1
|
Berro A, Assi A, Farhat M, Hatoum L, Saad JP, Mohanna R, Bechara AMA, Prince G, Hachem MCR, Zalaquett Z, Kourie HR. Unlocking Hope: Anti-VEGFR inhibitors and their potential in glioblastoma treatment. Crit Rev Oncol Hematol 2024; 198:104365. [PMID: 38677355 DOI: 10.1016/j.critrevonc.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE This systematic review summarizes evidence of VEGFR gene mutations and VEGF/VEGFR protein expression in glioblastoma multiforme (GBM) patients, alongside the efficacy and safety of anti-VEGFR tyrosine kinase inhibitors (TKIs) for GBM treatment. METHODS A comprehensive literature review was conducted using PubMed up to August 2023. Boolean operators and MeSH term "glioma," along with specific VEGFR-related keywords, were utilized following thorough examination of existing literature. RESULTS VEGFR correlates with glioma grade and GBM progression, presenting a viable therapeutic target. Regorafenib and axitinib show promise among studied TKIs. Other multi-targeted TKIs (MTKI) and combination therapies exhibit potential, albeit limited by blood-brain barrier penetration and toxicity. Combining treatments like radiotherapy and enhancing BBB penetration may benefit patients. Further research is warranted in patient quality of life and biomarker-guided selection. CONCLUSION While certain therapies hold promise for GBM, future research should prioritize personalized medicine and innovative strategies for improved treatment outcomes.
Collapse
Affiliation(s)
- Ali Berro
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ahmad Assi
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mohamad Farhat
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Lea Hatoum
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Jean-Pierre Saad
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Rami Mohanna
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Anna Maria Antoun Bechara
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Gilles Prince
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Maria Catherine Rita Hachem
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ziad Zalaquett
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Hampig-Raphael Kourie
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
3
|
P-glycoprotein Mediates Resistance to the Anaplastic Lymphoma Kinase Inhiitor Ensartinib in Cancer Cells. Cancers (Basel) 2022; 14:cancers14092341. [PMID: 35565470 PMCID: PMC9104801 DOI: 10.3390/cancers14092341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ensartinib (X-396) is a promising second-generation small-molecule inhibitor of anaplastic lymphoma kinase (ALK) that was developed for the treatment of ALK-positive non-small-cell lung cancer. Preclinical and clinical trial results for ensartinib showed superior efficacy and a favorable safety profile compared to the first-generation ALK inhibitors that have been approved by the U.S. Food and Drug Administration. Although the potential mechanisms of acquired resistance to ensartinib have not been reported, the inevitable emergence of resistance to ensartinib may limit its therapeutic application in cancer. In this work, we investigated the interaction of ensartinib with P-glycoprotein (P-gp) and ABCG2, two ATP-binding cassette (ABC) multidrug efflux transporters that are commonly associated with the development of multidrug resistance in cancer cells. Our results revealed that P-gp overexpression, but not expression of ABCG2, was associated with reduced cancer cell susceptibility to ensartinib. P-gp directly decreased the intracellular accumulation of ensartinib, and consequently reduced apoptosis and cytotoxicity induced by this drug. The cytotoxicity of ensartinib could be significantly reversed by treatment with the P-gp inhibitor tariquidar. In conclusion, we report that ensartinib is a substrate of P-gp, and provide evidence that this transporter plays a role in the development of ensartinib resistance. Further investigation is needed.
Collapse
|
4
|
Shan Y, Cen Y, Zhang Y, Tan R, Zhao J, Nie Z, Zhang J, Yu S. Acyclovir Brain Disposition: Interactions with P-gp, Bcrp, Mrp2, and Oat3 at the Blood-Brain Barrier. Eur J Drug Metab Pharmacokinet 2022; 47:279-289. [PMID: 35112329 DOI: 10.1007/s13318-021-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Acyclovir is effective in treating herpes simplex virus infections of the central nervous system. The purpose of this study was to investigate the interactions between acyclovir and the efflux pumps P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), multidrug resistance protein 2 (Mrp2), and organic anion transporter 3 (Oat3) at the blood-brain barrier (BBB). METHODS Acyclovir concentrations in the blood and brain were evaluated by microdialysis and high-performance liquid chromatography. Acyclovir pharmacokinetic parameters, including the area under the unbound blood concentration-time curve (AUCu,blood), the area under the unbound brain concentration-time curve (AUCu,brain), and the ratio of AUCu,brain to AUCu,blood (Kp.uu.brain), were evaluated in the presence and absence of elacridar (P-gp/Bcrp inhibitor, 7.5 mg/kg), tariquidar (P-gp/Bcrp inhibitor, 7.5 mg/kg), MK571 (Mrp2 inhibitor, 7.5 mg/kg), cyclosporine (P-gp/Bcrp/Mrp2 inhibitor, 25 mg/kg), and probenecid (Oat3 inhibitor, 50 mg/kg). RESULTS The average AUCu,blood, AUCu,brain, and Kp.uu.brain in rats who received acyclovir (25 mg/kg, intravenous) alone were 1377.7 min · μg/ml, 435.4 min · μg/ml, and 31.6%, respectively. Probenecid drastically increased the AUCu,blood of acyclovir 1.73-fold, whereas coadministration with elacridar, tariquidar, MK571, and cyclosporine did not alter the blood pharmacokinetic parameters of acyclovir. Elacridar, tariquidar, MK571, cyclosporine, and probenecid significantly increased the AUCu,brain of acyclovir 1.51-, 1.54-, 1.47-, 1.95-, and 2.34-fold, respectively. Additionally, the Kp.uu.brain of acyclovir markedly increased 1.48-, 1.63-, 1.39-, 1.90-, and 1.35-fold following elacridar, tariquidar, MK571, cyclosporine, and probenecid administration, respectively. CONCLUSION The present study demonstrated that P-gp, Bcrp, Mrp2, and Oat3 inhibition increased the penetration of acyclovir across the BBB, supporting the hypothesis that these efflux pumps restrict the distribution of acyclovir in the brain.
