1
|
Ito T, Ichikawa T, Yamada M, Hashimoto Y, Fujino N, Numakura T, Sasaki Y, Suzuki A, Takita K, Sano H, Kyogoku Y, Saito T, Koarai A, Tamada T, Sugiura H. CYP27A1-27-hydroxycholesterol axis in the respiratory system contributes to house dust mite-induced allergic airway inflammation. Allergol Int 2024; 73:151-163. [PMID: 37607853 DOI: 10.1016/j.alit.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND 27-Hydroxycholesterol (27-HC) derived from sterol 27-hydroxylase (CYP27A1) has pro-inflammatory biological activity and is associated with oxidative stress and chronic inflammation in COPD. However, the role of regulation of CYP27A1- 27-HC axis in asthma is unclear. This study aimed to elucidate the contribution of the axis to the pathophysiology of asthma. METHODS House dust mite (HDM) extract was intranasally administered to C57BL/6 mice and the expression of CYP27A1 in the airways was analyzed by immunostaining. The effect of pre-treatment with PBS or CYP27A1 inhibitors on the cell fraction in the bronchoalveolar lavage fluid (BALF) was analyzed in the murine model. In vitro, BEAS-2B cells were treated with HDM and the levels of CYP27A1 expression were examined. Furthermore, the effect of 27-HC on the expressions of E-cadherin and ZO-1 in the cells was analyzed. The amounts of RANTES and eotaxin from the 27-HC-treated cells were analyzed by ELISA. RESULTS The administration of HDM increased the expression of CYP27A1 in the airways of mice as well as the number of eosinophils in the BALF. CYP27A1 inhibitors ameliorated the HDM-induced increase in the number of eosinophils in the BALF. Treatment with HDM increased the expression of CYP27A1 in BEAS-2B cells. The administration of 27-HC to BEAS-2B cells suppressed the expression of E-cadherin and ZO-1, and augmented the production of RANTES and eotaxin. CONCLUSIONS The results of this study suggest that aeroallergen could enhance the induction of CYP27A1, leading to allergic airway inflammation and disruption of the airway epithelial tight junction through 27-HC production.
Collapse
Affiliation(s)
- Tatsunori Ito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Ayadi S, Friedrichs S, Soulès R, Pucheu L, Lütjohann D, Silvente-Poirot S, Poirot M, de Medina P. 27-Hydroxylation of oncosterone by CYP27A1 switches its activity from pro-tumor to anti-tumor. J Lipid Res 2023; 64:100479. [PMID: 37981011 PMCID: PMC10770617 DOI: 10.1016/j.jlr.2023.100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023] Open
Abstract
Oncosterone (6-oxo-cholestane-3β,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or β- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3β,5α,6β-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3β,26-diol), 27H-CT ((25R)-cholestane-3β,5α,6β,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3β,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.
Collapse
Affiliation(s)
- Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Regis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Laly Pucheu
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France.
| | - Philippe de Medina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France.
| |
Collapse
|
3
|
Hao L, Wang L, Ju M, Feng W, Guo Z, Sun X, Xiao R. 27-Hydroxycholesterol impairs learning and memory ability via decreasing brain glucose uptake mediated by the gut microbiota. Biomed Pharmacother 2023; 168:115649. [PMID: 37806088 DOI: 10.1016/j.biopha.2023.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Brain glucose hypometabolism is a significant manifestation of Alzheimer's disease (AD). 27-hydroxycholesterol (27-OHC) and the gut microbiota have been recognized as factors possibly influencing the pathogenesis of AD. This study aimed to investigate the link between 27-OHC, the gut microbiota, and brain glucose uptake in AD. Here, 6-month-old male C57BL/6 J mice were treated with sterile water or antibiotic cocktails, with or without 27-OHC and/or 27-OHC synthetic enzyme CYP27A1 inhibitor anastrozole (ANS). The gut microbiota, brain glucose uptake levels, and memory ability were measured. We observed that 27-OHC altered microbiota composition, damaged brain tissue structures, decreased the 2-deoxy-2-[18 F] fluorodeoxyglucose (18F-FDG) uptake value, downregulated the gene expression of glucose transporter type 4 (GLUT4), reduced the colocalization of GLUT1/glial fibrillary acidic protein (GFAP) in the hippocampus, and impaired spatial memory. ANS reversed the effects of 27-OHC. The antibiotic-treated mice did not exhibit similar results after 27-OHC treatment. This study reveals a potential molecular mechanism wherein 27-OHC-induced memory impairment might be linked to reduced brain glucose uptake, mediated by the gut microbiota.
Collapse
Affiliation(s)
- Ling Hao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Lijing Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Mengwei Ju
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Wenjing Feng
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Zhiting Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Xuejing Sun
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, China.
| |
Collapse
|
4
|
Hoekstra M, Van Eck M. High-density lipoproteins and non-alcoholic fatty liver disease. ATHEROSCLEROSIS PLUS 2023; 53:33-41. [PMID: 37663008 PMCID: PMC10469384 DOI: 10.1016/j.athplu.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD), a high incidence liver pathology, is associated with a ∼1.5-fold higher cardiovascular disease risk. This phenomenon is generally attributed to the NAFLD-associated increase in circulating levels of pro-atherogenic apolipoprotein B100-containing small dense low-density lipoprotein and plasma hypertriglyceridemia. However, also a significant reduction in cholesterol transported by anti-atherogenic high-density lipoproteins (HDL) is frequently observed in subjects suffering from NAFLD as compared to unaffected people. In this review, we summarize data regarding the relationship between NAFLD and plasma HDL-cholesterol levels, with a special focus on highlighting potential causality between the NAFLD pathology and changes in HDL metabolism. Methods and results Publications in PUBMED describing the relationship between HDL levels and NAFLD susceptibility and/or disease severity, either in human clinical settings or genetically-modified mouse models, were critically reviewed for subsequent inclusion in this manuscript. Furthermore, relevant literature describing effects on lipid loading in cultured hepatocytes of models with genetic alterations related to HDL metabolism have been summarized. Conclusions Although in vitro observations suggest causality between HDL formation by hepatocytes and protection against NAFLD-like lipid accumulation, current literature remains inconclusive on whether relative HDL deficiency is actually driving the development of fatty liver disease in humans. In light of the current obesity pandemic and the associated marked rise in NAFLD incidence, it is of clear scientific and societal interest to gain further insight into the relationship between HDL-cholesterol levels and fatty liver development to potentially uncover the therapeutic potential of pharmacological HDL level and/or function modulation.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Pharmacy Leiden, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Pharmacy Leiden, Leiden, the Netherlands
| |
Collapse
|
5
|
Lin YC, Cheung G, Zhang Z, Papadopoulos V. Mitochondrial cytochrome P450 1B1 is involved in pregnenolone synthesis in human brain cells. J Biol Chem 2023; 299:105035. [PMID: 37442234 PMCID: PMC10413356 DOI: 10.1016/j.jbc.2023.105035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Zeyu Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
6
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
7
|
Chen Y, Chi X, Zhang H, Zhang Y, Qiao L, Ding J, Han Y, Lin Y, Jiang J. Identification of Potent Zika Virus NS5 RNA-Dependent RNA Polymerase Inhibitors Combining Virtual Screening and Biological Assays. Int J Mol Sci 2023; 24:ijms24031900. [PMID: 36768218 PMCID: PMC9915956 DOI: 10.3390/ijms24031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The Zika virus (ZIKV) epidemic poses a significant threat to human health globally. Thus, there is an urgent need for developing effective anti-ZIKV agents. ZIKV non-structural protein 5 RNA-dependent RNA polymerase (RdRp), a viral enzyme for viral replication, has been considered an attractive drug target. In this work, we screened an anti-infection compound library and a natural product library by virtual screening to identify potential candidates targeting RdRp. Then, five selected candidates were further applied for RdRp enzymatic analysis, cytotoxicity, and binding examination by SPR. Finally, posaconazole (POS) was confirmed to effectively inhibit both RdRp activity with an IC50 of 4.29 μM and the ZIKV replication with an EC50 of 0.59 μM. Moreover, POS was shown to reduce RdRp activity by binding with the key amino acid D666 through molecular docking and site-directed mutation analysis. For the first time, our work found that POS could inhibit ZIKV replication with a stronger inhibitory activity than chloroquine. This work also demonstrated fast anti-ZIKV screening for inhibitors of RdRp and provided POS as a potential anti-ZIKV agent.
