1
|
Huang ZQ, Liu J, Sun LY, Ong HH, Ye J, Xu Y, Wang DY. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024; 79:1146-1165. [PMID: 38372149 DOI: 10.1111/all.16064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li-Ying Sun
- First School of Clinical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
2
|
Segui-Perez C, Stapels DAC, Ma Z, Su J, Passchier E, Westendorp B, Wubbolts RW, Wu W, van Putten JPM, Strijbis K. MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via protein kinase C. J Cell Sci 2024; 137:jcs261468. [PMID: 38345099 PMCID: PMC10984281 DOI: 10.1242/jcs.261468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Daphne A. C. Stapels
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Ziliang Ma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 138648 Singapore, Singapore
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Jinyi Su
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elsemieke Passchier
- UMAB, Department of Laboratory Pharmacy and Biomedical Genetics, Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Richard W. Wubbolts
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 138648 Singapore, Singapore
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Jos P. M. van Putten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
3
|
Immunopathologic Role of Fungi in Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24032366. [PMID: 36768687 PMCID: PMC9917138 DOI: 10.3390/ijms24032366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Airborne fungi are ubiquitous in the environment and are commonly associated with airway inflammatory diseases. The innate immune defense system eliminates most inhaled fungi. However, some influence the development of chronic rhinosinusitis. Fungal CRS is thought of as not a common disease, and its incidence increases over time. Fungi are present in CRS patients and in healthy sinonasal mucosa. Although the immunological mechanisms have not been entirely explained, CRS patients may exhibit different immune responses than healthy people against airborne fungi. Fungi can induce Th1 and Th2 immune responses. In CRS, Th2-related immune responses against fungi are associated with pattern recognition receptors in nasal epithelial cells, the production of inflammatory cytokines and chemokines from nasal epithelial cells, and interaction with innate type 2 cells, lymphocytes, and inflammatory cells. Fungi also interact with neutrophils and eosinophils and induce neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs). NETs and EETs are associated with antifungal properties and aggravation of chronic inflammation in CRS by releasing intracellular granule proteins. Fungal and bacterial biofilms are commonly found in CRS and may support chronic and recalcitrant CRS infection. The fungal-bacterial interaction in the sinonasal mucosa could affect the survival and virulence of fungi and bacteria and host immune responses. The interaction between the mycobiome and microbiome may also influence the host immune response, impacting local inflammation and chronicity. Although the exact immunopathologic role of fungi in the pathogenesis of CRS is not completely understood, they contribute to the development of sinonasal inflammatory responses in CRS.
Collapse
|
4
|
Brooks-Warburton J, Modos D, Sudhakar P, Madgwick M, Thomas JP, Bohar B, Fazekas D, Zoufir A, Kapuy O, Szalay-Beko M, Verstockt B, Hall LJ, Watson A, Tremelling M, Parkes M, Vermeire S, Bender A, Carding SR, Korcsmaros T. A systems genomics approach to uncover patient-specific pathogenic pathways and proteins in ulcerative colitis. Nat Commun 2022; 13:2299. [PMID: 35484353 PMCID: PMC9051123 DOI: 10.1038/s41467-022-29998-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
We describe a precision medicine workflow, the integrated single nucleotide polymorphism network platform (iSNP), designed to determine the mechanisms by which SNPs affect cellular regulatory networks, and how SNP co-occurrences contribute to disease pathogenesis in ulcerative colitis (UC). Using SNP profiles of 378 UC patients we map the regulatory effects of the SNPs to a human signalling network containing protein-protein, miRNA-mRNA and transcription factor binding interactions. With unsupervised clustering algorithms we group these patient-specific networks into four distinct clusters driven by PRKCB, HLA, SNAI1/CEBPB/PTPN1 and VEGFA/XPO5/POLH hubs. The pathway analysis identifies calcium homeostasis, wound healing and cell motility as key processes in UC pathogenesis. Using transcriptomic data from an independent patient cohort, with three complementary validation approaches focusing on the SNP-affected genes, the patient specific modules and affected functions, we confirm the regulatory impact of non-coding SNPs. iSNP identified regulatory effects for disease-associated non-coding SNPs, and by predicting the patient-specific pathogenic processes, we propose a systems-level way to stratify patients.
Collapse
Affiliation(s)
- Johanne Brooks-Warburton
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hertford, UK
- Gastroenterology Department, Lister Hospital, Stevenage, UK
| | - Dezso Modos
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - John P Thomas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - David Fazekas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Azedine Zoufir
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | | - Bram Verstockt
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Lindsay J Hall
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 80333, Freising, Germany
| | - Alastair Watson
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Mark Tremelling
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Severine Vermeire
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Andreas Bender
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Simon R Carding
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022; 14:629. [PMID: 35336004 PMCID: PMC8950509 DOI: 10.3390/pharmaceutics14030629] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Neurological diseases continue to increase in prevalence worldwide. Combined with the lack of modifiable risk factors or strongly efficacious therapies, these disorders pose a significant and growing burden on healthcare systems and societies. The development of neuroprotective or curative therapies is limited by a variety of factors, but none more than the highly selective blood-brain barrier. Intranasal administration can bypass this barrier completely and allow direct access to brain tissues, enabling a large number of potential new therapies ranging from bioactive peptides to stem cells. Current research indicates that merely administering simple solutions is inefficient and may limit therapeutic success. While many therapies can be delivered to some degree without carrier molecules or significant modification, a growing body of research has indicated several methods of improving the safety and efficacy of this administration route, such as nasal permeability enhancers, gelling agents, or nanocarrier formulations. This review shall discuss promising delivery systems and their role in expanding the clinical efficacy of this novel administration route. Optimization of intranasal administration will be crucial as novel therapies continue to be studied in clinical trials and approved to meet the growing demand for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Tyler P. Crowe
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Walter H. Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Ogi K, Ramezanpour M, Liu S, Ferdoush Tuli J, Bennett C, Suzuki M, Fujieda S, Psaltis AJ, Wormald PJ, Vreugde S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:692049. [PMID: 35387029 PMCID: PMC8974687 DOI: 10.3389/falgy.2021.692049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background:Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air–liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sha Liu
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Jannatul Ferdoush Tuli
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Catherine Bennett
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Masanobu Suzuki
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Alkis James Psaltis
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- *Correspondence: Sarah Vreugde
| |
Collapse
|
7
|