Collapse
Affiliation(s)
- Yuheng Shan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
- Department of Neurology, Characteristic Medical Centre of People's Armed Police Force, Tianjin, 300162, People's Republic of China
| | - Yuying Cen
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yanjin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Ruishu Tan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Jiahua Zhao
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China.
| | - Jiatang Zhang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|
5
|
Wu CP, Hung CY, Lusvarghi S, Huang YH, Tseng PJ, Hung TH, Yu JS, Ambudkar SV. Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines. Biochem Pharmacol 2020; 180:114137. [PMID: 32634436 DOI: 10.1016/j.bcp.2020.114137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
LY3023414 (samotolisib) is a promising new dual inhibitor of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Currently, multiple clinical trials are underway to evaluate the efficacy of LY3023414 in patients with various types of cancer. However, the potential mechanisms underlying acquired resistance to LY3023414 in human cancer cells still remain elusive. In this study, we investigated whether the overexpression of ATP-binding cassette (ABC) drug transporters such as ABCB1 and ABCG2, one of the most common mechanisms for developing multidrug resistance, may potentially reduce the efficacy of LY3023414 in human cancer cells. We demonstrated that the intracellular accumulation of LY3023414 in cancer cells was significantly reduced by the drug efflux function of ABCB1 and ABCG2. Consequently, the cytotoxicity and efficacy of LY3023414 for inhibiting the activation of the PI3K pathway and induction of G0/G1 cell-cycle arrest were substantially reduced in cancer cells overexpressing ABCB1 or ABCG2, which could be restored using tariquidar or Ko143, respectively. Furthermore, stimulatory effect of LY3023414 on the ATPase activity of ABCB1 and ABCG2, as well as in silico molecular docking analysis of LY3023414 binding to the substrate-binding pockets of these transporters provided additional insight into the manner in which LY3023414 interacts with both transporters. In conclusion, we report that LY3023414 is a substrate for ABCB1 and ABCG2 transporters implicating their role in the development of resistance to LY3023414, which can have substantial clinical implications and should be further investigated.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Taiwan; Department of Physiology and Pharmacology, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Biochemistry and Molecular Biology, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
6
|
Zubiaur P, Saiz-Rodríguez M, Koller D, Ovejero-Benito MC, Wojnicz A, Abad-Santos F. How to make P-glycoprotein (ABCB1, MDR1) harbor mutations and measure its expression and activity in cell cultures? Pharmacogenomics 2018; 19:1285-1297. [PMID: 30334473 DOI: 10.2217/pgs-2018-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several polymorphisms have been identified in ABCB1, the gene encoding for the P-glycoprotein. This transporter alters the pharmacokinetics or effectiveness of drugs by excreting them from cells where it is expressed (e.g., blood-brain barrier, intestine or tumors). No consensus has been reached regarding the functional consequences of these polymorphisms in the transporter's function. The aim of this review was to describe a methodology that allows the assessment of P-gp function when harboring polymorphisms. We describe how to obtain cell lines with high expression levels of the transporter with polymorphisms and several tactics to measure its expression and activity. This methodology may help elucidate the contribution of polymorphisms in ABCB1 to drug pharmacokinetics, effectiveness and safety or to cancer chemotherapy failure.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - María Carmen Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Chen C, Lee MH, Weng CF, Leong MK. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme. Molecules 2018; 23:E1820. [PMID: 30037151 PMCID: PMC6100076 DOI: 10.3390/molecules23071820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
P-glycoprotein (P-gp), a membrane-bound transporter, can eliminate xenobiotics by transporting them out of the cells or blood⁻brain barrier (BBB) at the expense of ATP hydrolysis. Thus, P-gp mediated efflux plays a pivotal role in altering the absorption and disposition of a wide range of substrates. Nevertheless, the mechanism of P-gp substrate efflux is rather complex since it can take place through active transport and passive permeability in addition to multiple P-gp substrate binding sites. A nonlinear quantitative structure⁻activity relationship (QSAR) model was developed in this study using the novel machine learning-based hierarchical support vector regression (HSVR) scheme to explore the perplexing relationships between descriptors and efflux ratio. The predictions by HSVR were found to be in good agreement with the observed values for the molecules in the training set (n = 50, r² = 0.96, qCV2 = 0.94, RMSE = 0.10, s = 0.10) and test set (n = 13, q² = 0.80⁻0.87, RMSE = 0.21, s = 0.22). When subjected to a variety of statistical validations, the developed HSVR model consistently met the most stringent criteria. A mock test also asserted the predictivity of HSVR. Consequently, this HSVR model can be adopted to facilitate drug discovery and development.
