1
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. Effect of HSPA8 gene on the proliferation, apoptosis and immune function of HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104666. [PMID: 36764422 DOI: 10.1016/j.dci.2023.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
HSPA8 (Heat shock 70 kDa protein 8) is a molecular chaperone involved in a variety of cellular processes. This gene may affect the proliferation, apoptosis and immune function of chicken macrophages, but the specific mechanism remains unclear. The purpose of this study was to explore the effect of the HSPA8 gene on the proliferation, apoptosis and immune function of chicken macrophages. In this study, a chicken HSPA8 overexpression plasmid, interference fragment and corresponding controls were transfected into HD11 cells, and then the expression of the HSPA8 gene, cell proliferation, cell cycle, apoptosis rate and immune function of each group were detected. The results showed that transfection of the HSPA8 overexpression plasmid significantly upregulated the level of HSPA8 expression in HD11 cells compared with the control; significantly promoted the proliferation of HD11 cells and the expression of PCNA, CCND1 and CCNB3; decreased the number of cells in the G1 phase and increased the number of cells in the S phase; decreased the rate of apoptosis and upregulated the expression of Bcl-2; and promoted the expression of the LPS-induced cytokines IL-1β, IL-6 and TNF-α. Transfection of the HSPA8 interference fragment significantly downregulated the level of HSPA8 expression in HD11 cells; significantly inhibited the proliferation of HD11 cells and the expression of PCNA, CCND1 and CDK1; increased the number of cells in the G1 phase and decreased the number of cells in the S phase; increased the rate of apoptosis, downregulated the expression of Bcl-2 and upregulated the expression levels of Fas and FasL; and inhibited the expression of the LPS-induced cytokines IL-1β and NF-κB. The results suggested that HSPA8 promotes the proliferation of and inhibits the apoptosis of HD11 cells and has a proinflammatory effect.
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Guan F, Ding Y, He Y, Li L, Yang X, Wang C, Hu M. Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:457-468. [PMID: 36302621 PMCID: PMC9614402 DOI: 10.4196/kjpp.2022.26.6.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.
Collapse
Affiliation(s)
- Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China,Correspondence Changhua Wang, E-mail:
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,Mingbai Hu, E-mail:
| |
Collapse
|
3
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. WITHDRAWN: Effect of HSPA8 on the proliferation, apoptosis and immune function of chicken macrophages. Int J Biochem Cell Biol 2022:106186. [PMID: 35217190 DOI: 10.1016/j.biocel.2022.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Rummun N, Rondeau P, Bourdon E, Pires E, McCullagh J, Claridge TDW, Bahorun T, Li WW, Neergheen VS. Terminalia bentzoë, a Mascarene Endemic Plant, Inhibits Human Hepatocellular Carcinoma Cells Growth In Vitro via G0/G1 Phase Cell Cycle Arrest. Pharmaceuticals (Basel) 2020; 13:ph13100303. [PMID: 33053825 PMCID: PMC7650599 DOI: 10.3390/ph13100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Tropical forests constitute a prolific sanctuary of unique floral diversity and potential medicinal sources, however, many of them remain unexplored. The scarcity of rigorous scientific data on the surviving Mascarene endemic taxa renders bioprospecting of this untapped resource of utmost importance. Thus, in view of valorizing the native resource, this study has as its objective to investigate the bioactivities of endemic leaf extracts. Herein, seven Mascarene endemic plants leaves were extracted and evaluated for their in vitro antioxidant properties and antiproliferative effects on a panel of cancer cell lines, using methyl thiazolyl diphenyl-tetrazolium bromide (MTT) and clonogenic cell survival assays. Flow cytometry and comet assay were used to investigate the cell cycle and DNA damaging effects, respectively. Bioassay guided-fractionation coupled with liquid chromatography mass spectrometry (MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopic analysis were used to identify the bioactive compounds. Among the seven plants tested, Terminaliabentzoë was comparatively the most potent antioxidant extract, with significantly (p < 0.05) higher cytotoxic activities. T. bentzoë extract further selectively suppressed the growth of human hepatocellular carcinoma cells and significantly halted the cell cycle progression in the G0/G1 phase, decreased the cells' replicative potential and induced significant DNA damage. In total, 10 phenolic compounds, including punicalagin and ellagic acid, were identified and likely contributed to the extract's potent antioxidant and cytotoxic activities. These results established a promising basis for further in-depth investigations into the potential use of T. bentzoë as a supportive therapy in cancer management.
Collapse
Affiliation(s)
- Nawraj Rummun
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Elisabete Pires
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - James McCullagh
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Timothy D. W. Claridge
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Theeshan Bahorun
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
- Correspondence: (W.-W.L.); (V.S.N.)
| | - Vidushi S. Neergheen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- Correspondence: (W.-W.L.); (V.S.N.)
| |
Collapse
|
5
|
Derech-Haim S, Friedman Y, Hizi A, Bakhanashvili M. p53 regulates its own expression by an intrinsic exoribonuclease activity through AU-rich elements. J Mol Med (Berl) 2020; 98:437-449. [PMID: 32016559 DOI: 10.1007/s00109-020-01884-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
The onco-suppressor p53 protein plays also an important role in the control of various aspects of health and disease. p53 levels are low in normal cells and elevated under stress conditions. While low levels of p53 promote tumor formation, overactive p53 leads to premature aging and cell death. RNA degradation is a critical level of regulation contributing to the control of gene expression. p53, as an RNA-binding protein, exerts 3' → 5' exoribonuclease activity, mediating degradation of adenylate/uridylate-rich elements (ARE)-containing ssRNAs. The 3'-UTR of p53-mRNA, which is a target of p53 itself, harbors cis-acting AREs. Our results suggest that p53 controls its own expression through murine double-minute 2 (mdm2)-independent "RNA decay" function in cytoplasm. We demonstrate that p53 expresses an exoribonuclease activity through the binding to ARE sequences of p53-mRNA via translation-independent and translation-dependent polysome-associated pathways. Antagonistic interplay was detected between p53 levels and execution of its exoribonuclease function mirrored in low p53 levels in normal cells, due to the efficient exoribonuclease activity, and in the accumulation of p53 in cells exposed to p53-activating drugs in accordance with the reduced exoribonuclease activity. Apparently, p53, via control of its own mRNA stability and/or translation in cytoplasm, might act as a negative regulator of p53-mRNA levels. The observed connection between exoribonuclease activity and p53 abundance highlights the importance of this function affecting p53 expression, imperative for multiple functions, with implications for the steady-state levels of protein and for the p53 stress response. The modulation in expression of exoribonuclease activity would be translated into the alterations in p53 level. KEY MESSAGES: p53 controls its own expression through mdm2-independent "RNA decay" function in cytoplasm. p53 expresses an exoribonuclease activity through the binding to ARE sequences of p53-mRNA. Antagonistic interplay exists between stress-induced p53 and execution of its exoribonuclease function.
