1
|
Fan L, Wang S. Biased GPCR Signaling: Possible Mechanisms and Therapeutic Applications. Biochemistry 2025; 64:1180-1192. [PMID: 40016120 DOI: 10.1021/acs.biochem.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Biased signaling refers to the phenomenon where a ligand selectively activates specific downstream pathways of G protein-coupled receptors (GPCRs), such as the G protein-mediated pathway or the β-arrestin-mediated pathway. This mechanism can be influenced by receptor bias, ligand bias, system bias and spatial bias, all of which are shaped by the receptor's conformational distinctions and kinetics. Since GPCRs are the largest class of drug targets, signaling bias garnered significant attention for its potential to enhance therapeutic efficacy while minimizing side effects. Despite intensive investigation, a major challenge lies in translating in vitro ligand efficacy into in vivo biological responses due to the dynamic and multifaceted nature of the in vivo environment. This review delves into the current understanding of GPCR-biased signaling, examining the role of structural bias at the molecular level, the impact of kinetic context on system and observational bias, and the challenges of applying these insights in drug development. It further explores future directions for advancing biased signaling applications, offering valuable perspectives on how to bridge the gap between in vitro studies and in vivo therapeutic design, ultimately accelerating the development of viable, biased therapeutics.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Provasi D, Filizola M. Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs. Biochemistry 2025; 64:1328-1337. [PMID: 40056143 DOI: 10.1021/acs.biochem.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to the receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs─defined as the dose range that provides effective therapy with minimal side effects─stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand. Accurately predicting safer compounds, through either low intrinsic efficacy or ligand bias, would greatly advance drug development. While AI models hold promise for such predictions, the development of deep learning models capable of reliably forecasting GPCR ligands with defined bioactivities remains challenging, largely due to the limited availability of high-quality data. To address this, we pretrained a model on receptor sequences and ligand data sets across all class A GPCRs and then refined it to predict low-efficacy compounds or biased agonists for individual class A GPCRs. This was achieved using transfer learning and a neural network incorporating natural language processing of target sequences and receptor mutation effects on signaling. These two fine-tuned models─one for low-efficacy agonists and one for biased agonists─are available on demand for each class A GPCR and enable virtual screening of large chemical libraries, thereby facilitating the discovery of compounds with potentially improved safety profiles.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
3
|
Provasi D, Filizola M. Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627102. [PMID: 39713468 PMCID: PMC11661127 DOI: 10.1101/2024.12.07.627102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs - defined as the dose range that provides effective therapy with minimal side effects - stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand. Accurately predicting safer compounds, whether through low intrinsic efficacy or ligand bias, would greatly advance drug development. While AI models hold promise for such predictions, the development of deep learning models capable of reliably forecasting GPCR ligands with defined bioactivities remains challenging, largely due to the limited availability of high-quality data. To address this, we pre-trained a model on receptor sequences and ligand datasets across all class A GPCRs, and then refined it to predict low-efficacy compounds or biased agonists for individual class A GPCRs. This was achieved using transfer learning and a neural network incorporating natural language processing of target sequences and receptor mutation effects on signaling. These two fine-tuned models-one for low-efficacy agonists and one for biased agonists-are available on demand for each class A GPCR and enable virtual screening of large chemical libraries, thereby facilitating the discovery of compounds with potentially improved safety profiles.
Collapse
|
4
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
5
|
Gaitonde SA, Avet C, de la Fuente Revenga M, Blondel-Tepaz E, Shahraki A, Pastor AM, Talagayev V, Robledo P, Kolb P, Selent J, González-Maeso J, Bouvier M. Pharmacological fingerprint of antipsychotic drugs at the serotonin 5-HT 2A receptor. Mol Psychiatry 2024; 29:2753-2764. [PMID: 38561467 PMCID: PMC11420065 DOI: 10.1038/s41380-024-02531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The intricate involvement of the serotonin 5-HT2A receptor (5-HT2AR) both in schizophrenia and in the activity of antipsychotic drugs is widely acknowledged. The currently marketed antipsychotic drugs, although effective in managing the symptoms of schizophrenia to a certain extent, are not without their repertoire of serious side effects. There is a need for better therapeutics to treat schizophrenia for which understanding the mechanism of action of the current antipsychotic drugs is imperative. With bioluminescence resonance energy transfer (BRET) assays, we trace the signaling signature of six antipsychotic drugs belonging to three generations at the 5-HT2AR for the entire spectrum of signaling pathways activated by serotonin (5-HT). The antipsychotic drugs display previously unidentified pathway preference at the level of the individual Gα subunits and β-arrestins. In particular, risperidone, clozapine, olanzapine and haloperidol showed G protein-selective inverse agonist activity. In addition, G protein-selective partial agonism was found for aripiprazole and cariprazine. Pathway-specific apparent dissociation constants determined from functional analyses revealed distinct coupling-modulating capacities of the tested antipsychotics at the different 5-HT-activated pathways. Computational analyses of the pharmacological and structural fingerprints support a mechanistically based clustering that recapitulate the clinical classification (typical/first generation, atypical/second generation, third generation) of the antipsychotic drugs. The study provides a new framework to functionally classify antipsychotics that should represent a useful tool for the identification of better and safer neuropsychiatric drugs and allows formulating hypotheses on the links between specific signaling cascades and in the clinical outcomes of the existing drugs.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Charlotte Avet
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Elodie Blondel-Tepaz
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Aida Shahraki
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany
| | - Adrian Morales Pastor
- Research Programme on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Medical Research Institute, Barcelona, 08003, Spain
| | - Valerij Talagayev
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, 08003, Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Medical Research Institute, Barcelona, 08003, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
6
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Gross F, Mancini A, Breton B, Kobayashi H, Pereira PHS, Le Gouill C, Bouvier M, Schann S, Leroy X, Sabbagh L. EGFR signaling and pharmacology in oncology revealed with innovative BRET-based biosensors. Commun Biol 2024; 7:250. [PMID: 38429428 PMCID: PMC10907714 DOI: 10.1038/s42003-024-05965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.