Collapse
|
8
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
9
|
27-Hydroxycholesterol-Induced Dysregulation of Cholesterol Metabolism Impairs Learning and Memory Ability in ApoE ε4 Transgenic Mice. Int J Mol Sci 2022; 23:ijms231911639. [PMID: 36232940 PMCID: PMC9569856 DOI: 10.3390/ijms231911639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated brain cholesterol metabolism is one of the characteristics of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) is a cholesterol metabolite that plays an essential role in regulating cholesterol metabolism and it is suggested that it contributes to AD-related cognitive deficits. However, the link between 27-OHC and cholesterol homeostasis, and how this relationship relates to AD pathogenesis, remain elusive. Here, 12-month-old ApoE ε4 transgenic mice were injected with saline, 27-OHC, 27-OHC synthetase inhibitor (anastrozole, ANS), and 27-OHC+ANS for 21 consecutive days. C57BL/6J mice injected with saline were used as wild-type controls. The indicators of cholesterol metabolism, synaptic structure, amyloid β 1-42 (Aβ1-42), and learning and memory abilities were measured. Compared with the wild-type mice, ApoE ε4 mice had poor memory and dysregulated cholesterol metabolism. Additionally, damaged brain tissue and synaptic structure, cognitive decline, and higher Aβ1-42 levels were observed in the 27-OHC group. Moreover, cholesterol transport proteins such as ATP-binding cassette transporter A1 (ABCA1), apolipoprotein E (ApoE), low-density lipoprotein receptor (LDLR), and low-density lipoprotein receptor-related protein1 (LRP1) were up-regulated in the cortex after the 27-OHC treatment. The levels of cholesterol metabolism-related indicators in the hippocampus were not consistent with those in the cortex. Additionally, higher serum apolipoprotein A1 (ApoA1) levels and lower serum ApoE levels were observed in the 27-OHC group. Notably, ANS partially reversed the effects of 27-OHC. In conclusion, the altered cholesterol metabolism induced by 27-OHC was involved in Aβ1-42 deposition and abnormalities in both the brain tissue and synaptic structure, ultimately leading to memory loss in the ApoE ε4 transgenic mice.
Collapse
|
10
|
Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C, Defilippi P. Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Front Oncol 2022; 12:906670. [PMID: 35719918 PMCID: PMC9204587 DOI: 10.3389/fonc.2022.906670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Pietro Arina
- University College London (UCL), Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Chiara Riganti
- Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Wang T, Zhang X, Wang Y, Liu W, Wang L, Hao L, Ju M, Xiao R. High cholesterol and 27-hydroxycholesterol contribute to phosphorylation of tau protein by impairing autophagy causing learning and memory impairment in C57BL/6J mice. J Nutr Biochem 2022; 106:109016. [DOI: 10.1016/j.jnutbio.2022.109016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
12
|
Ma L, Cho W, Nelson ER. Our evolving understanding of how 27-hydroxycholesterol influences cancer. Biochem Pharmacol 2022; 196:114621. [PMID: 34043965 PMCID: PMC8611110 DOI: 10.1016/j.bcp.2021.114621] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/09/2023]
Abstract
Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression. We describe how 27HC promotes tumor growth directly through cancer-intrinsic factors, and indirectly through its immunomodulatory roles which lead to decreased immune surveillance and increased tumor invasion. This review underscores the importance of the cholesterol metabolic pathway in cancer progression and the potential therapeutic utility of targeting this metabolic pathway.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL,To whom correspondence and reprint requests should be addressed: Erik R. Nelson. University of Illinois at Urbana-Champaign. 407 S Goodwin Ave (MC-114), Urbana, IL, 61801. Phone: 217-244-5477. Fax: 217-333-1133.
| |
Collapse
|
13
|
Cho H, Shen Q, Zhang LH, Okumura M, Kawakami A, Ambrose J, Sigoillot F, Miller HR, Gleim S, Cobos-Correa A, Wang Y, Piechon P, Roma G, Eggimann F, Moore C, Aspesi P, Mapa FA, Burks H, Ross NT, Krastel P, Hild M, Maimone TJ, Fisher DE, Nomura DK, Tallarico JA, Canham SM, Jenkins JL, Forrester WC. CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism. Cell Chem Biol 2021; 28:1407-1419.e6. [PMID: 33794192 DOI: 10.1016/j.chembiol.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/24/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.
Collapse
Affiliation(s)
- Hyelim Cho
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiong Shen
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lydia H Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Mikiko Okumura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Akinori Kawakami
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessi Ambrose
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Frederic Sigoillot
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Howard R Miller
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Scott Gleim
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Amanda Cobos-Correa
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Ying Wang
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Philippe Piechon
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Fabian Eggimann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Charles Moore
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Peter Aspesi
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Felipa A Mapa
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Heather Burks
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nathan T Ross
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Marc Hild
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Jeremy L Jenkins
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - William C Forrester
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
15
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
16
|
Sandebring-Matton A, Goikolea J, Björkhem I, Paternain L, Kemppainen N, Laatikainen T, Ngandu T, Rinne J, Soininen H, Cedazo-Minguez A, Solomon A, Kivipelto M. 27-Hydroxycholesterol, cognition, and brain imaging markers in the FINGER randomized controlled trial. Alzheimers Res Ther 2021; 13:56. [PMID: 33676572 PMCID: PMC7937194 DOI: 10.1186/s13195-021-00790-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND 27-Hydroxycholesterol (27-OH), the main circulating oxysterol in humans and the potential missing link between peripheral hypercholesterolemia and Alzheimer's disease (AD), has not been investigated previously in relation to cognition and neuroimaging markers in the context of preventive interventions. METHODS The 2-year Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) included older individuals (60-77 years) at increased risk for dementia but without dementia or substantial cognitive impairment from the general population. Participants were randomized to a multidomain intervention (diet, exercise, cognitive training, and vascular risk management) or control group (general health advice) in a 1:1 ratio. Outcome assessors were masked to group allocation. This FINGER exploratory sub-study included 47 participants with measures of 27-OH, cognition, brain MRI, brain FDG-PET, and PiB-PET. Linear regression models were used to assess the cross-sectional and longitudinal associations between 27-OH, cognition, and neuroimaging markers, considering several potential confounders/intervention effect modifiers. RESULTS 27-OH reduction during the intervention was associated with improvement in cognition (especially memory). This was not observed in the control group. The intervention reduced 27-OH particularly in individuals with the highest 27-OH levels and younger age. No associations were found between changes in 27-OH levels and neuroimaging markers. However, at baseline, a higher 27-OH was associated with lower total gray matter and hippocampal volume, and lower cognitive scores. These associations were unaffected by total cholesterol levels. While sex seemed to influence associations at baseline, it did not affect longitudinal associations. CONCLUSION 27-OH appears to be a marker not only for dementia/AD risk, but also for monitoring the effects of preventive interventions on cholesterol metabolism. TRIAL REGISTRATION ClinicalTrials.gov , NCT01041989 . Registered on 4 January 2010.