Collapse
Affiliation(s)
- Chun Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Ming-Han Lee
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| |
Collapse
|
8
|
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18:452-464. [PMID: 29643473 PMCID: PMC6622180 DOI: 10.1038/s41568-018-0005-8] [Citation(s) in RCA: 1270] [Impact Index Per Article: 181.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier.
Collapse
Affiliation(s)
- Robert W Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen M Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Antonio T Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Susan E Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
King AR, Corso CD, Chen EM, Song E, Bongiorni P, Chen Z, Sundaram RK, Bindra RS, Saltzman WM. Local DNA Repair Inhibition for Sustained Radiosensitization of High-Grade Gliomas. Mol Cancer Ther 2017; 16:1456-1469. [PMID: 28566437 DOI: 10.1158/1535-7163.mct-16-0788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/14/2017] [Accepted: 05/16/2017] [Indexed: 11/16/2022]
Abstract
High-grade gliomas, such as glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG), are characterized by an aggressive phenotype with nearly universal local disease progression despite multimodal treatment, which typically includes chemotherapy, radiotherapy, and possibly surgery. Radiosensitizers that have improved the effects of radiotherapy for extracranial tumors have been ineffective for the treatment of GBM and DIPG, in part due to poor blood-brain barrier penetration and rapid intracranial clearance of small molecules. Here, we demonstrate that nanoparticles can provide sustained drug release and minimal toxicity. When administered locally, these nanoparticles conferred radiosensitization in vitro and improved survival in rats with intracranial gliomas when delivered concurrently with a 5-day course of fractionated radiotherapy. Compared with previous work using locally delivered radiosensitizers and cranial radiation, our approach, based on the rational selection of agents and a clinically relevant radiation dosing schedule, produces the strongest synergistic effects between chemo- and radiotherapy approaches to the treatment of high-grade gliomas. Mol Cancer Ther; 16(8); 1456-69. ©2017 AACR.
Collapse
Affiliation(s)
- Amanda R King
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Christopher D Corso
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Evan M Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Paul Bongiorni
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Zhe Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Experimental Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
10
|
Abstract
CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
11
|
Affiliation(s)
- Timothy P. Heffron
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 2015; 1628:298-316. [PMID: 26187753 PMCID: PMC4681613 DOI: 10.1016/j.brainres.2015.07.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
The strength of the blood-brain barrier (BBB) in providing protection to the central nervous system from exposure to circulating chemicals is maintained by tight junctions between endothelial cells and by a broad range of transporter proteins that regulate exchange between CNS and blood. The most important transporters that restrict the permeability of large number of toxins as well as therapeutic agents are the ABC transporters. Among them, P-gp, BCRP, MRP1 and MRP2 are the utmost studied. These efflux transporters are neuroprotective, limiting the brain entry of neurotoxins; however, they could also restrict the entry of many therapeutics and contribute to CNS pharmacoresistance. Characterization of several regulatory pathways that govern expression and activity of ABC efflux transporters in the endothelium of brain capillaries have led to an emerging consensus that these processes are complex and contain several cellular and molecular elements. Alterations in ABC efflux transporters expression and/or activity occur in several neurological diseases. Here, we review the signaling pathways that regulate expression and transport activity of P-gp, BCRP, MRP1 and MRP2 as well as how their expression/activity changes in neurological diseases. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hisham Qosa
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| | - David S Miller
- Laboratory of Signal Transduction, NIH/NIEHS, Research Triangle Park, NC 27709, USA
| | - Piera Pasinelli
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther 2015; 355:264-71. [PMID: 26354993 PMCID: PMC4613960 DOI: 10.1124/jpet.115.228213] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/08/2015] [Indexed: 02/01/2023] Open
Abstract
6-Acetyl-8-cyclopentyl-5-methyl-2-([5-(piperazin-1-yl)pyridin-2-yl]amino)pyrido(2,3-d)pyrimidin-7(8H)-one [palbociclib (PD-0332991)] is a cyclin-dependent kinase 4/6 inhibitor approved for the treatment of metastatic breast cancer and is currently undergoing clinical trials for many solid tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and has limited treatment options. The cyclin-dependent kinase 4/6 pathway is commonly dysregulated in GBM and is a promising target in treating this devastating disease. The blood-brain barrier (BBB) limits the delivery of drugs to invasive regions of GBM, where the efflux transporters P-glycoprotein and breast cancer resistance protein can prevent treatments from reaching the tumor. The purpose of this study was to examine the mechanisms limiting the effectiveness of palbociclib therapy in an orthotopic xenograft model. The in vitro intracellular accumulation results demonstrated that palbociclib is a substrate for both P-glycoprotein and breast cancer resistance protein. In vivo studies in transgenic mice confirmed that efflux transport is responsible for the limited brain distribution of palbociclib. There was an ∼115-fold increase in brain exposure at steady state in the transporter deficient mice when compared with wild-type mice, and the efflux inhibitor elacridar significantly increased palbociclib brain distribution. Efficacy studies demonstrated that palbociclib is an effective therapy when GBM22 tumor cells are implanted in the flank, but ineffective in an orthotopic (intracranial) model. Moreover, doses designed to mimic brain exposure were ineffective in treating flank tumors. These results demonstrate that efflux transport in the BBB is involved in limiting the brain distribution of palbociclib and this has critical implications in determining effective dosing regimens of palbociclib therapy in the treatment of brain tumors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Acridines/pharmacology