Collapse
Affiliation(s)
- Florence Gross
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Arturo Mancini
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Pedro Henrique Scarpelli Pereira
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Stephan Schann
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Xavier Leroy
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Laurent Sabbagh
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada.
| |
Collapse
|
8
|
Gurevich VV, Gurevich EV. Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers. APPLIED MAGNETIC RESONANCE 2024; 55:11-25. [DOI: 10.1007/s00723-023-01561-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 02/03/2025]
|
9
|
Gupta PK, Singh A, Rana S. Conformational variants of the ternary complex of C5a, C5aR1, and G-protein. J Biomol Struct Dyn 2024:1-16. [PMID: 38247266 DOI: 10.1080/07391102.2024.2305698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The complement component fragment 5a (C5a) binds and activates two complement receptors like C5aR1 and C5aR2, which play a significant role in orchestrating the proinflammatory function of C5a in tissues through the recruitment of heterotrimeric G-proteins and β-arrestins. Dysregulation of the complement induces excessive production of C5a, which triggers aberrant activation of the C5a-C5aR1-G-protein and C5a-C5aR2-β-arrestin signalling axes in tissues, contributing to the pathology of numerous immune-inflammatory diseases. Thus, understanding the interaction of C5a with C5aR1 and C5aR2, as well as the interaction of G-protein and β-arrestins, respectively, with C5a-C5aR1 and C5a-C5aR2, holds tremendous therapeutic value. In the absence of structural data, we have previously elaborated the binary complexes of C5a-C5aR1 and C5a-C5aR2, as well as the ternary complex of C5a-C5aR2-β-arrestin1, in highly refined model structures. While our ternary model complex of C5a-C5aR1-G-protein was in progress, two cryo-electron microscopy-based ternary structural complexes of C5aR1 were made available by others. However, it is observed that the interaction of the crucial NT-peptide of C5aR1 with C5a, including the portion of the G⍺i-subunit that harbors the switch-I region, is not fully resolved in both complexes. The current study addresses the issues and provides two highly refined alternative model ternary complexes of C5a-C5aR1-G-protein. The study highlights the conformational heterogeneity in C5aR1 by comparing the two conformational variants of the model ternary complex in the context of C5a-C5aR2-β-arrestin1 for further devising methods and molecules targeting both surface and intracellular C5aR1/C5aR2 for effectively mitigating the proinflammatory role of C5a in various disease settings.
Collapse
Affiliation(s)
- Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Filizola M, Javitch JA. Deciphering downstream receptor signaling. Science 2023; 382:1357-1358. [PMID: 38127769 DOI: 10.1126/science.adm8393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Advancing drug discovery requires increasingly integrative structural biology approaches.
Collapse
Affiliation(s)
- Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
11
|
Wright SC, Motso A, Koutsilieri S, Beusch CM, Sabatier P, Berghella A, Blondel-Tepaz É, Mangenot K, Pittarokoilis I, Sismanoglou DC, Le Gouill C, Olsen JV, Zubarev RA, Lambert NA, Hauser AS, Bouvier M, Lauschke VM. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat Commun 2023; 14:6243. [PMID: 37813859 PMCID: PMC10562414 DOI: 10.1038/s41467-023-41893-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.
Collapse
Affiliation(s)
- Shane C Wright
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Aikaterini Motso
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Koutsilieri
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, 75185, Sweden
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, 64100, Italy
| | - Élodie Blondel-Tepaz
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Kimberley Mangenot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | | | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jesper V Olsen
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
- The National Medical Research Center for Endocrinology, Moscow, 115478, Russia
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Bumbak F, Bower JB, Zemmer SC, Inoue A, Pons M, Paniagua JC, Yan F, Ford J, Wu H, Robson SA, Bathgate RAD, Scott DJ, Gooley PR, Ziarek JJ. Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314. Nat Commun 2023; 14:3328. [PMID: 37286565 PMCID: PMC10247727 DOI: 10.1038/s41467-023-38894-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. β-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A β-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.
Collapse
Affiliation(s)
- Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - James B Bower
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Skylar C Zemmer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Juan Carlos Paniagua
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Fei Yan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Ford
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Scott A Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
14
|
De Pascali F, Ippolito M, Wolfe E, Komolov KE, Hopfinger N, Lemenze D, Kim N, Armen RS, An SS, Scott CP, Benovic JL. β 2 -Adrenoceptor agonist profiling reveals biased signalling phenotypes for the β 2 -adrenoceptor with possible implications for the treatment of asthma. Br J Pharmacol 2022; 179:4692-4708. [PMID: 35732075 PMCID: PMC9474705 DOI: 10.1111/bph.15900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE β-Adrenoceptor agonists relieve airflow obstruction by activating β2 -adrenoceptors, which are G protein-coupled receptors (GPCRs) expressed on human airway smooth muscle (HASM) cells. The currently available β-adrenoceptor agonists are balanced agonists, however, and signal through both the stimulatory G protein (Gs )- and β-arrestin-mediated pathways. While Gs signalling is beneficial and promotes HASM relaxation, β-arrestin activation is associated with reduced Gs efficacy. In this context, biased ligands that selectively promote β2 -adrenoceptor coupling to Gs signalling represent a promising strategy to treat asthma. Here, we examined several β-adrenoceptor agonists to identify Gs -biased ligands devoid of β-arrestin-mediated effects. EXPERIMENTAL APPROACH Gs -biased ligands for the β2 -adrenoceptor were identified by high-throughput screening and then evaluated for Gs interaction, Gi interaction, cAMP production, β-arrestin interaction, GPCR kinase (GRK) phosphorylation of the receptor, receptor trafficking, ERK activation, and functional desensitization of the β2 -adrenoceptor. KEY RESULTS We identified ractopamine, dobutamine, and higenamine as Gs -biased agonists that activate the Gs /cAMP pathway upon β2 -adrenoceptor stimulation while showing minimal Gi or β-arrestin interaction. Furthermore, these compounds did not induce any receptor trafficking and had reduced GRK5-mediated phosphorylation of the β2 -adrenoceptor. Finally, we observed minimal physiological desensitization of the β2 -adrenoceptor in primary HASM cells upon treatment with biased agonists. CONCLUSION AND IMPLICATIONS Our work demonstrates that Gs -biased signalling through the β2 -adrenoceptor may prove to be an effective strategy to promote HASM relaxation in the treatment of asthma. Such biased compounds may also be useful in identifying the molecular mechanisms that determine biased signalling and in design of safer drugs.