Collapse
Affiliation(s)
- Sanaz Derech-Haim
- Infectious Diseases Unit, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Yael Friedman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Amnon Hizi
- Department of Cellular and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, 5265601, Tel-Hashomer, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
6
|
The Effect of Lactoferrin and Pepsin-Treated Lactoferrin on IEC-6 Cell Damage Induced by Clostridium Difficile Toxin B. Shock 2019; 50:119-125. [PMID: 28930913 DOI: 10.1097/shk.0000000000000990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infections (CDI) have recently increased worldwide. Some CDI progress to fulminant and recurrent CDI and are associated with high mortality and morbidity. CD produces toxins A and B, which cause intestinal mucosal damage, although toxin B exhibits greater cytotoxicity. Pepsin-treated lactoferrin (PLF) is the decomposed product of lactoferrin (LF), a multifunctional glycoprotein with anti-inflammatory properties. Here, we investigate the effects of LF and PLF in toxin B-stimulated rat intestinal epithelial (IEC-6) cells. Different toxin B concentrations were added to IEC-6 cells with or without LF or PLF. Mitochondrial function and cell cytotoxicity were assessed by measuring WST-1 and LDH levels, respectively. WST-1 levels were higher in IEC-6 cells treated with toxin B and LF or PLF than in the toxin B-only control (P < 0.05). Compared with the toxin B-only control, LDH levels significantly decreased after toxin B and LF or PLF addition (P < 0.05). Wound restitution measurement using microscopy demonstrated significantly greater levels of wound restitution in cells treated with toxin B and LF or PLF than in those treated with toxin B alone after 12 h (P < 0.001). Furthermore, changes in IEC-6 cell tight junctions (TJs) were evaluated by immunofluorescence microscopy and zonula occludens-1 (ZO-1) protein expression. When LF or PLF were added to IEC-6 cells, TJ structures were maintained, and ZO-1 and occludin expression was upregulated. Taken together, these results demonstrate that LF and PLF prevent the cytotoxicity of toxin B and might have the potential to control CDI.
Collapse
|
7
|
Khaliq H, Jing W, Ke X, Ke-Li Y, Peng-Peng S, Cui L, Wei-Wei Q, Zhixin L, Hua-Zhen L, Hui S, Ju-Ming Z, Ke-Mei P. Boron Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2 Pathway in the African Ostrich Chicks. Biol Trace Elem Res 2018. [PMID: 29536335 DOI: 10.1007/s12011-018-1280-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The nuclear-related factor 2 (Nrf2) pathway is the most important mechanism in antioxidant capacity, which regulates the cell's redox homeostasis. In addition, Nrf2 pathway also can inhibit cell apoptosis. The mechanism of boron actions on various organs is well documented. But, it is not known whether boron can also regulate the Nrf2 pathway in the kidneys. Therefore, in this research, the actions of boron on the kidneys of ostrich chicks, especially the antioxidant effects, have been studied. The ostrich chicks were divided into six groups and supplemented with boric acid (BA) (source of boron) in the drinking water (0, 40, 80, 160, 320, 640 mg respectively) to examine apoptotic, antioxidant, biochemical, and histochemical alterations induced by boron administration in the ostrich chick's kidney. The cellular apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. The relative antioxidant enzymes (T-AOC, MDA, GSH-Px, SOD, GR, CAT) and biochemical indices (ALT, AST, ALP, CK, LDH, BUN, CREA, UA) in the kidney were determined by spectrophotometric method. The expression of three important genes in the antioxidant pathway (Nrf2, HO-1, GCLc) was measured by quantitative real-time PCR (qPCR), and the localization of key regulator Nrf2 was examined by immunohistochemistry (IHC) method. Western blotting was also performed to further validate our results. Our results revealed that low doses of boron (up to 160 mg) had positive effect, while high doses (especially 640 mg) caused negative effect on the development of the kidney. The cellular apoptosis was in a biphasic manner by altering the boron quantities. The low doses regulate the oxidative and enzyme activity in the kidney. The IHC and western blot showed maximum localization of Nrf2 in 80 mg/L BA dose group. Furthermore, supplementation of boron at low doses upregulated the expression of genes involved in the antioxidant pathway. Taken together, the study demonstrated that low levels of boron (up to 160 mg) inhibited the cell apoptosis, regulate the enzyme activity, and improved the antioxidant system, thus may encourage the development of the ostrich chick's kidney, while a high amount of boron especially 640 mg/L promoted cell apoptosis and reduced the antioxidant capacity, thus caused negative effect to the ostrich chick's kidney.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Wang Jing
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiao Ke
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yang Ke-Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sun Peng-Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lei Cui
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Qiu Wei-Wei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lei Zhixin
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Liu Hua-Zhen
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Song Hui
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhong Ju-Ming
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peng Ke-Mei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Hu XN, Wang JF, Huang YQ, Wang Z, Dong FY, Ma HF, Bao ZJ. Huperzine A attenuates nonalcoholic fatty liver disease by regulating hepatocyte senescence and apoptosis: an in vitro study. PeerJ 2018; 6:e5145. [PMID: 29967757 PMCID: PMC6025153 DOI: 10.7717/peerj.5145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Objective This study was undertaken to detect if free fatty acids (FFA) induce hepatocyte senescence in L-02 cells and if huperzine A has an anti-aging effect in fatty liver cells. Methods L-02 cells were treated with a FFA mixture (oleate/palmitate, at 3:0, 2:1, 1:1, 1:2 and 0:3 ratios) at different concentrations. Cell viability and fat accumulation rate were assessed by a Cell Counting Kit 8 and Nile Red staining, respectively. The mixture with the highest cell viability and fat accumulation rate was selected to continue with the following experiment. The L-02 cells were divided into five groups, including the control group, FFA group, FFA + 0.1 μmol/L huperzine A (LH) group, FFA + 1.0 μmol/L huperzine A (MH) group and FFA + 10 μmol/L huperzine A (HH) group, and were cultured for 24 h. The expression of senescence-associated β-galactosidase (SA-β-gal) was detected by an SA-β-gal staining kit. The expression levels of aging genes were measured by qRT-PCR. The expression levels of apoptosis proteins were detected by a Western blot. ELISA kits were used to detect inflammatory factors and oxidative stress products. The expression of nuclear factor (NF-κB) and IκBα were detected by immunofluorescence. Results The FFA mixture (oleate/palmitate, at a 2:1 ratio) of 0.5 mmol/L had the highest cell viability and fat accumulation rate, which was preferable for establishing an in vitro fatty liver model. The expression of inflammatory factors (TNF-α and IL-6) and oxidants Malonaldehyde (MDA), 4-hydroxynonenal (HNE) and reactive oxygen species (ROS) also increased in the L-02 fatty liver cells. The expression levels of aging markers and aging genes, such as SA-β-gal, p16, p21, p53 and pRb, increased more in the L-02 fatty liver cells than in the L-02 cells. The total levels of the apoptosis-associated proteins Bcl2, Bax, Bax/Bcl-2, CyCt and cleaved caspase 9 were also upregulated in the L-02 fatty liver cells. All of the above genes and proteins were downregulated in the huperzine A and FFA co-treatment group. In the L-02 fatty liver cells, the expression of IκBα decreased, while the expression of NF-κB increased. After the huperzine A and FFA co-treatment, the expression of IκBα increased, while the expression of NF-κB decreased. Conclusion Fatty liver cells showed an obvious senescence and apoptosis phenomenon. Huperzine A suppressed hepatocyte senescence, and it might exert its anti-aging effect via the NF-κB pathway.