- Animals
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Blood-Brain Barrier/metabolism
- Brain Neoplasms/drug therapy
- Brain Neoplasms/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Dogs
- Drug Resistance, Neoplasm
- Drug Synergism
- Female
- Glioblastoma/drug therapy
- Glioblastoma/metabolism
- Heterografts
- Madin Darby Canine Kidney Cells
- Male
- Mice
- Mice, Knockout
- Mice, Nude
- Neoplasm Transplantation
- Piperazines/pharmacokinetics
- Piperazines/pharmacology
- Pyridines/pharmacokinetics
- Pyridines/pharmacology
- Tetrahydroisoquinolines/pharmacology
Collapse
Affiliation(s)
- Karen E Parrish
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (K.E.P., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.P., K.B., J.N.S.)
| | - Jenny Pokorny
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (K.E.P., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.P., K.B., J.N.S.)
| | - Rajendar K Mittapalli
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (K.E.P., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.P., K.B., J.N.S.)
| | - Katrina Bakken
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (K.E.P., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.P., K.B., J.N.S.)
| | - Jann N Sarkaria
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (K.E.P., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.P., K.B., J.N.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (K.E.P., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.P., K.B., J.N.S.)
| |
Collapse
|
14
|
Depot delivery of dexamethasone and cediranib for the treatment of brain tumor associated edema in an intracranial rat glioma model. J Control Release 2015; 217:183-90. [PMID: 26285064 DOI: 10.1016/j.jconrel.2015.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
Treatments of brain tumor associated edema with systemically delivered dexamethasone, the standard of care, and cediranib, a novel anti-edema agent, are associated with systemic toxicities in brain tumor patients. A tunable, reservoir-based drug delivery device was developed to investigate the effects of delivering dexamethasone and cediranib locally in the brain in an intracranial 9L gliosarcoma rat model. Reproducible, sustained releases of both dexamethasone and solid dispersion of cediranib in polyvinylpyrrolidone (AZD/PVP) from these devices were achieved. The water-soluble AZD/PVP, which exhibited similar bioactivity as cediranib, was developed to enhance the release of cediranib from the device. Local and systemic administration of both dexamethasone and cediranib was equally efficacious in alleviating edema but had no effect on tumor growth. Edema reduction led to modest but significant improvement in survival. Local delivery of dexamethasone prevented dexamethasone-induced weight loss, an adverse effect seen in animals treated with systemic dexamethasone. Local deliveries of dexamethasone and cediranib via these devices used only 2.36% and 0.21% of the systemic doses respectively, but achieved similar efficacy as systemic drug deliveries without the side effects associated with systemic administration. Other therapeutic agents targeting brain tumor can be delivered locally in the brain to provide similar improved treatment outcomes.
Collapse
|
15
|
Lau D, Magill ST, Aghi MK. Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus 2015; 37:E15. [PMID: 25434384 DOI: 10.3171/2014.9.focus14519] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECT Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is expected and is extremely difficult to treat. Over the past decade, the accumulation of knowledge regarding the molecular and genetic profile of glioblastoma has led to numerous molecularly targeted therapies. This article aims to review the literature and highlight the mechanisms and efficacies of molecularly targeted therapies for recurrent glioblastoma. METHODS A systematic search was performed with the phrase "(name of particular agent) and glioblastoma" as a search term in PubMed to identify all articles published up until 2014 that included this phrase in the title and/or abstract. The references of systematic reviews were also reviewed for additional sources. The review included clinical studies that comprised at least 20 patients and reported results for the treatment of recurrent glioblastoma with molecular targeted therapies. RESULTS A total of 42 articles were included in this review. In the treatment of recurrent glioblastoma, various targeted therapies have been tested over the past 10-15 years. The targets of interest include epidermal growth factor receptor, vascular endothelial growth factor receptor, platelet-derived growth factor receptor, Ras pathway, protein kinase C, mammalian target of rapamycin, histone acetylation, and integrins. Unfortunately, the clinical responses to most available targeted therapies are modest at best. Radiographic responses generally range in the realm of 5%-20%. Progression-free survival at 6 months and overall survival were also modest with the majority of studies reporting a 10%-20% 6-month progression-free survival and 5- to 8-month overall survival. There have been several clinical trials evaluating the use of combination therapy for molecularly targeted treatments. In general, the outcomes for combination therapy tend to be superior to single-agent therapy, regardless of the specific agent studied. CONCLUSIONS Recurrent glioblastoma remains very difficult to treat, even with molecular targeted therapies and anticancer agents. The currently available targeted therapy regimens have poor to modest activity against recurrent glioblastoma. As newer agents are actively being developed, combination regimens have provided the most promising results for improving outcomes. Targeted therapies matched to molecular profiles of individual tumors are predicted to be a critical component necessary for improving efficacy in future trials.