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2020; 9:1848212. [PMID: 33300427 DOI: 10.1080/21688370.2020.1848212] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial and endothelial cell-cell contacts are established and maintained by several intercellular junctional complexes. These structurally and biochemically differentiated regions on the plasma membrane primarily include tight junctions (TJs), and anchoring junctions. While the adherens junctions (AJs) provide essential adhesive and mechanical properties, TJs hold the cells together and form a near leak-proof intercellular seal by the fusion of adjacent cell membranes. AJs and TJs play essential roles in vascular permeability. Considering their involvement in several key cellular functions such as barrier formation, proliferation, migration, survival, and differentiation, further research is warranted on the composition and signaling pathways regulating cell-cell junctions to develop novel therapeutics for diseases such as organ injuries. The current review article presents our current state of knowledge on various cell-cell junctions, their molecular composition, and mechanisms regulating their expression and function in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| |
Collapse
|
8
|
Yuan S, Liu KJ, Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ 2020; 6:152-162. [PMID: 33210038 PMCID: PMC7646391 DOI: 10.4103/bc.bc_29_20] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Occludin is a key structural component of the blood–brain barrier (BBB) that has recently become an important focus of research in BBB damages. Many studies have demonstrated that occludin could regulate the integrity and permeability of the BBB. The function of BBB depends on the level of occludin protein expression in brain endothelial cells. Moreover, occludin may serve as a potential biomarker for hemorrhage transformation after acute ischemic stroke. In this review, we summarize the role of occludin in BBB integrity and the regulatory mechanisms of occludin in the permeability of BBB after ischemic stroke. Multiple factors have been found to regulate occludin protein functions in maintaining BBB permeability, such as Matrix metalloproteinas-mediated cleavage, phosphorylation, ubiquitination, and related inflammatory factors. In addition, various signaling pathways participate in regulating the occludin expression, including nuclear factor-kappa B, mitogen-activated protein kinase, protein kinase c, RhoK, and ERK1/2. Emerging therapeutic interventions for ischemic stroke targeting occludin are described, including normobaric hyperoxia, Chinese medicine, chemical drugs, genes, steroid hormones, small molecular peptides, and other therapies. Since occludin has been shown to play a critical role in regulating BBB integrity, further preclinical studies will help evaluate and validate occludin as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shuhua Yuan
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zhifeng Qi
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Kreft ME, Tratnjek L, Lasič E, Hevir N, Rižner TL, Kristan K. Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells. Pharm Res 2020; 37:170. [PMID: 32820417 DOI: 10.1007/s11095-020-02905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to characterize a commercially available primary human nasal epithelial cell culture and its gene expression of a wide range of drug transporters under different culture conditions. METHODS Human nasal cells were cultured in three different types of culture media at the air-liquid (A-L) or liquid-liquid (L-L) interfaces for 1 or 3 wks. The effects of the different cell culture conditions were evaluated using light and electron microscopy, transepithelial electrical resistance (TEER) measurements, permeation studies with dextran, and gene expression profiling of 84 drug transporters. RESULTS The type of culture medium affected cell ultrastructure, TEER, and dextran permeation across epithelia. The expression of 20 drug transporter genes depended on the culture interface and/or time in culture; the A-L interface and longer time in culture favored higher expression levels of five ABC and seven SLC transporters. CONCLUSIONS Culture conditions influence the morphology, barrier formation, permeation properties, and drug transporter expression of human nasal epithelial cells, and this must be taken into consideration during the establishment and validation of in vitro models. A thorough characterization of a nasal epithelial model and its permeability properties is necessary to obtain an appropriate standardized model for the design of aerosol therapeutics and drug transport studies.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Lasič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neli Hevir
- Lek Pharmaceuticals d.d, Biopharma Process & Product Development, Mengeš, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,Lek Pharmaceuticals, d.d, Sandoz Development Center Slovenia, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Jarillo-Luna RA, Gutiérrez-Meza JM, Franco-Vadillo A, Rivera-Aguilar V, Toledo-Blas M, Cárdenas-Jaramillo LM. Restraint stress increased the permeability of the nasal epithelium in BALB/c mice. Psychoneuroendocrinology 2020; 117:104700. [PMID: 32387874 DOI: 10.1016/j.psyneuen.2020.104700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
Stress seems to affect the onset and evolution of diverse illnesses with an inflammatory substrate. Whether physiological or psychological, stress increases epithelial permeability. In the mucosa of the nasal cavity and upper respiratory tract, the epithelial barrier is regulated in large part by bicellular and tricellular tight junctions (bTJs and tTJs, respectively). The junctional complexes are composed of multiple membrane proteins: claudins, tight-junction-associated MARVEL proteins (TAMs: occludin, tricellulin and marvelD3), and scaffolding proteins such as ZO-1, -2 and -3. The aim of the present study was to examine the possible modification of nasal permeability and TJ protein expression in a mouse model of acute psychological stress (a 4-h immobility session). Serum corticosterone was quantified from plasma samples to verify the onset of stress. Evaluation was made of the relative concentration of key proteins in nasal mucosa by using Western blot, and of changes in permeability by analyzing FITC-Dextran leakage from the nose to the blood. Compared to the control, the stressed group showed a greater epithelial permeability to FITC-Dextran, a reduced expression of occludin and tricellulin, and an elevated expression of ZO-2 and claudin-4. This evidence points to increased paracellular flow of large molecules through an altered structure of tTJs. Apparently, the structure of bTJs remained unchanged. The current findings could provide insights into the relation of stress to the onset/exacerbation of respiratory infections and/or allergies.
Collapse
Affiliation(s)
- Rosa Adriana Jarillo-Luna
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico.
| | - Juan Manuel Gutiérrez-Meza
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| | - Antonio Franco-Vadillo
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| | - Victor Rivera-Aguilar
- Departamento de Microbiología, UBIPRO, FES-Iztacala, UNAM, Avenida de los Barrios s/n, CP. 54090, Tlalnepantla Edo. de México, Mexico
| | - Mireille Toledo-Blas
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| |
Collapse
|
11
|
Blanchard AA, Ma X, Wang N, Hombach-Klonisch S, Penner C, Ozturk A, Klonisch T, Pitz M, Murphy L, Leygue E, Myal Y. Claudin 1 Is Highly Upregulated by PKC in MCF7 Human Breast Cancer Cells and Correlates Positively with PKCε in Patient Biopsies. Transl Oncol 2019; 12:561-575. [PMID: 30658316 PMCID: PMC6349319 DOI: 10.1016/j.tranon.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/04/2023] Open
Abstract
Recent studies provide compelling evidence to suggest that the tight junction protein claudin 1, aberrantly expressed in several cancer types, plays an important role in cancer progression. Dysregulation of claudin 1 has been shown to induce epithelial mesenchymal transition (EMT). Furthermore, activation of the ERK signaling pathway by protein kinase C (PKC) was shown to be necessary for EMT induction. Whether PKC is involved in regulating breast cancer progression has not been addressed. The PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) was used to investigate the effect of PKC activity on claudin 1 transcription and protein levels, subcellular distribution, and alterations in EMT markers in human breast cancer (HBC) cell lines. As well, tissue microarray analysis (TMA) of a large cohort of invasive HBC biopsies was conducted to investigate correlations between claudin 1 and PKC isomers. TPA upregulated claudin 1 levels in all HBC cell lines analyzed. In particular, a high induction of claudin 1 protein was observed in the MCF7 cell line. TPA treatment also led to an accumulation of claudin 1 in the cytoplasm. Additionally, we demonstrated that the upregulation of claudin 1 was through the ERK signaling pathway. In patient biopsies, we identified a significant positive correlation between claudin 1, PKCα, and PKCε in ER+ tumors. A similar correlation between claudin 1 and PKCε was identified in ER- tumors, and high PKCε was associated with shorter disease-free survival. Collectively, these studies demonstrate that claudin 1 and the ERK signaling pathway are important players in HBC progression.