Collapse
Affiliation(s)
- Xiao-Na Hu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiao-Feng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi-Qin Huang
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Zheng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fang-Yuan Dong
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hai-Fen Ma
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Zhi-Jun Bao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
9
|
Haseeb K, Wang J, Xiao K, Yang KL, Sun PP, Wu XT, Luo Y, Song H, Liu HZ, Zhong JM, Peng KM. Effects of Boron Supplementation on Expression of Hsp70 in the Spleen of African Ostrich. Biol Trace Elem Res 2018; 182:317-327. [PMID: 28730576 DOI: 10.1007/s12011-017-1087-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 11/11/2022]
Abstract
Increased synthesis of heat shock protein 70 (Hsp70) occurs in prokaryotes and eukaryotes in response to physiological, environmental, and chemical exposures, thus allowing the cell survival from fatal conditions. Hsp70 cytoprotective properties may be clarified by its anti-apoptotic function. Boron has been reported to play an essential role in various organ developments and metabolisms. However, it is not known if boron is also able to modulate the Hsp70. In the present study, the actions of boron on ostrich spleen and expression level of Hsp70 were investigated. Thirty healthy ostrich chicks were randomly assigned to six groups: groups I, II, III, IV, V, and VI and fed the basal diet spiked with 0-, 40-, 80-, 160-, 320-, and 640-mg boric acid (BA)/L, respectively, in drinking water. The histomorphological examination in the spleen was done by hematoxylin and eosin (HE) staining. The expression level of Hsp70 was analyzed by immunohistochemistry (IHC) and western blotting, and mRNA expression of Hsp70 was investigated by quantitative real-time PCR (qPCR). In order to investigate apoptosis, TUNEL assay reaction in all treatment groups was analyzed. Our results showed that the histological structure of spleen up to 160 mg/L BA supplementation groups well developed. The Hsp70 expression level first induced at low-dose groups (up to group IV) and then inhibited dramatically in high-dose groups (V and VI) while comparing with the group I (0 mg BA). The TUNEL assay reaction revealed that the cell apoptosis amount was decreased in group IV, but in group V and especially in group VI, it was significantly increased (P < 0.01). Taken altogether, proper dietary boron treatment might stimulate ostrich chick spleen development by promoting the Hsp70 expression level and inhibiting apoptosis, while a high amount of boron supplementation would impair the ostrich spleen structure by inhibiting Hsp70 expression level and promoting cell apoptosis.
Collapse
Affiliation(s)
- Khaliq Haseeb
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jing Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke Xiao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke-Li Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Peng-Peng Sun
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xing-Tong Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - You Luo
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hua-Zhen Liu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ju-Ming Zhong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke-Mei Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Ding Y, Cao Y, Wang B, Wang L, Zhang Y, Zhang D, Chen X, Li M, Wang C. APPL1-Mediating Leptin Signaling Contributes to Proliferation and Migration of Cancer Cells. PLoS One 2016; 11:e0166172. [PMID: 27820851 PMCID: PMC5098739 DOI: 10.1371/journal.pone.0166172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022] Open
Abstract
Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.
Collapse
Affiliation(s)
- Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Yingkang Cao
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Bin Wang
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Lei Wang
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Deling Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoyan Chen
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Mingxin Li
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- * E-mail:
| |
Collapse
|
11
|
Jung EH, Lee JH, Kim SC, Kim YW. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor. Eur J Nutr 2015; 56:635-647. [PMID: 26646674 DOI: 10.1007/s00394-015-1107-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Nutrition is indispensable for cell survival and proliferation. Thus, loss of nutrition caused by serum starvation in cells could induce formation of reactive oxygen species (ROS), resulting in cell death. Liquiritigenin (LQ) is an active flavonoid in licorice and plays a role in the liver as a hepatic protectant. METHODS This study investigated the effect of LQ, metformin [an activator of activated AMP-activated protein kinase (AMPK)] and GW4064 [a ligand of farnesoid X receptor (FXR)] on mitochondrial dysfunction and oxidative stress induced by serum deprivation as well as its molecular mechanism, as assessed by immunoblot and flow cytometer assays. RESULTS Serum deprivation in HepG2, H4IIE and AML12 cells successfully induced oxidative stress and apoptosis, as indicated by depletion of glutathione, formation of ROS, and altered expression of apoptosis-related proteins such as procaspase-3, poly(ADP-ribose) polymerase, and Bcl-2. However, LQ pretreatment significantly blocked these pathological changes and mitochondrial dysfunction caused by serum deprivation. Moreover, LQ activated AMPK in HepG2 cells and mice liver, as shown by phosphorylation of AMPK and ACC, and this activation was mediated by its upstream kinase (i.e., LKB1). Experiments using a chemical inhibitor of AMPK with LKB1-deficient Hela cells revealed the role of the LKB1-AMPK pathway in cellular protection conferred by LQ. LQ also induced protein and mRNA expression of both FXR as well as small heterodimer partner, which is important since treatment with FXR ligand GW4064 protected hepatocytes against cell death and mitochondrial damage induced by serum deprivation. CONCLUSION AMPK activators such as LQ can protect hepatocytes against oxidative hepatic injury and mitochondrial dysfunction induced by serum deprivation, and the beneficial effect might be mediated through the LKB1 pathway as well as FXR induction.