Collapse
Affiliation(s)
- Darryl Lau
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | | |
Collapse
|
16
|
Shivinsky A, Bronshtein T, Haber T, Machluf M. The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices 2015; 17:69. [DOI: 10.1007/s10544-015-9969-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
18
|
Khurana V, Minocha M, Pal D, Mitra AK. Role of OATP-1B1 and/or OATP-1B3 in hepatic disposition of tyrosine kinase inhibitors. ACTA ACUST UNITED AC 2015; 29:179-90. [PMID: 24643910 DOI: 10.1515/dmdi-2013-0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/12/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The metabolism of tyrosine kinase inhibitors (TKIs) is mainly mediated via hepatic route, but the mechanism responsible for their hepatocellular accumulation is still unknown. This study was designed to understand the contribution of organic anion transporting polypeptides (OATPs) in the hepatic uptake of selected TKIs - pazopanib, canertinib, erlotinib, vandetanib and nilotinib. METHODS Michaelis-Menten (MM) kinetic parameters for TKIs were determined by concentration-dependent cellular accumulation of selected TKIs using Chinese hamster ovary cells - wild type as well as transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins. RESULTS The MM constant (Km) values of OATP-1B1 for nilotinib and vandetanib are 10.14±1.91 and 2.72±0.25 μM, respectively, and Vmax values of OATP-1B1 for nilotinib and vandetanib were 6.95±0.47 and 75.95±1.99 nmol/mg protein per minute, respectively. Likewise, Km values of OATP-1B3 for canertinib, nilotinib and vandetanib were 12.18±3.32, 7.84±1.43 and 4.37±0.79 μM, respectively, and Vmax values of OATP-1B3 for canertinib, nilotinib and vandetanib were 15.34±1.59, 6.75±0.42 and 194.64±10.58 nmol/mg protein per minute, respectively. Canertinib did not exhibit any substrate specificity toward OATP-1B1. Also, erlotinib and pazopanib did not exhibit any substrate specificity toward OATP-1B1 and -1B3. CONCLUSIONS Because selected TKIs are the substrates of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated drug-drug interactions (DDIs). Any alteration in the function of these hepatic OATPs might account for the pharmacokinetic variability of TKIs.
Collapse
|
19
|
Lin F, de Gooijer MC, Hanekamp D, Brandsma D, Beijnen JH, van Tellingen O. Targeting core (mutated) pathways of high-grade gliomas: challenges of intrinsic resistance and drug efflux. CNS Oncol 2015; 2:271-88. [PMID: 25054467 DOI: 10.2217/cns.13.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-grade gliomas are the most common type of primary brain tumor and are among the most lethal types of human cancer. Most patients with a high-grade glioma have glioblastoma multiforme (GBM), the most malignant glioma subtype that is associated with a very aggressive disease course and short overall survival. Standard treatment of newly diagnosed GBM involves surgery followed by chemoradiation with temozolomide. However, despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Although different types of GBMs are indistinguishable by histopathology, novel molecular pathological techniques allow discrimination between the four main GBM subtypes. Targeting the aberrations in the molecular pathways underlying these subtypes is a promising strategy to improve therapy. In this article, we will discuss the potential avenues and pitfalls of molecularly targeted therapies for the treatment of GBM.
Collapse
Affiliation(s)
- Fan Lin
- Department of Clinical Chemistry/Preclinical Pharmacology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Durmus S, Hendrikx JJMA, Schinkel AH. Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv Cancer Res 2015; 125:1-41. [PMID: 25640265 DOI: 10.1016/bs.acr.2014.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters that mediate cellular extrusion of a broad range of substrates ranging from amino acids, lipids, and ions to xenobiotics including many anticancer drugs. ABCB1 (P-GP) and ABCG2 (BCRP) are the most extensively studied apical ABC drug efflux transporters. They are highly expressed in apical membranes of many pharmacokinetically relevant tissues such as epithelial cells of the small intestine and endothelial cells of the blood capillaries in brain and testis, and in the placental maternal-fetal barrier. In these tissues, they have a protective function as they efflux their substrates back to the intestinal lumen or blood and thus restrict the intestinal uptake and tissue disposition of many compounds. This presents a major challenge for the use of many (anticancer) drugs, as most currently used anticancer drugs are substrates of these transporters. Herein, we review the latest findings on the role of apical ABC transporters in the disposition of anticancer drugs. We discuss that many new, rationally designed anticancer drugs are substrates of these transporters and that their oral availability and/or brain disposition are affected by this interaction. We also summarize studies that investigate the improvement of oral availability and brain disposition of many cytotoxic (e.g., taxanes) and rationally designed (e.g., tyrosine kinase inhibitor) anticancer drugs, using chemical inhibitors of these transporters. These findings provide a better understanding of the importance of apical ABC transporters in chemotherapy and may therefore advance translation of promising preclinical insights and approaches to clinical studies.