Collapse
Affiliation(s)
- Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- These authors contributed equally
| | - Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- These authors contributed equally
| | - Emily Wolfe
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin E. Komolov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nathan Hopfinger
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Douglas Lemenze
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Charles P. Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Agonist concentration-dependent changes in FPR1 conformation lead to biased signaling for selective activation of phagocyte functions. Proc Natl Acad Sci U S A 2022; 119:e2201249119. [PMID: 35878025 PMCID: PMC9351494 DOI: 10.1073/pnas.2201249119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The bacteria-derived formyl peptide fMet-Leu-Phe (fMLF) is a potent chemoattractant of phagocytes that induces chemotaxis at subnanomolar concentrations. At higher concentrations, fMLF inhibits chemotaxis while stimulating degranulation and superoxide production, allowing phagocytes to kill invading bacteria. How an agonist activates distinct cellular functions at different concentrations remains unclear. Using a bioluminescence resonance energy transfer-based FPR1 biosensor, we found that fMLF at subnanomolar and micromolar concentrations induced distinct conformational changes in FPR1, a Gi-coupled chemoattractant receptor that activates various phagocyte functions. Neutrophil-like HL-60 cells exposed to subnanomolar concentrations of fMLF polarized rapidly and migrated along a chemoattractant concentration gradient. These cells also developed an intracellular Ca2+ concentration gradient. In comparison, high nanomolar and micromolar concentrations of fMLF triggered the PLC-β/diacyl glycerol/inositol trisphosphate pathway downstream of the heterotrimeric Gi proteins, leading to Ca2+ mobilization from intracellular stores and Ca2+ influx from extracellular milieu. A robust and uniform rise in cytoplasmic Ca2+ level was required for degranulation and superoxide production but disrupted cytoplasmic Ca2+ concentration gradient and inhibited chemotaxis. In addition, elevated ERK1/2 phosphorylation and β-arrestin2 membrane translocation were associated with diminished chemotaxis in the presence of fMLF above 1 nM. These findings suggest a mechanism for FPR1 agonist concentration-dependent signaling that leads to a switch from migration to bactericidal activities in phagocytes.
Collapse
|
16
|
Dixon AD, Inoue A, Robson SA, Culhane KJ, Trinidad JC, Sivaramakrishnan S, Bumbak F, Ziarek JJ. Effect of Ligands and Transducers on the Neurotensin Receptor 1 Conformational Ensemble. J Am Chem Soc 2022; 144:10241-10250. [PMID: 35647863 PMCID: PMC9936889 DOI: 10.1021/jacs.2c00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Using a discrete, intracellular 19F nuclear magnetic resonance (NMR) probe on transmembrane helix 6 of the neurotensin receptor 1 (NTS1), we aim to understand how ligands and transducers modulate the receptor's structural ensemble in a solution. For apo NTS1, 19F NMR spectra reveal an ensemble of at least three conformational substates (one inactive and two active-like) in equilibrium that exchange on the millisecond to second timescale. Dynamic NMR experiments reveal that these substates follow a linear three-site exchange process that is both thermodynamically and kinetically remodeled by orthosteric ligands. As previously observed in other G protein-coupled receptors (GPCRs), the full agonist is insufficient to completely stabilize the active-like state. The inactive substate is abolished upon coupling to β-arrestin-1 (βArr1) or the C-terminal helix of Gαq, which comprises ≳60% of the GPCR/G protein interface surface area. Whereas βArr1 exclusively selects for pre-existing active-like substates, the Gαq peptide induces a new substate. Both transducer molecules promote substantial line broadening of active-like states, suggesting contributions from additional microsecond to millisecond exchange processes. Together, our study suggests that (i) the NTS1 allosteric activation mechanism may be alternatively dominated by induced fit or conformational selection depending on the coupled transducer, and (ii) the available static structures do not represent the entire conformational ensemble observed in a solution.
Collapse
Affiliation(s)
- Austin D. Dixon
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 Miyagi, Japan
| | - Scott A. Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kelly J. Culhane
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States,Present Address: Department of Chemistry, Lawrence University, Appleton, Wisconsin, 54911, United States
| | - Jonathan C. Trinidad
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States,Present Address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua J. Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Plouffe B, Karamitri A, Flock T, Gallion JM, Houston S, Daly CA, Bonnefond A, Guillaume JL, Le Gouill C, Froguel P, Lichtarge O, Deupi X, Jockers R, Bouvier M. Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. ACS Pharmacol Transl Sci 2022; 5:89-101. [PMID: 35846981 PMCID: PMC9281605 DOI: 10.1021/acsptsci.1c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
G protein-coupled receptors (GPCRs) can engage distinct subsets of signaling pathways, but the structural determinants of this functional selectivity remain elusive. The naturally occurring genetic variants of GPCRs, selectively affecting different pathways, offer an opportunity to explore this phenomenon. We previously identified 40 coding variants of the MTNR1B gene encoding the melatonin MT2 receptor (MT2). These mutations differently impact the β-arrestin 2 recruitment, ERK activation, cAMP production, and Gαi1 and Gαz activation. In this study, we combined functional clustering and structural modeling to delineate the molecular features controlling the MT2 functional selectivity. Using non-negative matrix factorization, we analyzed the signaling signatures of the 40 MT2 variants yielding eight clusters defined by unique signaling features and localized in distinct domains of MT2. Using computational homology modeling, we describe how specific mutations can selectively affect the subsets of signaling pathways and offer a proof of principle that natural variants can be used to explore and understand the GPCR functional selectivity.