Collapse
Affiliation(s)
- Eun Hye Jung
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Ju-Hee Lee
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea.,College of Oriental Medicine, Dongguk University, Gyeongju, Korea
| | - Sang Chan Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Young Woo Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea.
| |
Collapse
|
12
|
Protein kinase C pathway mediates the protective effects of glucagon-like peptide-1 on the apoptosis of islet β-cells. Mol Med Rep 2015; 12:7589-94. [DOI: 10.3892/mmr.2015.4355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 06/05/2015] [Indexed: 11/05/2022] Open
|
13
|
Abstract
PURPOSE Although an anti-tumor effect of emodin has been reported before, its effect on human gynecological cancer cells has so far not been studied. Here, we assessed the effect of emodin on cervical cancer-derived (Hela), choriocarcinoma-derived (JAR) and ovarian cancer-derived (HO-8910) cells, and investigated the possible underlying molecular and cellular mechanisms. METHODS AND RESULTS The respective cells were treated with 0, 5, 10 or 15 μM emodin for 72 h. Subsequently, MTT and Transwell in vitro migration assays revealed that emodin significantly decreased the viability and invasive capacity of the gynecological cancer-derived cells tested. We found that emodin induced apoptosis and significantly decreased mitochondrial membrane potential and ATP release in these cells. We also found that emodin may exert its apoptotic effects via regulating the activity of caspase-9 and the expression of cleaved-caspase-3. Moreover, we found that emodin induced a cell cycle arrest at the G0/G1 phase, possibly through down-regulating the key cell cycle regulators Cyclin D and Cyclin E. Interestingly, emodin also led to autophagic cell death, as revealed by increased MAP LC3 expression, a marker of the autophagosome, and decreased expression of the autophagy regulators Beclin-1 and Atg12-Atg5. Finally, we found that the protein levels of both VEGF and VEGFR-2 were significantly decreased in emodin-treated cells, suggesting an anti-angiogenic effect of emodin on gynecological cancer-derived cells. CONCLUSIONS Our results suggest that emodin exhibits an anti-tumor effect on gynecological cancer-derived cells, possibly through multiple mechanisms including the induction of apoptosis and autophagy, the arrest of the cell cycle, and the inhibition of angiogenesis. Our findings may provide a basis for the design of potential emodin-based strategies for the treatment of gynecological tumors.
Collapse
|
14
|
Belyaeva EA. The effect of modulators of large-conductance Ca2+-modulated K+ channels on rat AS-30D ascites hepatoma cells and isolated liver mitochondria treated with Cd2+. J EVOL BIOCHEM PHYS+ 2015; 51:259-270. [DOI: 10.1134/s0022093015040018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Nakata K, Sato N, Hirakawa K, Asakura T, Suzuki T, Zhu R, Asano T, Koike K, Ohno Y, Yokota H. Pattern recognition analysis of proton nuclear magnetic resonance spectra of extracts of intestinal epithelial cells under oxidative stress. J NIPPON MED SCH 2015; 81:236-47. [PMID: 25186577 DOI: 10.1272/jnms.81.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mesenteric ischemia-reperfusion induces gut mucosal damage. Intestinal mucosal wounds are repaired by epithelial restitution. Although many different molecular mechanisms have been shown to affect cell metabolism under oxidative conditions, these molecular mechanisms and metabolic phenotypes are not well understood. Nuclear magnetic resonance (NMR) spectroscopic data can be used to study metabolic phenotypes in biological systems. Pattern recognition with multivariate analysis is one chemometric technique. The purpose of this study was to visualize, using a chemometric technique to interpret NMR data, different degrees of oxidant injury in rat small intestine (IEC-6) cells exposed to H2O2. METHODS Oxidant stress was induced by H2O2 in IEC-6 cells. Cell restitution and viability were assessed at different H2O2 concentrations and time points. Cells were harvested for pattern recognition analysis of (1)H-NMR data. RESULTS Cell viability and restitution were significantly suppressed by H2O2 in a dose-dependent manner compared with control. Each class was clearly separated into clusters by partial least squares discriminant analysis, and class variance was greater than 90% from 2 factors. CONCLUSION Pattern recognition of NMR spectral data using a chemometric technique clearly visualized the differences of oxidant injury in IEC-6 cells under oxidant stress.
Collapse
Affiliation(s)
- Keiji Nakata
- Department of Emergency and Critical Care Medicine, Nippon Medical School
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Puiggròs F, Salvadó MJ, Bladé C, Arola L. Differential modulation of apoptotic processes by proanthocyanidins as a dietary strategy for delaying chronic pathologies. Crit Rev Food Sci Nutr 2014; 54:277-91. [PMID: 24188302 DOI: 10.1080/10408398.2011.565456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.
Collapse
Affiliation(s)
- Francesc Puiggròs
- a Nutrigenomics Group, Department of Biochemistry and Biotechnology , Universitat Rovira i Virgili , Tarragona , Spain
| | | | | | | |
Collapse
|
17
|
Del Giudice R, Monti DM, Sarcinelli C, Arciello A, Piccoli R, Hu GF. Amyloidogenic variant of apolipoprotein A-I elicits cellular stress by attenuating the protective activity of angiogenin. Cell Death Dis 2014; 5:e1097. [PMID: 24603325 PMCID: PMC3973227 DOI: 10.1038/cddis.2014.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 11/10/2022]
Abstract
Amyloidogenic ‘gain-of-function' mutations in apolipoprotein A-I (ApoA-I) gene (APOA1) result in systemic amyloidosis characterized by aggregate deposition and eventually cell death. However, how amyloidogenic variants of ApoA-I induce cell death is unknown. Here we report that one of the mechanisms by which amyloidogenic ApoA-I induces cell death is through attenuating anti-stress activity of angiogenin (ANG), a homeostatic protein having both pro-growth and pro-survival functions. Under growth conditions, ANG is located in nucleolus where it promotes ribosomal RNA (rRNA) transcription thereby stimulating cell growth. In adverse conditions, ANG is relocated to cytoplasm to promote damage repairs and cell survival. We find that in cells overexpressing the L75P-APOA1 mutant ANG expression is decreased and normal cellular localization of ANG is altered in response to stress and growth signals. In particular, ANG does not relocate to cytoplasm under stress conditions but is rather retained in the nucleolus where it continues promoting rRNA transcription, thus imposing a ribotoxic effect while simultaneously compromising its pro-survival activity. Consistently, we also find that addition of exogenous ANG protects cells from L75P-ApoA-I-induced apoptosis.