Collapse
Affiliation(s)
- Selvi Durmus
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alfred H Schinkel
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Kort A, Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm Res 2015; 32:2205-16. [DOI: 10.1007/s11095-014-1609-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022]
|
22
|
Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights. Pharm Res 2014; 32:819-39. [DOI: 10.1007/s11095-014-1522-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
|
23
|
Deng J, Shao J, Markowitz JS, An G. ABC transporters in multi-drug resistance and ADME-Tox of small molecule tyrosine kinase inhibitors. Pharm Res 2014; 31:2237-2255. [PMID: 24842659 DOI: 10.1007/s11095-014-1389-0/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/15/2014] [Indexed: 05/26/2023]
Abstract
The past decade has seen tremendous efforts in the research and development of new chemotherapeutic drugs using target-based approaches. These efforts have led to the discovery of small molecule tyrosine kinase inhibitors (TKIs). Following the initial approval of imatinib by the US FDA in 2001, more than 15 TKIs targeting different tyrosine kinases have been approved, and numerous others are in various phases of clinical evaluation. Unlike conventional chemotherapy that can cause non-discriminating damage to both normal and cancerous cells, TKIs attack cancer-specific targets and therefore have a more favorable safety profile. However, although TKIs have had outstanding success in cancer therapy, there has been increasing evidence of resistance to TKIs. The enhanced efflux of TKIs by ATP-binding cassette (ABC) transporters over-expressed in cancer cells has been found to be one such important resistance mechanism. Another major drawback of TKI therapies that has been increasingly recognized is the extensive inter-individual pharmacokinetic variability, in which ABC transporters seem to play a major role as well. This review covers recent findings on the interactions of small molecule TKIs with ABC transporters. The effects of ABC transporters on anticancer efficacy and the absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) of the small molecule TKIs are summarized in detail. Since TKIs have been found to not only serve as substrates of ABC transporters, but also as modulators of these proteins via inhibition or induction, their influence upon ABC transporters and potential role on TKI-drug interactions are discussed as well.
Collapse
Affiliation(s)
- Jiexin Deng
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, Florida, 32827, USA
| | | | | | | |
Collapse
|
24
|
Vaidhyanathan S, Mittapalli RK, Sarkaria JN, Elmquist WF. Factors influencing the CNS distribution of a novel MEK-1/2 inhibitor: implications for combination therapy for melanoma brain metastases. Drug Metab Dispos 2014; 42:1292-300. [PMID: 24875464 PMCID: PMC4109207 DOI: 10.1124/dmd.114.058339] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/27/2014] [Indexed: 01/20/2023] Open
Abstract
Brain metastases are a major cause of mortality in patients with advanced melanoma. Adequate brain distribution of targeted agents for melanoma will be critical for treatment success. Recently, improvement in overall survival led to US Food and Drug Administration (FDA) approval of the v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors, vemurafenib and dabrafenib, and the mitogen-activated protein kinase kinase-1 (MEK)-1/2 inhibitor, trametinib. However, brain metastases and emergence of resistance remain a significant problem. MEK-1/2 is downstream of BRAF in the mitogen-activated protein kinase (MAPK) signaling pathway, making it an attractive target to combat resistance. The recently approved combination of dabrafenib and trametinib has shown improvement in progression-free survival; however, adequate brain distribution of both compounds is required to effectively treat brain metastases. In previous studies, we found limited brain distribution of dabrafenib. The purpose of the current study was to investigate factors influencing the brain distribution of trametinib. In vitro studies indicated that trametinib is a substrate for both P-glycoprotein (P-gp) and Bcrp, efflux transporters found at the blood-brain barrier. In vivo studies in transgenic mouse models confirmed that P-gp plays an important role in restricting brain distribution of trametinib. The brain-to-plasma partition coefficient (AUCbrain/AUCplasma) was approximately 5-fold higher in Mdr1a/b((-/-)) (P-gp knockout) and Mdr1a/b((-/-))Bcrp1((-/-)) (triple knockout) mice when compared with wild-type and Bcrp1((-/-)) (Bcrp knockout) mice. The brain distribution of trametinib was similar between the wild-type and Bcrp knockout mice. These results show that P-gp plays an important role in limiting brain distribution of trametinib and may have important implications for use of trametinib as single agent or in combination therapy for treatment of melanoma brain metastases.
