1
|
Stewart RG, Marquis MJ, Jo S, Harris BJ, Aberra AS, Cook V, Whiddon Z, Yarov-Yarovoy V, Ferns M, Sack JT. A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers. eLife 2025; 13:RP99410. [PMID: 40423692 PMCID: PMC12113274 DOI: 10.7554/elife.99410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (KCNB1) or Kv2.2 (KCNB2). Mammals have 10 KvS subunits: Kv5.1 (KCNF1), Kv6.1 (KCNG1), Kv6.2 (KCNG2), Kv6.3 (KCNG3), Kv6.4 (KCNG4), Kv8.1 (KCNV1), Kv8.2 (KCNV2), Kv9.1 (KCNS1), Kv9.2 (KCNS2), and Kv9.3 (KCNS3). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS heteromers and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find predominantly RY785-sensitive conductances consistent with channels composed entirely of Kv2 subunits. In contrast, RY785-resistant but GxTX-sensitive conductances consistent with Kv2/KvS heteromeric channels predominate in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs which distinguish KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Matthew James Marquis
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Brandon J Harris
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Aman S Aberra
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| | - Verity Cook
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Einstein Center for Neuroscience, Charité Universitätsmedizin BerlinHufelandwegGermany
| | - Zachary Whiddon
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Michael Ferns
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| |
Collapse
|
2
|
Stewart RG, Marquis MJ, Jo S, Harris B, Aberra A, Cook V, Whiddon Z, Yarov-Yarovoy V, Ferns M, Sack JT. A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.31.578214. [PMID: 38352561 PMCID: PMC10862871 DOI: 10.1101/2024.01.31.578214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (KCNB1) or Kv2.2 (KCNB2). Mammals have 10 KvS subunits: Kv5.1 (KCNF1), Kv6.1 (KCNG1), Kv6.2 (KCNG2), Kv6.3 (KCNG3), Kv6.4 (KCNG4), Kv8.1 (KCNV1), Kv8.2 (KCNV2), Kv9.1 (KCNS1), Kv9.2 (KCNS2), and Kv9.3 (KCNS3). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS heteromers and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find predominantly RY785-sensitive conductances consistent with channels composed entirely of Kv2 subunits. In contrast, RY785-resistant but GxTX-sensitive conductances consistent with Kv2/KvS heteromeric channels predominate in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs which distinguish KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.
Collapse
|
3
|
Xu JW, Ma L, Xiang Y, Dai MQ, Li QH, Jin XY, Ruan Y, Li Y, Wang JY, Shen X. Glabridin as a selective Kv2.1 inhibitor ameliorates DPN pathology by disrupting the Aβ/Kv2.1/JNK/NF-κB/NLRP3/p-Tau pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01526-6. [PMID: 40113986 DOI: 10.1038/s41401-025-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. DPN has a complicated pathogenesis, and the currently clinical drugs against this disease show only limited efficacy and undesirable side effects. Thus, it is of great challenges to discover effective targets and drugs against DPN. Glabridin (GLA) is a natural prenylated isoflavone from the roots of Glycyrrhiza glabra. It exhibits a wide range of pharmacological activities including anti-inflammatory, antioxidant, cardiovascular protective, neuroprotective, hepatoprotective, anti-obesity and anti-diabetic effects, etc. In this study we investigated the beneficial effects of GLA on late-stage DPN and the underlying mechanisms. Using electrophysiological recording from CHO-Kv2.1 cells, we identified GLA as a new Kv2.1-selective inhibitor with an IC50 value of 2.07 μM. We showed that oral administration of GLA (30, 60 mg·kg-1·d-1) for 4 weeks significantly improved all neurological dysfunctions and peripheral vascular dysfunctions in DPN mice. Furthermore, we demonstrated that GLA administration improved intraepidermal nerve fiber (IENF) density damage and myelin sheath injury, promoted neurite outgrowth of DRG neurons and alleviated the apoptosis of DRG neurons in DPN mice. All these beneficial effects of GLA were deprived in Kv2.1-knockdown DPN mice specifically in the DRG and sciatic nerve tissues by injection of adeno associated virus AAV8-Kv2.1-RNAi (AAV8-Kv2.1). We showed that the levels of Aβ and hyperphosphorylated tau proteins (p-Tau) were pathologically increased in serum of DPN patients. We demonstrated that Kv2.1 channels bridged Aβ to activate NLRP3 inflammasome in Schwann cells and promote p-Tau production in DRG neurons through Schwann cells/DRG neurons crosstalk. GLA interrupted Aβ/Kv2.1/NLRP3/p-Tau axis to ameliorate the DPN-like pathology in mice. Our results support that Kv2.1 inhibition is a therapeutic strategy for DPN and highlight the potential of GLA in treating this disease.
Collapse
Affiliation(s)
- Jia-Wen Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, 226000, China
| | - Lin Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Qing Dai
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiu-Hui Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Yan Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jia-Ying Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Forzisi-Kathera-Ibarra E, Jo C, Castillo L, Gaur A, Lad P, Bortolami A, Roser C, Venkateswaran S, Dutto S, Selby M, Sampath H, Pan PY, Sesti F. KCNB1-Leptin receptor complexes couple electric and endocrine function in the melanocortin neurons of the hypothalamus. FASEB J 2024; 38:e70111. [PMID: 39436109 PMCID: PMC11556505 DOI: 10.1096/fj.202401931r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv+) channel named KCNB1 (alias Kv2.1) forms stable complexes with the leptin receptor (LepR) in a subset of hypothalamic neurons including proopiomelanocortin (POMC) expressing neurons of the Arcuate nucleus (ARHPOMC). Mice lacking functional KCNB1 channels (NULL mice) have less adipose tissue and circulating leptin than WT animals and are insensitive to anorexic stimuli induced by leptin administration. NULL mice produce aberrant amounts of POMC at any developmental stage. Canonical LepR-STAT3 signaling-which underlies POMC production-is impaired, whereas non-canonical insulin receptor substrate PI3K/Akt/FOXO1 and ERK signaling are constitutively upregulated in NULL hypothalami. The levels of proto-oncogene c-Fos-that provides an indirect measure of neuronal activity-are higher in arcuate NULL neurons compared to WT and most importantly do not increase in the former upon leptin stimulation. Hence, a Kv channel provides a molecular link between neuronal excitability and endocrine function in hypothalamic neurons.