Collapse
Affiliation(s)
- R Del Giudice
- 1] Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples 80126, Italy [2] Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - D M Monti
- 1] Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples 80126, Italy [2] National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - C Sarcinelli
- Department of Biology, University of Naples Federico II, via Cinthia 4, Naples 80126, Italy
| | - A Arciello
- 1] Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples 80126, Italy [2] National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - R Piccoli
- 1] Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples 80126, Italy [2] National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - G-F Hu
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
18
|
McKim JM. Food additive carrageenan: Part I: A critical review of carrageenanin vitrostudies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 2014; 44:211-43. [DOI: 10.3109/10408444.2013.861797] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Fujita KI, Tatsumi M, Ogita A, Kubo I, Tanaka T. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J 2014; 281:1304-13. [PMID: 24393541 DOI: 10.1111/febs.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
Abstract
trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae.
Collapse
|
20
|
Belyaeva EA. Effect of diazoxide on AS-30D rat ascites hepatoma cells treated by Cd2+. J EVOL BIOCHEM PHYS+ 2013; 49:489-497. [DOI: 10.1134/s0022093013050046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Sermeus A, Rebucci M, Fransolet M, Flamant L, Desmet D, Delaive E, Arnould T, Michiels C. Differential effect of hypoxia on etoposide-induced DNA damage response and p53 regulation in different cell types. J Cell Physiol 2013; 228:2365-76. [DOI: 10.1002/jcp.24409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Magali Rebucci
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Lionel Flamant
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Déborah Desmet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Edouard Delaive
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| |
Collapse
|
22
|
Pichiri G, Coni P, Nemolato S, Cabras T, Fanari MU, Sanna A, Di Felice E, Messana I, Castagnola M, Faa G. Cellular trafficking of thymosin beta-4 in HEPG2 cells following serum starvation. PLoS One 2013; 8:e67999. [PMID: 23967050 PMCID: PMC3743897 DOI: 10.1371/journal.pone.0067999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/26/2013] [Indexed: 12/16/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h. Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell. The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could regulate the pore permeability.
Collapse
Affiliation(s)
- Giuseppina Pichiri
- Divisione di Anatomia Patologica, Dipartimento di Citomorfologia, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Neurite Outgrowth and Neuroprotective Effects of Quercetin from Caesalpinia mimosoides Lamk. on Cultured P19-Derived Neurons. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:838051. [PMID: 23840266 PMCID: PMC3693115 DOI: 10.1155/2013/838051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/07/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
Quercetin has been isolated for the first time from ethyl acetate extract of Caesalpinia mimosoides Lamk. C. mimosoides Lamk. (Fabaceae) or Cha rueat (Thai name) is an indigenous plant found in mixed deciduous forest in northern and north-eastern parts of Thailand. Thai rural people consume its young shoots and leaves as a fresh vegetable, as well as it is used for medicinal purposes.The antioxidant capacity in terms of radical scavenging activity of quercetin was determined as IC50 of 3.18 ± 0.07 µg/mL, which was higher than that of Trolox and ascorbic acid (12.54 ± 0.89 and 10.52 ± 0.48 µg/mL, resp.). The suppressive effect of quercetin on both purified and cellular acetylcholinesterase (AChE) enzymes was investigated as IC50 56.84 ± 2.64 and 36.60 ± 2.78 µg/mL, respectively. In order to further investigate the protective ability of quercetin on neuronal cells, P19-derived neurons were used as a neuronal model in this study. As a result, quercetin at a very low dose of 1 nM enhanced survival and induced neurite outgrowth of P19-derived neurons. Furthermore, this flavonoid also possessed significant protection against oxidative stress induced by serum deprivation. Altogether, these findings suggest that quercetin is a multifunctional compound and promising valuable drugs candidate for the treatment of neurodegenerative disease.
Collapse
|
24
|
Guo JQ, Gao X, Lin ZJ, Wu WZ, Huang LH, Dong HY, Chen J, Lu J, Fu YF, Wang J, Ma YJ, Chen XW, Wu ZX, He FQ, Yang SL, Liao LM, Zheng F, Tan JM. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause. BMC Cell Biol 2013; 14:18. [PMID: 23510080 PMCID: PMC3640998 DOI: 10.1186/1471-2121-14-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to evaluate the effect of bone marrow mesenchymal stem cells (BMSCs) on the apoptosis of granulosa cells (GCs) in rats. BMSCs and GCs were isolated from rats. GCs were separated into one of the following three groups: an untreated control group (control), a cisplatin (5 mg/L) treatment group (cisplatin), and group co-cultured with BMSCs and treated with cisplatin (BMSC). GC apoptosis was analyzed by annexin V staining and real-time PCR analysis for apoptosis-related genes. The effect of BMSCs was also determined in 9 to 10 month-old perimenopausal rats that were separated into the following groups: saline control, BMSC transplantation (1–2 × 106 cells), and estrogen treatment (0.158 mg/kg/d) groups. A young group consisting of 3 to 4 month-old rats that were treated with saline was also evaluated as a control. After 1 and 3 months, GC apoptosis was evaluated by TUNEL analysis. Results Cisplatin increased GC apoptosis from 0.59% to 13.04% in the control and cisplatin treatment groups, respectively, which was significantly reduced upon co-culture with BMSCs to 4.84%. Cisplatin treatment increased p21 and bax and decreased c-myc mRNA expression, which was reversed upon co-culture with BMSCs. As compared to young rats, increased apoptosis was observed in the perimenopausal rats (P < 0.001). After 3 months, the apoptosis rate in the BMSC group was significantly lower than that of the control group (P = 0.007). Conclusions BMSC therapy may protect against GC apoptosis induced by cisplatin and perimenopause. Further studies are necessary to evaluate therapeutic efficacy of BMSCs.
