1
|
Arakawa H, Matsushita K, Ishiguro N. Advanced in vitro evaluation of drug-induced kidney injury using microphysiological systems in drug discovery and development. Drug Metab Pharmacokinet 2025; 61:101056. [PMID: 40088574 DOI: 10.1016/j.dmpk.2025.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
Drug-induced kidney injury (DIKI) is a major cause of acute kidney injury (AKI). Given concerns about animal welfare and the need for more accurate prediction of human events, there is an urgent need to develop an in vitro evaluation method for DIKI using human cells. Renal proximal tubular epithelial cells (RPTECs) are the main targets of DIKI in drug discovery and development because of their abundant expression of drug transporters that contribute to renal-specific drug distribution. In general, physiological kidney function is significantly reduced in primary cell monolayer culture systems. However, with recent advances in cell engineering and regenerative medicine, human kidney-derived cell culture systems, with higher kidney function compared to conventional systems, have been established. For example, three-dimensional cultured RPTECs show enhanced expression of drug transporters and higher predictive performance than monolayer culture systems. The use of organs-on-a-chip with liver and kidney co-cultures also allows the detection of drug metabolite-induced nephrotoxicity. Kidney organoids differentiated from induced pluripotent stem cells (iPS) have also been established. In this review, we introduce a recently established renal cell culture system that includes a microphysiological system, and review the in vitro methods used to evaluate DIKI in RPTECs.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| |
Collapse
|
2
|
Zhao Y, Xu X, Cai H, Wu W, Wang Y, Huang C, Qin H, Mo S. Identification of potential biomarkers from amino acid transporter in the activation of hepatic stellate cells via bioinformatics. Front Genet 2024; 15:1499915. [PMID: 39698464 PMCID: PMC11652522 DOI: 10.3389/fgene.2024.1499915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The etiopathogenesis of hepatic stellate cells (HSC) activation has yet to be completely comprehended, and there has been broad concern about the interplay between amino acid transporter and cell proliferation. This study proposed exploring the molecular mechanism from amino acid transport-related genes in HSC activation by bioinformatic methods, seeking to identify the potentially crucial biomarkers. METHODS GSE68000, the mRNA expression profile dataset of activated HSC, was applied as the training dataset, and GSE67664 as the validation dataset. Differently expressed amino acid transport-related genes (DEAATGs), GO, DO, and KEGG analyses were utilized. We applied the protein-protein interaction analysis and machine learning of LASSO and random forests to identify the target genes. Moreover, single-gene GESA was executed to investigate the potential functions of target genes via the KEGG pathway terms. Then, a ceRNA network and a drug-gene interaction network were constructed. Ultimately, correlation analysis was explored between target genes and collagen alpha I (COL1A), alpha-smooth muscle actin (α-SMA), and immune checkpoints. RESULTS We identified 15 DEAATGs, whose enrichment analyses indicated that they were primarily enriched in the transport and metabolic process of amino acids. Moreover, two target genes (SLC7A5 and SLC1A5) were recognized from the PPI network and machine learning, confirmed through the validation dataset. Then single-gene GESA analysis revealed that SLC7A5 and SLC1A5 had a significant positive correlation to ECM-receptor interaction, cell cycle, and TGF-β signaling pathway and negative association with retinol metabolism conversely. Furthermore, the mRNA expression of target genes was closely correlated with the COL1A and α-SMA, as well as immune checkpoints. Additionally, 12 potential therapeutic drugs were in the drug-gene interaction network, and the ceRNA network was constructed and visualized. CONCLUSION SLC7A5 and SLC1A5, with their relevant molecules, could be potentially vital biomarkers for the activation of HSC.
Collapse
Affiliation(s)
- Yingying Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqing Xu
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaiyang Cai
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Cheng Huang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Heping Qin
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Shuangyang Mo
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
3
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Marin JJG, Serrano MA, Herraez E, Lozano E, Ortiz-Rivero S, Perez-Silva L, Reviejo M, Briz O. Impact of genetic variants in the solute carrier ( SLC) genes encoding drug uptake transporters on the response to anticancer chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:27. [PMID: 39143954 PMCID: PMC11322974 DOI: 10.20517/cdr.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024]
Abstract
Cancer drug resistance constitutes a severe limitation for the satisfactory outcome of these patients. This is a complex problem due to the co-existence in cancer cells of multiple and synergistic mechanisms of chemoresistance (MOC). These mechanisms are accounted for by the expression of a set of genes included in the so-called resistome, whose effectiveness often leads to a lack of response to pharmacological treatment. Additionally, genetic variants affecting these genes further increase the complexity of the question. This review focuses on a set of genes encoding members of the transportome involved in drug uptake, which have been classified into the MOC-1A subgroup of the resistome. These proteins belong to the solute carrier (SLC) superfamily. More precisely, we have considered here several members of families SLC2, SLC7, SLC19, SLC22, SLCO, SLC28, SLC29, SLC31, SLC46, and SLC47 due to the impact of their expression and genetic variants in anticancer drug uptake by tumor cells or, in some cases, general bioavailability. Changes in their expression levels and the appearance of genetic variants can contribute to the Darwinian selection of more resistant clones and, hence, to the development of a more malignant phenotype. Accordingly, to address this issue in future personalized medicine, it is necessary to characterize both changes in resistome genes that can affect their function. It is also essential to consider the time-dependent dimension of these features, as the genetic expression and the appearance of genetic variants can change during tumor progression and in response to treatment.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| |
Collapse
|
5
|
Arakawa H, Ishida N, Nakatsuji T, Matsumoto N, Imamura R, Shengyu D, Araya K, Horike SI, Tanaka-Yachi R, Kasahara M, Yoshioka T, Sumida Y, Ohmiya H, Daikoku T, Wakayama T, Nakamura K, Fujita KI, Kato Y. Endoplasmic reticulum transporter OAT2 regulates drug metabolism and interaction. Biochem Pharmacol 2024; 225:116322. [PMID: 38815630 DOI: 10.1016/j.bcp.2024.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Naoki Ishida
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Nakatsuji
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Natsumi Matsumoto
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Rikako Imamura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Dai Shengyu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Karin Araya
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | - Rieko Tanaka-Yachi