Collapse
Affiliation(s)
- Anna Sandebring-Matton
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.
| | - Julen Goikolea
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Paternain
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Nina Kemppainen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tiina Laatikainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health Services, Joensuu, Finland
- Public Health Promotion Unit, Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
- Public Health Promotion Unit, Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocenter, Neurology Kuopio University Hospital, Kuopio, Finland
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Kimbung S, Inasu M, Stålhammar T, Nodin B, Elebro K, Tryggvadottir H, Ygland Rödström M, Jirström K, Isaksson K, Jernström H, Borgquist S. CYP27A1 expression is associated with risk of late lethal estrogen receptor-positive breast cancer in postmenopausal patients. Breast Cancer Res 2020; 22:123. [PMID: 33176848 PMCID: PMC7656740 DOI: 10.1186/s13058-020-01347-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
Background 27-Hydroxycholesterol (27HC) stimulates estrogen receptor-positive (ER+) breast cancer (BC) progression. Inhibiting the sterol 27-hydroxylase (CYP27A1) abrogates these growth-promoting effects of 27HC in mice. However, the significance of CYP27A1 expression on BC biology and prognosis is unclear. Methods Intratumoral CYP27A1 expression in invasive BC was measured by immunohistochemistry in two Swedish population-based cohorts (n = 645 and n = 813, respectively). Cox proportional hazards models were used to evaluate the association between CYP27A1 expression and prognosis. Results CYP27A1 was highly expressed in less than 1/3 of the tumors. High CYP27A1 expression was more frequent among high-grade tumors lacking hormone receptor expression and with larger tumor sizes. Over a median of 12.2 years follow-up in cohort 1, high CYP27A1 expression was associated with impaired survival, specifically after 5 years from diagnosis among all patients [overall survival (OS), HRadjusted = 1.93, 95%CI = 1.26–2.97, P = 0.003; breast cancer-specific survival (BCSS), HRadjusted = 2.33, 95%CI = 1.28–4.23, P = 0.006] and among patients ≥ 55 years presenting with ER+ tumors [OS, HRadjusted = 1.99, 95%CI = 1.24–3.21, P = 0.004; BCSS, HRadjusted = 2.78, 95%CI = 1.41–5.51, P = 0.003]. Among all patients in cohort 2 (median follow-up of 7.0 years), CYP27A1 expression was significantly associated with shorter OS and RFS in univariable analyses across the full follow-up period. However after adjusting for tumor characteristics and treatments, the association with survival after 5 years from diagnosis was non-significant among all patients [OS, HRadjusted = 1.08, 95%CI = 0.05–2.35, P = 0.83 and RFS, HRadjusted = 1.22, 95%CI = 0.68–2.18, P = 0.50] as well as among patients ≥ 55 years presenting with ER+ tumors [OS, HRadjusted = 0.46 95% CI = 0.11–1.98, P = 0.30 and RFS, HRadjusted = 0.97 95% CI = 0.44–2.10, P = 0.93]. Conclusion CYP27A1 demonstrated great potentials as a biomarker of aggressive tumor biology and late lethal disease in postmenopausal patients with ER+ BC. Future studies should investigate if the benefits of prolonged endocrine therapy and cholesterol-lowering medication in BC are modified by CYP27A1 expression.
Collapse
Affiliation(s)
- Siker Kimbung
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden.
| | - Maria Inasu
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Tor Stålhammar
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karin Elebro
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden.,Department of Reconstructive Plastic Surgery, Skåne University Hospital, Malmö, Sweden
| | - Helga Tryggvadottir
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Maria Ygland Rödström
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.,Department of Surgery, Central Hospital, Kristianstad, Sweden
| | - Helena Jernström
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden. .,Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
18
|
Sawada MI, S Ferreira GD, Passarelli M. Cholesterol derivatives and breast cancer: oxysterols driving tumor growth and metastasis. Biomark Med 2020; 14:1299-1302. [PMID: 32969241 DOI: 10.2217/bmm-2020-0460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Maria Ibac Sawada
- Serviço de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01246-903, Brazil
- Centro de Referência da Saúde da Mulher - Hospital Pérola Byington, São Paulo 01317-000, Brazil
| | - Guilherme da S Ferreira
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01525-000, Brazil
| | - Marisa Passarelli
- Serviço de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01246-903, Brazil
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01525-000, Brazil
| |
Collapse
|
19
|
Claesen JLA, Koomen E, Schene IF, Jans JJM, Mast N, Pikuleva IA, van der Ham M, de Sain‐van der Velden MGM, Fuchs SA. Misdiagnosis of CTX due to propofol: The interference of total intravenous propofol anaesthesia with bile acid profiling. J Inherit Metab Dis 2020; 43:843-851. [PMID: 31990370 PMCID: PMC7354202 DOI: 10.1002/jimd.12219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder, characterised by chronic diarrhoea, xanthomas, cataracts, and neurological deterioration. CTX is caused by CYP27A1 deficiency, which leads to abnormal cholesterol and bile acid metabolism. Urinary bile acid profiling (increased m/z 627: glucuronide-5β-cholestane-pentol) serves as diagnostic screening for CTX. However, this led to a false positive CTX diagnosis in two patients, who had received total intravenous anaesthesia (TIVA) with propofol. METHODS To determine the influence of propofol on bile acid profiling, 10 urinary samples and 2 blood samples were collected after TIVA with propofol Fresenius 7 to 10 mg/kg/h from 12 subjects undergoing scoliosis correction. Urinary bile acids were analysed using flow injection negative electrospray mass spectrometry. Propofol binding to recombinant CYP27A1, the effects of propofol on recombinant CYP27A1 activity, and CYP27A1 expression in liver organoids were investigated using spectral binding, enzyme activity assays, and qPCR, respectively. Accurate masses were determined with high-resolution mass spectrometry. RESULTS Abnormal urinary profiles were identified in all subjects after TIVA, with a trend correlating propofol dose per kilogramme and m/z 627 peak intensity. Propofol only induced a weak CYP27A1 response in the spectral binding assay, minimally affected CYP27A1 activity and did not affect CYP27A1 expression. The accurate mass of m/z 627 induced by propofol differed >10 PPM from m/z 627 observed in CTX. CONCLUSIONS TIVA with propofol invariably led to a urinary profile misleadingly suggestive of CTX, but not through CYP27A1 inhibition. To avoid further misdiagnoses, propofol administration should be considered when interpreting urinary bile acid profiles.
Collapse
Affiliation(s)
- Joep L. A. Claesen
- Department of Metabolic Diseases, University Medical Center UtrechtUtrechtNetherlands
| | - Erik Koomen
- Department of Paediatric Intensive CareUniversity Medical Center UtrechtUtrechtNetherlands
| | - Imre F. Schene
- Department of Metabolic Diseases, University Medical Center UtrechtUtrechtNetherlands
| | - Judith J. M. Jans
- Department of GeneticsSection Metabolic Diagnostics, Center for Molecular Medicine, University Medical Center UtrechtUtrechtNetherlands
| | - Natalia Mast
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhio
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhio
| | - Maria van der Ham
- Department of GeneticsSection Metabolic Diagnostics, Center for Molecular Medicine, University Medical Center UtrechtUtrechtNetherlands
| | | | - Sabine A. Fuchs
- Department of Metabolic Diseases, University Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
20
|
Wang Y, An Y, Ma W, Yu H, Lu Y, Zhang X, Wang Y, Liu W, Wang T, Xiao R. 27-Hydroxycholesterol contributes to cognitive deficits in APP/PS1 transgenic mice through microbiota dysbiosis and intestinal barrier dysfunction. J Neuroinflammation 2020; 17:199. [PMID: 32593306 PMCID: PMC7321549 DOI: 10.1186/s12974-020-01873-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Research on the brain-gut-microbiota axis has led to accumulating interest in gut microbiota dysbiosis and intestinal barrier dysfunction in Alzheimer’s disease (AD). Our previous studies have demonstrated neurotoxic effects of 27-hydroxycholesterol (27-OHC) in in vitro and in vivo models. Here, alterations in the gut microbiota and intestinal barrier functions were investigated as the possible causes of cognitive deficits induced by 27-OHC treatment. Methods Male APP/PS1 transgenic and C57BL/6J mice were treated for 3 weeks with 27-OHC (5.5 mg/kg/day, subcutaneous injection) and either a 27-OHC synthetase inhibitor (anastrozole, ANS) or saline. The Morris water maze and passive avoidance test were used to assess cognitive impairment. Injuries of the intestine were evaluated by histopathological examination. Intestinal barrier function was assessed by plasma diamine oxidase (DAO) activity and d-lactate. Systemic and intestinal inflammation were evaluated by IL-1β, TNF-α, IL-10, and IL-17 concentrations as determined by ELISA. The fecal microbiome and short-chain fatty acids (SCFAs) were analyzed using 16S rDNA sequencing and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Tight junction proteins were evaluated in the ileum and colon by qRT-PCR and Western blots. Tight junction ultrastructure was examined by transmission electron microscopy. Results Treatment with 27-OHC resulted in severe pathologies in the ileum and colon. There was impaired intestinal barrier integrity as indicated by dilated tight junctions and downregulation of tight junction proteins, including occludin, claudin 1, claudin 5, and ZO-1, and signs of inflammation (increased IL-1β, TNF-α, and IL-17). Fecal 16S rDNA sequencing and taxonomic analysis further revealed a decreased abundance of Roseburia and reduced fecal levels of several SCFAs in 27-OHC-treated mice. Meanwhile, co-treatment with ANS reduced intestinal inflammation and partially preserved intestinal barrier integrity in the presence of 27-OHC. Conclusions The current study demonstrates for the first time that 27-OHC treatment aggravates AD-associated pathophysiological alterations, specifically gut microbiota dysbiosis and intestinal barrier dysfunction, which suggests that the gut microbiome and intestinal barrier function warrant further investigation as potential targets to mitigate the neurotoxic impact of 27-OHC on cognitive function and the development of AD.