Collapse
Affiliation(s)
- Elena Forzisi-Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Chanmee Jo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
- current address: University of Pennsylvania, School of Engineering and Applied Science, 3312 Walnut St., Philadelphia, PA 19104, United States of America
| | - Leonard Castillo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Anika Gaur
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Prachi Lad
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Christian Roser
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Srinidi Venkateswaran
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Stefania Dutto
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Matthew Selby
- Department of Nutritional Sciences, Rutgers University, 61 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, 61 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Shi M, Li Q, Wang Y, He LS. The somatic genome of Eptatretus okinoseanus reveals the adaptation to deep-sea oligotrophic environment. BMC Genomics 2024; 25:807. [PMID: 39192189 DOI: 10.1186/s12864-024-10727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Hagfishes are fascinating creatures that typically inhabit the deep sea. The deep sea is characterized by its lack of sunlight, primary productivity, and diminishing biomass with increasing ocean depth. Therefore, hagfishes living in this environment must develop effective survival strategies to adapt to the limited food supply. Deep-sea hagfishes have been observed to survive without food intake for up to one year. In this study, we have assembled a high-quality somatic genome of the deep-sea hagfish (Eptatretus okinoseanus) captured below 1,000 m. We compared the genome of E. okinoseanus with the genomes of inshore hagfish, lampreys, and other related species to investigate the genetic factors underlying the deep-sea hagfish adaptations to the environment. RESULTS The E. okinoseanus somatic genome was estimated to be 1.89 Gb and assembled into 17 pseudochromosomes. Phylogenetic analysis showed that shallow-sea and deep-sea hagfishes diverged approximately 58.8 million years ago. We found Perilipin gene family was significantly expanded in deep sea E. okinoseanus, which promotes triacylglycerol storage. Furthermore, a series of genes involved in fatty acid synthesis and metabolism, blood glucose regulation, and metabolic rate regulation were also expanded, rapid evolution or positive selection, and these changes contribute to their efficiency in energy utilization. Among these genes, the positively selected gene JNK may play an important role in energy metabolism. In addition, the olfactory receptors of the deep-sea hagfish were significantly expanded to 86, and three conserved motifs present only in hagfishes olfactory receptors were identified, which may facilitate the rapid localization of carrion. CONCLUSIONS This study provides valuable genomic resources for insights into the survival strategies of deep-sea hagfishes in oligotrophic environments.
Collapse
Affiliation(s)
- Mengke Shi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
| |
Collapse
|
6
|
Bhat S, Rousseau J, Michaud C, Lourenço CM, Stoler JM, Louie RJ, Clarkson LK, Lichty A, Koboldt DC, Reshmi SC, Sisodiya SM, Hoytema van Konijnenburg EMM, Koop K, van Hasselt PM, Démurger F, Dubourg C, Sullivan BR, Hughes SS, Thiffault I, Tremblay ES, Accogli A, Srour M, Blunck R, Campeau PM. Mono-allelic KCNB2 variants lead to a neurodevelopmental syndrome caused by altered channel inactivation. Am J Hum Genet 2024; 111:761-777. [PMID: 38503299 PMCID: PMC11023922 DOI: 10.1016/j.ajhg.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Justine Rousseau
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Coralie Michaud
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | | | - Joan M Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Angie Lichty
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shalini C Reshmi
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Klaas Koop
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter M van Hasselt
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Université de Rennes, CNRS, IGDR, UMR 6290 Rennes, France
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Susan S Hughes
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Departments of Pediatrics and of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Elisabeth Simard Tremblay
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montréal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Rikard Blunck
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
7
|
Stewart RG, Camacena M, Copits BA, Sack JT. Distinct cellular expression and subcellular localization of Kv2 voltage-gated K + channel subtypes in dorsal root ganglion neurons conserved between mice and humans. J Comp Neurol 2024; 532:e25575. [PMID: 38335058 PMCID: PMC10861167 DOI: 10.1002/cne.25575] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 02/12/2024]
Abstract
The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here, we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1 and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar, while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization are similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1 in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Miriam Camacena
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Bryan A Copits
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Lu J, Zhao RX, Xiong FR, Zhu JJ, Shi TT, Zhang YC, Peng GX, Yang JK. All-potassium channel CRISPR screening reveals a lysine-specific pathway of insulin secretion. Mol Metab 2024; 80:101885. [PMID: 38246588 PMCID: PMC10847698 DOI: 10.1016/j.molmet.2024.101885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic β-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic β cell line to identify genes associated with insulin secretion. RESULTS The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with β-cell-specific deletion of Kcnh6. CONCLUSIONS Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Gong-Xin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100740, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China.
| |
Collapse
|
9
|
Stewart RG, Camacena M, Copits BA, Sack JT. Distinct cellular expression and subcellular localization of Kv2 voltage-gated K + channel subtypes in dorsal root ganglion neurons conserved between mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530679. [PMID: 38187582 PMCID: PMC10769185 DOI: 10.1101/2023.03.01.530679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1, and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization is similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1, in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - Miriam Camacena
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - Bryan A Copits
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
11
|
Zhao X, Deng L, Ren L, Yang H, Wang B, Zhu X, Zhang X, Guo C, Zhang Y, Liu Y. VPAC2 receptor mediates VIP-potentiated insulin secretion via ion channels in rat pancreatic β cells. Exp Cell Res 2023; 423:113471. [PMID: 36642263 DOI: 10.1016/j.yexcr.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Vasoactive intestinal peptide (VIP), a small neuropeptide composing of 28 amino acids, functions as a neuromodulator with insulinotropic effect on pancreatic β cells, in which it is of vital importance in regulating the levels of blood glucose. VIP potently agonizes VPAC2 receptor (VPAC2-R). Agonists of VPAC2-R stimulate glucose-dependent insulin secretion. The purpose of this study was to further investigate the possible ion channel mechanisms in VPAC2-R-mediated VIP-potentiated insulin secretion. The results of insulin secretion experiments showed that VIP augmented insulin secretion in a glucose-dependent manner. The insulinotropic effect was mediated by VPAC2-R rather than VPAC1 receptor (VPAC1-R), through the adenylyl cyclase (AC)/protein kinase A (PKA) signalling pathway. The calcium imaging analysis demonstrated that VIP increased intracellular Ca2+ concentration ([Ca2+]i). In addition, in the whole-cell voltage-clamp mode, we found that VIP blocked the voltage-dependent potassium (Kv) channel currents, while this effect was reversed by inhibiting the VPAC2-R, AC or PKA respectively. Taken together, these findings suggest that VIP stimulates insulin secretion by inhibiting the Kv channels, activating the Ca2+ channels, and increasing [Ca2+]i through the VPAC2-R and AC/PKA signalling pathway. These findings provide theoretical basis for the research of VPAC2-R as a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Bin Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoli Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
12
|
Das S, Taylor K, Kozubek J, Sardell J, Gardner S. Genetic risk factors for ME/CFS identified using combinatorial analysis. J Transl Med 2022; 20:598. [PMID: 36517845 PMCID: PMC9749644 DOI: 10.1186/s12967-022-03815-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease that lacks known pathogenesis, distinctive diagnostic criteria, and effective treatment options. Understanding the genetic (and other) risk factors associated with the disease would begin to help to alleviate some of these issues for patients. METHODS We applied both GWAS and the PrecisionLife combinatorial analytics platform to analyze ME/CFS cohorts from UK Biobank, including the Pain Questionnaire cohort, in a case-control design with 1000 cycles of fully random permutation. Results from this study were supported by a series of replication and cohort comparison experiments, including use of disjoint Verbal Interview CFS, post-viral fatigue syndrome and fibromyalgia cohorts also derived from UK Biobank, and compared results for overlap and reproducibility. RESULTS Combinatorial analysis revealed 199 SNPs mapping to 14 genes that were significantly associated with 91% of the cases in the ME/CFS population. These SNPs were found to stratify by shared cases into 15 clusters (communities) made up of 84 high-order combinations of between 3 and 5 SNPs. p-values for these communities range from 2.3 × 10-10 to 1.6 × 10-72. Many of the genes identified are linked to the key cellular mechanisms hypothesized to underpin ME/CFS, including vulnerabilities to stress and/or infection, mitochondrial dysfunction, sleep disturbance and autoimmune development. We identified 3 of the critical SNPs replicated in the post-viral fatigue syndrome cohort and 2 SNPs replicated in the fibromyalgia cohort. We also noted similarities with genes associated with multiple sclerosis and long COVID, which share some symptoms and potentially a viral infection trigger with ME/CFS. CONCLUSIONS This study provides the first detailed genetic insights into the pathophysiological mechanisms underpinning ME/CFS and offers new approaches for better diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Sayoni Das
- PrecisionLife Ltd, Long Hanborough, Oxford, UK
| | | | | | | | | |
Collapse
|
13
|
Centipede Venom: A Potential Source of Ion Channel Modulators. Int J Mol Sci 2022; 23:ijms23137105. [PMID: 35806107 PMCID: PMC9266919 DOI: 10.3390/ijms23137105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.