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takiko Daikoku
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Ken-Ichi Fujita
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
6
|
Yee SW, Ferrández-Peral L, Alentorn-Moron P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Wolfreys FD, Yang J, Gestwicki JE, Capra JA, Artursson P, Newman JW, Marquès-Bonet T, Giacomini KM. Illuminating the function of the orphan transporter, SLC22A10, in humans and other primates. Nat Commun 2024; 15:4380. [PMID: 38782905 PMCID: PMC11116522 DOI: 10.1038/s41467-024-48569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17β-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Luis Ferrández-Peral
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pol Alentorn-Moron
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Virginia M Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, US
| | - Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Finn D Wolfreys
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - John A Capra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Oost LJ, Slieker RC, Blom MT, 't Hart LM, Hoenderop JGJ, Beulens JWJ, de Baaij JHF. Genome-wide association study of serum magnesium in type 2 diabetes. GENES & NUTRITION 2024; 19:2. [PMID: 38279093 PMCID: PMC10811844 DOI: 10.1186/s12263-024-00738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roderick C Slieker
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
| | - Marieke T Blom
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Chothe PP, Mitra P, Nakakariya M, Ramsden D, Rotter CJ, Sandoval P, Tohyama K. Drug transporters in drug disposition - the year 2022 in review. Drug Metab Rev 2023; 55:343-370. [PMID: 37644867 DOI: 10.1080/03602532.2023.2252618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
On behalf of all the authors, I am pleased to share our third annual review on drug transporter science with an emphasis on articles published and deemed influential in signifying drug transporters' role in drug disposition in the year 2022. As the drug transporter field is rapidly evolving several key findings were noted including promising endogenous biomarkers, rhythmic activity, IVIVE approaches in transporter-mediated clearance, new modality interaction, and transporter effect on gut microbiome. As identified previously (Chothe et Cal. 2021, 2022) the goal of this review is to highlight key findings without a comprehensive overview of each article and to this end, each coauthor independently selected 1-3 peer-reviewed articles published or available online in the year 2022 (Table 1). Each article is summarized in synopsis and commentary with unbiased viewpoints by each coauthor. We strongly encourage readers to consult original articles for specifics of the study. Finally, I would like to thank all coauthors for their continued support in writing this annual review on drug transporters and invite anyone interested in contributing to future versions of this review.
Collapse
Affiliation(s)
- Paresh P Chothe
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Diane Ramsden
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), San Diego, CA, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
9
|
Yee SW, Ferrández-Peral L, Alentorn P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Capra JA, Artursson P, Newman JW, Marques-Bonet T, Giacomini KM. Illuminating the Function of the Orphan Transporter, SLC22A10 in Humans and Other Primates. RESEARCH SQUARE 2023:rs.3.rs-3263845. [PMID: 37790518 PMCID: PMC10543398 DOI: 10.21203/rs.3.rs-3263845/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17β-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Pol Alentorn
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Niklas Handin
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Virginia M. Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, UCSF Box 0775 1700 4th St, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF Box 2880 600 16th St, San Francisco, CA 94143, United States; Quantitative Biosciences Institute (QBI), University of California, San Francisco, 1700 4th St, San Francisco, CA, United States
| | - Colin M. Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA; UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain; CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Yee SW, Ferrández-Peral L, Alentorn P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Capra JA, Artursson P, Newman JW, Marques-Bonet T, Giacomini KM. Illuminating the Function of the Orphan Transporter, SLC22A10 in Humans and Other Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552553. [PMID: 37609337 PMCID: PMC10441401 DOI: 10.1101/2023.08.08.552553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17β-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Pol Alentorn
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Niklas Handin
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Virginia M. Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, UCSF Box 0775 1700 4th St, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF Box 2880 600 16th St, San Francisco, CA 94143, United States; Quantitative Biosciences Institute (QBI), University of California, San Francisco, 1700 4th St, San Francisco, CA, United States
| | - Colin M. Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA; UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain; CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Deshpande K, Lange KR, Stone WB, Yohn C, Schlesinger N, Kagan L, Auguste AJ, Firestein BL, Brunetti L. The influence of SARS-CoV-2 infection on expression of drug-metabolizing enzymes and transporters in a hACE2 murine model. Pharmacol Res Perspect 2023; 11:e01071. [PMID: 37133236 PMCID: PMC10155506 DOI: 10.1002/prp2.1071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting Coronavirus disease 2019 emerged in late 2019 and is responsible for significant morbidity and mortality worldwide. A hallmark of severe COVID-19 is exaggerated systemic inflammation, regarded as a "cytokine storm," which contributes to the damage of various organs, primarily the lungs. The inflammation associated with some viral illnesses is known to alter the expression of drug-metabolizing enzymes and transporters. These alterations can lead to modifications in drug exposure and the processing of various endogenous compounds. Here, we provide evidence to support changes in the mitochondrial ribonucleic acid expression of a subset of drug transporters (84 transporters) in the liver, kidneys, and lungs and metabolizing enzymes (84 enzymes) in the liver in a humanized angiotensin-converting enzyme 2 receptor mouse model. Specifically, three drug transporters (Abca3, Slc7a8, Tap1) and the pro-inflammatory cytokine IL-6 were upregulated in the lungs of SARS-CoV-2 infected mice. We also found significant downregulation of drug transporters responsible for the movement of xenobiotics in the liver and kidney. Additionally, expression of cytochrome P-450 2f2 which is known to metabolize some pulmonary toxicants, was significantly decreased in the liver of infected mice. The significance of these findings requires further exploration. Our results suggest that further research should emphasize altered drug disposition when investigating therapeutic compounds, whether re-purposed or new chemical entities, in other animal models and ultimately in individuals infected with SARS-CoV-2. Moreover, the influence and impact of these changes on the processing of endogenous compounds also require further investigation.