Collapse
Affiliation(s)
- Bianca Plouffe
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, H3T 1J4 Montréal, Québec, Canada,Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada,The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Angeliki Karamitri
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Tilman Flock
- Laboratory
of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland,Department
of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonathan M. Gallion
- Program
in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030 Houston, Texas, United States
| | - Shane Houston
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Carole A. Daly
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Amélie Bonnefond
- Université
de Lille, INSERM/CNRS UMR 1283/8199—EGID, Institut Pasteur
de Lille, CHU de Lille, 59045 Lille, France
| | - Jean-Luc Guillaume
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Christian Le Gouill
- Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Phillipe Froguel
- Université
de Lille, INSERM/CNRS UMR 1283/8199—EGID, Institut Pasteur
de Lille, CHU de Lille, 59045 Lille, France
| | - Olivier Lichtarge
- Program
in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030 Houston, Texas, United States,Department
of Molecular and Human Genetics, Baylor
College of Medicine, 77030 Houston, Texas, United States
| | - Xavier Deupi
- Laboratory
of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland,Condensed
Matter Theory Group, Division of Scientific Computing, Theory, and
Data, Paul Scherrer Institute, 5232 Villigen, Switzerland,. Phone: +41-563103337
| | - Ralf Jockers
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France,. Phone: +33-140516434
| | - Michel Bouvier
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, H3T 1J4 Montréal, Québec, Canada,Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada,. Phone: 1-514-343-6319
| |
Collapse
|
19
|
Rady B, Liu J, Huang H, Bakaj I, Qi J, Lee SP, Martin T, Norquay L, Player M, Pocai A. A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Front Endocrinol (Lausanne) 2022; 13:1061688. [PMID: 36482991 PMCID: PMC9723222 DOI: 10.3389/fendo.2022.1061688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-induced insulin secretion from pancreatic β-cells. At least 3 distinct binding sites exist on the FFAR1 receptor and numerous synthetic ligands have been investigated for their anti-diabetic actions. Fasiglifam, binds to site-1 and stimulates intra-cellular calcium release and improves glycemic control in diabetic patients. Recently, small molecule FFAR1 agonists were discovered which bind to site-3, stimulating both intra-cellular calcium and cAMP, resulting in insulin and glucagon-like peptide-1 (GLP-1) secretion. The ability of our site-3 FFAR1 agonist (compound A) to control blood glucose was evaluated in spontaneously diabetic cynomolgus monkeys during an oral glucose tolerance test. In type-2 diabetic (T2D) animals, significant reductions in blood glucose and insulin were noted. To better understand the mechanism of these in vivo findings, we evaluated the effect of compound A in islets under several conditions of dysfunction. First, healthy human and non-human primate islets were treated with compound A and showed potentiation of insulin and glucagon secretion from both species. Next, we determined glucose-responsive insulin secretion under gluco-lipotoxic conditions and from islets isolated from type-2 diabetic humans. Despite a dysfunctional phenotype that failed to secrete insulin in response to glucose, site-3 FFAR1 agonism not only enhanced insulin secretion, but restored glucose responsiveness across a range of glucose concentrations. Lastly, we treated ex vivo human islets chronically with a sulfonylurea to induce secondary beta-cell failure. Again, this model showed reduced glucose-responsive insulin secretion that was restored and potentiated by site-3 FFAR1 agonism. Together these data suggest a mechanism for FFAR1 where agonists have direct effects on islet hormone secretion that can overcome a dysfunctional T2D phenotype. These unique characteristics of FFAR1 site-3 agonists make them an appealing potential therapy to treat type-2 diabetes.
Collapse
Affiliation(s)
- Brian Rady
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- *Correspondence: Brian Rady,
| | - Jianying Liu
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Hui Huang
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Ivona Bakaj
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Jenson Qi
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - S. P. Lee
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Tonya Martin
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Medical Affairs, Janssen R&D, Spring House, PA, United States
| | - Lisa Norquay
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Business Development, Janssen R&D, Raritan, NJ, United States
| | - Mark Player
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
20
|
Flöser A, Becker K, Kostenis E, König G, Krasel C, Kolb P, Bünemann M. Disentangling bias between G q, GRK2, and arrestin3 recruitment to the M 3 muscarinic acetylcholine receptor. eLife 2021; 10:58442. [PMID: 34851820 PMCID: PMC8635974 DOI: 10.7554/elife.58442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals to the inside by activation of intracellular effector proteins. Different agonists can promote differential receptor-induced signaling responses – termed bias – potentially by eliciting different levels of recruitment of effector proteins. As activation and recruitment of effector proteins might influence each other, thorough analysis of bias is difficult. Here, we compared the efficacy of seven agonists to induce G protein, G protein-coupled receptor kinase 2 (GRK2), as well as arrestin3 binding to the muscarinic acetylcholine receptor M3 by utilizing FRET-based assays. In order to avoid interference between these interactions, we studied GRK2 binding in the presence of inhibitors of Gi and Gq proteins and analyzed arrestin3 binding to prestimulated M3 receptors to avoid differences in receptor phosphorylation influencing arrestin recruitment. We measured substantial differences in the agonist efficacies to induce M3R-arrestin3 versus M3R-GRK2 interaction. However, the rank order of the agonists for G protein- and GRK2-M3R interaction was the same, suggesting that G protein and GRK2 binding to M3R requires similar receptor conformations, whereas requirements for arrestin3 binding to M3R are distinct.
Collapse
Affiliation(s)
- Anja Flöser
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Katharina Becker
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele König
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Cornelius Krasel
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
21
|
Zamolodchikova TS, Tolpygo SM, Kotov AV. From Agonist to Antagonist: Modulation of the Physiological Action of Angiotensins by Protein Conjugation-Hemodynamics and Behavior. Front Pharmacol 2021; 12:772217. [PMID: 34803713 PMCID: PMC8595096 DOI: 10.3389/fphar.2021.772217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tatyana S Zamolodchikova
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Svetlana M Tolpygo
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Alexander V Kotov
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
22
|
Raïch I, Rivas-Santisteban R, Lillo A, Lillo J, Reyes-Resina I, Nadal X, Ferreiro-Vera C, de Medina VS, Majellaro M, Sotelo E, Navarro G, Franco R. Similarities and differences upon binding of naturally occurring Δ 9-tetrahydrocannabinol-derivatives to cannabinoid CB 1 and CB 2 receptors. Pharmacol Res 2021; 174:105970. [PMID: 34758399 DOI: 10.1016/j.phrs.2021.105970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
We have here assessed, using Δ9-tetrahydrocannabinol (Δ9-THC) for comparison, the effect of Δ9-tetrahydrocannabinolic acid (Δ9-THCA) and of Δ9-tetrahydrocannabivarin (Δ9-THCV) that is mediated by human versions of CB1, CB2, and CB1-CB2 receptor functional units, expressed in a heterologous system. Binding to the CB1 and CB2 receptors was addressed in living cells by means of a homogeneous assay. A biphasic competition curve for the binding to the CB2 receptor, was obtained for Δ9-THCV in cells expressing the two receptors. Signaling studies included cAMP level determination, activation of the mitogen-activated protein kinase pathway and ß-arrestin recruitment were performed. The signaling triggered by Δ9-THCA and Δ9-THCV via individual receptors or receptor heteromers disclosed differential bias, i.e. the bias observed using a given phytocannabinoid depended on the receptor (CB1, CB2 or CB1-CB2) and on the compound used as reference to calculate the bias factor (Δ9-THC, a selective agonist or a non-selective agonist). These results are consistent with different binding modes leading to differential functional selectivity depending on the agonist structure, and the state (monomeric or heteromeric) of the cannabinoid receptor. In addition, on studying Gi-coupling we showed that Δ9-THCV and Δ9-THCA and Δ9-THCV were able to revert the effect of a selective CB2 receptor agonist, but only Δ9-THCV, and not Δ9-THCA, reverted the effect of arachidonyl-2'-chloroethylamide (ACEA 100 nM) a selective agonist of the CB1 receptor. Overall, these results indicate that cannabinoids may have a variety of binding modes that results in qualitatively different effects depending on the signaling pathway that is engaged upon cannabinoid receptor activation.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Saxony-Anhalt 39118, Germany
| | - Xavier Nadal
- Ethnophytotech Research & Consulting S.L.U., Córdoba, Spain
| | | | | | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain.