Collapse
|
14
|
Marquis MJ, Sack JT. Mechanism of use-dependent Kv2 channel inhibition by RY785. J Gen Physiol 2022; 154:e202112981. [PMID: 35435946 PMCID: PMC9195051 DOI: 10.1085/jgp.202112981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.
Collapse
Affiliation(s)
- Matthew James Marquis
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Jon T. Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
15
|
Li XT. Beneficial effects of carvedilol modulating potassium channels on the control of glucose. Biomed Pharmacother 2022; 150:113057. [PMID: 35658228 DOI: 10.1016/j.biopha.2022.113057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
The increased prevalence of hypertensive patients with type 2 diabetes mellitus (T2DM) is evident worldwide, leading to a higher risk of cardiovascular disease onset, which is substantially associated with disabilities and mortality in the clinic. In order to achieve the satisfyingly clinical outcomes and prognosis, the comprehensive therapies have been conducted with a beneficial effect on both blood pressure and glucose homeostasis, and clinical trials reveal that some kind of antihypertensive drugs such as angiotensin converting enzyme inhibitors (ACE-I) may, at least in part, meet the dual requirement during the disease management. As a nonselective β-blocker, carvedilol is employed for treating many cardiovascular diseases in clinical practice, including hypertension, angina pectoris and heart failure, and also exhibit the effectiveness for glycemic control and insulin resistance. Apart from alleviating sympathetic nervous system activity, several causes, such as lowering oxygen reactive species, may contribute to the effects of carvedilol on controlling plasma glucose levels, suggesting a feature of this drug having multiple targets. Interestingly, numerous distinct K+ channels expressed in pancreatic β-cells and peripheral insulin-sensitive tissues, which play a sentential role in glucose metabolism, are subjected to extensive modulation of carvdilol, establishing a linkage between K+ channels and drug's effects on the control of glucose. A variety of evidence shows that the impact of carvedilol on different K+ channels, including Kv, KAch, KATP and K2 P, can lead to positive influences for glucose homeostasis, contributing to its clinical beneficial effectiveness in treatment of hypertensive patients with T2DM. This review focus on the control of plasma glucose conferred by carvedilol modulation on K+ channels, providing the novel mechanistic explanation for drug's actions.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, Wuhan 430074, China; School of Medicine, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
16
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
17
|
Alkelai A, Greenbaum L, Docherty AR, Shabalin AA, Povysil G, Malakar A, Hughes D, Delaney SL, Peabody EP, McNamara J, Gelfman S, Baugh EH, Zoghbi AW, Harms MB, Hwang HS, Grossman-Jonish A, Aggarwal V, Heinzen EL, Jobanputra V, Pulver AE, Lerer B, Goldstein DB. The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Mol Psychiatry 2022; 27:1435-1447. [PMID: 34799694 DOI: 10.1038/s41380-021-01383-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ayan Malakar
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shannon L Delaney
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - James McNamara
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Anthony W Zoghbi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
- New York State Psychiatric Institute, Office of Mental Health, New York, NY, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hann-Shyan Hwang
- Department of Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Anat Grossman-Jonish
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vaidehi Jobanputra
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Liu T, Cui L, Xue H, Yang X, Liu M, Zhi L, Yang H, Liu Z, Zhang M, Guo Q, He P, Liu Y, Zhang Y. Telmisartan Potentiates Insulin Secretion via Ion Channels, Independent of the AT1 Receptor and PPARγ. Front Pharmacol 2021; 12:739637. [PMID: 34594226 PMCID: PMC8477257 DOI: 10.3389/fphar.2021.739637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II type 1 (AT1) receptor blockers (ARBs), as antihypertensive drugs, have drawn attention for their benefits to individuals with diabetes and prediabetes. However, the direct effects of ARBs on insulin secretion remain unclear. In this study, we aimed to investigate the insulinotropic effect of ARBs and the underlying electrophysiological mechanism. We found that only telmisartan among the three ARBs (telmisartan, valsartan, and irbesartan) exhibited an insulin secretagogue role in rat islets. Independent of AT1 receptor and peroxisome proliferator-activated receptor γ (PPARγ), telmisartan exerted effects on ion channels including voltage-dependent potassium (Kv) channels and L-type voltage-gated calcium channels (VGCCs) to promote extracellular Ca2+ influx, thereby potentiating insulin secretion in a glucose-dependent manner. Furthermore, we identified that telmisartan directly inhibited Kv2.1 channel on a Chinese hamster ovary cell line with Kv2.1 channel overexpression. Acute exposure of db/db mice to a telmisartan dose equivalent to therapeutic doses in humans resulted in lower blood glucose and increased plasma insulin concentration in OGTT. We further observed the telmisartan-induced insulinotropic and electrophysiological effects on pathological pancreatic islets or β-cells isolated from db/db mice. Collectively, our results establish an important insulinotropic function of telmisartan distinct from other ARBs in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of General Surgery, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Kow LM, Kandel H, Kilinc M, Daniels MA, Magarinos AM, Jiang CS, Pfaff DW. Potassium channels and the development of arousal-relevant action potential trains in primary hindbrain neurons. Brain Res 2021; 1768:147574. [PMID: 34274325 PMCID: PMC8513459 DOI: 10.1016/j.brainres.2021.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages. First, primary cultured neurons isolated from E12.5 embryonic hindbrain (HB), a dissection which contains all of NGC, were used to take advantage of studying neurons in vitro over using neurons in situ or in brain slices. HB neurons were tested with Guangxitoxin-1E and Resveratrol, two inhibitors of Kv2 channels which mediate the main bulk of delayed rectifier currents. Both inhibitors depressed delayed rectifier currents, but differentially: Resveratrol, but not Guangxitoxin-1E, reduced or abolished action potentials in AP trains. Since Resveratrol affects the Kv2.2 subtype, the development of the delayed rectifier mediated through Kv2.2 channels may lead to the development of HB neurons' capability to generate AP trains. Stage Two in this work found that electrophysiological properties of the primary HB neurons recorded are essentially the same as those of NGC neurons. Thus, from the two stages combined, we propose that currents mediated through Kv2.2 are crucial for generating AP trains which, in turn, lead to the development of mouse pup behavioral arousal.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | - Hagar Kandel
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Murat Kilinc
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Martin A Daniels
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Ana M Magarinos
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Caroline S Jiang