Collapse
Affiliation(s)
- Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yanhui Lu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,School of Nursing, Peking University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Wen Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.
| |
Collapse
|
21
|
Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, Matute E, Jimenez-Mateos EM, Björkhem I, DeFelipe J, Cedazo-Minguez A. 27-Hydroxycholesterol Induces Aberrant Morphology and Synaptic Dysfunction in Hippocampal Neurons. Cereb Cortex 2020; 29:429-446. [PMID: 30395175 PMCID: PMC6294414 DOI: 10.1093/cercor/bhy274] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia is a risk factor for neurodegenerative diseases, but how high blood cholesterol levels are linked to neurodegeneration is still unknown. Here, we show that an excess of the blood-brain barrier permeable cholesterol metabolite 27-hydroxycholesterol (27-OH) impairs neuronal morphology and reduces hippocampal spine density and the levels of the postsynaptic protein PSD95. Dendritic spines are the main postsynaptic elements of excitatory synapses and are crucial structures for memory and cognition. Furthermore, PSD95 has an essential function for synaptic maintenance and plasticity. PSD95 synthesis is controlled by the REST-miR124a-PTBP1 axis. Here, we report that high levels of 27-OH induce REST-miR124a-PTBP1 axis dysregulation in a possible RxRγ-dependent manner, suggesting that 27-OH reduces PSD95 levels through this mechanism. Our results reveal a possible molecular link between hypercholesterolemia and neurodegeneration. We discuss the possibility that reduction of 27-OH levels could be a useful strategy for preventing memory and cognitive decline in neurodegenerative disorders.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Raul Loera-Valencia
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad A Ismail
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo Matute
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eva Maria Jimenez-Mateos
- Department of Physiology and Medical Physics Royal, College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Crick PJ, Yutuc E, Abdel-Khalik J, Saeed A, Betsholtz C, Genove G, Björkhem I, Wang Y, Griffiths WJ. Formation and metabolism of oxysterols and cholestenoic acids found in the mouse circulation: Lessons learnt from deuterium-enrichment experiments and the CYP46A1 transgenic mouse. J Steroid Biochem Mol Biol 2019; 195:105475. [PMID: 31541728 PMCID: PMC6880786 DOI: 10.1016/j.jsbmb.2019.105475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
While the presence and abundance of the major oxysterols and cholestenoic acids in the circulation is well established, minor cholesterol metabolites may also have biological importance and be of value to investigate. In this study by observing the metabolism of deuterium-labelled cholesterol in the pdgfbret/ret mouse, a mouse model with increased vascular permeability in brain, and by studying the sterol content of plasma from the CYP46A1 transgenic mouse overexpressing the human cholesterol 24S-hydroxylase enzyme we have been able to identify a number of minor cholesterol metabolites found in the circulation, make approximate-quantitative measurements and postulate pathways for their formation. These "proof of principle" data may have relevance when using mouse models to mimic human disease and in respect of the increasing possibility of treating human neurodegenerative diseases with pharmaceuticals designed to enhance the activity of CYP46A1 or by adeno-associated virus delivery of CYP46A1.
Collapse
Affiliation(s)
- Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Ahmed Saeed
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, 141 86 Huddinge, Sweden
| | | | - Guillem Genove
- ICMC Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, 141 86 Huddinge, Sweden
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK.
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK.
| |
Collapse
|
23
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Restoring synaptic function through multimodal therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:257-275. [PMID: 31699320 DOI: 10.1016/bs.pmbts.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the major form of dementia and a growing epidemic for which no disease-modifying treatments exist. AD is characterized by the early loss of synapses in the brain and, at later stages, neuronal death accompanied with progressive loss of cognitive functions. Here we focus on the mechanisms involved in the maintenance of the synapse and how their perturbation leads to synaptic loss. We suggest treatment strategies that particularly target energy metabolism in terms of cholesterol and glucose biochemistry in neurons and astrocytes We also discuss the potential of restoring impaired protein homeostasis through autophagy. These pathways are analyzed from a basic science perspective and suggest new avenues for discovery. We also propose several targets for both basic and translational therapeutics in these pathways and provide perspective on future AD treatment.
Collapse
|
25
|
Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer's disease: Potential novel targets for treatment. J Steroid Biochem Mol Biol 2019; 190:104-114. [PMID: 30878503 DOI: 10.1016/j.jsbmb.2019.03.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs. Years of research have shown a strong correlation between blood hypercholesterolemia and AD, however cholesterol is not able to cross the Blood Brain Barrier (BBB) into the brain. Cholesterol lowering therapies have shown mixed results in cognitive performance in AD patients, raising questions of whether brain cholesterol metabolism in the brain should be studied separately from peripheral cholesterol metabolism and what their relationship is. Unlike cholesterol, oxidized cholesterol metabolites known as oxysterols are able to cross the BBB from the circulation into the brain and vice-versa. The main oxysterols present in the circulation are 24S-hydroxycholesterol and 27-hydroxycholesterol. These oxysterols and their catalysing enzymes have been found to be altered in AD brains and there is evidence indicating their influence in the progression of the disease. This review gives a broad perspective on the relationship between hypercholesterolemia and AD, cholesterol lowering therapies for AD patients and the role of oxysterols in pathological and non-pathological conditions. Also, we propose cholesterol metabolites as valuable targets for prevention and alternative AD treatments.