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain; School of Chemistry. University of Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Duarte DA, Parreiras-E-Silva LT, Oliveira EB, Bouvier M, Costa-Neto CM. Angiotensin II Type 1 Receptor Tachyphylaxis Is Defined by Agonist Residence Time. Hypertension 2021; 79:115-125. [PMID: 34739768 DOI: 10.1161/hypertensionaha.121.17977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several GPCRs (G-protein-coupled receptors) have been reported to exhibit tachyphylaxis, which is an acute loss of functional receptor response after repeated stimuli with an agonist. GPCRs are important clinical targets for a wide range of disorders. Therefore, elucidation of the ligand features that contribute to receptor tachyphylaxis and signaling events underlying this phenomenon is important for drug discovery and development. In this study, we examined the role of ligand-binding kinetics in the tachyphylaxis of AT1R (angiotensin II type 1 receptor) using bioluminescence resonance energy transfer assays to monitor signaling events under both kinetic and equilibrium conditions. We investigated AT1R signal transduction and translocation promoted by the endogenous tachyphylactic agonist Ang II (angiotensin II) and its analogs, described previously for inducing reduced receptor tachyphylaxis. Estimation of binding kinetic parameters of the ligands revealed that the residence time of Ang II was higher than that of the analogs, resulting in more sustained Gq protein activation and recruitment of β-arrestin than that promoted by the analogs. Furthermore, we observed that Ang II led to more sustained internalization of the receptor, thereby retarding its recycling to the plasma membrane and preventing further receptor responses. These results show that the apparent lack of tachyphylaxis in the studied analogs resulted from their short residence time at the AT1R. In addition, our data highlight the relevance of complete characterization of novel GPCR drug candidates, taking into account their receptor binding kinetics as well.
Collapse
Affiliation(s)
- Diego A Duarte
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Eduardo B Oliveira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, QC, Canada (M.B.)
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| |
Collapse
|
24
|
Marzook A, Chen S, Pickford P, Lucey M, Wang Y, Corrêa IR, Broichhagen J, Hodson DJ, Salem V, Rutter GA, Tan TM, Bloom SR, Tomas A, Jones B. Evaluation of efficacy- versus affinity-driven agonism with biased GLP-1R ligands P5 and exendin-F1. Biochem Pharmacol 2021; 190:114656. [PMID: 34129856 PMCID: PMC8346945 DOI: 10.1016/j.bcp.2021.114656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/09/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of glucose homeostasis and has been successfully targeted for the treatment of type 2 diabetes. Recently described biased GLP-1R agonists with selective reductions in β-arrestin versus G protein coupling show improved metabolic actions in vivo. However, two prototypical G protein-favouring GLP-1R agonists, P5 and exendin-F1, are reported to show divergent effects on insulin secretion. In this study we aimed to resolve this discrepancy by performing a side-by-side characterisation of these two ligands across a variety of in vitro and in vivo assays. Exendin-F1 showed reduced acute efficacy versus P5 for several readouts, including recruitment of mini-G proteins, G protein-coupled receptor kinases (GRKs) and β-arrestin-2. Maximal responses were also lower for both GLP-1R internalisation and the presence of active GLP-1R-mini-Gs complexes in early endosomes with exendin-F1 treatment. In contrast, prolonged insulin secretion in vitro and sustained anti-hyperglycaemic efficacy in mice were both greater with exendin-F1 than with P5. We conclude that the particularly low acute efficacy of exendin-F1 and associated reductions in GLP-1R downregulation appear to be more important than preservation of endosomal signalling to allow sustained insulin secretion responses. This has implications for the ongoing development of affinity- versus efficacy-driven biased GLP-1R agonists as treatments for metabolic disease.
Collapse
Affiliation(s)
- Amaara Marzook
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Maria Lucey
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Yifan Wang
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | | | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. MEMBRANES 2021; 11:451. [PMID: 34204456 PMCID: PMC8235241 DOI: 10.3390/membranes11060451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Membrane proteins work within asymmetric bilayers of lipid molecules that are critical for their biological structures, dynamics and interactions. These properties are lost when detergents dislodge lipids, ligands and subunits, but are maintained in native nanodiscs formed using styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers. These amphipathic polymers allow extraction of multicomponent complexes of post-translationally modified membrane-bound proteins directly from organ homogenates or membranes from diverse types of cells and organelles. Here, we review the structures and mechanisms of transmembrane targets and their interactions with lipids including phosphoinositides (PIs), as resolved using nanodisc systems and methods including cryo-electron microscopy (cryo-EM) and X-ray diffraction (XRD). We focus on therapeutic targets including several G protein-coupled receptors (GPCRs), as well as ion channels and transporters that are driving the development of next-generation native nanodiscs. The design of new synthetic polymers and complementary biophysical tools bodes well for the future of drug discovery and structural biology of native membrane:protein assemblies (memteins).
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Catharine Trieber
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Louis-Philippe Picard
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Joey G. Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| |
Collapse
|
26
|
Bockaert J, Bécamel C, Chaumont-Dubel S, Claeysen S, Vandermoere F, Marin P. Novel and atypical pathways for serotonin signaling. Fac Rev 2021; 10:52. [PMID: 34195691 PMCID: PMC8204760 DOI: 10.12703/r/10-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor β-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Collapse
Affiliation(s)
- Joël Bockaert
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carine Bécamel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Claeysen
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
27
|
Buprenorphine: Far Beyond the "Ceiling". Biomolecules 2021; 11:biom11060816. [PMID: 34072706 PMCID: PMC8230089 DOI: 10.3390/biom11060816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Chronic pain, including neuropathic pain, represents an untreated disease with important repercussions on the quality of life and huge costs on the national health system. It is well known that opioids are the most powerful analgesic drugs, but they represent the second or third line in neuropathic pain, that remain difficult to manage. Moreover, these drugs show several side effects that limit their use. In addition, opioids possess addictive properties that are associated with misuse and drug abuse. Among available opioids compounds, buprenorphine has been suggested advantageous for a series of clinical reasons, including the effectiveness in neuropathic pain. Some properties are partly explained by its unique pharmacological characteristics. However, questions on the dynamic profile remain to be answered. Pharmacokinetics optimization strategies, and additional potentialities, are still to be explored. In this paper, we attempt to conceptualize the potential undiscovered dynamic profile of buprenorphine.