Collapse
Affiliation(s)
- Anne A Blanchard
- Department of Pathology, University of Manitoba; Department of Physiology and Pathophysiology, University of Manitoba.
| | - Xiuli Ma
- Department of Pathology, University of Manitoba.
| | - Nan Wang
- Department of Pathology, University of Manitoba.
| | | | - Carla Penner
- Department of Pathology, University of Manitoba.
| | - Arzu Ozturk
- Biochemistry and Medical Genetics University of Manitoba.
| | | | - Marshall Pitz
- Research Institute of Oncology and Hematology, Winnipeg, Manitoba, Canada.
| | - Leigh Murphy
- Biochemistry and Medical Genetics University of Manitoba; Research Institute of Oncology and Hematology, Winnipeg, Manitoba, Canada.
| | - Etienne Leygue
- Human Anatomy and Cell Science, University of Manitoba; Biochemistry and Medical Genetics University of Manitoba.
| | - Yvonne Myal
- Department of Pathology, University of Manitoba; Department of Physiology and Pathophysiology, University of Manitoba; Research Institute of Oncology and Hematology, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
13
|
Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018; 195:44-52. [DOI: 10.1016/j.lfs.2017.12.025] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
|
14
|
Ryu B, Kim CY, Oh H, Kim U, Kim J, Jung CR, Lee BH, Lee S, Chang SN, Lee JM, Chung HM, Park JH. Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol 2017; 38:259-273. [PMID: 29027214 DOI: 10.1002/jat.3520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
15
|
Jo H, Hwang D, Kim JK, Lim YH. Oxyresveratrol improves tight junction integrity through the PKC and MAPK signaling pathways in Caco-2 cells. Food Chem Toxicol 2017; 108:203-213. [PMID: 28780155 DOI: 10.1016/j.fct.2017.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Strengthening intestinal tight junctions (TJ) provides an effective barrier from the external environment and is important for recovery from inflammatory bowel disease. Oxyresveratrol (OXY), an isomer of hydroxylated resveratrol, is isolated from many plants. The aim of this study was to investigate the effect of OXY on intestinal TJ and to elucidate the mechanism underlying the OXY-mediated increase in TJ integrity in human intestinal Caco-2 cells. OXY-treated Caco-2 cell monolayers showed decreased monolayer permeability as evaluated by paracellular transport assay. The results showed that OXY significantly increased the levels of TJ-related genes and proteins (Claudin-1, Occludin and ZO-1) compared with those of the negative control. OXY activated protein kinase C (PKC) and increased expression levels of mitogen-activated protein kinase (MAPK) genes. OXY also increased gene and protein levels of the transcription factor Cdx-2. Expression levels of TJ, PKC and Cdx-2 proteins and transepithelial electrical resistance (TEER) value decreased in OXY-treated Caco-2 cells following treatment with a pan-PKC inhibitor compared with those of the untreated control. In conclusion, OXY strengthens the integrity of the intestinal TJ barrier via activation of the PKC and MAPK pathways.
Collapse
Affiliation(s)
- HyunA Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Dahyun Hwang
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Republic of Korea
| | - Jeong-Keun Kim
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Shihung-si, Gyeonggi-do 429-793, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 136-701, Republic of Korea; Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul 136-701, Republic of Korea; Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703, Republic of Korea.
| |
Collapse
|
16
|
Nakahara T, Nishitani Y, Nishiumi S, Yoshida M, Azuma T. Astilbin from Engelhardtia chrysolepis enhances intestinal barrier functions in Caco-2 cell monolayers. Eur J Pharmacol 2017; 804:46-51. [DOI: 10.1016/j.ejphar.2017.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/13/2023]
|
17
|
Kim MH, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci 2017; 18:ijms18051051. [PMID: 28498331 PMCID: PMC5454963 DOI: 10.3390/ijms18051051] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
18
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
19
|
Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina PM, Chang B. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci 2016; 57:877-88. [PMID: 26978024 PMCID: PMC4794085 DOI: 10.1167/iovs.15-17495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. Methods The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. Results New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. Conclusions The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.
Collapse
|
20
|
Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration. Neurobiol Dis 2016; 91:262-73. [DOI: 10.1016/j.nbd.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
|
21
|
Ikari A, Fujii N, Hahakabe S, Hayashi H, Yamaguchi M, Yamazaki Y, Endo S, Matsunaga T, Sugatani J. Hyperosmolarity-Induced Down-Regulation of Claudin-2 Mediated by Decrease in PKCβ-Dependent GATA-2 in MDCK Cells. J Cell Physiol 2015; 230:2776-87. [PMID: 25825272 DOI: 10.1002/jcp.25004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Hyperosmolarity decreases claudin-2 expression in renal tubular epithelial cells, but the molecular mechanism remains undefined. Here, we found that the hyperosmolarity-induced decrease in claudin-2 expression is inhibited by Go6983, a non-selective protein kinase C (PKC) inhibitor, and PKCβ specific inhibitor in Madin-Darby canine kidney II cells. Hyperosmolarity increased intracellular free Ca(2+) concentration and phosphorylated PKCβ level, which were inhibited by RN-1734, an antagonist of transient receptor potential vanilloid 4 channel. Phorbol 12-myristate 13-acetate, a PKC activator, decreased claudin-2 expression. These results indicate hyperosmolarity decreases claudin-2 expression mediated by the activation of RN-1734-sensitive channel and PKCβ. Hyperosmolarity decreased promoter activity of claudin-2, which was inhibited by Go6983 and PKCβ inhibitor similar to those in real-time PCR and Western blotting. The effect of hyperosmolarity on promoter activity was not observed in the construct of -469/-6, a deletion mutant. Claudin-2 has hyperosmolarity-sensitive region in its promoter, which includes GATA binding site. Hyperosmolarity decreased the nuclear level of GATA-2, which was inhibited by Go6983 and PKCβ inhibitor. Mutation of GATA binding site decreased the basal promoter activity and inhibited the effect of hyperosmolarity. In contrast, the hyperosmolarity-induced decrease in reporter activity and claudin-2 expression were rescued by over-expression of wild type GATA-2. Chromatin immunoprecipitation assay showed that GATA-2 bound to promoter region of claudin-2. These results suggest that hyperosmolarity decreases the expression level of claudin-2 via a decrease in PKCβ-dependent GATA-2 transcriptional activity in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naoko Fujii
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
| | - Shinya Hahakabe
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hisayoshi Hayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
| | - Junko Sugatani
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
22
|
Kojima T, Kondoh M, Keira T, Takano KI, Kakuki T, Kaneko Y, Miyata R, Nomura K, Obata K, Kohno T, Konno T, Sawada N, Himi T. Claudin-binder C-CPE mutants enhance permeability of insulin across human nasal epithelial cells. Drug Deliv 2015; 23:2703-2710. [PMID: 26036653 DOI: 10.3109/10717544.2015.1050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Intranasal insulin administration has therapeutic potential for Alzheimer's disease and in intranasal administration across the nasal mucosa, the paracellular pathway regulated by tight junctions is important. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) binds the tight junction protein claudin and disrupts the tight junctional barrier without a cytotoxic effect. The C-CPE mutant called C-CPE 194 binds only to claudin-4, whereas the C-CPE 194 mutant called C-CPE m19 binds not only to claudin-4 but also to claudin-1. METHODS In the present study, to investigate the effects of C-CPE mutants on the tight junctional functions of human nasal epithelial cells (HNECs) and on the permeability of human recombinant insulin across the cells, HNECs were treated with C-CPE 194 and C-CPE m19. RESULTS C-CPE 194 and C-CPE m19 disrupted the barrier and fence functions without changes in expression of claudin-1, -4, -7, and occludin or cytotoxicity, whereas they transiently increased the activity of ERK1/2 phosphorylation. The disruption of the barrier function caused by C-CPE 194 and C-CPE m19 was prevented by pretreatment with the MAPKK inhibitor U0126. Furthermore, C-CPE 194 and C-CPE m19 significantly enhanced the permeability of human recombinant insulin across HNECs and the permeability was also inhibited by U0126. CONCLUSION These findings suggest that C-CPE mutants 194 and m19 can regulate the permeability of insulin across HNECs via the MAPK pathway and may play a crucial role in therapy for the diseases such as Alzheimer's disease via the direct intranasal insulin administration.