Collapse
|
25
|
Marchissio MJ, Francés DEA, Carnovale CE, Marinelli RA. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol 2012; 264:246-54. [PMID: 22910329 DOI: 10.1016/j.taap.2012.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/06/2012] [Accepted: 08/06/2012] [Indexed: 12/20/2022]
Abstract
Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H(2)O(2) across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H(2)O(2) release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p<0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H(2)O(2) release, assessed by Amplex Red, was reduced by about 45% (p<0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+120%, p<0.05) and loss of mitochondrial membrane potential (-80%, p<0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H(2)O(2) release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death.
Collapse
Affiliation(s)
- Maria Julia Marchissio
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | | | | | | |
Collapse
|
26
|
Banerjee C, Goswami R, Verma G, Datta M, Mazumder S. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:323-333. [PMID: 22366184 DOI: 10.1016/j.dci.2012.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.
Collapse
Affiliation(s)
- Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
27
|
Avadhani NG, Sangar MC, Bansal S, Bajpai P. Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J 2011; 278:4218-29. [PMID: 21929726 DOI: 10.1111/j.1742-4658.2011.08356.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeting signals are critical for proteins to find their specific cellular destination. Signals for protein targeting to the endoplasmic reticulum (ER), mitochondria, peroxisome and nucleus are distinct and the mechanisms of protein translocation across these membrane compartments also vary markedly. Recently, however, a number of proteins have been shown to be present in multiple cellular sites such as mitochondria and ER, cytosol and mitochondria, plasma membrane and mitochondria, and peroxisome and mitochondria suggesting the occurrence of multimodal targeting signals in some cases. Cytochrome P450 monooxygenases (CYPs), which play crucial roles in pharmacokinetics and pharmacodynamics of drugs and toxins, are the prototype of bimodally targeted proteins. Several members of family 1, 2 and 3 CYPs have now been reported to be associated with mitochondria and plasma membrane in addition to the ER. This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and ER. The bimodal targeting of these proteins is driven by their N-terminal signals which carry essential elements of both ER targeting and mitochondria targeting signals. These multimodal signals have been termed chimeric signals appropriately to describe their dual targeting property. The cryptic mitochondrial targeting signals of CYP2B1, 2D6, 2E1 require activation by protein kinase A or protein kinase C mediated phosphorylation at sites immediately flanking the targeting signal and/or membrane anchoring regions. The cryptic mitochondria targeting signal of CYP1A1 requires activation by endoproteolytic cleavage by a cytosolic endoprotease, which exposes the mitochondrial signal. This review discusses both mechanisms of bimodal targeting and toxicological consequences of mitochondria targeted CYP proteins.
Collapse
Affiliation(s)
- Narayan G Avadhani
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
28
|
Glutaredoxin 2a, a mitochondrial isoform, plays a protective role in a human cell line under serum deprivation. Mol Biol Rep 2011; 39:3755-65. [PMID: 21735102 DOI: 10.1007/s11033-011-1152-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/29/2011] [Indexed: 01/20/2023]
Abstract
The roles of mitochondrial glutaredoxin (Grx2a) under serum deprivation were assessed using the human stable HepG2 cell lines overexpressing or down-regulating Grx2a. The Grx2a-overexpressing stable cells displayed enhanced proliferation, decreased reactive oxygen species (ROS) and caspase-3 activity levels, and increased total GSH level, compared to the vector control cells. These characteristics of the overexpressing stable cells were reversed by down-regulating Grx2a in the same cell line. In the limited serum conditions, the Grx2a-overexpressing stable pcDNA3.0/HA-Grx2a cells exhibited higher cellular viabilities and total GSH level, and showed much lower enhancement in ROS and caspase-3 activity levels than the vector control pcDNA3.0/HA cells. However, the Grx2a-down-regulating stable cells gave rise to diminished cellular viabilities and further decreased total GSH level, and contained significantly higher ROS and caspase-3 activity levels, under serum deprivation than the vector control cells. These results suggest that Grx2a plays proliferative and anti-apoptotic roles under serum deprivation.
Collapse
|
29
|
Ng LT, Wu SJ. Antiproliferative Activity of Cinnamomum cassia Constituents and Effects of Pifithrin-Alpha on Their Apoptotic Signaling Pathways in Hep G2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:492148. [PMID: 20038571 PMCID: PMC3135661 DOI: 10.1093/ecam/nep220] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/25/2009] [Indexed: 12/14/2022]
Abstract
Cinnamaldehyde (Cin), cinnamic acid (Ca) and cinnamyl alcohol (Cal), major constituents of Cinnamomum cassia, have been shown to possess antioxidant, anti-inflammatory, anticancer and other activities. In this study, our aim was to evaluate the antiproliferative activity of these compounds in human hepatoma Hep G2 cells and examine the effects of pifithrin-alpha (PFTα; a specific p53 inhibitor) on their apoptotic signaling transduction mechanism. The antiproliferative activity was measured by XTT assay. Expression of apoptosis-related proteins was detected by western blotting. Results showed that at a concentration of 30 μM, the order of antiproliferative activity in Hep G2 cells was Cin > Ca > Cal. Cin (IC(50) 9.76 ± 0.67 μM) demonstrated an antiproliferative potency as good as 5-fluorouracil (an anti-cancer drug; IC(50) 9.57 ± 0.61 μM). Further studies on apoptotic mechanisms of Cin showed that it downregulated the expression of Bcl-(XL), upregulated CD95 (APO-1), p53 and Bax proteins, as well as cleaving the poly (ADP-ribose) polymerase (PARP) in a time-dependent pattern. PFTα pre-incubation significantly diminished the effect of Cin-induced apoptosis. It markedly upregulated the anti-apoptotic (Bcl-(XL)) expression and downregulated the pro-apoptotic (Bax) expression, as well as effectively blocking the CD95 (APO-1) and p53 expression, and PARP cleavage in Cin-treated cells. This study indicates that Cin was the most potent antiproliferative constituent of C. cassia, and its apoptotic mechanism in Hep G2 cells could be mediated through the p53 induction and CD95 (APO-1) signaling pathways.