Collapse
Affiliation(s)
- Shruthi Vaidhyanathan
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (S.V., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Rajendar K Mittapalli
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (S.V., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Jann N Sarkaria
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (S.V., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (S.V., R.K.M., W.F.E.); and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| |
Collapse
|
25
|
Pavan B, Paganetto G, Rossi D, Dalpiaz A. Multidrug resistance in cancer or inefficacy of neuroactive agents: innovative strategies to inhibit or circumvent the active efflux transporters selectively. Drug Discov Today 2014; 19:1563-71. [PMID: 24929222 DOI: 10.1016/j.drudis.2014.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 01/13/2023]
Abstract
Multidrug resistance (MDR) is a crucial issue in the treatment of cancer cells that protect themselves by overexpression of active efflux transporters (AETs). AET expression maintains the homeostasis in healthy tissues and in the blood-brain barrier it often prevents drugs from reaching the brain. Inhibition of AETs could therefore be a valuable solution for preventing MDR; but nonselective long-term AET blocking can be harmful toward healthy tissues and, in particular, the brain. This review looks at the development of innovative formulations suitable for selectively blocking or avoiding AETs as promising ways to overcome the challenges of MDR and inefficacy of neuroactive agents.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Damiano Rossi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Abstract
Despite epochal advances in brain imaging, radiation delivery, and neurosurgical sophistication, the survival of patients with primary malignant astrocytomas has not been met with commensurate progress. While temozolomide, an alkylating agent, has demonstrated a survival benefit, median survival in the past decade of patients with glioblastoma (GBM) remains an obdurate 15 months and add-on therapies have not significantly prolonged life. It is likely that further advances may need to await additional discoveries that are slowly being revealed by molecular exploration of the tumor genome. This review summarizes many recent developments in molecular neuro-oncology and examines formidable challenges imposed by the highly restrictive properties of the blood-brain barrier (BBB) that impact effective drug delivery.
Collapse
Affiliation(s)
- Robert Aiken
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL; Coleman Foundation Comprehensive Brain Tumor Center, Rush University Medical Center, Chicago, IL.
| |
Collapse
|
27
|
Deng J, Shao J, Markowitz JS, An G. ABC Transporters in Multi-Drug Resistance and ADME-Tox of Small Molecule Tyrosine Kinase Inhibitors. Pharm Res 2014; 31:2237-55. [DOI: 10.1007/s11095-014-1389-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/15/2014] [Indexed: 12/31/2022]
|
28
|
Oberoi RK, Mittapalli RK, Elmquist WF. Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 2013; 347:755-64. [PMID: 24113148 PMCID: PMC3836310 DOI: 10.1124/jpet.113.208959] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/10/2013] [Indexed: 01/05/2023] Open
Abstract
This study quantitatively assessed transport mechanisms that limit the brain distribution of sunitinib and investigated adjuvant strategies to improve its brain delivery for the treatment of glioblastoma multiforme (GBM). Sunitinib has not shown significant activity in GBM clinical trials, despite positive results seen in preclinical xenograft studies. We performed in vivo studies in transgenic Friend leukemia virus strain B mice: wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) genotypes were examined. The brain-to-plasma area under the curve ratio after an oral dose (20 mg/kg) was similar to the steady-state tissue distribution coefficient, indicating linear distribution kinetics in mice over this concentration range. Furthermore, the distribution of sunitinib to the brain increased after administration of selective P-glycoprotein (P-gp) or breast cancer resistance protein (Bcrp) pharmacological inhibitors and a dual inhibitor, elacridar, comparable to that of the corresponding transgenic genotype. The brain-to-plasma ratio after coadministration of elacridar in wild-type mice was ≈ 12 compared with ≈ 17.3 in Mdr1a/b(-/-)Bcrp1(-/-) mice. Overall, these findings indicate that there is a cooperation at the blood-brain barrier (BBB) in restricting the brain penetration of sunitinib, and brain delivery can be enhanced by administration of a dual inhibitor. These data indicate that the presence of cooperative efflux transporters, P-gp and Bcrp, in an intact BBB can protect invasive glioma cells from chemotherapy. Thus, one may consider the use of transporter inhibition as a powerful adjuvant in the design of future clinical trials for the targeted delivery of sunitinib in GBM.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacokinetics
- Area Under Curve
- Blood-Brain Barrier/metabolism
- Brain/metabolism
- Chromatography, High Pressure Liquid
- Data Interpretation, Statistical
- Half-Life
- Indoles/metabolism
- Indoles/pharmacokinetics
- Mice
- Mice, Knockout
- Pyrroles/metabolism
- Pyrroles/pharmacokinetics
- Sunitinib
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Rajneet K Oberoi
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
29
|
Wang T, Baron K, Zhong W, Brundage R, Elmquist W. Bayesian approach to estimate AUC, partition coefficient and drug targeting index for studies with serial sacrifice design. Pharm Res 2013; 31:649-59. [PMID: 24092052 DOI: 10.1007/s11095-013-1187-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. METHODS In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. RESULTS Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. CONCLUSIONS This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.