Collapse
Affiliation(s)
- Raúl Loera-Valencia
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| | - Julen Goikolea
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Institute of Molecular Biology and Genetics-IBGM, (University of Valladolid-CSIC), Valladolid, Spain
| | - Paula Merino-Serrais
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Instituto Cajal (CSIC), Laboratorio Cajal de Circuitos Corticales, Madrid, Spain
| | - Silvia Maioli
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| |
Collapse
|
26
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
27
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Nakagawa K, Tsugawa N, Hirota Y, Tanaka K, Yamashita S, Ikushiro S, Suda T, Okano T, Sakaki T. Generation of 1,25-dihydroxyvitamin D 3 in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D 3 rescued their rachitic phenotypes. J Steroid Biochem Mol Biol 2019; 185:71-79. [PMID: 30031146 DOI: 10.1016/j.jsbmb.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 μg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Abe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi, Osaka 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kazuma Tanaka
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shigeaki Yamashita
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
28
|
Ghaffari H, Petzold LR. Identification of influential proteins in the classical retinoic acid signaling pathway. Theor Biol Med Model 2018; 15:16. [PMID: 30322383 PMCID: PMC6190658 DOI: 10.1186/s12976-018-0088-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Background In the classical pathway of retinoic acid (RA) mediated gene transcription, RA binds to a nuclear hormone receptor dimer composed of retinoic acid receptor (RAR) and retinoid X receptor (RXR), to induce the expression of its downstream target genes. In addition to nuclear receptors, there are other intracellular RA binding proteins such as cellular retinoic acid binding proteins (CRABP1 and CRABP2) and cytochrome P450 (CYP) enzymes, whose contributions to the RA signaling pathway have not been fully understood. The objective of this study was to compare the significance of various RA binding receptors, i.e. CRABP1, CRABP2, CYP and RAR in the RA signaling pathway. In this regard, we developed a mathematical model of the RA pathway, which is one of the few models, if not the only one, that includes all main intracellular RA binding receptors. We then performed a global sensitivity analysis (GSA) to investigate the contribution of the RA receptors to RA-induced mRNA production, when the cells were treated with a wide range of RA levels, from physiological to pharmacological concentrations. Results Our results show that CRABP2 and RAR are the most and the least important proteins, respectively, in controlling the model performance at physiological concentrations of RA (1–10 nM). However, at higher concentrations of RA, CYP and RAR are the most sensitive parameters of the system. Furthermore, we found that depending on the concentrations of all RA binding proteins, the rate of metabolism of RA can either change or remain constant following RA therapy. The cellular levels of CRABP1 are more important than that of CRABP2 in controlling RA metabolite formation at pharmacological conditions (RA = 0.1–1 μM). Finally, our results indicate a significant negative correlation between total mRNA production and total RA metabolite formation at pharmacological levels of RA. Conclusions Our simulations indicate that the significance of the RA binding proteins in the RA pathway of gene expression strongly depends on intracellular concentration of RA. This study not only can explain why various cell types respond to RA therapy differently, but also can potentially help develop pharmacological methods to increase the efficacy of the drug. Electronic supplementary material The online version of this article (10.1186/s12976-018-0088-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamed Ghaffari
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
29
|
Cholestenoic acid is a prognostic biomarker in acute respiratory distress syndrome. J Allergy Clin Immunol 2018; 143:440-442.e8. [PMID: 30296525 DOI: 10.1016/j.jaci.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022]
|
30
|
Munir MT, Ponce C, Powell CA, Tarafdar K, Yanagita T, Choudhury M, Gollahon LS, Rahman SM. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer. J Steroid Biochem Mol Biol 2018; 183:1-9. [PMID: 29733910 DOI: 10.1016/j.jsbmb.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most commonly diagnosed cancers in women. Accumulating evidence suggests that cholesterol plays an important role in the development of breast cancer. Even though the mechanistic link between these two factors is not well understood, one possibility is that dysregulated cholesterol metabolism may affect lipid raft and membrane fluidity and can promote tumor development. Current studies have shown oxysterol 27-hydroxycholesterol (27-HC) as a critical regulator of cholesterol and breast cancer pathogenesis. This is supported by the significantly higher expression of CYP27A1 (cytochrome P450, family 27, subfamily A, polypeptide 1) in breast cancers. This enzyme is responsible for 27-HC synthesis from cholesterol. It has been shown that 27-HC can not only increase the proliferation of estrogen receptor (ER)-positive breast cancer cells but also stimulate tumor growth and metastasis in several breast cancer models. This phenomenon is surprising since 27-HC and other oxysterols generally reduce intracellular cholesterol levels by activating the liver X receptors (LXRs). Resolving this paradox will elucidate molecular pathways by which cholesterol, ER, and LXR are connected to breast cancer. These findings will also provide the rationale for evaluating pharmaceutical approaches that manipulate cholesterol or 27-HC synthesis in order to mitigate the impact of cholesterol on breast cancer pathophysiology. In addition to cholesterol, epigenetic changes including non-coding RNAs, and microRNAs, DNA methylation, and histone modifications, have all been shown to control tumorigenesis. The purpose of this review is to discuss the link between altered cholesterol metabolism and epigenetic modification during breast cancer progression.
Collapse
Affiliation(s)
- Maliha T Munir
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | | | - Catherine A Powell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | | | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Shaikh M Rahman
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
31
|
El-Darzi N, Astafev A, Mast N, Saadane A, Lam M, Pikuleva IA. N, N-Dimethyl-3β-hydroxycholenamide Reduces Retinal Cholesterol via Partial Inhibition of Retinal Cholesterol Biosynthesis Rather Than its Liver X Receptor Transcriptional Activity. Front Pharmacol 2018; 9:827. [PMID: 30090064 PMCID: PMC6069453 DOI: 10.3389/fphar.2018.00827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
N,N-dimethyl-3β-hydroxycholenamide (DMHCA) is an experimental pharmaceutical and a steroidal liver X receptor (LXR) agonist, which does not induce undesired hepatic lipogenesis. Herein, DMHCA was evaluated for its retinal effects on normal C57BL/6J and Cyp27a1−/−Cyp46a1−/− mice; the latter having higher retinal total and esterified cholesterol in addition to retinal vascular abnormalities. Different doses and two formulations were used for DMHCA delivery either via drinking water (C57BL/6J mice) or by oral gavage (Cyp27a1−/−Cyp46a1−/− mice). The duration of treatment was 1 week for C57BL/6J mice and 2 or 4 weeks for Cyp27a1−/−Cyp46a1−/− mice. In both genotypes, the higher DMHCA doses (37–80 mg/kg of body weight/day) neither increased serum triglycerides nor serum cholesterol but altered the levels of retinal sterols. Total retinal cholesterol was decreased in the DMHCA-treated mice, mainly due to a decrease in retinal unesterified cholesterol. In addition, retinal levels of cholesterol precursors lanosterol, zymosterol, desmosterol, and lathosterol were changed in Cyp27a1−/−Cyp46a1−/− mice. In both genotypes, DMHCA effect on retinal expression of the LXR target genes was only moderate and gender-specific. Collectively, the data obtained provide evidence for a decrease in retinal cholesterol as a result of DMHCA acting in the retina as an enzyme inhibitor of cholesterol biosynthesis rather than a LXR transcriptional activator. Specifically, DMHCA appears to partially inhibit the cholesterol biosynthetic enzyme Δ24-dehydrocholesterol reductase rather than upregulate the expression of LXR target genes involved in reverse cholesterol transport. The identified DMHCA dosages, formulations, and routes of delivery as well as the observed effects on the retina should be considered in future studies using DMHCA as a potential therapeutic for age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Artem Astafev
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Morrie Lam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
32
|
Nelson ER. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol Cell Endocrinol 2018; 466:73-80. [PMID: 28919300 PMCID: PMC5854519 DOI: 10.1016/j.mce.2017.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Although significant advances in the treatment of breast cancer have been made, in particular in the use of endocrine therapy, de novo and aquired resistance to therapy, and metastatic recurrence continue to be major clinical problems. Given the high prevalence of breast cancer, new life-style or chemotherapeutic approaches are required. In this regard, cholesterol has emerged as a risk factor for the onset of breast cancer, and elevated cholesterol is associated with a poor prognosis. While treatment with cholesterol lowering medication is not associated with breast cancer risk, it does appear to be protective against recurrence. Importantly, the cholesterol axis represents a potential target for both life-style and pharmacological intervention. This review will outline the clinical and preclinical data supporting a role for cholesterol in breast cancer pathophysiology. Specific focus is given to 27-hydroxycholesterol (27-OHC; (3β,25R)-Cholest-5-ene-3,26-diol)), a primary metabolite of cholesterol that has recently been defined as an endogenous Selective Estrogen Receptor Modulator. Future perspectives and directions are discussed.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, IL, USA.