Collapse
|
28
|
Crilly SE, Ko W, Weinberg ZY, Puthenveedu MA. Conformational specificity of opioid receptors is determined by subcellular location irrespective of agonist. eLife 2021; 10:67478. [PMID: 34013886 PMCID: PMC8208814 DOI: 10.7554/elife.67478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The prevailing model for the variety in drug responses is that different drugs stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand generates different GPCR active states based on the immediate environment of receptors is not known. Here we address this question using spatially resolved imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neuronal cells. We have shown that Golgi and surface pools of DOR both inhibit cAMP, but engage distinct conformational biosensors in response to the same ligand in rat neuroendocrine cells. Further, DOR recruits arrestins on the surface but not on the Golgi. Our results suggest that the local environment determines the active states of receptors for any given drug, allowing GPCRs to couple to different effectors at different subcellular locations.
Collapse
Affiliation(s)
- Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Wooree Ko
- Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Zara Y Weinberg
- Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
29
|
Marzook A, Tomas A, Jones B. The Interplay of Glucagon-Like Peptide-1 Receptor Trafficking and Signalling in Pancreatic Beta Cells. Front Endocrinol (Lausanne) 2021; 12:678055. [PMID: 34040588 PMCID: PMC8143046 DOI: 10.3389/fendo.2021.678055] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) which mediates the effects of GLP-1, an incretin hormone secreted primarily from L-cells in the intestine and within the central nervous system. The GLP-1R, upon activation, exerts several metabolic effects including the release of insulin and suppression of appetite, and has, accordingly, become an important target for the treatment for type 2 diabetes (T2D). Recently, there has been heightened interest in how the activated GLP-1R is trafficked between different endomembrane compartments, controlling the spatial origin and duration of intracellular signals. The discovery of "biased" GLP-1R agonists that show altered trafficking profiles and selective engagement with different intracellular effectors has added to the tools available to study the mechanisms and physiological importance of these processes. In this review we survey early and recent work that has shed light on the interplay between GLP-1R signalling and trafficking, and how it might be therapeutically tractable for T2D and related diseases.
Collapse
Affiliation(s)
- Amaara Marzook
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Zhu S, Wu M, Huang Z, An J. Trends in application of advancing computational approaches in GPCR ligand discovery. Exp Biol Med (Maywood) 2021; 246:1011-1024. [PMID: 33641446 PMCID: PMC8113737 DOI: 10.1177/1535370221993422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein targets in current ligand discovery and drug development. GPCRs are integral membrane proteins that play key roles in various cellular signaling processes. Therefore, GPCR signaling pathways are closely associated with numerous diseases, including cancer and several neurological, immunological, and hematological disorders. Computer-aided drug design (CADD) can expedite the process of GPCR drug discovery and potentially reduce the actual cost of research and development. Increasing knowledge of biological structures, as well as improvements on computer power and algorithms, have led to unprecedented use of CADD for the discovery of novel GPCR modulators. Similarly, machine learning approaches are now widely applied in various fields of drug target research. This review briefly summarizes the application of rising CADD methodologies, as well as novel machine learning techniques, in GPCR structural studies and bioligand discovery in the past few years. Recent novel computational strategies and feasible workflows are updated, and representative cases addressing challenging issues on olfactory receptors, biased agonism, and drug-induced cardiotoxic effects are highlighted to provide insights into future GPCR drug discovery.
Collapse
Affiliation(s)
- Siyu Zhu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Meixian Wu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ziwei Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
McNeill SM, Baltos JA, White PJ, May LT. Biased agonism at adenosine receptors. Cell Signal 2021; 82:109954. [PMID: 33610717 DOI: 10.1016/j.cellsig.2021.109954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
Adenosine modulates many aspects of human physiology and pathophysiology through binding to the adenosine family of G protein-coupled receptors, which are comprised of four subtypes, the A1R, A2AR, A2BR and A3R. Modulation of adenosine receptor function by exogenous agonists, antagonists and allosteric modulators can be beneficial for a number of conditions including cardiovascular disease, Parkinson's disease, and cancer. Unfortunately, many preclinical drug candidates targeting adenosine receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning adenosine receptor ligands into the clinic, research efforts have focussed on exploiting the phenomenon of biased agonism. Biased agonism provides the opportunity to develop ligands that favour therapeutic signalling pathways, whilst avoiding signalling associated with on-target undesired effects. Recent studies have begun to define the structure-function relationships that underpin adenosine receptor biased agonism and establish how this phenomenon can be harnessed therapeutically. In this review we describe the recent advancements made towards achieving therapeutically relevant biased agonism at adenosine receptors.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets. J Struct Biol 2021; 213:107699. [PMID: 33545352 DOI: 10.1016/j.jsb.2021.107699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) are among the most versatile signal transducers in the cell. Once activated, GPCRs sample a large conformational space and couple to G-proteins to initiate distinct signaling pathways. The dynamical behavior of GPCR-G-protein complexes is difficult characterize structurally, and it might hinder obtaining routine high-resolution density maps in single-particle reconstructions. Here, we used variability analysis on the rhodopsin-Gi-Fab16 complex cryo-EM dataset, and the results provide insights into the dynamic nature of the receptor-complex interaction. We compare the outcome of this analysis with recent results obtained on the cannabinoid-Gi- and secretin-Gs-receptor complexes. Despite differences related to the biochemical compositions of the three samples, a set of consensus movements emerges. We anticipate that systematic variability analysis on GPCR-G-protein complexes may provide useful information not only at the biological level, but also for improving the preparation of more stable samples for cryo-EM single-particle analysis.