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| |
Collapse
|
20
|
Li Z, Dong W, Zhang X, Lu JM, Mei YA, Hu C. Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel Activity. Neurosci Bull 2021; 38:135-148. [PMID: 34542799 PMCID: PMC8821747 DOI: 10.1007/s12264-021-00773-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023] Open
Abstract
The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenhao Dong
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xinyuan Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jun-Mei Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan-Ai Mei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Changlong Hu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
21
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
22
|
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113177. [PMID: 32768637 DOI: 10.1016/j.jep.2020.113177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus remains the most lethal metabolic disease of contemporaneous times and despite the therapeutic arsenal currently available, research on new antidiabetic agents remains a priority. In recent years, the revitalization of Thai Traditional Medicine (TTM) became a clear priority for the Thai government, and many efforts have been undertaken to accelerate research on herbal medicines and their use in medical services in various hospitals. Additionally, and particularly in rural areas, treatment of diabetes and associated symptomatology frequently relies on herbal preparations recommended by practitioners of TTM. In the current work, medicinal plants used in Thailand for treating diabetes, as well as their hypoglycaemic pharmacological evidences and potential therapeutic use for diabetes-related complications were reviewed. MATERIALS AND METHODS Ethnopharmacological information on the plant materials used in TTM for diabetes treatment was collected through literature search in a range of scientific databases using the search terms: diabetes, folk medicine, Thailand medicinal plants, traditional medicine. Information regarding scientific evidence on the antidiabetic effects of surveyed species was obtained considering not only the most common taxonomic designation, but also taxonomic synonyms, and including the keywords 'diabetes' and 'hypoglycaemic effect'. RESULTS A total of 183 species known to be used for diabetes management in TTM were reviewed, with 30% of them still lacking experimental evidences to support claims regarding the mechanisms and phytochemicals underlying their antidiabetic properties. Moreover, a total of 46 bioactives displaying effective antidiabetic effects have been isolated from 24 species, their underlying mechanism(s) of action being fully or partially disclosed. CONCLUSIONS We deliver the most extensive survey dealing with the ethnomedicinal knowledge of Thai medicinal plants utilized on diabetes management. We are certain that the current review will spark further research on Thai plants for the development of new standardized phytomedicines through drug discovery programmes.
Collapse
Affiliation(s)
- Catarina Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Ngam Wong Wang Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
23
|
Zhu X, Chen Y, Xu X, Xu X, Lu Y, Huang X, Zhou J, Hu L, Wang J, Shen X. SP6616 as a Kv2.1 inhibitor efficiently ameliorates peripheral neuropathy in diabetic mice. EBioMedicine 2020; 61:103061. [PMID: 33096484 PMCID: PMC7581884 DOI: 10.1016/j.ebiom.2020.103061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes severely afflicting the patients, while there is yet no effective medication against this disease. As Kv2.1 channel functions potently in regulating neurological disorders, the present work was to investigate the regulation of Kv2.1 channel against DPN-like pathology of DPN model mice by using selective Kv2.1 inhibitor SP6616 (ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate) as a probe. METHODS STZ-induced type 1 diabetic mice with DPN (STZ mice) were defined at 12 weeks of age (4 weeks after STZ injection) through behavioral tests, and db/db (BKS Cg-m+/+Leprdb/J) type 2 diabetic mice with DPN (db/db mice) were at 18 weeks of age. SP6616 was administered daily via intraperitoneal injection for 4 weeks. The mechanisms underlying the amelioration of SP6616 on DPN-like pathology were investigated by RT-PCR, western blot and immunohistochemistry technical approaches against diabetic mice, and verified against the STZ mice with Kv2.1 knockdown in dorsal root ganglion (DRG) tissue by injection of adeno associated virus AAV9-Kv2.1-RNAi. Amelioration of SP6616 on the pathological behaviors of diabetic mice was assessed against tactile allodynia, thermal sensitivity and motor nerve conduction velocity (MNCV). FINDINGS SP6616 treatment effectively ameliorated the threshold of mechanical stimuli, thermal sensitivity and MNCV of diabetic mice. Mechanism research results indicated that SP6616 suppressed Kv2.1 expression, increased the number of intraepidermal nerve fibers (IENFs), improved peripheral nerve structure and vascular function in DRG tissue. In addition, SP6616 improved mitochondrial dysfunction through Kv2.1/CaMKKβ/AMPK/PGC-1α pathway, repressed inflammatory response by inhibiting Kv2.1/NF-κB signaling and alleviated apoptosis of DRG neuron through Kv2.1-mediated regulation of Bcl-2 family proteins and Caspase-3 in diabetic mice. INTERPRETATION Our work has highly supported the beneficial of Kv2.1 inhibition in ameliorating DPN-like pathology and highlighted the potential of SP6616 in the treatment of DPN. FUNDING Please see funding sources.
Collapse
Affiliation(s)
- Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xu Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
24
|
Davis H, Herring N, Paterson DJ. Downregulation of M Current Is Coupled to Membrane Excitability in Sympathetic Neurons Before the Onset of Hypertension. Hypertension 2020; 76:1915-1923. [PMID: 33040619 PMCID: PMC8360673 DOI: 10.1161/hypertensionaha.120.15922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Neurohumoral activation is an early hallmark of cardiovascular disease and contributes to the etiology of the pathophysiology. Stellectomy has reemerged as a positive therapeutic intervention to modify the progression of dysautonomia, although the biophysical properties underpinning abnormal activity of this ganglia are not fully understood in the initial stages of the disease. We investigated whether stellate ganglia neurons from prehypertensive SHRs (spontaneously hypertensive rats) are hyperactive and describe their electrophysiological phenotype guided by single-cell RNA sequencing, molecular biology, and perforated patch clamp to uncover the mechanism of abnormal excitability. We demonstrate the contribution of a plethora of ion channels, in particular inhibition of M current to stellate ganglia neuronal firing, and confirm the conservation of expression of key ion channel transcripts in human stellate ganglia. We show that hyperexcitability was curbed by M-current activators, nonselective sodium current blockers, or inhibition of Nav1.1-1.3, Nav1.6, or INaP. We conclude that reduced activity of M current contributes significantly to abnormal firing of stellate neurons, which, in part, contributes to the hyperexcitability from rats that have a predisposition to hypertension. Targeting these channels could provide a therapeutic opportunity to minimize the consequences of excessive sympathetic activation.