Collapse
Affiliation(s)
- Tianli Wang
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Minneapolis, Minnesota, 55455, USA
| | | | | | | | | |
Collapse
|
30
|
Hosten B, Boisgard R, Jacob A, Goutal S, Saubaméa B, Dollé F, Scherrmann JM, Cisternino S, Tournier N. [¹¹C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: a PET study using Bcrp TGEM knockout rats. Eur J Pharm Sci 2013; 50:520-5. [PMID: 23981334 DOI: 10.1016/j.ejps.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 12/22/2022]
Abstract
Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [(11)C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [(11)C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [(11)C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [(11)C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo.
Collapse
Affiliation(s)
- Benoit Hosten
- INSERM U705, CNRS UMR8206, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, Université Paris Diderot, Paris F-75006, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Resnier P, David S, Lautram N, Delcroix GJR, Clavreul A, Benoit JP, Passirani C. EGFR siRNA lipid nanocapsules efficiently transfect glioma cells in vitro. Int J Pharm 2013; 454:748-55. [PMID: 23583841 DOI: 10.1016/j.ijpharm.2013.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 11/24/2022]
Abstract
Glioma are the most common malignant tumors of the central nervous system and remain associated with poor prognosis, despite the combination of chemotherapy and radiotherapy. EGFR targeting represents an interesting strategy to treat glioma. Indeed, a high level of endothelial growth factor receptors expression (EGFR), involved in the malignancy of the tumor, has been observed in glioma. Our strategy consisted in using EGFR siRNA entrapped into lipid nanocapsules (LNCs) via cationic liposomes. In vitro analyses on U87MG human glioma cells were performed to evaluate firstly the capacity of LNCs to efficiently deliver the siRNA and secondly the effect of EGFR siRNA targeting on U87MG proliferation. Then, the complement protein consumption was evaluated by CH50 assays to verify the suitability of the siRNA LNCs for systemic administration. The EGFR siRNA LNCs exhibited an adequate size lower than 150 nm as well as a neutral surface charge. The IC50 profile together with the 63% of protein extinction demonstrated the significant action of EGFR siRNA LNCs compared to scrambled LNCs. Dose and time-dependent survival assays showed a decrease of U87MG growth evaluated at 38%. Finally, low complement consumption demonstrated the suitability of EGFR siRNA LNCs for intravenous injection. In conclusion, EGFR siRNA LNCs demonstrated their capacity to efficiently encapsulate and deliver siRNA into U87MG human glioma cells, and will therefore be usable in the future for in vivo evaluation.
Collapse
|
32
|
Sane R, Agarwal S, Mittapalli RK, Elmquist WF. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther 2013; 345:111-24. [PMID: 23397054 PMCID: PMC3608446 DOI: 10.1124/jpet.112.199786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/06/2013] [Indexed: 12/25/2022] Open
Abstract
The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(-/-) mice, 6.6 in Bcrp1(-/-) mice, and 15 in Mdr1a/b(-/-)Bcrp1(-/-) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(-/-) mice compared with Bcrp1(-/-) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Acridines/administration & dosage
- Acridines/pharmacokinetics
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Cell Culture Techniques
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Dogs
- Dose-Response Relationship, Drug
- Humans
- Injections, Intravenous
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Knockout
- Models, Biological
- Nonlinear Dynamics
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/blood
- Tetrahydroisoquinolines/pharmacokinetics
- Tissue Distribution
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Ramola Sane
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Nintedanib (BIBF 1120) is a small, orally available, triple angiokinase inhibitor in phase III development (various indications) that targets VEGFR 1-3, FGFR 1-3, and PDGFR-α/β. This open-label, uncontrolled, phase II study assessed the efficacy and safety of nintedanib in patients with recurrent glioblastoma multiforme (GBM) who had previously failed radiotherapy plus temozolomide as first-line therapy (STUPP), or the same regimen with subsequent bevacizumab-based therapy as second-line treatment (BEV). Patients with a performance status of 0-1, histologically proven GBM, and measurable disease (by RANO) were enrolled. Nintedanib was given orally at a dose of 200 mg twice daily (bid), with magnetic resonance imaging undertaken every 8 weeks. The primary endpoint was objective response rate. The study was stopped prematurely following a preplanned futility analysis after inclusion of 13 patients in the STUPP arm and 12 in the BEV arm. Best response was stable disease (SD) in three patients (12 %); all other patients progressed within the first four 28-day cycles. One patient in the BEV arm has had SD for 17+ months. Median progression-free survival was 1 month and median overall survival was 6 months. Nintedanib had an acceptable safety profile, with no CTCAE grade 3-4 adverse events. Common adverse events were CTCAE grade 1-2 fatigue, loss of appetite, diarrhea, and nausea. Single-agent nintedanib (200 mg bid) demonstrated limited, but clinically non-relevant antitumor activity in patients with recurrent GBM who had failed 1-2 prior lines of therapy.
Collapse
|