| |
Collapse
|
33
|
Morris J, Darolti I, Bloch NI, Wright AE, Mank JE. Shared and Species-Specific Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. Genes (Basel) 2018; 9:E238. [PMID: 29751570 PMCID: PMC5977178 DOI: 10.3390/genes9050238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sex chromosomes form once recombination is halted around the sex-determining locus between a homologous pair of chromosomes, resulting in a male-limited Y chromosome. We recently characterized the nascent sex chromosome system in the Trinidadian guppy (Poeciliareticulata). The guppy Y is one of the youngest animal sex chromosomes yet identified, and therefore offers a unique window into the early evolutionary forces shaping sex chromosome formation, particularly the rate of accumulation of repetitive elements and Y-specific sequence. We used comparisons between male and female genomes in P. reticulata and its sister species, Endler’s guppy (P. wingei), which share an ancestral sex chromosome, to identify male-specific sequences and to characterize the degree of differentiation between the X and Y chromosomes. We identified male-specific sequence shared between P. reticulata and P. wingei consistent with a small ancestral non-recombining region. Our assembly of this Y-specific sequence shows substantial homology to the X chromosome, and appears to be significantly enriched for genes implicated in pigmentation. We also found two plausible candidates that may be involved in sex determination. Furthermore, we found that the P. wingei Y chromosome exhibits a greater signature of repetitive element accumulation than the P. reticulata Y chromosome. This suggests that Y chromosome divergence does not necessarily correlate with the time since recombination suppression. Overall, our results reveal the early stages of Y chromosome divergence in the guppy.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|
34
|
Yu Q, Wu M, Sheng L, Li Q, Xie F. Therapeutic effects of targeting RAS-ERK signaling in giant congenital melanocytic nevi. Am J Transl Res 2018; 10:1184-1194. [PMID: 29736211 PMCID: PMC5934577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/02/2017] [Indexed: 06/08/2023]
Abstract
Most giant congenital melanocytic nevi (GCMN) exhibit an activating mutation in NRAS. Constitutive activation of the RAS-ERK signaling pathway induces proliferation in nevus cells and plays a pivotal role in melanoma development. In this study, we studied the efficacy of RAS-ERK pathway targeted therapy in GCMN. We isolated nevus cells from GCMN (GNCs) and compared the morphology of GNCs with normal melanocytes and the A375 melanoma cell line. Proliferation curves of GNCs and A375 cells were determined using Cell Counting Kit-8 assays. Cell cycle distribution was measured using flow cytometry. The RAS-ERK pathway inhibitors Vemurafenib and Trametinib, which are used in melanoma therapy, were applied. After inhibitor treatment, GNCs were analyzed for apoptosis and the protein expression of ERK, p-ERK, P38, p-P38 and P53. We found that compared with A375 cells, the cultured GNCs exhibited a higher G1 phase population and a lower proliferation rate. Both Vemurafenib and Trametinib treatment induced GNCs apoptosis in a dose-dependent manner, with Vemurafenib having a stronger effect. With inhibitor treatment, ERK activation was greatly suppressed, while the expression of p-P38 exhibited no obvious change. Vemurafenib treatment also increased the level of P53 protein in GNCs. These findings suggested that Vemurafenib treatment may be a potential therapeutic strategy for treatment of GCMN via targeting of the RAS-ERK pathway.
Collapse
Affiliation(s)
- Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University Shanghai, P. R. China
| | - Min Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University Shanghai, P. R. China
| | - Lingling Sheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University Shanghai, P. R. China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University Shanghai, P. R. China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University Shanghai, P. R. China
| |
Collapse
|
35
|
Characterisation of the oxysterol metabolising enzyme pathway in mismatch repair proficient and deficient colorectal cancer. Oncotarget 2018; 7:46509-46527. [PMID: 27341022 PMCID: PMC5216813 DOI: 10.18632/oncotarget.10224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are oxidised derivatives of cholesterol, formed by the enzymatic activity of several cytochrome P450 enzymes and tumour-derived oxysterols have been implicated in tumour growth and survival. The aim of this study was to profile the expression of oxysterol metabolising enzymes in primary colorectal cancer and assess the association between expression and prognosis. Immunohistochemistry was performed on a colorectal cancer tissue microarray containing 650 primary colorectal cancers using monoclonal antibodies to CYP2R1, CYP7B1, CYP8B1, CYP27A1, CYP39A1, CYP46A1 and CYP51A1, which we have developed. Unsupervised hierarchical cluster analysis was used to examine the overall relationship of oxysterol metabolising enzyme expression with outcome and based on this identify an oxysterol metabolising enzyme signature associated with prognosis. Cluster analysis of the whole patient cohort identified a good prognosis group (mean survival=146 months 95% CI 127-165 months) that had a significantly better survival (δ2=12.984, p<0.001, HR=1.983, 95% CI 1.341-2.799) than the poor prognosis group (mean survival=107 months, 95% CI 98-123 months). For the mismatch repair proficient cohort, the good prognosis group had a significantly better survival (δ2=8.985, p=0.003, HR=1.845, 95% CI 1.227-2.774) than the poor prognosis group. Multi-variate analysis showed that cluster group was independently prognostically significant in both the whole patient cohort (p=0.02, HR=1.554, 95% CI 1.072-2.252) and the mismatch repair proficient group (p=0.04, HR=1.530, 95% CI 1.014-2.310). Individual oxysterol metabolising enzymes are overexpressed in colorectal cancer and an oxysterol metabolising enzyme expression profile associated with prognosis has been identified in the whole patient cohort and in mismatch repair proficient colorectal cancers.
Collapse
|
36
|
Lam M, Mast N, Pikuleva IA. Drugs and Scaffold That Inhibit Cytochrome P450 27A1 In Vitro and In Vivo. Mol Pharmacol 2018; 93:101-108. [PMID: 29192124 PMCID: PMC5749491 DOI: 10.1124/mol.117.110742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 27A1 (CYP27A1) is a ubiquitous enzyme that hydroxylates cholesterol and other sterols. Complete CYP27A1 deficiency owing to genetic mutations is detrimental to human health, whereas 50% of activity retention is not and does not affect the whole body cholesterol levels. CYP27A1 is considered a potential therapeutic target in breast cancer and age-related neurodegenerative diseases; however, CYP27A1 inhibition should be ≤50%. Herein, 131 pharmaceuticals were tested for their effect on CYP27A1-mediated cholesterol 27-hydroxylation by in vitro enzyme assay. Of them, 14 drugs inhibited CYP27A1 by ≥75% and were evaluated for in vitro binding to the enzyme active site and for inhibition constants. All drugs except one (dasatinib) elicited a spectral response in CYP27A1 and had Ki values for cholesterol 27-hydroxylation either in the submicromolar (clevidipine, delavirdine, etravirine, felodipine, nicardipine, nilotinib, and sorafenib) or low micromolar range (abiratone, candesartan, celecoxib, dasatinib, nilvadipine, nimodipine, and regorafenib). Clevidipine, felodipine, nicardipine, nilvadipine, and nimodipine have the same 1,4-dihydropyridine scaffold and are indicated for hypertension. We used two of these antihypertensives (felodipine and nilvadipine) for administration to mice at a 1-mg/kg of body weight dose, daily, for 7 days. Mouse 27-hydroxycholesterol levels in the plasma, brain, and liver were reduced, whereas tissue levels of total cholesterol were unchanged. Structure-activity relationships within the 1,4-dihydropyridine scaffold were investigated, and features important for CY27A1 inhibition were identified. We confirmed our previous finding that CYP27A1 is a druggable enzyme and found additional drugs as well as the scaffold with potential for partial CYP27A1 inhibition in humans.