Collapse
Affiliation(s)
- Kiran Deshpande
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Keith R. Lange
- Department of Cell Biology and Neuroscience, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - William B. Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science InstituteVirginia Polytechnic Institute and State UniversityVirginiaUSA
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Naomi Schlesinger
- Division of RheumatologyDepartment of Medicine, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Albert J. Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science InstituteVirginia Polytechnic Institute and State UniversityVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐borne PathogensVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
12
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
13
|
Su AL, Penning TM. Role of Human Aldo-Keto Reductases and Nuclear Factor Erythroid 2-Related Factor 2 in the Metabolic Activation of 1-Nitropyrene via Nitroreduction in Human Lung Cells. Chem Res Toxicol 2023; 36:270-280. [PMID: 36693016 PMCID: PMC9974908 DOI: 10.1021/acs.chemrestox.2c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1-Nitropyrene (1-NP) is a constituent of diesel exhaust and classified as a group 2A probable human carcinogen. The metabolic activation of 1-NP by nitroreduction generates electrophiles that can covalently bind DNA to form mutations to contribute to cancer causation. NADPH-dependent P450 oxidoreductase (POR), xanthine oxidase (XO), aldehyde oxidase (AOX), and NAD(P)H/quinone oxidoreductase 1 (NQO1) may catalyze 1-NP nitroreduction. We recently found that human recombinant aldo-keto reductases (AKRs) 1C1-1C3 catalyze 1-NP nitroreduction. NQO1 and AKR1C1-1C3 are genes induced by nuclear factor erythroid 2-related factor 2 (NRF2). Despite this knowledge, the relative importance of these enzymes and NRF2 to 1-NP nitroreduction is unknown. We used a combination of pharmacological and genetic approaches to assess the relative importance of these enzymes and NRF2 in the aerobic nitroreduction of 1-NP in human bronchial epithelial cells, A549 and HBEC3-KT. 1-NP nitroreduction was assessed by the measurement of 1-aminopyrene (1-AP), the six-electron reduced metabolite of 1-NP, based on its intrinsic fluorescence properties (λex and λem). We found that co-treatment of 1-NP with salicylic acid, an AKR1C1 inhibitor, or ursodeoxycholate, an AKR1C2 inhibitor, for 48 h decreased 1-AP production relative to 1-NP treatment alone (control) in both cell lines. R-Sulforaphane or 1-(2-cyano-3,12,28-trioxooleana-1,9(11)-dien-28-yl)-1H-imidazole (CDDO-Im), two NRF2 activators, each increased 1-AP production relative to control only in HBEC3-KT cells, which have inducible NRF2. Inhibitors of POR, NQO1, and XO failed to modify 1-AP production relative to control in both cell lines. Importantly, A549 wild-type cells with constitutively active NRF2 produced more 1-AP than A549 cells with heterozygous expression of NFE2L2/NRF2, which were able to produce more 1-AP than A549 cells with homozygous knockout of NFE2L2/NRF2. Together, these data show dependence of 1-NP metabolic activation on AKR1Cs and NRF2 in human lung cells. This is the second example whereby NFE2L2/NRF2 is implicated in the carcinogenicity of diesel exhaust constituents.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Trevor M. Penning
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Ryu S, Woody N, Chang G, Mathialagan S, Varma MVS. Identification of Organic Anion Transporter 2 Inhibitors: Screening, Structure-Based Analysis, and Clinical Drug Interaction Risk Assessment. J Med Chem 2022; 65:14578-14588. [PMID: 36270005 DOI: 10.1021/acs.jmedchem.2c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic anion transporter 2 (OAT2 or SLC22A7) plays an important role in the hepatic uptake and renal secretion of several endogenous compounds and drugs. The goal of this work is to understand the structure activity of OAT2 inhibition and assess clinical drug interaction risk. A single-point inhibition assay using OAT2-transfected HEK293 cells was employed to screen about 150 compounds; and concentration-dependent inhibition potency (IC50) was measured for the identified "inhibitors". Acids represented about 65% of all inhibitors, and the frequency of bases-plus-zwitterions approximately doubled for "non-inhibitors". Interestingly, 9 of 10 most potent inhibitors (low IC50) are acids (pKa ∼ 3-5). Additionally, inhibitors are significantly larger and lipophilic than non-inhibitors. In silico (binary) models were developed to identify inhibitors and non-inhibitors. Finally, in vivo risk assessed via static drug-drug interaction models identified several inhibitors with potential for renal and hepatic OAT2 inhibition at clinical doses. This is the first study assessing the global pattern of OAT2-ligand interactions.
Collapse
Affiliation(s)
- Sangwoo Ryu
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nathaniel Woody
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - George Chang
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sumathy Mathialagan
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Manthena V S Varma
- Medicine Design, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
15
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
16
|
Fujino C, Ueshima S, Katsura T. Changes in the expression of drug-metabolising enzymes and drug transporters in mice with collagen antibody-induced arthritis. Xenobiotica 2022; 52:758-766. [PMID: 36278306 DOI: 10.1080/00498254.2022.2137442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. We investigated the changes in the expression of drug-metabolising enzymes and drug transporters in the liver, small intestine and kidney of mice with collagen antibody-induced arthritis (CAIA) to determine whether changes in these expressions affect pharmacokinetics of drugs in patients with rheumatoid arthritis.2. mRNA expression levels of cytochrome P450 (Cyp) 2b10, Cyp2c29 and Cyp3a11 were observed to be lower in the liver and small intestine of CAIA mice than in control mice. Compared with control mice, mRNA expression levels of multidrug resistance 1 b, peptide transporter 2 and organic anion transporter (Oat) 2 were high in the liver of CAIA mice. Changes in these expression levels were different among organs. However, elevated expression of Oat2 mRNA was not associated with an increase in protein expression and transport activity evaluated using [3H]cGMP as a substrate.3. These results suggest that arthritis can change the expression of pharmacokinetics-related genes, but the changes may not necessarily be linked to the pharmacokinetics in patients with rheumatoid arthritis. On the other hand, we found Oat2 mRNA expression level was positively correlated with plasma interleukin-6 level, indicating that transcriptional activation of Oat2 may occur in inflammatory state.
Collapse
Affiliation(s)
- Chieri Fujino
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Satoshi Ueshima
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Toshiya Katsura
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
17
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
18
|
Inhibiting uptake activity of organic anion transporter 2 by bile acids. Drug Metab Pharmacokinet 2022; 43:100448. [DOI: 10.1016/j.dmpk.2022.100448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
|
19
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
20
|
Association of low-frequency and rare coding variants with information processing speed. Transl Psychiatry 2021; 11:613. [PMID: 34864818 PMCID: PMC8643353 DOI: 10.1038/s41398-021-01736-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Measures of information processing speed vary between individuals and decline with age. Studies of aging twins suggest heritability may be as high as 67%. The Illumina HumanExome Bead Chip genotyping array was used to examine the association of rare coding variants with performance on the Digit-Symbol Substitution Test (DSST) in community-dwelling adults participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. DSST scores were available for 30,576 individuals of European ancestry from nine cohorts and for 5758 individuals of African ancestry from four cohorts who were older than 45 years and free of dementia and clinical stroke. Linear regression models adjusted for age and gender were used for analysis of single genetic variants, and the T5, T1, and T01 burden tests that aggregate the number of rare alleles by gene were also applied. Secondary analyses included further adjustment for education. Meta-analyses to combine cohort-specific results were carried out separately for each ancestry group. Variants in RNF19A reached the threshold for statistical significance (p = 2.01 × 10-6) using the T01 test in individuals of European descent. RNF19A belongs to the class of E3 ubiquitin ligases that confer substrate specificity when proteins are ubiquitinated and targeted for degradation through the 26S proteasome. Variants in SLC22A7 and OR51A7 were suggestively associated with DSST scores after adjustment for education for African-American participants and in the European cohorts, respectively. Further functional characterization of its substrates will be required to confirm the role of RNF19A in cognitive function.