Collapse
|
33
|
Franco R, Rivas‐Santisteban R, Reyes-Resina I, Navarro G. The Old and New Visions of Biased Agonism Through the Prism of Adenosine Receptor Signaling and Receptor/Receptor and Receptor/Protein Interactions. Front Pharmacol 2021; 11:628601. [PMID: 33584311 PMCID: PMC7878529 DOI: 10.3389/fphar.2020.628601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Biased signaling is a concept that has arisen in the G protein-coupled receptor (GCPR) research field, and holds promise for the development of new drug development strategies. It consists of different signaling outputs depending on the agonist's chemical structure. Here we review the most accepted mechanisms for explaining biased agonism, namely the induced fit hypothesis and the key/lock hypothesis, but we also consider how bias can be produced by a given agonist. In fact, different signaling outputs may originate at a given receptor when activated by, for instance, the endogenous agonist. We take advantage of results obtained with adenosine receptors to explain how such mechanism of functional selectivity depends on the context, being receptor-receptor interactions (heteromerization) one of the most relevant and most studied mechanisms for mammalian homeostasis. Considering all the possible mechanisms underlying functional selectivity is essential to optimize the selection of biased agonists in the design of drugs targeting GPCRs.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Rafael Rivas‐Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Irene Reyes-Resina
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Piekielna-Ciesielska J, Artali R, Azzam AAH, Lambert DG, Kluczyk A, Gentilucci L, Janecka A. Pharmacological Characterization of µ-Opioid Receptor Agonists with Biased G Protein or β-Arrestin Signaling, and Computational Study of Conformational Changes during Receptor Activation. Molecules 2020; 26:E13. [PMID: 33375124 PMCID: PMC7792944 DOI: 10.3390/molecules26010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023] Open
Abstract
In recent years, G protein vs. β-arrestin biased agonism at opioid receptors has been proposed as an opportunity to produce antinociception with reduced adverse effects. However, at present this approach is highly debated, a reason why more information about biased ligands is required. While the practical relevance of bias in the case of µ-opioid receptors (MOP) still needs to be validated, it remains important to understand the basis of this bias of MOP (and other GPCRs). Recently, we reported two cyclopeptides with high affinity for MOP, the G protein biased Dmt-c[d-Lys-Phe-pCF3-Phe-Asp]NH2 (F-81), and the β-arrestin 2 biased Dmt-c[d-Lys-Phe-Asp]NH2 (C-33), as determined by calcium mobilization assay and bioluminescence resonance energy transfer-based assay. The biased character of F-81 and C-33 has been further analyzed in the [35S]GTPγS binding assay in human MOP-expressing cells, and the PathHunter enzyme complementation assay, used to measure β-arrestin 2 recruitment. To investigate the structural features of peptide-MOP complexes, we performed conformational analysis by NMR spectroscopy, molecular docking, and molecular dynamics simulation. These studies predicted that the two ligands form alternative complexes with MOP, engaging specific ligand-receptor contacts. This would induce different displays of the cytosolic side of the seven-helices bundle, in particular by stabilizing different angulations of helix 6, that could favor intracellular coupling to either G protein or β-arrestin.
Collapse
Affiliation(s)
| | - Roberto Artali
- Scientia Advice, di Roberto Artali, Desio, 20832 Monza and Brianza, Italy;
| | - Ammar A. H. Azzam
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE27LX, UK; (A.A.H.A.); (D.G.L.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - David G. Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE27LX, UK; (A.A.H.A.); (D.G.L.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
35
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
36
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
37
|
The Potential of 19F NMR Application in GPCR Biased Drug Discovery. Trends Pharmacol Sci 2020; 42:19-30. [PMID: 33250272 DOI: 10.1016/j.tips.2020.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
Although structure-based virtual drug discovery is revolutionizing the conventional high-throughput cell-based screening system, its limitation is obvious, together with other critical challenges. In particular, the resolved static snapshots fail to represent a full free-energy landscape due to homogenization in structural determination processing. The loss of conformational heterogeneity and related functional diversity emphasize the necessity of developing an approach that can fill this space. In this regard, NMR holds undeniable potential. However, outstanding questions regarding the NMR application remain. This review summarizes the limitations of current drug discovery and explores the potential of 19F NMR in establishing a conformation-guided drug screening system, advancing the cell- and structure-based discovery strategy for G protein-coupled receptor (GPCR) biased drug screening.
Collapse
|
38
|
Paprocki J, Biener G, Stoneman M, Raicu V. In-Cell Detection of Conformational Substates of a G Protein-Coupled Receptor Quaternary Structure: Modulation of Substate Probability by Cognate Ligand Binding. J Phys Chem B 2020; 124:10062-10076. [DOI: 10.1021/acs.jpcb.0c06081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Michael Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
39
|
Lind S, Dahlgren C, Holmdahl R, Olofsson P, Forsman H. Functional selective FPR1 signaling in favor of an activation of the neutrophil superoxide generating NOX2 complex. J Leukoc Biol 2020; 109:1105-1120. [PMID: 33040403 PMCID: PMC8246850 DOI: 10.1002/jlb.2hi0520-317r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The formyl peptide receptors FPR1 and FPR2 are abundantly expressed by neutrophils, in which they regulate proinflammatory tissue recruitment of inflammatory cells, the production of reactive oxygen species (ROS), and resolution of inflammatory reactions. The unique dual functionality of the FPRs makes them attractive targets to develop FPR‐based therapeutics as novel anti‐inflammatory treatments. The small compound RE‐04‐001 has earlier been identified as an inducer of ROS in differentiated HL60 cells but the precise target and the mechanism of action of the compound was has until now not been elucidated. In this study, we reveal that RE‐04‐001 specifically targets and activates FPR1, and the concentrations needed to activate the neutrophil NADPH‐oxidase was very low (EC50 ∼1 nM). RE‐04‐001 was also found to be a neutrophil chemoattractant, but when compared to the prototype FPR1 agonist N‐formyl‐Met‐Leu‐Phe (fMLF), the concentrations required were comparably high, suggesting that signaling downstream of the RE‐04‐001‐activated‐FPR1 is functionally selective. In addition, the RE‐04‐001‐induced response was strongly biased toward the PLC‐PIP2‐Ca2+ pathway and ERK1/2 activation but away from β‐arrestin recruitment. Compared to the peptide agonist fMLF, RE‐04‐001 is more resistant to inactivation by the MPO‐H2O2‐halide system. In summary, this study describes RE‐04‐001 as a novel small molecule agonist specific for FPR1, which displays a biased signaling profile that leads to a functional selective activating of human neutrophils. RE‐04‐001 is, therefore, a useful tool, not only for further mechanistic studies of the regulatory role of FPR1 in inflammation in vitro and in vivo, but also for developing FPR1‐specific drug therapeutics.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Olofsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Willard FS, Douros JD, Gabe MB, Showalter AD, Wainscott DB, Suter TM, Capozzi ME, van der Velden WJ, Stutsman C, Cardona GR, Urva S, Emmerson PJ, Holst JJ, D’Alessio DA, Coghlan MP, Rosenkilde MM, Campbell JE, Sloop KW. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 2020; 5:140532. [PMID: 32730231 PMCID: PMC7526454 DOI: 10.1172/jci.insight.140532] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Tirzepatide (LY3298176) is a dual GIP and GLP-1 receptor agonist under development for the treatment of type 2 diabetes mellitus (T2DM), obesity, and nonalcoholic steatohepatitis. Early phase trials in T2DM indicate that tirzepatide improves clinical outcomes beyond those achieved by a selective GLP-1 receptor agonist. Therefore, we hypothesized that the integrated potency and signaling properties of tirzepatide provide a unique pharmacological profile tailored for improving broad metabolic control. Here, we establish methodology for calculating occupancy of each receptor for clinically efficacious doses of the drug. This analysis reveals a greater degree of engagement of tirzepatide for the GIP receptor than the GLP-1 receptor, corroborating an imbalanced mechanism of action. Pharmacologically, signaling studies demonstrate that tirzepatide mimics the actions of native GIP at the GIP receptor but shows bias at the GLP-1 receptor to favor cAMP generation over β-arrestin recruitment, coincident with a weaker ability to drive GLP-1 receptor internalization compared with GLP-1. Experiments in primary islets reveal β-arrestin1 limits the insulin response to GLP-1, but not GIP or tirzepatide, suggesting that the biased agonism of tirzepatide enhances insulin secretion. Imbalance toward GIP receptor, combined with distinct signaling properties at the GLP-1 receptor, together may account for the promising efficacy of this investigational agent.