Collapse
Affiliation(s)
- Takashi Kojima
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Masuo Kondoh
- b Laboratory of Bio-Functional Molecular Chemistry , Graduate School of Pharmaceutical Sciences, Osaka University , Suita , Japan
| | | | | | - Takuya Kakuki
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan.,c Department of Otolaryngology and
| | - Yakuto Kaneko
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan.,c Department of Otolaryngology and
| | | | | | | | - Takayuki Kohno
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Takumi Konno
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Norimasa Sawada
- d Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | | |
Collapse
|
23
|
Miyata R, Kakuki T, Nomura K, Ohkuni T, Ogasawara N, Takano KI, Konno T, Kohno T, Sawada N, Himi T, Kojima T. Poly(I:C) induced microRNA-146a regulates epithelial barrier and secretion of proinflammatory cytokines in human nasal epithelial cells. Eur J Pharmacol 2015; 761:375-82. [PMID: 25959385 DOI: 10.1016/j.ejphar.2015.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
Human nasal epithelial cells (HNECs) are important in the tight junctional barrier and innate immune defense protecting against pathogens invading via Toll-like receptors (TLRs). MicroRNAs (miRNAs) regulate expression of tight junctions as direct or indirect targeting genes and maintain the barrier function. However, the roles of miRNAs in the epithelial barrier of HNECs via TLRs remain unknown. In the present study, to investigate the effects of miRNAs on the epithelial barrier of HNECs via TLRs, primary cultured HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs), were treated with the TLR3 ligand poly(I:C) and miRNA array analysis was performed. In the miRNA array of the cells treated with poly(I:C), upregulation of miR-187, -146a, -574, -4274, -4433, -4455 and -4750, and downregulation of miR-4785 by more than twofold compared to the control were observed. When control HNECs were treated with mimics and inhibitors of these miRNAs, an miR-146a mimic induced expression of tight junction proteins claudin-1, occludin and JAM-A together with an increase of the epithelial barrier function. The poly(I:C)-induced miR-146a was regulated via the distinct TLR3-mediated signal pathways PI3K, JNK and NF-κB. Furthermore, the miR-146a mimic prevented downregulation of claudin-1 and JAM-A and the secretion of proinflammatory cytokines IL-8 and TNF-α induced by poly(I:C) by targeting TRAF6. These findings indicate that, in HNECs, miRNA-146a plays crucial roles in maintenance of the tight junction barrier and innate immune defense protecting against invading pathogens.
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| |
Collapse
|
24
|
Miyata R, Nomura K, Kakuki T, Takano KI, Kohno T, Konno T, Sawada N, Himi T, Kojima T. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells. J Membr Biol 2015; 248:327-36. [PMID: 25652184 DOI: 10.1007/s00232-015-9774-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/18/2015] [Indexed: 01/28/2023]
Abstract
The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park HY, Kunitake Y, Hirasaki N, Tanaka M, Matsui T. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1. Biosci Biotechnol Biochem 2015; 79:130-7. [DOI: 10.1080/09168451.2014.951027] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
We investigated the effect of theaflavins (TFs) on membrane barrier of Caco-2 cells. For fluorescein-transport experiments, the apparent permeability (Papp) of fluorescein in Caco-2 cells pretreated with 20 μM TFs were significantly decreased compared with that in untreated cells. Although the respective monomeric catechins did not show any Papp reduction, purpurogallin pretreatment resulted in a significant Papp reduction similar to that of TF-3′-O-gallate (TF3′G) pretreatment. This indicates that the benzotropolone moiety may play a crucial role in the Papp reduction or tight junction (TJ)-closing effect induced by TFs. In TF-3′-O-gallate-pretreated Caco-2 cells, fluorescein transport was completely restored by compound C (AMPK inhibitor). In addition, TF3′G significantly increased both the mRNA and protein expression of TJ-related proteins (occludin, claudin-1, and ZO-1) as well as the phosphorylation of AMPK. It was, thus, concluded that TFs could enhance intestinal barrier function by increasing the expression of TJ-related proteins through the activation of AMPK in Caco-2 cells.
Collapse
Affiliation(s)
- Ha-Young Park
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Yuri Kunitake
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Naoto Hirasaki
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Graduate School of Kyushu University, Fukuoka Japan
| |
Collapse
|
26
|
Yang L, Yan Y. Protein kinases are potential targets to treat inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2014; 5:209-217. [PMID: 25374761 PMCID: PMC4218950 DOI: 10.4292/wjgpt.v5.i4.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/05/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease (IBD), the two main forms of which are ulcerative colitis and Crohn’s disease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junction, and the potential of protein kinases as therapeutic targets against IBD.
Collapse
|
27
|
Weber DA, Sumagin R, McCall IC, Leoni G, Neumann PA, Andargachew R, Brazil JC, Medina-Contreras O, Denning TL, Nusrat A, Parkos CA. Neutrophil-derived JAML inhibits repair of intestinal epithelial injury during acute inflammation. Mucosal Immunol 2014; 7:1221-32. [PMID: 24621992 PMCID: PMC4340686 DOI: 10.1038/mi.2014.12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 02/04/2023]
Abstract
Neutrophil transepithelial migration (TEM) during acute inflammation is associated with mucosal injury. Using models of acute mucosal injury in vitro and in vivo, we describe a new mechanism by which neutrophils infiltrating the intestinal mucosa disrupt epithelial homeostasis. We report that junctional adhesion molecule-like protein (JAML) is cleaved from neutrophil surface by zinc metalloproteases during TEM. Neutrophil-derived soluble JAML binds to the epithelial tight junction protein coxsackie-adenovirus receptor (CAR) resulting in compromised barrier and inhibition of wound repair, through decreased epithelial proliferation. The deleterious effects of JAML on barrier and wound repair are reversed with an anti-JAML monoclonal antibody that inhibits JAML-CAR binding. JAML released from transmigrating neutrophils across inflamed epithelia may thus promote recruitment of leukocytes and aid in clearance of invading microorganisms. However, sustained release of JAML under pathologic conditions associated with persistence of large numbers of infiltrated neutrophils would compromise intestinal barrier and inhibit mucosal healing. Thus, targeting JAML-CAR interactions may improve mucosal healing responses under conditions of dysregulated neutrophil recruitment.
Collapse
Affiliation(s)
- Dominique A. Weber
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Ronen Sumagin
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Ingrid C. McCall
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Philipp A. Neumann
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Rakieb Andargachew
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Jennifer C. Brazil
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Oscar Medina-Contreras
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Timothy L. Denning
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Charles A. Parkos
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
28
|
Traweger A, Toepfer S, Wagner RN, Zweimueller-Mayer J, Gehwolf R, Lehner C, Tempfer H, Krizbai I, Wilhelm I, Bauer HC, Bauer H. Beyond cell-cell adhesion: Emerging roles of the tight junction scaffold ZO-2. Tissue Barriers 2014; 1:e25039. [PMID: 24665396 PMCID: PMC3885625 DOI: 10.4161/tisb.25039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 01/28/2023] Open
Abstract
Zonula occludens proteins (ZO-1, ZO-2, ZO-3), which belong to the family of membrane-associated guanylate kinase (MAGUK) homologs, serve as molecular hubs for the assembly of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. These multi-PDZ proteins exert crucial functions in the structural organization of intercellular contacts and in transducing intracellular signals from the plasma membrane to the nucleus. The junctional MAGUK protein ZO-2 not only associates with the C-terminal PDZ-binding motif of various transmembrane junctional proteins but also transiently targets to the nucleus and interacts with a number of nuclear proteins, thereby modulating gene expression and cell proliferation. Recent evidence suggests that ZO-2 is also involved in stress response and cytoprotective mechanisms, which further highlights the multi-faceted nature of this PDZ domain-containing protein. This review focuses on ZO-2 acting as a molecular scaffold at the cytoplasmic aspect of tight junctions and within the nucleus and discusses additional aspects of its cellular activities. The multitude of proteins interacting with ZO-2 and the heterogeneity of proteins either influencing or being influenced by ZO-2 suggests an exceptional functional capacity of this protein far beyond merely serving as a structural component of cellular junctions.