Collapse
|
21
|
Jia R, Fu Y, Xu L, Li H, Li Y, Liu L, Ma Z, Sun D, Han B. Associations between polymorphisms of SLC22A7, NGFR, ARNTL and PPP2R2B genes and Milk production traits in Chinese Holstein. BMC Genom Data 2021; 22:47. [PMID: 34732138 PMCID: PMC8567656 DOI: 10.1186/s12863-021-01002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background Our preliminary work confirmed that, SLC22A7 (solute carrier family 22 member 7), NGFR (nerve growth factor receptor), ARNTL (aryl hydrocarbon receptor nuclear translocator like) and PPP2R2B (protein phosphatase 2 regulatory subunit Bβ) genes were differentially expressed in dairy cows during different stages of lactation, and involved in the lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, so we considered these four genes as the candidates affecting milk production traits. In this study, we detected polymorphisms of the four genes and verified their genetic effects on milk yield and composition traits in a Chinese Holstein cow population. Results By resequencing the whole coding region and part of the flanking region of SLC22A7, NGFR, ARNTL and PPP2R2B, we totally found 20 SNPs, of which five were located in SLC22A7, eight in NGFR, three in ARNTL, and four in PPP2R2B. Using Haploview4.2, we found three haplotype blocks including five SNPs in SLC22A7, eight in NGFR and three in ARNTL. Single-SNP association analysis showed that 19 out of 20 SNPs were significantly associated with at least one of milk yield, fat yield, fat percentage, protein yield or protein percentage in the first and second lactations (P < 0.05). Haplotype-based association analysis showed that the three haplotypes were significantly associated with at least one of milk yield, fat yield, fat percentage, protein yield or protein percentage (P < 0.05). Further, we used SOPMA software to predict a SNP, 19:g.37095131C > T in NGFR, changed the structure of NGFR protein. In addition, we used Jaspar software to found that four SNPs, 19:g.37113872C > G,19:g.37113157C > T, and 19:g.37112276C > T in NGFR and 15:g.39320936A > G in ARNTL, could change the transcription factor binding sites and might affect the expression of the corresponding genes. These five SNPs might be the potential functional mutations for milk production traits in dairy cattle. Conclusions In summary, we proved that SLC22A7, NGFR, ARNTL and PPP2R2B have significant genetic effects on milk production traits. The valuable SNPs can be used as candidate genetic markers for genomic selection of dairy cattle, and the effects of these SNPs on other traits need to be further verified. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01002-0.
Collapse
Affiliation(s)
- Ruike Jia
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yihan Fu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Houcheng Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanhua Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
22
|
Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9100229. [PMID: 34678925 PMCID: PMC8540213 DOI: 10.3390/toxics9100229] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell death via microtubule stabilization interrupting cell mitosis. However, paclitaxel also affects cells of the central and peripheral nervous system. The main symptoms are pain and numbness in hands and feet due to paclitaxel accumulation in the dorsal root ganglia. This review describes in detail the pathomechanisms of paclitaxel in the peripheral nervous system. Symptoms occur due to a length-dependent axonal sensory neuropathy, where axons are symmetrically damaged and die back. Due to microtubule stabilization, axonal transport is disrupted, leading to ATP undersupply and oxidative stress. Moreover, mitochondria morphology is altered during paclitaxel treatment. A key player in pain sensation and axonal damage is the paclitaxel-induced inflammation in the spinal cord as well as the dorsal root ganglia. An increased expression of chemokines and cytokines such as IL-1β, IL-8, and TNF-α, but also CXCR4, RAGE, CXCL1, CXCL12, CX3CL1, and C3 promote glial activation and accumulation, and pain sensation. These findings are further elucidated in this review.
Collapse
|
23
|
Yamamura T, Narumi K, Ohata T, Satoh H, Mori T, Furugen A, Kobayashi M, Iseki K. Characterization of deoxyribonucleoside transport mediated by concentrative nucleoside transporters. Biochem Biophys Res Commun 2021; 558:120-125. [PMID: 33910126 DOI: 10.1016/j.bbrc.2021.04.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
Human concentrative nucleoside transporters (CNTs) are responsible for cellular uptake of ribonucleosides; however, although it is important to better characterize CNT-subtype specificity to understand the systemic disposition of deoxyribonucleosides (dNs) and their analogs, the involvement of CNTs in transporting dNs is not fully understood. In this study, using COS-7 cells that transiently expressed CNT1, CNT2, or CNT3, we investigated if CNTs could transport not only ribonucleosides but also dNs, i.e., 2'-deoxyadenosine (dAdo), 2'-deoxyguanosine (dGuo), and 2'-deoxycytidine (dCyd). The cellular uptake study demonstrated that dAdo and dGuo were taken up by CNT2 but not by CNT1. Although dCyd was taken up by CNT1, no significant uptake was detected in COS-7 cells expressing CNT2. Similarly, these dNs were transported by CNT3. The apparent Km values of their uptake were as follows: CNT1, Km = 141 μM for dCyd; CNT2, Km = 62.4 μM and 54.9 μM for dAdo and dGuo, respectively; CNT3, Km = 14.7 μM and 34.4 μM for dGuo and dCyd, respectively. These results demonstrate that CNTs contribute not only to ribonucleoside transport but also to the transport of dNs. Moreover, our data indicated that CNT1 and CNT2 selectively transported pyrimidine and purine dNs, respectively, and CNT3 was shown to transport both pyrimidine and purine dNs.