Collapse
Affiliation(s)
- Harvey Davis
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| | - Neil Herring
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (N.H.)
| | - David J Paterson
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| |
Collapse
|
25
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
27
|
Delgado-Ramírez M, Rodríguez-Menchaca AA. Cytoskeleton disruption affects Kv2.1 channel function and its modulation by PIP 2. J Physiol Sci 2019; 69:513-521. [PMID: 30900190 PMCID: PMC10717730 DOI: 10.1007/s12576-019-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium channels are expressed in a wide variety of excitable and non-excitable cells and regulate numerous cellular functions. The activity of ion channels can be modulated by direct interaction or/and functional coupling with other proteins including auxiliary subunits, scaffold proteins and the cytoskeleton. Here, we evaluated the influence of the actin-based cytoskeleton on the Kv2.1 channel using pharmacological and electrophysiological methods. We found that disruption of the actin-based cytoskeleton by latrunculin B resulted in the regulation of the Kv2.1 inactivation mechanism; it shifted the voltage of half-maximal inactivation toward negative potentials by approximately 15 mV, accelerated the rate of closed-state inactivation, and delayed the recovery rate from inactivation. The actin cytoskeleton stabilizing agent phalloidin prevented the hyperpolarizing shift in the half-maximal inactivation potential when co-applied with latrunculin B. Additionally, PIP2 depletion (a strategy that regulates Kv2.1 inactivation) after cytoskeleton disruption does not regulate further the inactivation of Kv2.1, which suggests that both factors could be regulating the Kv2.1 channel by a common mechanism. In summary, our results suggest a role for the actin-based cytoskeleton in regulating Kv2.1 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
28
|
Kim B, Kim J, Lim E, Kim Y, Kim H. Effects of the herbal medicines on voltage-dependent K + 2 channels. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_636_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
30
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
31
|
Tilley DC, Angueyra JM, Eum KS, Kim H, Chao LH, Peng AW, Sack JT. The tarantula toxin GxTx detains K + channel gating charges in their resting conformation. J Gen Physiol 2018; 151:292-315. [PMID: 30397012 PMCID: PMC6400525 DOI: 10.1085/jgp.201812213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Allosteric ligands modulate protein activity by altering the energy landscape of conformational space in ligand-protein complexes. Here we investigate how ligand binding to a K+ channel's voltage sensor allosterically modulates opening of its K+-conductive pore. The tarantula venom peptide guangxitoxin-1E (GxTx) binds to the voltage sensors of the rat voltage-gated K+ (Kv) channel Kv2.1 and acts as a partial inverse agonist. When bound to GxTx, Kv2.1 activates more slowly, deactivates more rapidly, and requires more positive voltage to reach the same K+-conductance as the unbound channel. Further, activation kinetics are more sigmoidal, indicating that multiple conformational changes coupled to opening are modulated. Single-channel current amplitudes reveal that each channel opens to full conductance when GxTx is bound. Inhibition of Kv2.1 channels by GxTx results from decreased open probability due to increased occurrence of long-lived closed states; the time constant of the final pore opening step itself is not impacted by GxTx. When intracellular potential is less than 0 mV, GxTx traps the gating charges on Kv2.1's voltage sensors in their most intracellular position. Gating charges translocate at positive voltages, however, indicating that GxTx stabilizes the most intracellular conformation of the voltage sensors (their resting conformation). Kinetic modeling suggests a modulatory mechanism: GxTx reduces the probability of voltage sensors activating, giving the pore opening step less frequent opportunities to occur. This mechanism results in K+-conductance activation kinetics that are voltage-dependent, even if pore opening (the rate-limiting step) has no inherent voltage dependence. We conclude that GxTx stabilizes voltage sensors in a resting conformation, and inhibits K+ currents by limiting opportunities for the channel pore to open, but has little, if any, direct effect on the microscopic kinetics of pore opening. The impact of GxTx on channel gating suggests that Kv2.1's pore opening step does not involve movement of its voltage sensors.
Collapse
Affiliation(s)
- Drew C Tilley
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Juan M Angueyra
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Kenneth S Eum
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA.,Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Heesoo Kim
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Luke H Chao
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Anthony W Peng
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Jon T Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA .,Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
32
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women. J Diabetes Investig 2018; 9:1196-1202. [PMID: 29352517 PMCID: PMC6123053 DOI: 10.1111/jdi.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. MATERIALS AND METHODS A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. RESULTS The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. CONCLUSIONS The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Li
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Liangkun Ma
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Fan Ping
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Juntao Liu
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xueyan Wu
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jiangfeng Mao
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xi Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Min Nie
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
33
|
Zhou T, Du M, Zhao T, Quan L, Zhu Z, Chen J. ETA as a novel Kv2.1 inhibitor ameliorates β-cell dysfunction and hyperglycaemia. Clin Exp Pharmacol Physiol 2018; 45:1257-1264. [PMID: 30003581 DOI: 10.1111/1440-1681.13011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/01/2022]
Abstract
The Kv2.1 channel plays an important role in the regulation against pancreatic β-cell dysfunctions. Therefore, it is regarded as a promising target for drug discovery against type 2 diabetes. In the present study, we found that the small molecule 4-ethoxy-N-{[6-(2-thienyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl]methyl}aniline (ETA), a novel Kv2.1 inhibitor, may be capable of promoting glucose-stimulated insulin secretion and protecting from apoptosis in pancreatic INS-832/13 cells. The assay of ETA on type 2 diabetic mice induced by high-fat diet (HFD)/streptozocin (STZ) confirmed its potency in ameliorating glucose homeostasis. ETA administration reduced fasting blood glucose and glycated haemoglobin levels, improved oral glucose tolerance, and increased serum insulin levels in HFD/STZ mice. Mechanism study demonstrated that ETA protected INS-832/13 cells involving the regulation against protein kinase B and extracellular-regulated protein kinase 1/2 signalling pathways. Our study has confirmed the underlying regulation of Kv2.1 against β-cell function and also addressed the potential of ETA as a lead compound in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengfan Du
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Tong Zhao
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Quan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Zhiyuan Zhu
- Central Laboratory, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Kirmiz M, Palacio S, Thapa P, King AN, Sack JT, Trimmer JS. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell 2018; 29:2410-2432. [PMID: 30091655 PMCID: PMC6233057 DOI: 10.1091/mbc.e18-05-0337] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) and plasma membrane (PM) form junctions crucial to ion and lipid signaling and homeostasis. The Kv2.1 ion channel is localized at ER–PM junctions in brain neurons and is unique among PM proteins in its ability to remodel these specialized membrane contact sites. Here, we show that this function is conserved between Kv2.1 and Kv2.2, which differ in their biophysical properties, modulation, and cellular expression. Kv2.2 ER–PM junctions are present at sites deficient in the actin cytoskeleton, and disruption of the actin cytoskeleton affects their spatial organization. Kv2.2-containing ER–PM junctions overlap with those formed by canonical ER–PM tethers. The ability of Kv2 channels to remodel ER–PM junctions is unchanged by point mutations that eliminate their ion conduction but eliminated by point mutations within the Kv2-specific proximal restriction and clustering (PRC) domain that do not impact their ion channel function. The highly conserved PRC domain is sufficient to transfer the ER–PM junction–remodeling function to another PM protein. Last, brain neurons in Kv2 double-knockout mice have altered ER–PM junctions. Together, these findings demonstrate a conserved in vivo function for Kv2 family members in remodeling neuronal ER–PM junctions that is distinct from their canonical role as ion-conducting channels shaping neuronal excitability.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Stephanie Palacio
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| | - Anna N King
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
35
|
Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, Petrov A, Ding Y, Dlugos T, Wood HB, Wang L, Erion M, Sherwin R, Kelley DE. GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia. Diabetes 2018; 67:1401-1413. [PMID: 29669745 PMCID: PMC6014553 DOI: 10.2337/db18-0031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023]
Abstract
Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. In this study, we tested whether stimulation of GPR119, a G-protein-coupled receptor expressed in pancreatic islet as well as enteroendocrine cells and previously shown to stimulate insulin and incretin secretion, might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata to assess insulin and glucagon secretion during hypoglycemic or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pretreatment to assess glucagon counterregulation in healthy and streptozotocin (STZ)-induced diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 knockout (KO) mice to evaluate whether the pharmacological stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counterregulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in patients with diabetes remains to be established.