Collapse
Affiliation(s)
- Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Roosevelt Road Section 4, Taipei 106, Taiwan
| | | |
Collapse
|
30
|
Ito K, Inoue T, Yokoyama K, Morita M, Suzuki T, Yamamoto T. CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death. Genes Cells 2011; 16:368-79. [PMID: 21299754 DOI: 10.1111/j.1365-2443.2011.01492.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eukaryotic mRNA decay is initiated by shortening of the poly (A) tail; however, neither the molecular mechanisms underlying deadenylation nor its regulation is well understood. The human CCR4-NOT complex is a major cytoplasmic deadenylase consisting of a combination of at least nine subunits, four of which have deadenylase activity. The roles of the other subunits remain obscure. Here, we show that CNOT2 depletion by siRNA induces apoptosis. We also show that CNOT2 depletion destabilizes the complex, resulting in the formation of a complex smaller than that formed in control siRNA-treated cells. The deadenylase activity of the CNOT6L subunit-containing complex prepared from CNOT2-depleted cells was less than that from control cells. Intriguingly, the formation of P-bodies, where mRNA degradation supposedly takes place, was largely suppressed in CNOT2-depleted cells. Furthermore, CNOT2 depletion enhanced CHOP mRNA levels, suggesting that endoplasmic reticulum (ER) stress was occurring, which causes apoptosis in a caspase-dependent manner. These results suggest that CNOT2 is important for controlling cell viability through the maintenance of the structural integrity and enzymatic activity of the CCR4-NOT complex.
Collapse
Affiliation(s)
- Kentaro Ito
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Sangar MC, Bansal S, Avadhani NG. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2010; 6:1231-51. [PMID: 20629582 PMCID: PMC2940958 DOI: 10.1517/17425255.2010.503955] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Microsomal CYPs are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. AREAS COVERED IN THIS REVIEW This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. WHAT THE READERS WILL GAIN A comprehensive review of the literature on drug metabolism in the mitochondrial compartment and their potential for inducing mitochondrial dysfunction. TAKE HOME MESSAGE Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity.
Collapse
Affiliation(s)
- Michelle C Sangar
- University of Pennsylvania, School of Veterinary Medicine, Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
32
|
Ma J, Zhang L, Li S, Liu S, Ma C, Li W, Falck JR, Manthati VL, Reddy DS, Medhora M, Jacobs ER, Zhu D. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway. Exp Cell Res 2010; 316:2340-53. [PMID: 20493836 DOI: 10.1016/j.yexcr.2010.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/30/2010] [Accepted: 05/13/2010] [Indexed: 01/22/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Inhibition of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin depends on protein biosynthesis. Cell Biol Toxicol 2010; 26:391-401. [PMID: 20108032 DOI: 10.1007/s10565-010-9151-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant. Most of the toxic effects of TCDD are believed to be mediated by high-affinity binding to the aryl hydrocarbon receptor (AhR) and subsequent effects on gene transcription and protein expression. TCDD causes cancer in multiple tissues in different animal species and is classified as a class 1 human carcinogen. In initiation-promotion studies, TCDD was shown to be a potent liver-tumor promotor. Among other theories it has been hypothesized that TCDD promotes tumor growth by preventing initiated cells from correctly executing apoptosis. In this study, we examined the effects of TCDD on apoptosis induced by UV-C light, ochratoxin A (OTA), and cycloheximide (CHX) in primary rat hepatocytes. Both UV-C light and OTA caused caspase activation and nuclear apoptotic effects. CHX did not activate caspases but nevertheless caused DNA fragmentation and chromatin condensation. TCDD inhibited UV-C light-induced apoptosis and this effect seemed to be dependent on AhR-activation as was shown by employing an AhR antagonist. In contrast to UV-C light-induced apoptosis, TCDD failed to protect primary rat hepatocytes from OTA- or CHX-induced apoptosis. Since both of these compounds inhibit protein biosynthesis as was demonstrated by measuring the incorporation of radiolabeled leucin and protein expression of cytochrome P450 1A1, we propose that the inhibition of apoptosis by TCDD depends on protein biosynthesis. Either TCDD induces some anti-apoptotic protein in an AhR-dependent manner or inhibits pro-apoptotic proteins induced by UV irradiation.
Collapse
|
34
|
Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, Lee HJ. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med 2009; 46:1319-27. [PMID: 19248828 DOI: 10.1016/j.freeradbiomed.2009.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 02/05/2009] [Accepted: 02/07/2009] [Indexed: 01/03/2023]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are associated with oxidative stress, and it has been suggested that apoptosis is a crucial pathway in neuronal cell death in AD patients. 4-Hydroxynonenal (HNE), one of the aldehydic products of membrane lipid peroxidation, is reported to be elevated in the brains of AD patients and mediates the induction of neuronal apoptosis in the presence of oxidative stress. In this study, we investigated the HNE-induced apoptosis mechanism and the protective effects of the cocoa procyanidin fraction (CPF) and its major antioxidant procyanidin B2 against the apoptosis induced by HNE in rat pheochromocytoma (PC12) cells. HNE-induced nuclear condensation and increased sub-G1 fraction, both of which are markers of apoptotic cell death, were inhibited by CPF and procyanidin B2. Intracellular reactive oxygen species (ROS) accumulation was attenuated by pretreatment with CPF and procyanidin B2. CPF and procyanidin B2 also prevented HNE-induced poly(ADP-ribose) polymerase cleavage, antiapoptotic protein (Bcl-2 and Bcl-X(L)) down-regulation, and caspase-3 activation. Activation of c-Jun N-terminal protein kinase (JNK) and mitogen-activated protein kinase kinase 4 (MKK4) was attenuated by CPF and procyanidin B2. Moreover, CPF and procyanidin B2 bound directly to MKK4 and inhibited its activity. Data obtained with SP600125, a selective inhibitor of JNK, revealed that JNK is involved in HNE-induced apoptosis through the inhibition of PARP cleavage and caspase-3 activation in PC12 cells. Collectively, these results indicate that CPF and procyanidin B2 protect PC12 cells against HNE-induced apoptosis by blocking MKK4 activity as well as ROS accumulation.