Collapse
Affiliation(s)
- Taiki Yamamura
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Tsukika Ohata
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Satoh
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Hokkaido, Japan
| | - Takao Mori
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Hokkaido, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
24
|
Solute carriers as potential oncodrivers or suppressors: their key functions in malignant tumor formation. Drug Discov Today 2021; 26:1689-1701. [PMID: 33737072 DOI: 10.1016/j.drudis.2021.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 01/17/2023]
Abstract
Solute carrier (SLC) transporters are primarily known for their function in the transportation of various exogenous/endogenous substances via influx/efflux mechanisms. In addition to their diverse role in several tumor-modulating functions, such as proliferation, migration, angiogenesis, epithelial-mesenchymal transition (EMT), epigenetic modification, chemoresistance, immunoregulation, and oncometabolism, influx/efflux-independent contributions of SLCs in the activation of various signaling network cascades that might drive metastatic tumor formation have also been uncovered. Disappointingly, even after two decades and the discovery of >450 SLCs, many of their members remain orphans in terms of cancer pathogenesis. In this review, we summarize the current understanding of the tumor-modulating functions, mechanisms, and complexity of SLCs, as well as their potential as targets for cancer therapy.
Collapse
|
25
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
26
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
27
|
Petrykey K, Andelfinger GU, Laverdière C, Sinnett D, Krajinovic M. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opin Drug Metab Toxicol 2020; 16:865-883. [DOI: 10.1080/17425255.2020.1807937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kateryna Petrykey
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université De Montréal (Quebec), Montreal, Canada
| | - Gregor U. Andelfinger
- Department of Pediatrics, Université De Montréal (Quebec), Canada
- Fetomaternal and Neonatal Pathologies, Sainte-JustineUniversity Health Center (SJUHC), Montreal, Quebec, Canada
| | - Caroline Laverdière
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| | - Daniel Sinnett
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| | - Maja Krajinovic
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université De Montréal (Quebec), Montreal, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| |
Collapse
|
28
|
Schneider EH, Hofmeister O, Kälble S, Seifert R. Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in HuT-78 T lymphoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1251-1267. [PMID: 32313990 PMCID: PMC7314729 DOI: 10.1007/s00210-020-01864-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The effects of 100 μM of 3',5'-cGMP, cAMP, cCMP, and cUMP as well as of the corresponding membrane-permeant acetoxymethyl esters on anti-CD3-antibody (OKT3)-induced IL-2 production of HuT-78 cutaneous T cell lymphoma (Sézary lymphoma) cells were analyzed. Only 3',5'-cGMP significantly reduced IL-2 production. Flow cytometric analysis of apoptotic (propidium iodide/annexin V staining) and anti-proliferative (CFSE staining) effects revealed that 3',5'-cGMP concentrations > 50 μM strongly inhibited proliferation and promoted apoptosis of HuT-78 cells (cultured in the presence of αCD3 antibody). Similar effects were observed for the positional isomer 2',3'-cGMP and for 2',-GMP, 3'-GMP, 5'-GMP, and guanosine. By contrast, guanosine and guanosine-derived nucleotides had no cytotoxic effect on peripheral blood mononuclear cells (PBMCs) or acute lymphocytic leukemia (ALL) xenograft cells. The anti-proliferative and apoptotic effects of guanosine and guanosine-derived compounds on HuT-78 cells were completely eliminated by the nucleoside transport inhibitor NBMPR (S-(4-Nitrobenzyl)-6-thioinosine). By contrast, the ecto-phosphodiesterase inhibitor DPSPX (1,3-dipropyl-8-sulfophenylxanthine) and the CD73 ecto-5'-nucleotidase inhibitor AMP-CP (adenosine 5'-(α,β-methylene)diphosphate) were not protective. We hypothesize that HuT-78 cells metabolize guanosine-derived nucleotides to guanosine by yet unknown mechanisms. Guanosine then enters the cells by an NBMPR-sensitive nucleoside transporter and exerts cytotoxic effects. This transporter may be ENT1 because NBMPR counteracted guanosine cytotoxicity in HuT-78 cells with nanomolar efficacy (IC50 of 25-30 nM). Future studies should further clarify the mechanism of the observed effects and address the question, whether guanosine or guanosine-derived nucleotides may serve as adjuvants in the therapy of cancers that express appropriate nucleoside transporters and are sensitive to established nucleoside-derived cytostatic drugs.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Olga Hofmeister
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Solveig Kälble
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
29
|
The SLC Family Are Candidate Diagnostic and Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1932948. [PMID: 32461965 PMCID: PMC7212275 DOI: 10.1155/2020/1932948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/29/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common lethal subtype of renal cancer, and changes in tumor metabolism play a key role in its development. Solute carriers (SLCs) are important in the transport of small molecules in humans, and defects in SLC transporters can lead to serious diseases. The expression patterns and prognostic values of SLC family transporters in the development of ccRCC are still unclear. The current study analyzed the expression levels of SLC family members and their correlation with prognosis in ccRCC patients with data from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), cBioPortal, the Human Protein Atlas (HPA), the International Cancer Genome Consortium (ICGC), and the Gene Expression Omnibus (GEO). We found that the mRNA expression levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were significantly lower in ccRCC tissues than in normal tissues and the protein expression levels of SLC22A6, SLC22A7, SLC22A13, and SLC34A1 were also significantly lower. Except for SLC22A7, the expression levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were correlated with the clinical stage of ccRCC patients. The lower the expression levels of SLC22A6, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were, the later the clinical stage of ccRCC patients was. Further experiments revealed that the expression levels of SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 were significantly associated with overall survival (OS) and disease-free survival (DFS) in ccRCC patients. High SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 expression predicted improved OS and DFS. Finally, GSE53757 and ICGC were used to revalidate the differential expression and clinical prognostic value. This study suggests that SLC22A6, SLC22A7, SLC22A13, SLC25A4, SLC34A1, and SLC44A4 may be potential targets for the clinical diagnosis, prognosis, and treatment of ccRCC patients.