Collapse
Affiliation(s)
- Nina Xiaoyan Li
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | - Tim Kowalski
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Margaret Wu
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Liming Yang
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Ge Dai
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Aleksandr Petrov
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | | | - Harold B Wood
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Liangsu Wang
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Mark Erion
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | - David E Kelley
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| |
Collapse
|
36
|
Myshkin MY, Paramonov AS, Kulbatskii DS, Lyukmanova EN, Kirpichnikov MP, Shenkarev ZO. “Divide and conquer” approach to the structural studies of multidomain ion channels by the example of isolated voltage sensing domains of human Kv2.1 and Nav1.4 channels. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets 2017; 9:109-139. [PMID: 28662366 PMCID: PMC5710702 DOI: 10.1080/19382014.2017.1342022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The increased availability of human islets for research during the last few decades has yielded new insights into the specifics in signaling pathways leading to insulin secretion in humans. In this review, we follow the most central triggering pathway to insulin secretion from its very beginning when glucose enters the β cell to the calcium oscillations it produces to trigger fusion of insulin containing granules with the plasma membrane. Along the way, we describe the crucial building blocks that contribute to the flow of information and focus on their functional role in mice and humans and on their translational implications.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
38
|
Pachanski MJ, Kirkland ME, Kosinski DT, Mane J, Cheewatrakoolpong B, Xue J, Szeto D, Forrest G, Miller C, Bunzel M, Plummer CW, Chobanian HR, Miller MW, Souza S, Thomas-Fowlkes BS, Ogawa AM, Weinglass AB, Di Salvo J, Li X, Feng Y, Tatosian DA, Howard AD, Colletti SL, Trujillo ME. GPR40 partial agonists and AgoPAMs: Differentiating effects on glucose and hormonal secretions in the rodent. PLoS One 2017; 12:e0186033. [PMID: 29053717 PMCID: PMC5650142 DOI: 10.1371/journal.pone.0186033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/23/2017] [Indexed: 01/14/2023] Open
Abstract
GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.
Collapse
Affiliation(s)
- Michele J. Pachanski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Melissa E. Kirkland
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daniel T. Kosinski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Joel Mane
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | | | - Jiyan Xue
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daphne Szeto
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Gail Forrest
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Corin Miller
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michelle Bunzel
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Christopher W. Plummer
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Harry R. Chobanian
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michael W. Miller
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Sarah Souza
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | | | - Aimie M. Ogawa
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Adam B. Weinglass
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jerry Di Salvo
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Xiaoyan Li
- Department of Cardio Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Yue Feng
- Department of Cardio Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daniel A. Tatosian
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Andrew D. Howard
- Department of Cardio Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Steven L. Colletti
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Maria E. Trujillo
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
39
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
40
|
Ma A, Wang D, An Y, Fang W, Zhu H. Comparative transcriptomic analysis of mice liver treated with different AMPK activators in a mice model of atherosclerosis. Oncotarget 2017; 8:16594-16604. [PMID: 28178661 PMCID: PMC5369987 DOI: 10.18632/oncotarget.15027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is known to be the primary underlying factor responsible for the development of cardiovascular diseases. Suppression of AMP-activated protein kinase stimulates arterial deposition of excess lipids, resulting in the development of atherosclerotic lesions. In this study we successfully developed the disease model of mice and mimicked the therapeutic effect, for that we chose three different AMP-activated protein kinase activators (IMM-H007, A-769662 and Metformin) to identify which one has a superior effect in the atherosclerosis model. We combined the transcriptomes of four groups of mice liver including high-fat diet group and the experimental groups treated with different AMP-activated protein kinase activators. We analyzed the increased genes to candidate metabolic and disease pathways. Compared to the high-fat diet group, a total of 799 differentially expressed genes were identified in treatment groups. There were 291, 473, and 323 differentially expressed genes in H007, Metformin, and A-769662 group respectively. And seven statistically significant pathways were observed in both H007 and Metformin groups. We expect that gene expression profiling in the mice model would extend our understanding of atherosclerosis in the molecular level. This study provides a fundamental framework for future clinical research on human atherosclerosis and new clues for developing novel drugs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ang Ma
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China.,Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Dongmei Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yuanyuan An
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Wei Fang
- Department of Nuclear Medicine, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| |
Collapse
|
41
|
Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M. Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab 2017; 19:1061-1070. [PMID: 28116849 DOI: 10.1111/dom.12887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/29/2022]
Abstract
AIMS To understand better the control of insulin secretion by human β cells and to identify similarities to and differences from rodent models. METHODS Dynamic insulin secretion was measured in perifused human islets treated with pharmacological agents of known modes of action. RESULTS Glucokinase activation (Ro28-1675) lowered the glucose threshold for stimulation of insulin secretion to 1 mmol/L (G1), augmented the response to G3-G5 but not to G8-G15, whereas tolbutamide remained active in G20, which indicates that not all KATP channels were closed by high glucose concentrations. An almost 2-fold greater response to G15 than to supramaximal tolbutamide in G3 or to KCl+diazoxide in G15 vs G3 quantified the contribution of metabolic amplification to insulin secretion. Both disruption (latrunculin-B) and stabilization (jasplakinolide) of microfilaments augmented insulin secretion without affecting metabolic amplification. Tolbutamide-induced insulin secretion was consistently greater in G10 than G3, with a threshold at 1 and maximum at 10 µmol/L tolbutamide in G10, vs 10 and 25 µmol/L in G3. Sulphonylurea effects were thus clearly glucose-dependent. Insulin secretion was also increased by inhibiting K channels other than KATP channels: Kv or BK channels (tetraethylammonium), TASK-1 channels (ML-365) and SK4 channels (TRAM-34). Opening KATP channels with diazoxide inhibited glucose-induced insulin secretion with half maximum inhibitory concentrations of 9.6 and 24 µmol/L at G7 and G15. Blockade of L-type Ca channels (nimodipine) abolished insulin secretion, whereas a blocker of T-type Ca channels (NNC-55-0396) was ineffective at specific concentrations. Blockade of Na channels (tetrodotoxin) did not affect glucose-induced insulin secretion. CONCLUSIONS In addition to sharing a KATP channel-dependent triggering pathway and a metabolic amplifying pathway, human and rodent β cells were found to display more similarities than differences in the control of insulin secretion.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Denis Dufrane
- Endocrine Cell Therapy Unit, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium
| | - Valery Gmyr
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Julie Kerr-Conte
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
42
|
Fu J, Dai X, Plummer G, Suzuki K, Bautista A, Githaka JM, Senior L, Jensen M, Greitzer-Antes D, Manning Fox JE, Gaisano HY, Newgard CB, Touret N, MacDonald PE. Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human β-Cell Dysfunction. Diabetes 2017; 66:1890-1900. [PMID: 28607108 PMCID: PMC5482075 DOI: 10.2337/db16-1170] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