Collapse
Affiliation(s)
- Eun Sun Cho
- Department of Agricultural Biotechnology, Seoul National University, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J. Altering chemosensitivity by modulating translation elongation. PLoS One 2009; 4:e5428. [PMID: 19412536 PMCID: PMC2671598 DOI: 10.1371/journal.pone.0005428] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022] Open
Abstract
Background The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Eμ-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents. Methodology/Principal Findings Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Eμ-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor. Conclusion/Significance Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marilyn Carrier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Svea Rawe
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Samuel Chen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Scott Lowe
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
36
|
Bhattacharya S, Ray RM, Johnson LR. Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells. Cell Signal 2009; 21:509-22. [DOI: 10.1016/j.cellsig.2008.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 01/18/2023]
|
37
|
Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells. Oncogene 2008; 28:709-20. [DOI: 10.1038/onc.2008.423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Wang YD, Yang F, Chen WD, Huang X, Lai L, Forman BM, Huang W. Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo. Mol Endocrinol 2008; 22:1622-32. [PMID: 18436567 DOI: 10.1210/me.2007-0527] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The farnesoid X receptor (FXR) is a key metabolic regulator in the liver by maintaining the homeostasis of liver metabolites. Recent findings suggest that FXR may have a much broader function in liver physiology and pathology. In the present work, we identify a novel role of FXR in protecting liver cell from apoptosis induced by nutritional withdrawal including serum deprivation in vitro or starvation in vivo. Two FXR ligands, chenodeoxycholic acid (CDCA) and GW4064, rescued HepG2 cells from serum deprivation-induced apoptosis in a dose-dependent manner. This effect of FXR on apoptotic suppression was compromised when FXR was knocked down by short interfering RNA. Similarly, the effects of both CDCA and GW4064 were abolished after inhibition of the MAPK pathway by a specific inhibitor of MAPK kinase 1/2. Immunoblotting results indicated that FXR activation by CDCA and GW4064 induced ERK1/2 phosphorylation, which was attenuated by serum deprivation. In vivo, FXR(-/-) mice exhibited an exacerbated liver apoptosis and lower levels of phosphorylated-ERK1/2 compared to wild-type mice after starvation. In conclusion, our results suggest a novel role of FXR in modulating liver cell apoptosis.
Collapse
Affiliation(s)
- Yan-Dong Wang
- Department of Gene Regulation and Drug Discovery, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Manov I, Bashenko Y, Eliaz-Wolkowicz A, Mizrahi M, Liran O, Iancu TC. High-dose acetaminophen inhibits the lethal effect of doxorubicin in HepG2 cells: the role of P-glycoprotein and mitogen-activated protein kinase p44/42 pathway. J Pharmacol Exp Ther 2007; 322:1013-22. [PMID: 17526808 DOI: 10.1124/jpet.107.121772] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic drug for human hepatocellular carcinoma (HCC). A major limitation to its effectiveness is the development of multidrug resistance of cancer cells. In clinical trials, patients with advanced HCC were treated with high-dose acetaminophen (HAAP) in an effort to improve the antitumor activity of chemotherapeutics. In this study, we investigated the effect of concomitant treatment of DOX and HAAP on hepatoma-derived HepG2 cells. Viability, cell cycle distribution, and ultrastructure were examined. Unexpectedly, HAAP, when added to DOX-exposed cells, increased cell viability, released cell cycle arrest, and decreased apoptosis. To elucidate the mechanisms by which HAAP reduces the DOX lethal effect to HepG2 cells, we investigated the multidrug resistance P-glycoprotein (P-gp) and p44/42-mitogen-activated protein kinase (MAPK) pathways. The P-gp function was enhanced by DOX and HAAP, and it was further stimulated during combined treatment, leading to decreased DOX retention. Verapamil (VRP), when added to DOX + HAAP exposure, increased DOX accumulation and restored DOX-induced toxicity. The increased phospho-p44/42-MAPK level in DOX-exposed cells was inhibited by HAAP. In addition, suppression of p44/42 activation by the p44/42-MAPK inhibitor 2'-amino-3'-methoxyflavone (PD98059) blocked DOX-induced apoptosis. These findings suggest that the antagonistic effect of concomitant DOX + HAAP treatment occurs as a result of interactive stimulation of P-gp, generating decreased intracellular drug concentrations. Furthermore, inhibition of the p44/42-MAPK phosphorylation by HAAP could abolish the DOX-induced cell death pathway. Thus, combined treatment by DOX + HAAP, intended to improve chemotherapeutic efficacy, could have an opposite effect facilitating cancer cell survival.
Collapse
Affiliation(s)
- Irena Manov
- Pediatric Research and Electron Microscopy Unit, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel.
| | | | | | | | | | | |
Collapse
|
40
|
Li W, Venkataraman GM, Ain KB. Protein synthesis inhibitors, in synergy with 5-azacytidine, restore sodium/iodide symporter gene expression in human thyroid adenoma cell line, KAK-1, suggesting trans-active transcriptional repressor. J Clin Endocrinol Metab 2007; 92:1080-7. [PMID: 17164311 DOI: 10.1210/jc.2006-2106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Therapy of thyroid carcinoma uses its radioiodine concentration ability for treatment. Dedifferentiated cells lose radioiodine uptake from human sodium-iodide symporter (hNIS) gene transcription failure consequent to genomic structure (chromatin compaction) and composition (CpG methylation). OBJECTIVE AND METHODS We explored restoring hNIS expression in human thyroid carcinoma cells using thyroid adenoma and carcinoma cell lines: KAK-1, NPA87, BHT-101, and KAT-4B, with quantitative RT-PCR, chromatin immunoprecipitation, deoxyribonuclease I sensitivity assays, and luciferase reporter construct transfections containing hNIS promoter regions. RESULTS Combined 5-azacytidine and sodium butyrate restores hNIS gene transcription in KAK-1 to levels approaching radioiodine-treatable tumors. Despite induction of H4 acetylation, there was no deoxyribonuclease I sensitivity enhancement in two regions of the hNIS gene promoter. Cycloheximide in cells transfected with luciferase reporter construct, 1.3 kb hNIS gene promoter, stimulated normalized luciferase expression, singly and synergistically with 5-azacytidine, in a dose-dependent, time course-dependent, cell type-specific, and promoter-specific fashion. Both anisomycin and emetine, but not puromycin, had similar effects. Cycloheximide also increased endogenous hNIS mRNA. Transfections with reporter constructs containing consecutive deletions of hNIS gene promoter sequences revealed responsible sequences at -427 to -131 bp. Deletion of 1.2 kb promoter region upstream of -131 bp enhanced basal luciferase reporter activity 3-fold above the activity of full length promoter construct, supporting inhibitory properties of this region. CONCLUSIONS This suggests that trans-active protein factor(s) represses endogenous hNIS transcription in KAK-1 cells under basal conditions, accounting for loss of iodine uptake. Inhibition of this repressive activity increases endogenous hNIS transcription and presents a novel target to restore hNIS expression in dedifferentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Wei Li
- Thyroid Cancer Research Laboratory, Medical Service, Veterans Affairs Medical Center, Lexington, Kentucky 40511, USA
| | | | | |
Collapse
|