Collapse
Affiliation(s)
- Andreas Traweger
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Sebastian Toepfer
- University of Salzburg; Department of Organismic Biology; Salzburg, Austria
| | - Roland N Wagner
- Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | | | - Renate Gehwolf
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Christine Lehner
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Herbert Tempfer
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Istvan Krizbai
- Institute of Biophysics; Biological Research Centre; Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics; Biological Research Centre; Szeged, Hungary
| | - Hans-Christian Bauer
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria ; University of Salzburg; Department of Organismic Biology; Salzburg, Austria
| | - Hannelore Bauer
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; University of Salzburg; Department of Organismic Biology; Salzburg, Austria
| |
Collapse
|
29
|
Bernard NJ, O'Neill LA. Mal, more than a bridge to MyD88. IUBMB Life 2014; 65:777-86. [PMID: 23983209 DOI: 10.1002/iub.1201] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 01/17/2023]
Abstract
The family of type 1 transmembrane proteins known as Toll-like receptors (TLRs) provide early immune system recognition and response to infection. In order to transmit their signal to the nucleus and initiate activation of pro-inflammatory and anti-microbial genes, TLRs must initiate a cytoplasmic signalling cascade, which is alternately controlled by 6 known signalling adaptors. These signaling adaptors are crucial for activating the correct immune response to any given TLR / pathogen interaction. This review will focus on one of those adaptors, MyD88 adaptor-like (Mal), also known as TIRAP. Mal is critical for signalling by the best studied of the TLRs, the Gram negative bacterial lipopolysaccharide (LPS) sensor, TLR4. Mal's role in TLR2 signalling in response to activation of the bacterial lipopeptide receptor, TLR2, is more contentious. Mal is a component of the so-called 'MyD88-dependent pathway' in TLR4 signalling. Recent advances in our understanding of the signalling pathways downstream of Mal highlight MyD88-indpendent roles, thus positioning Mal as multifunctional and integral for the molecular control of bacterial infections as well as inflammatory diseases. Here we describe the sequence of molecular events involved in the signalling pathways controlled by Mal, and the importance of Mal in driving host protection against a variety of bacteria, with specific attention to the evidence for Mal's role in TLR2 signalling, recent structural findings that have altered our understanding of Mal signalling, and evidence that single nucleotide polymorphisms (SNPs) of Mal are responsible for variations in population level resistance and susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Nicholas J Bernard
- Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
30
|
Nomura K, Obata K, Keira T, Miyata R, Hirakawa S, Takano KI, Kohno T, Sawada N, Himi T, Kojima T. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res 2014; 15:21. [PMID: 24548792 PMCID: PMC3936699 DOI: 10.1186/1465-9921-15-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/31/2014] [Indexed: 01/09/2023] Open
Abstract
Background Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. Methods To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. Results PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. Conclusions PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| |
Collapse
|
31
|
Obata K, Kojima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S, Nomura K, Takasawa A, Murata M, Tanaka S, Fuchimoto J, Fujii N, Tsutsumi H, Himi T, Sawada N. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One 2013; 8:e70225. [PMID: 24058438 PMCID: PMC3776807 DOI: 10.1371/journal.pone.0070225] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-κB pathway. In this study, we investigated the effects of the NF-κB in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-κB, eIF-2α dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2α dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection.
Collapse
Affiliation(s)
- Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| | - Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamaki Okabayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jun Fuchimoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobuhiro Fujii
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Hirakawa S, Kojima T, Obata K, Okabayashi T, Yokota SI, Nomura K, Obonai T, Fuchimoto J, Himi T, Tsutsumi H, Sawada N. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells. J Med Virol 2013; 85:2141-50. [PMID: 24009192 DOI: 10.1002/jmv.23718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.
Collapse
Affiliation(s)
- Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fuchimoto J, Kojima T, Kobayashi N, Ohkuni T, Ogasawara N, Masaki T, Obata K, Nomura K, Kondoh A, Shigyo T, Himi T, Sawada N. Hop water extract inhibits double-stranded RNA-induced thymic stromal lymphopoietin release from human nasal epithelial cells. Am J Rhinol Allergy 2013; 26:433-8. [PMID: 23232191 DOI: 10.2500/ajra.2012.26.3814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) acts as a master switch for allergic inflammation and plays a key role in allergic diseases, including allergic rhinitis. Double-stranded RNA (dsRNA) recognized by Toll-like receptor 3 (TLR3) strongly activates TSLP release from human nasal epithelial cells (HNECs). Hop (Humulus lupulus L.) extracts have been shown to have potent pharmacologic effects on inflammation. METHODS To investigate whether a hop water extract (HWE) prevents TSLP release from HNECs, human telomerase reverse transcriptase (hTERT)-transfected HNECs, used as a model of normal HNECs, were pretreated with HWE before treatment with the TLR3 ligand Polyinosine-polycytidylic acid (poly[I:C]). RESULTS In the hTERT-transfected HNECs, treatment with HWE significantly reduced poly(I:C)-induced production and release of TSLP in a dose-dependent manner, as well as dexamethasone. Treatment with the protein kinase C (PKC) inhibitor GF109203X and NF-κB inhibitor IMD-0354 also reduced poly(I:C)-induced TSLP release from hTERT-transfected HNECs. Treatment with HWE efficiently prevented up-regulation of PKC activity by 12-O-tetradecanoyl phorbol-13-acetate but not NF-κB activity induced by IL-1β in hTERT-transfected HNECs. CONCLUSION Our results clearly indicated that HWE inhibited dsRNA-induced production and release of TSLP via a PKC signal pathway in HNECs and it may have potent preventive effects against allergic rhinitis.