Insulin exocytosis is regulated by ion channels that control excitability and Ca2+ influx. Channels also play an increasingly appreciated role in microdomain structure. In this study, we examine the mechanism by which the voltage-dependent K+ (Kv) channel Kv2.1 (KCNB1) facilitates depolarization-induced exocytosis in INS 832/13 cells and β-cells from human donors with and without type 2 diabetes (T2D). We find that Kv2.1, but not Kv2.2 (KCNB2), forms clusters of 6-12 tetrameric channels at the plasma membrane and facilitates insulin exocytosis. Knockdown of Kv2.1 expression reduces secretory granule targeting to the plasma membrane. Expression of the full-length channel (Kv2.1-wild-type) supports the glucose-dependent recruitment of secretory granules. However, a truncated channel (Kv2.1-ΔC318) that retains electrical function and syntaxin 1A binding, but lacks the ability to form clusters, does not enhance granule recruitment or exocytosis. Expression of KCNB1 appears reduced in T2D islets, and further knockdown of KCNB1 does not inhibit Kv current in T2D β-cells. Upregulation of Kv2.1-wild-type, but not Kv2.1-ΔC318, rescues the exocytotic phenotype in T2D β-cells and increases insulin secretion from T2D islets. Thus, the ability of Kv2.1 to directly facilitate insulin exocytosis depends on channel clustering. Loss of this structural role for the channel might contribute to impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoqing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Githaka
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mette Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Miller C, Pachanski MJ, Kirkland ME, Kosinski DT, Mane J, Bunzel M, Cao J, Souza S, Thomas-Fowlkes B, Di Salvo J, Weinglass AB, Li X, Myers RW, Knagge K, Carrington PE, Hagmann WK, Trujillo ME. GPR40 partial agonist MK-2305 lower fasting glucose in the Goto Kakizaki rat via suppression of endogenous glucose production. PLoS One 2017; 12:e0176182. [PMID: 28542610 PMCID: PMC5441580 DOI: 10.1371/journal.pone.0176182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022] Open
Abstract
GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 ex vivo and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia.
Collapse
Affiliation(s)
- Corin Miller
- Departments of Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michele J. Pachanski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Melissa E. Kirkland
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Daniel T. Kosinski
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Joel Mane
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Michelle Bunzel
- Departments of Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jin Cao
- Departments of Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Sarah Souza
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Brande Thomas-Fowlkes
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jerry Di Salvo
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Adam B. Weinglass
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Xiaoyan Li
- Cardio-Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Robert W. Myers
- In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Kevin Knagge
- David H Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Paul E. Carrington
- Cardio-Metabolic Diseases, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - William K. Hagmann
- Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Maria E. Trujillo
- In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lee SM, Baik J, Nguyen D, Nguyen V, Liu S, Hu Z, Abbott GW. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. FASEB J 2017; 31:2674-2685. [PMID: 28280005 DOI: 10.1096/fj.201601347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K+ current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2+/+ and Kcne2-/- mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K+ channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Soo Min Lee
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Jasmine Baik
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Dara Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Victoria Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Shiwei Liu
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
45
|
Dromedary immune response and specific Kv2.1 antibody generation using a specific immunization approach. Int J Biol Macromol 2016; 93:167-171. [DOI: 10.1016/j.ijbiomac.2016.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 01/11/2023]
|
46
|
Tao H, Chen X, Deng M, Xiao Y, Wu Y, Liu Z, Zhou S, He Y, Liang S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016; 124:8-14. [PMID: 27810559 DOI: 10.1016/j.toxicon.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023]
Abstract
Jingzhaotoxin-XI (JZTX-XI) is a 34-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom that potently inhibits both voltage-gated sodium channel Nav1.5 and voltage-gated potassium channel Kv2.1. In the present study, we further showed that JZTX-XI blocked Kv2.1 currents with the IC50 value of 0.39 ± 0.06 μM. JZTX-XI significantly shifted the current-voltage (I-V) curves and normalized conductance-voltage (G-V) curves of Kv2.1 channel to more depolarized voltages. Ala-scanning mutagenesis analyses demonstrated that mutants I273A, F274A, and E277A reduced toxin binding affinity by 10-, 16-, and 18-fold, respectively, suggesting that three common residues (I273, F274, E277) in the Kv2.1 S3b segment contribute to the formation of JZTX-XI receptor site, and the acidic residue Glu at the position 277 in Kv2.1 is the most important residue for JZTX-XI sensitivity. A single replacement of E277 with Asp(D) increased toxin inhibitory activity. These results establish that JZTX-XI inhibits Kv2.1 activation by trapping the voltage sensor in the rested state through a similar mechanism to that of HaTx1, but these two toxins have small differences in the most crucial molecular determinant. Furthermore, the in-depth investigation of the subtle differences in molecular determinants may be useful for increasing our understanding of the molecular details regarding toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yucheng Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Sainan Zhou
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yingchun He
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
47
|
Thiffault I, Speca DJ, Austin DC, Cobb MM, Eum KS, Safina NP, Grote L, Farrow EG, Miller N, Soden S, Kingsmore SF, Trimmer JS, Saunders CJ, Sack JT. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. ACTA ACUST UNITED AC 2016; 146:399-410. [PMID: 26503721 PMCID: PMC4621747 DOI: 10.1085/jgp.201511444] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A missense mutation in the pore-forming α subunit of a delayed rectifier Kv channel is associated with epileptic encephalopathy, alters the cation selectivity of voltage-gated currents, and disrupts channel expression and localization. The epileptic encephalopathies are a group of highly heterogeneous genetic disorders. The majority of disease-causing mutations alter genes encoding voltage-gated ion channels, neurotransmitter receptors, or synaptic proteins. We have identified a novel de novo pathogenic K+ channel variant in an idiopathic epileptic encephalopathy family. Here, we report the effects of this mutation on channel function and heterologous expression in cell lines. We present a case report of infantile epileptic encephalopathy in a young girl, and trio-exome sequencing to determine the genetic etiology of her disorder. The patient was heterozygous for a de novo missense variant in the coding region of the KCNB1 gene, c.1133T>C. The variant encodes a V378A mutation in the α subunit of the Kv2.1 voltage-gated K+ channel, which is expressed at high levels in central neurons and is an important regulator of neuronal excitability. We found that expression of the V378A variant results in voltage-activated currents that are sensitive to the selective Kv2 channel blocker guangxitoxin-1E. These voltage-activated Kv2.1 V378A currents were nonselective among monovalent cations. Striking cell background–dependent differences in expression and subcellular localization of the V378A mutation were observed in heterologous cells. Further, coexpression of V378A subunits and wild-type Kv2.1 subunits reciprocally affects their respective trafficking characteristics. A recent study reported epileptic encephalopathy-linked missense variants that render Kv2.1 a tonically activated, nonselective cation channel that is not voltage activated. Our findings strengthen the correlation between mutations that result in loss of Kv2.1 ion selectivity and development of epileptic encephalopathy. However, the strong voltage sensitivity of currents from the V378A mutant indicates that the loss of voltage-sensitive gating seen in all other reported disease mutants is not required for an epileptic encephalopathy phenotype. In addition to electrophysiological differences, we suggest that defects in expression and subcellular localization of Kv2.1 V378A channels could contribute to the pathophysiology of this KCNB1 variant.