Collapse
|
30
|
Chiba S, Ro A, Ikawa T, Oide Y, Mukai T. Interactions of human organic anion transporters 1-4 and human organic cation transporters 1-3 with the stimulant drug methamphetamine and amphetamine. Leg Med (Tokyo) 2020; 44:101689. [PMID: 32109742 DOI: 10.1016/j.legalmed.2020.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
Drug membrane transport system proteins, namely, drug transporters, are expressed in the kidney and liver and play a crucial role in the excretion process. This study aimed to elucidate the interactions of the drug transporters human organic anion transporters 1, 2, 3, 4 (hOAT1, 2, 3, 4) and human organic cation transporters 1, 2, 3 (hOCT1, 2, 3), which are expressed primarily in human kidney, liver, and brain, with the stimulants methamphetamine (METH) and amphetamine (AMP). The results of an inhibition study using representative substrates of hOATs and hOCTs showed that METH and AMP significantly inhibited (by >50%) uptake of the hOCT1 and hOCT3 representative substrate 1-methy1-4-phenylpyridinium ion (MPP+) and hOCT2 representative substrate tetraethyl ammonium (TEA). However, METH and AMP did not inhibit uptake of the representative substrates of hOAT1, hOAT2, hOAT3, and hOAT4, (i.e., p-aminohippuric (PAH) acid, prostaglandin F2α (PGF2α), estron sulfate (ES), and ES respectively). Kinetic analyses revealed that METH competitively inhibited hOCT1-mediated MPP+ and hOCT2-mediated TEA uptake (Ki, 16.9 and 78.6 µM, respectively). Similarly, AMP exhibited competitive inhibition, with Ki values of 78.6 and 42.8 µM, respectively. In contrast, hOCT3 exhibited mixed inhibition of representative substrate uptake; hence, calculating Ki values was not possible. Herein, we reveal that hOCTs mediate the inhibition of METH and AMP. The results of this uptake study suggest that METH and AMP bind specifically to hOCT1 and hOCT2 without passing through the cell membrane, with subsequent passage of METH and AMP via hOCT3.
Collapse
Affiliation(s)
- Shoetsu Chiba
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan.
| | - Ayako Ro
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toru Ikawa
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Yukino Oide
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toshiji Mukai
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
31
|
Li TT, An JX, Xu JY, Tuo BG. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver. World J Clin Cases 2019; 7:3915-3933. [PMID: 31832394 PMCID: PMC6906560 DOI: 10.12998/wjcc.v7.i23.3915] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Organic anion transporters (OATs) and organic anion transporter polypeptides (OATPs) are classified within two SLC superfamilies, namely, the SLC22A superfamily and the SLCO superfamily (formerly the SLC21A family), respectively. They are expressed in many tissues, such as the liver and kidney, and mediate the absorption and excretion of many endogenous and exogenous substances, including various drugs. Most are composed of 12 transmembrane polypeptide chains with the C-terminus and the N-terminus located in the cell cytoplasm. OATs and OATPs are abundantly expressed in the liver, where they mainly promote the uptake of various endogenous substrates such as bile acids and various exogenous drugs such as antifibrotic and anticancer drugs. However, differences in the locations of glycosylation sites, phosphorylation sites, and amino acids in the OAT and OATP structures lead to different substrates being transported to the liver, which ultimately results in their different roles in the liver. To date, few articles have addressed these aspects of OAT and OATP structures, and we study further the similarities and differences in their structures, tissue distribution, substrates, and roles in liver diseases.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jia-Xing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Bi-Guang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| |
Collapse
|
32
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
33
|
Dragojević J, Mihaljević I, Popović M, Smital T. Zebrafish (Danio rerio) Oat1 and Oat3 transporters and their interaction with physiological compounds. Comp Biochem Physiol B Biochem Mol Biol 2019; 236:110309. [DOI: 10.1016/j.cbpb.2019.110309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
|
34
|
|
35
|
Dallmann A, Liu XI, Burckart GJ, van den Anker J. Drug Transporters Expressed in the Human Placenta and Models for Studying Maternal-Fetal Drug Transfer. J Clin Pharmacol 2019; 59 Suppl 1:S70-S81. [PMID: 31502693 PMCID: PMC7304533 DOI: 10.1002/jcph.1491] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Tremendous efforts have been directed to investigate the ontogeny of drug transporters in fetuses, neonates, infants, and children based on their importance for understanding drug pharmacokinetics. During development (ie, in the fetus and newborn infant), there is special interest in transporters expressed in the placenta that modulate placental drug transfer. Many of these transporters can decrease or increase drug concentrations in the fetus and at birth, stressing the relevance of elucidating expression in the placenta and potential gestational age-dependent changes therein. Hence, the main objective of this review was to summarize the current knowledge about expression and ontogeny of transporters in the human placenta in healthy pregnant women. In addition, various in vitro, ex vivo, and in silico models that can be used to investigate placental drug transfer, namely, placental cancer cell lines, ex vivo cotyledon perfusion experiments, and physiologically based pharmacokinetic (PBPK) models, are discussed together with their advantages and shortcomings. A particular focus was placed on PBPK models because these models can integrate different types of information, such as expression data, ontogeny information, and observations obtained from the ex vivo cotyledon perfusion experiment. Such a mechanistic modeling framework may leverage the available information and ultimately help to improve knowledge about the adequacy and safety of pharmacotherapy in pregnant women and their fetuses.