Collapse
Affiliation(s)
- Jun Fuchimoto
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kojima T, Yamaguchi H, Ito T, Kyuno D, Kono T, Konno T, Sawada N. Tight junctions in human pancreatic duct epithelial cells. Tissue Barriers 2013; 1:e24894. [PMID: 24665406 PMCID: PMC3805649 DOI: 10.4161/tisb.24894] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
Tight junctions of the pancreatic duct are essential regulators of physiologic secretion of the pancreas and disruption of the pancreatic ductal barrier is known to contribute to the pathogenesis of pancreatitis and progression of pancreatic cancer. Various inflammatory mediators and carcinogens can trigger tight junction disassembly and disruption of the pancreatic barrier, however signaling events that mediates such barrier dysfunctions remain poorly understood. This review focuses on structure and regulation of tight junctions in normal pancreatic epithelial cells and mechanisms of junctional disruption during pancreatic inflammation and cancer. We will pay special attention to a novel model of human telomerase reverse transcriptase-transfected human pancreatic ductal epithelial cells and will describe the roles of major signaling molecules such as protein kinase C and c-Jun N-terminal kinase in formation and disassembly of the pancreatic ductal barrier.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan ; Department of Cell Science; Research Institute of Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Hiroshi Yamaguchi
- Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Tatsuya Ito
- Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Daisuke Kyuno
- Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Tsuyoshi Kono
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan ; Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Takumi Konno
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan ; Department of Cell Science; Research Institute of Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan
| |
Collapse
|
35
|
Fuchimoto J, Kojima T, Okabayashi T, Masaki T, Ogasawara N, Obata K, Nomura K, Hirakawa S, Kobayashi N, Shigyo T, Yokota SI, Fujii N, Tsutsumi H, Himi T, Sawada N. Humulone suppresses replication of respiratory syncytial virus and release of IL-8 and RANTES in normal human nasal epithelial cells. Med Mol Morphol 2013; 46:203-9. [PMID: 23381605 DOI: 10.1007/s00795-013-0024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Respiratory syncytial virus (RSV) is the major infectious agent causing serious respiratory tract inflammation in infants and young children. However, an effective vaccine and anti-viral therapy for RSV infection have not yet been developed. Hop-derived bitter acids have potent pharmacological effects on inflammation. Therefore, we investigated the effects of humulone, which is the main constituent of hop bitter acids, on the replication of RSV and release of the proinflammatory cytokine IL-8 and chemokine RANTES in RSV-infected human nasal epithelial cells (HNECs). We found that humulone prevented the expression of RSV/G-protein, formation of virus filaments and release of IL-8 and RANTES in a dose-dependent manner in RSV-infected HNECs. These findings suggest that humulone has protective effects against the replication of RSV, the virus assembly and the inflammatory responses in HNECs and that it is a useful biological product for the prevention and therapy for RSV infection.
Collapse
Affiliation(s)
- Jun Fuchimoto
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd, Shizuoka, 425-0013, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lin YK, Chen HW, Leu YL, Yang YL, Fang Y, Su Pang JH, Hwang TL. Indigo naturalis upregulates claudin-1 expression in human keratinocytes and psoriatic lesions. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:614-620. [PMID: 23220199 DOI: 10.1016/j.jep.2012.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/02/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigo naturalis is used in traditional Chinese medicine to treat various dermatoses. Our previous clinical studies showed that indigo naturalis is an effective treatment for psoriasis. Herein, the capabilities of indigo naturalis extract and its derivatives to increase claudin-1 expression and tight junction (TJ) function in human keratinocytes and psoriatic lesions were further studied. MATERIALS AND METHODS Claudin-1 expression in psoriatic plaques with or without indigo naturalis treatment was analyzed by immunohistochemical methods. In primary human keratinocytes, the expression of claudin-1 was analyzed by fluorescent immunostaining, a real-time RT-PCR, and Western blot analysis. The effect of indigo naturalis on TJs was evaluated by measuring the transepithelial electrical resistance (TEER) and paracellular tracer flux. RESULTS The indigo naturalis extract upregulated mRNA and protein expressions of claudin-1 and function of TJs in primary human keratinocytes in concentration-dependent manners. Its main components, indirubin, indigo, and tryptanthrin, exerted synergistic effects on upregulating TJ functions in primary human keratinocytes. In addition, indigo naturalis increased the activity of protein kinase C (PKC), and a known potent PKC inhibitor, Ro318220, attenuated the indigo naturalis-induced claudin-1 expression. Significantly, restoration of claudin-1 was observed in healed psoriatic lesions after indigo naturalis treatment. CONCLUSIONS Indigo naturalis upregulates claudin-1 expression and restores TJ function in keratinocytes. Our data also suggest that indirubin, indigo, and tryptanthrin have a synergistic effect on TJ function.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Regulation of tight junctions in upper airway epithelium. BIOMED RESEARCH INTERNATIONAL 2012; 2013:947072. [PMID: 23509817 PMCID: PMC3591135 DOI: 10.1155/2013/947072] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022]
Abstract
The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs) are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP), which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.
Collapse
|
38
|
Mandel I, Paperna T, Glass-Marmor L, Volkowich A, Badarny S, Schwartz I, Vardi P, Koren I, Miller A. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J Cell Mol Med 2012; 16:765-75. [PMID: 21762372 PMCID: PMC3822847 DOI: 10.1111/j.1582-4934.2011.01380.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tight junction proteins (TJPs) are major determinants of endothelial cells comprising physiological vascular barriers such as the blood-brain barrier, but little is known about their expression and role in immune cells. In this study we assessed TJP expression in human leukocyte subsets, their induction by immune activation and modulation associated with autoimmune disease states and therapies. A consistent expression of TJP complexes was detected in peripheral blood leukocytes (PBLs), predominantly in B and T lymphocytes and monocytes, whereas the in vitro application of various immune cell activators led to an increase of claudin 1 levels, yet not of claudin 5. Claudins 1 and 5 levels were elevated in PBLs of multiple sclerosis (MS) patients in relapse, relative to patients in remission, healthy controls and patients with other neurological disorders. Interestingly, claudin 1 protein levels were elevated also in PBLs of patients with type 1 diabetes (T1D). Following glucocorticoid treatment of MS patients in relapse, RNA levels of JAM3 and CLDN5 and claudin 5 protein levels in PBLs decreased. Furthermore, a correlation between CLDN5 pre-treatment levels and clinical response phenotype to interferon-β therapy was detected. Our findings indicate that higher levels of leukocyte claudins are associated with immune activation and specifically, increased levels of claudin 5 are associated with MS disease activity. This study highlights a potential role of leukocyte TJPs in physiological states, and autoimmunity and suggests they should be further evaluated as biomarkers for aberrant immune activity and response to therapy in immune-mediated diseases such as MS.
Collapse
Affiliation(s)
- Ilana Mandel
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kamekura R, Kojima T, Takano K, Go M, Sawada N, Himi T. The role of IL-33 and its receptor ST2 in human nasal epithelium with allergic rhinitis. Clin Exp Allergy 2012; 42:218-28. [PMID: 22233535 DOI: 10.1111/j.1365-2222.2011.03867.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Interleukin (IL)-33 is a novel member of the IL-1 cytokine family and a ligand for the orphan IL-1 family receptor ST2. The IL-33 induces T helper 2-type inflammatory responses and is considered to play a crucial rule in allergic inflammations, such as asthma and atopic dermatitis. However, the role of IL-33 and its receptor ST2 in allergic rhinitis remains unknown. OBJECTIVE We investigated expression of IL-33 and ST2 in the nasal epithelium of patients with allergic rhinitis and the mechanisms of the production of cytokines/chemokines induced by treatment with IL-33 using normal human nasal epithelial cells (HNECs) in vitro. METHODS Expression of IL-33 and ST2 in normal and allergic rhinitis nasal mucosa was evaluated by reverse transcription- and real-time polymerase chain reactions and immunohistochemical methods. The IL-33 in serum, and IL-8 and GM-CSF were measured by ELISA. For in vitro experiments, HNECs in primary culture were used. RESULTS The IL-33 levels in the sera of patients with allergic rhinitis were significantly higher than that in normal controls. Expression of IL-33 and ST2 was significantly elevated in the epithelium from patients with allergic rhinitis. The IL-33 mRNA in HNECs in vitro was significantly induced by treatment with IFN-γ and the toll-like receptor 9 ligand ODN2006. The IL-33-induced production of IL-8 and GM-CSF from HNECs in vitro was significantly suppressed by corticosteroid treatment and distinct signal transduction inhibitors of ERK, p38 MAPK, JNK, NF-κB and epidermal growth factor receptor. CONCLUSIONS AND CLINICAL RELEVANCE The IL-33 and its receptor ST2 play important roles in allergic rhinitis. The IL-33-mediated inflammatory responses via ST2 are regulated by distinct signalling pathways in HNECs and the IL-33/ST2 pathway may provide new therapeutic targets for allergic rhinitis.
