening, ADME profiling and molecular dynamics investigations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:1003-1021. [PMID: 38014514 DOI: 10.1080/1062936x.2023.2284917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The MET signalling pathway regulates fundamental cellular processes such as growth, division, and survival. While essential for normal cell function, dysregulation of this pathway can contribute to cancer by triggering uncontrolled proliferation and metastasis. Targeting MET activity holds promise as an effective strategy for cancer therapy. Among potential sources of anti-cancer agents, marine organisms have gained attention. In this study, we screened 47,450 natural compounds derived from marine sources within the CMNPD database against the Met crystal structure. By employing HTVS, SP, and XP docking modes, we identified three compounds (CMNPD17595, CMNPD14026, and CMNPD19696) that outperformed a reference molecule in binding affinity to the Met structure. These compounds demonstrated desirable ADME properties. Molecular Dynamics (MD) simulations for 200 ns confirmed the stability of their interactions with Met. Our findings highlight CMNPD17595, CMNPD14026, and CMNPD19696 as potential inhibitors against Met-dependent cancers. Additionally, these compounds offer new avenues for drug development, leveraging their inhibitory effects on Met to combat carcinogenesis.
Collapse
Affiliation(s)
- A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - F A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - S G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Egypt
| | - K S A Kushk
- Operations Sales Department, United Pharmaceuticals & Medical Supply Co. Ltd, Al Madinah Al-Munawwarah, Saudi Arabia
| | - R I Bafarhan
- Pharmaceutical Care Services, Medical Department, Private Sector, Tabuk, Saudi Arabia
| | - S A Alswiri
- Pharmaceutical Company, Medical Department, Private Sector, Al Madinah Al-Munawwarah, Saudi Arabia
| | - S N Khushaim
- College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - H G A Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - M Y A Abuhajras
- Medical Claims Department, Bupa Arabia, Prince Saud AlFaisal, Jeddah, Saudi Arabia
| | - G A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
50
|
Mastrangelo S, Attina G, Ruggiero A. Tyrosine Kinase Inhibitors and Thyroid Toxicity. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:1343-1351. [DOI: 10.13005/bpj/2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Some multithyrosine kinase inhibitors have been reported to cause changes in thyroid function. For the management of sunitinib-induced hypothyroidism, an evaluation of thyroid hormone and antibody profile is recommended before starting treatment with tyrosine kinase inhibitors. Patients with pre-existing thyroid dysfunction should undergo dose adjustment of L-thyroxine during treatment with tyrosine kinase inhibitors. Thyroid dysfunction is not a reason to discontinue or reduce the dosage of sunitinib. Their occurrence appears to correlate with increased antitumour efficacy of the inhibitor. There are currently no guidelines for monitoring thyroid activity during treatment with TKIs, and the time interval at which TSH should be periodically measured has not yet been determined. A reasonable approach is to monitor thyroid function, both before and during 2-4 weeks after the end of therapy. A comprehensive analysis of adverse events associated with the use of these inhibitors could help clinical monitoring of patients along with the adoption of appropriate management approaches.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|