Collapse
Affiliation(s)
- André Dallmann
- Pediatric Pharmacology and Pharmacometrics Research Center, University Children’s Hospital Basel (UKBB), Switzerland
| | - Xiaomei I. Liu
- Division of Clinical Pharmacology, Children’s National Medical Center, Washington, DC, USA
| | - Gilbert J. Burckart
- US Food and Drug Administration, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics Research Center, University Children’s Hospital Basel (UKBB), Switzerland
- Division of Clinical Pharmacology, Children’s National Medical Center, Washington, DC, USA
| |
Collapse
|
36
|
Yee SW, Stecula A, Chien HC, Zou L, Feofanova EV, van Borselen M, Cheung KWK, Yousri NA, Suhre K, Kinchen JM, Boerwinkle E, Irannejad R, Yu B, Giacomini KM. Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies. PLoS Genet 2019; 15:e1008208. [PMID: 31553721 PMCID: PMC6760779 DOI: 10.1371/journal.pgen.1008208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Elena V. Feofanova
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Marjolein van Borselen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Kit Wun Kathy Cheung
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Noha A. Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Karsten Suhre
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roshanak Irannejad
- The Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, California, United States of America
| |
Collapse
|
37
|
Nigam SK. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu Rev Pharmacol Toxicol 2019; 58:663-687. [PMID: 29309257 DOI: 10.1146/annurev-pharmtox-010617-052713] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SLC22 transporter family consists of more than two dozen members, which are expressed in the kidney, the liver, and other tissues. Evolutionary analysis indicates that SLC22 transporters fall into at least six subfamilies: OAT (organic anion transporter), OAT-like, OAT-related, OCT (organic cation transporter), OCTN (organic cation/carnitine transporter), and OCT/OCTN-related. Some-including OAT1 [SLC22A6 or NKT (novel kidney transporter)] and OAT3 (SLC22A8), as well as OCT1 (SLC22A1) and OCT2 (SLC22A2)-are widely studied drug transporters. Nevertheless, analyses of knockout mice and other data indicate that SLC22 transporters regulate key metabolic pathways and levels of signaling molecules (e.g., gut microbiome products, bile acids, tricarboxylic acid cycle intermediates, dietary flavonoids and other nutrients, prostaglandins, vitamins, short-chain fatty acids, urate, and ergothioneine), as well as uremic toxins associated with chronic kidney disease. Certain SLC22 transporters-such as URAT1 (SLC22A12) and OCTN2 (SLC22A5)-are mutated in inherited metabolic diseases. A new systems biology view of transporters is emerging. As proposed in the remote sensing and signaling hypothesis, SLC22 transporters, together with other SLC and ABC transporters, have key roles in interorgan and interorganism small-molecule communication and, together with the neuroendocrine, growth factor-cytokine, and other homeostatic systems, regulate local and whole-body homeostasis.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
38
|
Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM, Kim RB, Ray AS, Stocker SL, Unadkat JD, Wittwer MB, Xia C, Yee SW, Zhang L, Zhang Y. Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin Pharmacol Ther 2018; 104:890-899. [PMID: 30091177 DOI: 10.1002/cpt.1112] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).
Collapse
Affiliation(s)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut, USA
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Adrian S Ray
- Clinical Research, Gilead Sciences, Foster City, California, USA
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia & St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Cindy Xia
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Cambridge, Massachusetts, USA
| | - Sook-Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte, Wilmington, Delaware, USA
| | | |
Collapse
|
39
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
40
|
Grube M, Hagen P, Jedlitschky G. Neurosteroid Transport in the Brain: Role of ABC and SLC Transporters. Front Pharmacol 2018; 9:354. [PMID: 29695968 PMCID: PMC5904994 DOI: 10.3389/fphar.2018.00354] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Neurosteroids, comprising pregnane, androstane, and sulfated steroids can alter neuronal excitability through interaction with ligand-gated ion channels and other receptors and have therefore a therapeutic potential in several brain disorders. They can be formed in brain cells or are synthesized by an endocrine gland and reach the brain by penetrating the blood–brain barrier (BBB). Especially sulfated steroids such as pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) depend on transporter proteins to cross membranes. In this review, we discuss the involvement of ATP-binding cassette (ABC)- and solute carrier (SLC)-type membrane proteins in the transport of these compounds at the BBB and in the choroid plexus (CP), but also in the secretion from neurons and glial cells. Among the ABC transporters, especially BCRP (ABCG2) and several MRP/ABCC subfamily members (MRP1, MRP4, MRP8) are expressed in the brain and known to efflux conjugated steroids. Furthermore, several SLC transporters have been shown to mediate cellular uptake of steroid sulfates. These include members of the OATP/SLCO subfamily, namely OATP1A2 and OATP2B1, as well as OAT3 (SLC22A3), which have been reported to be expressed at the BBB, in the CP and in part in neurons. Furthermore, a role of the organic solute transporter OSTα-OSTβ (SLC51A/B) in brain DHEAS/PregS homeostasis has been proposed. This transporter was reported to be localized especially in steroidogenic cells of the cerebellum and hippocampus. To date, the impact of transporters on neurosteroid homeostasis is still poorly understood. Further insights are desirable also with regard to the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Markus Grube
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Paul Hagen
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Sager G, Smaglyukova N, Fuskevaag OM. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J Cell Physiol 2018; 233:5972-5980. [PMID: 29244191 PMCID: PMC5947735 DOI: 10.1002/jcp.26409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023]
Abstract
The present study was conducted to characterise the transporter(s) responsible for the uptake of cyclic nucleotides to human erythrocytes. Western blotting showed that hRBC expressed OAT2 (SLC22A7), but detection of OAT1 (SLC22A6), or OAT3 (SLC22A8) was not possible. Intact hRBC were employed to clarify the simultaneous cyclic nucleotide egression and uptake. Both these opposing processes were studied. The Km‐values for high affinity efflux was 3.5 ± 0.1 and 39.4 ± 5.7 μM for cGMP and cAMP, respectively. The respective values for low affinity efflux were 212 ± 11 and 339 ± 42 μM. The uptake was characterised with apparently low affinity and similar Km‐values for cGMP (2.2 mM) and cAMP (0.89 mM). Using an iterative approach in order to balance uptake with efflux, the predicted real Km‐values for uptake were 100–200 μM for cGMP and 50–150 μM for cAMP. The established OAT2‐substrate indomethacin showed a competitive interaction with cyclic nucleotide uptake. Creatinine, also an OAT2 substrate, showed saturable uptake with a Km of 854 ± 98 μM. Unexpectedly, co‐incubation with cyclic nucleotides showed an uncompetitive inhibition. The observed Km‐values were 399 ± 44 and 259 ± 30 μM for creatinine, in the presence of cGMP and cAMP, respectively. Finally, the OAT1‐substrate para‐aminohippurate (PAH) showed some uptake (Km‐value of 2.0 ± 0.4 mM) but did not interact with cyclic nucleotide or indomethacin transport.