Collapse
Affiliation(s)
- R Kamekura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Differential targeting of the E-Cadherin/β-Catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol 2011; 78:1140-7. [PMID: 22179242 DOI: 10.1128/aem.06983-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal ecosystem is balanced by dynamic interactions between resident and incoming microbes, the gastrointestinal barrier, and the mucosal immune system. However, in the context of inflammatory bowel diseases (IBD), where the integrity of the gastrointestinal barrier is compromised, resident microbes contribute to the development and perpetuation of inflammation and disease. Probiotic bacteria have been shown to exert beneficial effects, e.g., enhancing epithelial barrier integrity. However, the mechanisms underlying these beneficial effects are only poorly understood. Here, we comparatively investigated the effects of four probiotic lactobacilli, namely, Lactobacillus acidophilus, L. fermentum, L. gasseri, and L. rhamnosus, in a T84 cell epithelial barrier model. Results of DNA microarray experiments indicating that lactobacilli modulate the regulation of genes encoding in particular adherence junction proteins such as E-cadherin and β-catenin were confirmed by quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we show that epithelial barrier function is modulated by Gram-positive probiotic lactobacilli via their effect on adherence junction protein expression and complex formation. In addition, incubation with lactobacilli differentially influences the phosphorylation of adherence junction proteins and the abundance of protein kinase C (PKC) isoforms such as PKCδ that thereby positively modulates epithelial barrier function. Further insight into the underlying molecular mechanisms triggered by these probiotics might also foster the development of novel strategies for the treatment of gastrointestinal diseases (e.g., IBD).
Collapse
|
41
|
Abstract
Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
42
|
Masaki T, Kojima T, Okabayashi T, Ogasawara N, Ohkuni T, Obata K, Takasawa A, Murata M, Tanaka S, Hirakawa S, Fuchimoto J, Ninomiya T, Fujii N, Tsutsumi H, Himi T, Sawada N. A nuclear factor-κB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell 2011; 22:2144-56. [PMID: 21562222 PMCID: PMC3128518 DOI: 10.1091/mbc.e10-11-0875] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We established a respiratory syncytial virus (RSV)-infected model in polarized normal human nasal epithelial cells and found that the replication of RSV and the epithelial cell responses including induction of tight junctions were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κβ pathway. The control of this pathway may be useful in therapy for RSV-induced respiratory pathogenesis. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma, and severe lower respiratory tract disease in infants and young children. The airway epithelium, which has a well-developed barrier regulated by tight junctions, is the first line of defense during respiratory virus infection. In upper airway human nasal epithelial cells (HNECs), however, the primary site of RSV infection, the mechanisms of replication and budding of RSV, and the epithelial cell responses, including the tight junctional barrier, remain unknown. To investigate the detailed mechanisms of replication and budding of RSV in HNECs and the epithelial cell responses, we established an RSV-infected model using human telomerase reverse transcriptase–-transfected HNECs. We first found that the expression and barrier function of tight junction molecules claudin-4 and occludin were markedly induced together with production of proinflammatory cytokines interleukin 8 and tumor necrosis factor-α in HNECs after RSV infection, and the induction of tight junction molecules possibly contributed to budding of RSV. Furthermore, the replication and budding of RSV and the epithelial cell responses in HNECs were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κB pathway. The control of this pathway in HNECs may be useful not only for prevention of replication and budding of RSV, but also in therapy for RSV-induced respiratory pathogenesis.
Collapse
Affiliation(s)
- Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ogasawara N, Kojima T, Go M, Takano KI, Kamekura R, Ohkuni T, Koizumi JI, Masaki T, Fuchimoto J, Obata K, Kurose M, Shintani T, Sawada N, Himi T. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids. Acta Otolaryngol 2011; 131:116-23. [PMID: 21062118 DOI: 10.3109/00016489.2010.520022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasion of antigens through the mucosal surface can be prevented by the common mucosal immune system, including Peyer's patches (PPs) and nasopharyngeal-associated lymphoreticular tissue (NALT). The adenoids (nasopharyngeal tonsils) comprise one of the NALTs and constitute the major part of Waldeyer's lymphoid ring in humans. However, the role of the lymphoepithelium, including M cells and dendritic cells (DCs), in the adenoids is unknown compared with the epithelium of PPs. NALTs also have unique functions such as the barrier of epithelial cells and uptake of antigens by M cells and DCs, and may play a crucial role in airway mucosal immune responses. The lymphoepithelium of adenoids has well-developed tight junctions that play an important role in the barrier function, the same as nasal epithelium but not palatine tonsillar epithelium. Tight junction molecules are expressed in both M cells and DCs as well as epithelial cells, and various antigens may be sampled, transported, and released to lymphocytes through the cells while they maintain the integrity of the epithelial barrier. This review summarizes the recent progress in our understanding of how M cells and DCs control the epithelial barrier in the adenoids.
Collapse
Affiliation(s)
- Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Kobayashi K, Miwa H, Yasui M. Inflammatory mediators weaken the amniotic membrane barrier through disruption of tight junctions. J Physiol 2010; 588:4859-69. [PMID: 21041526 DOI: 10.1113/jphysiol.2010.197764] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In chorioamnionitis, intra-amniotic infections render the amniotic fluid an adverse environment for the fetus and increase the risk of fetal mortality and morbidity. It remains unclear how infection crosses the amniotic barrier, which is made up of tight junctions (TJs). In this study, we investigated whether amniotic TJs are disrupted in inflammatory conditions such as chorioamnionitis. Amniotic TJs were disrupted by single applications of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), and prostaglandin E2. In organ-cultured amniotic membranes, these inflammatory mediators decreased the claudin-3 and claudin-4 levels at the apical junction at different times. Injecting IL-6 into the amniotic cavity concurrently induced the disruption of amniotic TJs by decreasing the claudin-3 and claudin-4 levels at the apical junction, and the dysfunction of the amniotic barrier; in contrast, injecting TNF-α weakened the amniotic barrier by inducing apoptosis of the amniotic epithelial cells, with no decrease in claudin-3 and claudin-4 at the apical junction. Furthermore, inflammation in the amniotic membrane, which was induced by the administration of lipopolysaccharide to pregnant mice, concurrently caused dysfunction of the amniotic barrier and disruption of TJs, involving the decrease of claudin-3 and claudin-4 levels at the apical junction and apoptosis in the amniotic epithelium. These results indicate that the adverse effects of the inflammatory mediators on amniotic TJs cause severe dysfunction of the amniotic barrier.
Collapse
Affiliation(s)
- Ken Kobayashi
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | |
Collapse
|
46
|
Ohkuni T, Kojima T, Ogasawara N, Masaki T, Fuchimoto J, Kamekura R, Koizumi JI, Ichimiya S, Murata M, Tanaka S, Himi T, Sawada N. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-α via distinct NF-κB pathways in human nasal epithelial cells. Toxicol Appl Pharmacol 2010; 250:29-38. [PMID: 20932985 DOI: 10.1016/j.taap.2010.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 12/13/2022]
Abstract
Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECs were treated with TLR2 ligand P(3)CSK(4), TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-α. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-α after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-κB pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.