Collapse
Affiliation(s)
- Morrie Lam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Zhang X, Lv C, An Y, Liu Q, Rong H, Tao L, Wang Y, Wang Y, Xiao R. Increased Levels of 27-Hydroxycholesterol Induced by Dietary Cholesterol in Brain Contribute to Learning and Memory Impairment in Rats. Mol Nutr Food Res 2018; 62. [PMID: 29193679 DOI: 10.1002/mnfr.201700531] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/08/2017] [Indexed: 12/22/2022]
Abstract
SCOPE Dietary cholesterol has been shown to play a role in the development of Alzheimer's disease (AD). It is proposed that oxysterol especially 27-hydroxycholesterol (27-OHC) may play a potential role in β-amyloid peptides (Aβ) production and accumulation during AD progression. METHODS AND RESULTS To investigate the mechanisms of dietary cholesterol and 27-OHC on learning and memory impairment, male Sprague-Dawley rats are fed with cholesterol diet with or without 27-OHC synthetase inhibitor (anastrozole) injection. The levels of cholesterol, 27-OHC, 24-hydroxycholesterol (24S-OHC), 7α-hydroxycholesterol, and 7β-hydroxycholesterol in plasma are determined; apolipoprotein A (ApoA), apolipoprotein B (ApoB), HDL-cholesterol (HDL-C), and LDL-cholesterol (LDL-C) in plasma or brain; CYP27A1 and CYP7A1 in liver and CYP46A1 and CYP7B1 in brain; cathepsin B, cathepsin D, and acid phosphatase in lysosome; and Aβ1-40 and Aβ1-42 in brain. Results show increased levels of 27-OHC (p < 0.01), LDL-C (p < 0.01), and ApoB (p < 0.01), and decreased level of HDL-C (p < 0.05) in plasma, upregulated CYP27A1 (p < 0.01) and CYP7A1 (p < 0.01) expression in liver, altered lysosomal function, and increased level of Aβ in brain (p < 0.05). CONCLUSIONS This study indicates that the mechanisms of dietary cholesterol on learning and memory impairment may be involved in cholesterol metabolism and lysosome function with the increase of plasma 27-OHC, thus resulting in Aβ formation and accumulation.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Chenyan Lv
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Quanri Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongguo Rong
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Ge N, Chu XM, Xuan YP, Ren DQ, Wang Y, Ma K, Gao HJ, Jiao WJ. Associations between abnormal vitamin D metabolism pathway function and non-small cell lung cancer. Oncol Lett 2017; 14:7538-7544. [PMID: 29250167 DOI: 10.3892/ol.2017.7162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is a type of malignant tumor derived from the respiratory system, which is the leading cause of cancer-associated mortality worldwide, of which ~80% of cases are attributable to non-small cell lung cancer (NSCLC). A previous study demonstrated that 1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3), derived from the vitamin D metabolic pathway contributes an antitumor effect. Aberrant expression of the essential enzyme encoding genes, Cytochrome P450 Family 27 Subfamily A Member 1 (CYP27A1), Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1), and Cytochrome P450 Family 24 Subfamily A Member 1 (CYP24A1) may be associated with lung cancer. However, a lack of evidence exists concerning the association between CYP27A1, CYP27B1, CYP24A1 expression and NSCLC. The aim of the present study was to investigate the functions of CYP27A1, CYP27B1 and CYP24A1 expression in NSCLC. Lung cancer tissue and para-carcinoma control tissue were collected from patients with NSCLC. Reverse transcription-quantitative polymerase chain reaction was applied to analyze CYP27A1, CYP27B1 and CYP24A1 mRNA expression in lung cancer tissues. An association analysis was performed between the aforementioned metabolic enzymes and patients with NSCLC age, gender, tumor node metastasis (TNM) stage, pathological type, differentiation and prognosis. CYP27B1 and CYP24A1 mRNA were upregulated in NSCLC compared with controls (P<0.05). However, no significant differences in CYP27A1 expression were observed between NSCLC and control. In addition, CYP24A1 expression was not associated with age, sex, smoking or TNM stage, but was associated with pathological type, differentiation and prognosis (P<0.05). CYP27B1 expression was significantly associated with TNM stage, differentiation, and prognosis, but not age, sex, smoking or pathological type. In conclusion, CYP27B1 and CYP24A1 may be considered as independent prognostic factors of NSCLC and may be novel therapeutic targets to assist clinical diagnosis, treatment and prognosis of the disease.
Collapse
Affiliation(s)
- Nan Ge
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiu-Mei Chu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yun-Peng Xuan
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dun-Qiang Ren
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Kai Ma
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hui-Jiang Gao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen-Jie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
39
|
He S, Nelson ER. 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas 2017; 104:29-35. [PMID: 28923174 DOI: 10.1016/j.maturitas.2017.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Estrogen receptors (ERs) mediate the actions of the steroidal estrogens, and are important for the regulation of several physiological and pathophysiological processes, including reproduction, bone physiology, cardiovascular physiology and breast cancer. The unique pharmacology of the ERs allows for certain ligands, such as tamoxifen, to elicit tissue- and context-specific responses, ligands now referred to as selective estrogen receptor modulators (SERMs). Recently, the cholesterol metabolite 27-hydroxychoelsterol (27HC) has been defined as an endogenous SERM, with activities in atherosclerosis, osteoporosis, breast and prostate cancers, and neural degenerative diseases. Since 27HC concentrations closely mirror those of cholesterol, it is possible that 27HC mediates many of the biological effects of cholesterol. This paper provides an overview of ER pharmacology and summarizes the work to date implicating 27HC in various diseases. Wherever possible, we highlight clinical data in support of a role for 27HC in the diseases discussed.
Collapse
Affiliation(s)
- Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
40
|
Kloudova A, Guengerich FP, Soucek P. The Role of Oxysterols in Human Cancer. Trends Endocrinol Metab 2017; 28:485-496. [PMID: 28410994 PMCID: PMC5474130 DOI: 10.1016/j.tem.2017.03.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol formed in the human body or ingested in the diet. By modulating the activity of many proteins [e.g., liver X receptors (LXRs), oxysterol-binding proteins (OSBPs), some ATP-binding cassette (ABC) transporters], oxysterols can affect many cellular functions and influence various physiological processes (e.g., cholesterol metabolism, membrane fluidity regulation, intracellular signaling pathways). Therefore, the role of oxysterols is also important in pathological conditions (e.g., atherosclerosis, diabetes mellitus type 2, neurodegenerative disorders). Finally, current evidence suggests that oxysterols play a role in malignancies such as breast, prostate, colon, and bile duct cancer. This review summarizes the physiological importance of oxysterols in the human body with a special emphasis on their roles in various tumors.
Collapse
Affiliation(s)
- Alzbeta Kloudova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic; Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen 323 00, Czech Republic.
| |
Collapse
|
41
|
Kimbung S, Chang CY, Bendahl PO, Dubois L, Thompson JW, McDonnell DP, Borgquist S. Impact of 27-hydroxylase (CYP27A1) and 27-hydroxycholesterol in breast cancer. Endocr Relat Cancer 2017; 24:339-349. [PMID: 28442559 DOI: 10.1530/erc-16-0533] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 11/08/2022]
Abstract
The impact of systemic 27-hydroxycholesterol (27HC) and intratumoral CYP27A1 expression on pathobiology and clinical response to statins in breast cancer needs clarification. 27HC is an oxysterol produced from cholesterol by the monooxygenase CYP27A1, which regulates intracellular cholesterol homeostasis. 27HC also acts as an endogenous selective estrogen receptor (ER) modulator capable of increasing breast cancer growth and metastasis. 27HC levels can be modulated by statins or direct inhibition of CYP27A1, thereby attenuating its pro-tumorigenic activities. Herein, the effect of statins on serum 27HC and tumor-specific CYP27A1 expression was evaluated in 42 breast cancer patients treated with atorvastatin within a phase II clinical trial. Further, the associations between CYP27A1 expression with other primary tumor pathological features and clinical outcomes were studied in two additional independent cohorts. Statin treatment effectively decreased serum 27HC and deregulated CYP27A1 expression in tumors. However, these changes were not associated with anti-proliferative responses to statin treatment. CYP27A1 was heterogeneously expressed among primary tumors, with high expression significantly associated with high tumor grade, ER negativity and basal-like subtype. High CYP27A1 expression was independently prognostic for longer recurrence-free and overall survival. Importantly, the beneficial effect of high CYP27A1 in ER-positive breast cancer seemed limited to women aged ≤50 years. These results establish a link between CYP27A1 and breast cancer pathobiology and prognosis and propose that the efficacy of statins in reducing serum lipids does not directly translate to anti-proliferative effects in tumors. Changes in other undetermined serum or tumor factors suggestively mediate the anti-proliferative effects of statins in breast cancer.