Collapse
Affiliation(s)
- Georg Sager
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ole-Martin Fuskevaag
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
42
|
Mathialagan S, Costales C, Tylaska L, Kimoto E, Vildhede A, Johnson J, Johnson N, Sarashina T, Hashizume K, Isringhausen CD, Vermeer LMM, Wolff AR, Rodrigues AD. In vitro studies with two human organic anion transporters: OAT2 and OAT7. Xenobiotica 2017; 48:1037-1049. [DOI: 10.1080/00498254.2017.1384595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumathy Mathialagan
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Chester Costales
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Emi Kimoto
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Anna Vildhede
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Jillian Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Nathaniel Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | | | | | | | | | | | - A. David Rodrigues
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| |
Collapse
|
43
|
Dragojević J, Mihaljević I, Popović M, Zaja R, Smital T. In vitro characterization of zebrafish (Danio rerio) organic anion transporters Oat2a-e. Toxicol In Vitro 2017; 46:246-256. [PMID: 29030288 DOI: 10.1016/j.tiv.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/16/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
OATS/Oats are transmembrane proteins that transport a variety of drugs, environmental toxins and endogenous metabolites into the cell. Zebrafish (Danio rerio) has seven OAT orthologs: Oat1, Oat2a-e and Oat3. In this study we specifically address Oat2 (Slc22a7) family. Conserved synteny analysis showed localization of zebrafish oat2 genes on two chromosomes, 11 and 17. All five zebrafish Oats were localized by live cell imaging in membranes of transiently transfected HEK293-T cells, and Oat2a, b, d, and e were confirmed using western blot analysis. Functional studies using the HEK293T cells overexpressing zebrafish Oats revealed two model fluorescent substrates of three Oats: Lucifer yellow for Oat2a and Oat2d (Km 122, and 49.7μM), and 6-carboxyfluorescein for Oat2b and Oat2d (Km 199.7, and 266.9μM). The initial screening of a series of diverse endo- and xenobiotics showed interaction with a number of compounds, including cGMP and diclofenac (IC50 27.74, and 19.14μM) with Oat2a; estrone-3-sulfate and diclofenac (IC50 30.96, and 12.6μM) with Oat2b; and fumarate and indomethacin (IC50 68.24, and 20.41μM) with Oat2d. This study provides the first comprehensive data set on Oat2 in zebrafish and offers an important basis for more detailed molecular and (eco)toxicological characterizations of these transporters.
Collapse
Affiliation(s)
- Jelena Dragojević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Roko Zaja
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
44
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
45
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
46
|
Thakkar N, Slizgi JR, Brouwer KLR. Effect of Liver Disease on Hepatic Transporter Expression and Function. J Pharm Sci 2017; 106:2282-2294. [PMID: 28465155 DOI: 10.1016/j.xphs.2017.04.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.
Collapse
Affiliation(s)
- Nilay Thakkar
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jason R Slizgi
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
47
|
Shen H, Lai Y, Rodrigues AD. Organic Anion Transporter 2: An Enigmatic Human Solute Carrier. Drug Metab Dispos 2017; 45:228-236. [PMID: 27872146 DOI: 10.1124/dmd.116.072264] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
As a member of the solute carrier 22A (SLC22A) family, organic anion transporter 2 (OAT2; SLC22A7) is emerging as an important drug transporter because of its expression in both the liver and kidney, two major eliminating organs, and its ability to transport not only a wide variety of xenobiotics but also numerous physiologically important endogenous compounds, like creatinine and cGMP. However, OAT2 has received relatively little attention compared with other OATs and solute carriers (SLCs), like organic cation transporters, sodium-dependent taurocholate cotransporting polypeptide, multidrug and toxin extrusion proteins, and organic anion-transporting polypeptides. Overall, the literature describing OAT2 is rapidly evolving, with numerous publications contradicting each other regarding the transport mechanism, tissue distribution, and transport of creatinine and cGMP, two important endogenous OAT2 substrates. Despite its status as a liver and kidney SLC, tools for assessing its activity and inhibition are lacking, and its role in drug disposition and elimination remains to be defined. The current review focuses on the available and emerging literature describing OAT2. We envision that OAT2 will gain more prominence as its expression, substrate, and inhibitor profile is investigated further and compared with other SLCs.
Collapse
Affiliation(s)
- Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| | - Yurong Lai
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| | - A David Rodrigues
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| |
Collapse
|
48
|
Burckhardt BC, Henjakovic M, Hagos Y, Burckhardt G. Counter-flow suggests transport of dantrolene and 5-OH dantrolene by the organic anion transporters 2 (OAT2) and 3 (OAT3). Pflugers Arch 2016; 468:1909-1918. [DOI: 10.1007/s00424-016-1894-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/27/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
|
49
|
Mihaljevic I, Popovic M, Zaja R, Smital T. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics 2016; 17:626. [PMID: 27519738 PMCID: PMC4982206 DOI: 10.1186/s12864-016-2981-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/29/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND SLC22 protein family is a member of the SLC (Solute carriers) superfamily of polyspecific membrane transporters responsible for uptake of a wide range of organic anions and cations, including numerous endo- and xenobiotics. Due to the lack of knowledge on zebrafish Slc22 family, we performed initial characterization of these transporters using a detailed phylogenetic and conserved synteny analysis followed by the tissue specific expression profiling of slc22 transcripts. RESULTS We identified 20 zebrafish slc22 genes which are organized in the same functional subgroups as human SLC22 members. Orthologies and syntenic relations between zebrafish and other vertebrates revealed consequences of the teleost-specific whole genome duplication as shown through one-to-many orthologies for certain zebrafish slc22 genes. Tissue expression profiles of slc22 transcripts were analyzed using qRT-PCR determinations in nine zebrafish tissues: liver, kidney, intestine, gills, brain, skeletal muscle, eye, heart, and gonads. Our analysis revealed high expression of oct1 in kidney, especially in females, followed by oat3 and oat2c in females, oat2e in males and orctl4 in females. oct1 was also dominant in male liver. oat2d showed the highest expression in intestine with less noticeable gender differences. All slc22 genes showed low expression in gills, and moderate expression in heart and skeletal muscle. Dominant genes in brain were oat1 in females and oct1 in males, while the highest gender differences were determined in gonads, with dominant expression of almost all slc22 genes in testes and the highest expression of oat2a. CONCLUSIONS Our study offers the first insight into the orthology relationships, gene expression and potential role of Slc22 membrane transporters in zebrafish. Clear orthological relationships of zebrafish slc22 and other vertebrate slc22 genes were established. slc22 members are mostly highly conserved, suggesting their physiological and toxicological importance. One-to-many orthologies and differences in tissue expression patterns of zebrafish slc22 genes in comparison to human orthologs were observed. Our expression data point to partial similarity of zebrafish versus human Slc22 members, with possible compensatory roles of certain zebrafish transporters, whereas higher number of some orthologs implies potentially more diverse and specific roles of these proteins in zebrafish.
Collapse
Affiliation(s)
- Ivan Mihaljevic
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marta Popovic
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Roko Zaja
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Tvrtko Smital
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
50
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|