Collapse
Affiliation(s)
- Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - David J Speca
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Daniel C Austin
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Melanie M Cobb
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Kenneth S Eum
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Nicole P Safina
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Lauren Grote
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Emily G Farrow
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Sarah Soden
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - Stephen F Kingsmore
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616 Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Carol J Saunders
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - Jon T Sack
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616 Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| |
Collapse
|
48
|
Pucca MB, Bertolini TB, Cerni FA, Bordon KCF, Peigneur S, Tytgat J, Bonato VL, Arantes EC. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Immunology 2016; 147:240-50. [PMID: 26595158 DOI: 10.1111/imm.12559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 is a novel target for immunomodulation of autoreactive effector memory T cells, which play a major role in the pathogenesis of autoimmune diseases. In this study, the Ts6 and Ts15 toxins isolated from Tityus serrulatus (Ts) were investigated for their immunosuppressant roles on CD4(+) cell subsets: naive, effector (TEF ), central memory (TCM) and effector memory (TEM). The electrophysiological assays confirmed that both toxins were able to block Kv1.3 channels. Interestingly, an extended Kv channel screening shows that Ts15 blocks Kv2.1 channels. Ts6 and Ts15 significantly inhibit the proliferation of TEM cells and interferon-γ production; however, Ts15 also inhibits other CD4(+) cell subsets (naive, TEF and TCM). Based on the Ts15 inhibitory effect of proliferation of all CD4(+) cell subsets, and based on its blocking effect on Kv2.1, we investigated the Kv2.1 expression in T cells. The assays showed that CD4(+) and CD8(+) cells express the Kv2.1 channels mainly extracellularly with TCM cells expressing the highest number of Kv2.1 channels. We also provide in vivo experimental evidence to the protective effect of Ts6 and Ts15 on delayed-type hypersensitivity reaction. Altogether, this study presents the immunosuppressive behaviour of Ts6 and Ts15 toxins, indicating that these toxins could be promising candidates for autoimmune disease therapy. Moreover, this is the first report illustrating the involvement of a novel K(+) channel subtype, Kv2.1, and its distribution in T-cell subsets.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís B Bertolini
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Vânia L Bonato
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
49
|
Zhou TT, Quan LL, Chen LP, Du T, Sun KX, Zhang JC, Yu L, Li Y, Wan P, Chen LL, Jiang BH, Hu LH, Chen J, Shen X. SP6616 as a new Kv2.1 channel inhibitor efficiently promotes β-cell survival involving both PKC/Erk1/2 and CaM/PI3K/Akt signaling pathways. Cell Death Dis 2016; 7:e2216. [PMID: 27148689 PMCID: PMC4917657 DOI: 10.1038/cddis.2016.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Kv2.1 as a voltage-gated potassium (Kv) channel subunit has a pivotal role in the regulation of glucose-stimulated insulin secretion (GSIS) and pancreatic β-cell apoptosis, and is believed to be a promising target for anti-diabetic drug discovery, although the mechanism underlying the Kv2.1-mediated β-cell apoptosis is obscure. Here, the small molecular compound, ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate (SP6616) was discovered to be a new Kv2.1 inhibitor. It was effective in both promoting GSIS and protecting β cells from apoptosis. Evaluation of SP6616 on either high-fat diet combined with streptozocin-induced type 2 diabetic mice or db/db mice further verified its efficacy in the amelioration of β-cell dysfunction and glucose homeostasis. SP6616 treatment efficiently increased serum insulin level, restored β-cell mass, decreased fasting blood glucose and glycated hemoglobin levels, and improved oral glucose tolerance. Mechanism study indicated that the promotion of SP6616 on β-cell survival was tightly linked to its regulation against both protein kinases C (PKC)/extracellular-regulated protein kinases 1/2 (Erk1/2) and calmodulin(CaM)/phosphatidylinositol 3-kinase(PI3K)/serine/threonine-specific protein kinase (Akt) signaling pathways. To our knowledge, this may be the first report on the underlying pathway responsible for the Kv2.1-mediated β-cell protection. In addition, our study has also highlighted the potential of SP6616 in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- T T Zhou
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - L L Quan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - L P Chen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - T Du
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - K X Sun
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - J C Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - L Yu
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Y Li
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - P Wan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - L L Chen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - B H Jiang
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - L H Hu
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Chen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - X Shen
- CAS Key Laboratory of Receptor Research, 3th Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Poor management of chronic pain remains a significant cause of misery with huge socioeconomic costs. Accumulating research in potassium (K+) channel physiology has uncovered several promising leads for the development of novel analgesics. RECENT FINDINGS We now recognize that certain K+ channel subunits are directly gated to pain-relevant stimuli (Kv1.1, K2P) whereas others are specifically modulated by inflammatory processes (Kv7, BKCA, K2P). Genetic analyses illustrate that K+ channel gene variation can predict pain sensitivity (KCNS1, GIRKs), risk for persistent pain (KCNS1, GIRKs, TRESK) and analgesic effectiveness (GIRK2). Importantly, preclinical studies confirm that K+ channel dysfunction can be a pain trigger in traumatic neuropathies (Kv9.1/Kv2.1, Kv7, Kv1.2) and migraine (TRESK). Finally, emerging data suggest that even pain in diabetes, bone cancer and autoimmune neuropathies may have K+ channel dysfunction constituents. SUMMARY There is a long-sought need for superior pharmacotherapy of pain syndromes. Although universal enhancement of K+ channel function in the periphery can decrease nociceptive excitability irrespective of the underlying cause, a more refined targeting of subunits with dominant nociceptive roles could yield highly efficacious treatments with fewer side-effects. The ongoing characterization of molecular interactions linking K+ channel dysfunction to pain is instrumental for identifying candidates with the most therapeutic potential.
Collapse
|