Collapse
Affiliation(s)
- Siker Kimbung
- Division of Oncology and PathologyDepartment of Clinical Sciences, Lund, Lund University, Sweden
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer BiologyDuke University School of Medicine, Durham, NC, USA
| | - Pär-Ola Bendahl
- Division of Oncology and PathologyDepartment of Clinical Sciences, Lund, Lund University, Sweden
| | - Laura Dubois
- Duke Proteomics and Metabolomics ResourceDuke University School of Medicine, Durham, NC, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer BiologyDuke University School of Medicine, Durham, NC, USA
- Duke Proteomics and Metabolomics ResourceDuke University School of Medicine, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer BiologyDuke University School of Medicine, Durham, NC, USA
| | - Signe Borgquist
- Division of Oncology and PathologyDepartment of Clinical Sciences, Lund, Lund University, Sweden
- Clinical Trial UnitClinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
42
|
Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano C, Chatelut E, Marquet P, Samadi M, Roché H, Poirot M, Silvente-Poirot S. Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. J Steroid Biochem Mol Biol 2017; 169:210-218. [PMID: 27343991 DOI: 10.1016/j.jsbmb.2016.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Accumulating evidence indicates that cholesterol oxygenation products, also known as oxysterols (OS), are involved in breast cancer (BC) promotion. The impact of Tam, as well as aromatase inhibitors (AI), an alternative BC endocrine therapy (ET), on OS metabolism in patients is currently unknown. We conducted a prospective clinical study in BC patients receiving Tam (n=15) or AI (n=14) in adjuvant or in metastatic settings. The primary end point was the feasibility of detecting and quantifying 11 different OS in the circulation of patients before and after 28days of treatment with Tam or AI. Key secondary end points were the measurements of variations in the concentrations of OS according to differences between patients and treatments. OS profiling in the serum of patients was determined by gas chromatography coupled to mass spectrometry. OS profiling was conducted in all patients both at baseline and during treatment regimens. An important inter-individual variability was observed for each OS. Interestingly 5,6β-epoxycholesterol relative concentrations significantly increased in the entire population (p=0.0109), while no increase in Cholestane-triol (CT) levels was measured. Interestingly, we found that, in contrast to AI, Tam therapy significantly decreased blood levels of 24-hydroxycholesterol (24-HC), 7α-HC and 25-HC (a tumor promoter) (p=0.0007, p=0.0231 and p=0.0231, respectively), whereas 4β-HC levels increased (p=0.0010). Interestingly, levels of 27-HC (a tumor promoter) significantly increased in response to AI (p=0.0342), but not Tam treatment. According to these results, specific OS are promising candidate markers of Tam and AI efficacy. Thus, further clinical investigations are needed to confirm the use of oxysterols as biomarkers of both prognosis and/or the efficacy of ET.
Collapse
Affiliation(s)
- Florence Dalenc
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France; Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France.
| | - Luiggi Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Thomas Filleron
- Department of Biostatistics, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Chiara Zerbinati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maud Voisin
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France; Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France; University of Toulouse III, Toulouse France
| | - Cécile Arellano
- Institut Claudius-Regaud, IUCT-Oncopole and EA4553 University of Toulouse III Paul-Sabatier, Toulouse, France
| | - Etienne Chatelut
- Institut Claudius-Regaud, IUCT-Oncopole and EA4553 University of Toulouse III Paul-Sabatier, Toulouse, France
| | - Pierre Marquet
- CHU Limoges, University of Limoges, U850 INSERM, Limoges, France
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Département de Chimie, University of Lorraine, Metz, France
| | - Henri Roché
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Marc Poirot
- Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France; University of Toulouse III, Toulouse France.
| | - Sandrine Silvente-Poirot
- Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France; University of Toulouse III, Toulouse France
| |
Collapse
|
43
|
Perone Y, Magnani L. Going off the grid: ERα breast cancer beyond estradiol. J Mol Endocrinol 2016; 57:F1-5. [PMID: 27151575 DOI: 10.1530/jme-16-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 11/08/2022]
Abstract
Novel studies have linked cholesterol biosynthesis to drug resistance in luminal breast cancer. Structural data suggest that cholesterol metabolites, including 27-hydroxycholesterol (27HC), can act as ERα ligands in these cells. Additionally, hypercholesterolemia has now been linked to breast cancer progression. The focus of this review is to briefly summarize these recent findings and discuss how epigenetic reprogramming is definitively connected to endogenous cholesterol biosynthesis. We elaborate on how these data support a working model in which cholesterol biosynthesis promotes autocrine, pro-invasive signaling via activation of a series of closely related transcription factors. Importantly, we discuss how this mechanism of resistance is specifically associated with aromatase inhibitors. Finally, we examine how the field is now considering the development of anticholesterol therapeutics and companion biomarkers to stratify and treat ERα breast cancer patients. In particular, we review recent progress in pharmaceutical strategies targeting the cholesterol molecular machinery in primary and secondary breast cancers.
Collapse
Affiliation(s)
- Ylenia Perone
- Department of Surgery and CancerImperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Luca Magnani
- Department of Surgery and CancerImperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| |
Collapse
|
44
|
Potential modulation of cancer progression by oxysterols. Mol Aspects Med 2016; 49:47-8. [DOI: 10.1016/j.mam.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 01/19/2023]
|
45
|
Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat 2016; 157:77-90. [PMID: 27120467 PMCID: PMC4869778 DOI: 10.1007/s10549-016-3807-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Anti-estrogen and anti-HER2 treatments have been among the first and most successful examples of targeted therapy for breast cancer (BC). However, the treatment of triple-negative BC (TNBC) that lack estrogen receptor expression or HER2 amplification remains a major challenge. We previously discovered that approximately two-thirds of TNBCs express vitamin D receptor (VDR) and/or androgen receptor (AR) and hypothesized that TNBCs co-expressing AR and VDR (HR2-av TNBC) could be treated by targeting both of these hormone receptors. To evaluate the feasibility of VDR/AR-targeted therapy in TNBC, we characterized 15 different BC lines and identified 2 HR2-av TNBC lines and examined the changes in their phenotype, viability, and proliferation after VDR and AR-targeted treatment. Treatment of BC cell lines with VDR or AR agonists inhibited cell viability in a receptor-dependent manner, and their combination appeared to inhibit cell viability additively. Moreover, cell viability was further decreased when AR/VDR agonist hormones were combined with chemotherapeutic drugs. The mechanisms of inhibition by AR/VDR agonist hormones included cell cycle arrest and apoptosis in TNBC cell lines. In addition, AR/VDR agonist hormones induced differentiation and inhibited cancer stem cells (CSCs) measured by reduction in tumorsphere formation efficiency, high aldehyde dehydrogenase activity, and CSC markers. Surprisingly, we found that AR antagonists inhibited proliferation of most BC cell lines in an AR-independent manner, raising questions regarding their mechanism of action. In summary, AR/VDR-targeted agonist hormone therapy can inhibit HR2-av TNBC through multiple mechanisms in a receptor-dependent manner and can be combined with chemotherapy.
Collapse
Affiliation(s)
- A Thakkar
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL, USA
| | - B Wang
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Picon-Ruiz
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - P Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- , Biomedical Research Building, Room 926, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|