Collapse
Affiliation(s)
- Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yamaguchi H, Kojima T, Ito T, Kimura Y, Imamura M, Son S, Koizumi JI, Murata M, Nagayama M, Nobuoka T, Tanaka S, Hirata K, Sawada N. Transcriptional control of tight junction proteins via a protein kinase C signal pathway in human telomerase reverse transcriptase-transfected human pancreatic duct epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:698-712. [PMID: 20566751 DOI: 10.2353/ajpath.2010.091226] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In human pancreatic cancer, integral membrane proteins of tight junction claudins are abnormally regulated, making these proteins promising molecular diagnostic and therapeutic targets. However, the regulation of claudin-based tight junctions remains unknown not only in the pancreatic cancer cells but also in normal human pancreatic duct epithelial (HPDE) cells. To investigate the regulation of tight junction molecules including claudins in normal HPDE cells, we introduced the human telomerase reverse transcriptase (hTERT) gene into HPDE cells in primary culture. The hTERT-transfected HPDE (hTERT-HPDE) cells were positive for the pancreatic duct epithelial markers such as CK7, CK19, and carbonic anhydrase isozyme 2 and expressed epithelial tight junction molecules claudin-1, -4, -7 and, -18, occludin, JAM-A, ZO-1, ZO-2, and tricellulin. By treatment with fetal bovine serum or 12-O-tetradecanoylphorbol 13-acetate (TPA), the tight junction molecules were up-regulated at the transcriptional level via a protein kinase C (PKC) signal pathway. A PKC-alpha inhibitor, Gö6976, prevented up-regulation of claudin-4 by TPA. Furthermore, a PKC-delta inhibitor, rottlerin, prevented up-regulation of claudin-7, occludin, ZO-1, and ZO-2 by TPA. By GeneChip analysis, up-regulation of the transcription factor ELF3 was observed in both fetal bovine serum- and TPA-treated cells. Treatment with small interfering RNAs of ELF3 prevented up-regulation of claudin-7 by TPA. These data suggest that tight junctions of normal HPDE cells were at least in part regulated via a PKC signal pathway by transcriptional control.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ogasawara N, Kojima T, Go M, Ohkuni T, Koizumi JI, Kamekura R, Masaki T, Murata M, Tanaka S, Fuchimoto J, Himi T, Sawada N. PPARgamma agonists upregulate the barrier function of tight junctions via a PKC pathway in human nasal epithelial cells. Pharmacol Res 2010; 61:489-98. [PMID: 20227502 DOI: 10.1016/j.phrs.2010.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/19/2010] [Accepted: 03/06/2010] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator activated (PPAR)gamma plays a critical role in the control of not only adipocyte differentiation, lipid metabolism and immunity but also the barrier functions of epithelial and endothelial cells. In the present study, to investigate effects of PPAR gamma agonists on the tight junctional barrier of human nasal epithelial cells (HNECs), hTERT-transfected HNECs, which highly express both PPAR gamma and tight junction proteins, were treated with the PPAR gamma agonists rosiglitazone and troglitazone. Treatment with the PPAR gamma agonists enhanced the barrier function of hTERT-transfected HNECs together with the upregulation of tight junction molecules claudin-1 and -4, occludin, and tricellulin at the transcriptional level. A significant increase of tight junction strands was also observed after treatment with rosiglitazone. Treatment with PPAR gamma agonists induced the activity of phospho-PKC in hTERT-transfected HNECs. The upregulation of the tight junction molecules in hTERT-transfected HNECs by rosiglitazone was inhibited by not only PPAR gamma antagonists GW9662 and T0070907, but also the panPKC inhibitor GF109203X. These findings suggest that PPAR gamma agonists upregulate the barrier function of tight junctions of human nasal epithelial cells via a PKC signaling pathway and could be novel drugs for protection against inhaled substances and pathogens in the airway epithelium of human nasal mucosa.
Collapse
Affiliation(s)
- Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
LeSimple P, Liao J, Robert R, Gruenert DC, Hanrahan JW. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol 2010; 588:1195-209. [PMID: 20156845 DOI: 10.1113/jphysiol.2009.182246] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane glycoprotein which functions as an anion channel and influences diverse cellular processes. We studied its role in the development of epithelial tightness by expressing wild-type (WT-CFTR) or mutant (Delta F508-CFTR) CFTR in human airway epithelial cell monolayers cultured at the air-liquid interface. Green fluorescent protein (GFP)-tagged WT or Delta F508 constructs were expressed in the CF bronchial cell line CFBE41o(-) using adenoviruses, and the results were compared with those obtained using CFBE41o(-) lines stably complemented with wild-type or mutant CFTR. As predicted, GFP-Delta WT-CFTR reached the apical membrane whereas GFP-F508-CFTR was only detected intracellularly. Although CFTR expression would be expected to reduce transepithelial resistance (TER), expressing GFP-CFTR significantly increased the TER of CFBE41o(-) monolayers whilst GFP-Delta F508-CFTR had no effect. Similar results were obtained with cell lines stably overexpressing Delta F508-CFTR or WT-CFTR. Preincubating Delta F508-CFTR monolayers at 29 degrees C reduced mannitol permeability and restored TER, and the effect on TER was reversible during temperature oscillations. Expression of GFP-Delta F508-CFTR or GFP-WT-CFTR in a cell line already containing endogenous WT-CFTR (Calu-3) did not alter TER. The CFTR- and temperature-dependence of TER were not affected by the CFTR inhibitor CFTR(inh)172 or low-chloride medium; therefore the effect of CFTR on barrier function was unrelated to its ion channel activity. Modulation of TER was blunted but not eliminated by genistein, implying the involvement of tyrosine phosphorylation and other mechanisms. Modulation of CFTR trafficking was correlated with an increase in tight junction depth. The results suggest that CFTR trafficking is required for the normal organisation and function of tight junctions. A reduction in barrier function caused by endoplasmic reticulum retention of Delta F508-CFTR may contribute to fluid hyperabsorption in CF airways.
Collapse
Affiliation(s)
- Pierre LeSimple
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
50
|
Expression and localization of tricellulin in human nasal epithelial cells in vivo and in vitro. Med Mol Morphol 2009; 42:204-11. [PMID: 20033365 DOI: 10.1007/s00795-009-0470-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/28/2009] [Indexed: 01/23/2023]
Abstract
Tricellulin was identified as the first marker of the tricellular tight junction, which forms at the meeting points of three cells, and it is required for the maintenance of the transepithelial barrier. Although it is also considered to be important for the mucosal barrier of the upper respiratory tract, little is known about its expression and localization. In the present study, we examined the expression and localization of tricellulin in normal human nasal epithelial cells in vivo and in vitro, especially using primary cultures and telomerase reverse transcriptase (hTERT)-transfected cells. In human nasal epithelial cells in vivo and in vitro, mRNA and protein of tricellulin were detected. It was localized not only at tricellular contacts but also at bicellular borders, and in part colocalized with occludin. In human nasal epithelium, by immunoelectron microscopy analysis, tricellulin-associated gold particles were observed around the junction-like structure of the uppermost region. By treatment with 10% fetal bovine serum (FBS), expression of tricellulin mRNA was weakly increased, whereas that of bicellular tight junction molecules was strongly increased, in real-time PCR. These results suggest that tricellulin is stably expressed in human nasal epithelial cells and may play an important role for the sealing of the corner at tricellular contacts to prevent infiltration by various inhaled viruses and antigens.
Collapse
|