Collapse
Affiliation(s)
- Francis S. Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jonathan D. Douros
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Maria B.N. Gabe
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - David B. Wainscott
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Megan E. Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wijnand J.C. van der Velden
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Guemalli R. Cardona
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Shweta Urva
- PK/PD & Pharmacometrics, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Jens J. Holst
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Mette M. Rosenkilde
- Department of Biomedical Sciences and NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
41
|
miR-7 Regulates GLP-1-Mediated Insulin Release by Targeting β-Arrestin 1. Cells 2020; 9:cells9071621. [PMID: 32640511 PMCID: PMC7407368 DOI: 10.3390/cells9071621] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) has been shown to potentiate glucose-stimulated insulin secretion binding GLP-1 receptor on pancreatic β cells. β-arrestin 1 (βARR1) is known to regulate the desensitization of GLP-1 receptor. Mounting evidence indicates that microRNAs (miRNAs, miRs) are fundamental in the regulation of β cell function and insulin release. However, the regulation of GLP-1/βARR1 pathways by miRs has never been explored. Our hypothesis is that specific miRs can modulate the GLP-1/βARR1 axis in β cells. To test this hypothesis, we applied a bioinformatic approach to detect miRs that could target βARR1; we identified hsa-miR-7-5p (miR-7) and we validated the specific interaction of this miR with βARR1. Then, we verified that GLP-1 was indeed able to regulate the transcription of miR-7 and βARR1, and that miR-7 significantly regulated GLP-1-induced insulin release and cyclic AMP (cAMP) production in β cells. Taken together, our findings indicate, for the first time, that miR-7 plays a functional role in the regulation of GLP-1-mediated insulin release by targeting βARR1. These results have a decisive clinical impact given the importance of drugs modulating GLP-1 signaling in the treatment of patients with type 2 diabetes mellitus.
Collapse
|
42
|
Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 PMCID: PMC7275904 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
43
|
Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020; 29:1345-1354. [PMID: 32297394 DOI: 10.1002/pro.3872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cell function over short- and long-term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.
Collapse
Affiliation(s)
- Thomas J Fernandez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
44
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
45
|
Sommer ME, Selent J, Carlsson J, De Graaf C, Gloriam DE, Keseru GM, Kosloff M, Mordalski S, Rizk A, Rosenkilde MM, Sotelo E, Tiemann JKS, Tobin A, Vardjan N, Waldhoer M, Kolb P. The European Research Network on Signal Transduction (ERNEST): Toward a Multidimensional Holistic Understanding of G Protein-Coupled Receptor Signaling. ACS Pharmacol Transl Sci 2020; 3:361-370. [PMID: 32296774 DOI: 10.1021/acsptsci.0c00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are intensively studied due to their therapeutic potential as drug targets. Members of this large family of transmembrane receptor proteins mediate signal transduction in diverse cell types and play key roles in human physiology and health. In 2013 the research consortium GLISTEN (COST Action CM1207) was founded with the goal of harnessing the substantial growth in knowledge of GPCR structure and dynamics to push forward the development of molecular modulators of GPCR function. The success of GLISTEN, coupled with new findings and paradigm shifts in the field, led in 2019 to the creation of a related consortium called ERNEST (COST Action CA18133). ERNEST broadens focus to entire signaling cascades, based on emerging ideas of how complexity and specificity in signal transduction are not determined by receptor-ligand interactions alone. A holistic approach that unites the diverse data and perspectives of the research community into a single multidimensional map holds great promise for improved drug design and therapeutic targeting.
Collapse
Affiliation(s)
- Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), Barcelona, 08003, Spain
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 752 36, Sweden
| | | | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 1017, Denmark
| | - Gyorgy M Keseru
- Medicinal Chemistry Research Group, Research Center for Natural Sciences (RCNS), Budapest, H-1117, Hungary
| | - Mickey Kosloff
- Department of Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Stefan Mordalski
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 1017, Denmark.,Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, 31-343, Poland
| | - Aurelien Rizk
- InterAx Biotech AG, PARK innovAARE, Villigen, 5234, Switzerland
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK 2200, Denmark
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS) and Facultade de Farmacia. Universidade de Santiago de Compostela, Santiago de compostela, 15782, Spain
| | - Johanna K S Tiemann
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, 04109, Germany.,Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Kobenhavn, 2200, Denmark
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, 1000, Slovenia
| | - Maria Waldhoer
- InterAx Biotech AG, PARK innovAARE, Villigen, 5234, Switzerland
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, 35039, Germany
| |
Collapse
|
46
|
Stoeber M, Jullié D, Li J, Chakraborty S, Majumdar S, Lambert NA, Manglik A, von Zastrow M. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. eLife 2020; 9:54208. [PMID: 32096468 PMCID: PMC7041944 DOI: 10.7554/elife.54208] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) signal through allostery, and it is increasingly clear that chemically distinct agonists can produce different receptor-based effects. It has been proposed that agonists selectively promote receptors to recruit one cellular interacting partner over another, introducing allosteric ‘bias’ into the signaling system. However, the underlying hypothesis - that different agonists drive GPCRs to engage different cytoplasmic proteins in living cells - remains untested due to the complexity of readouts through which receptor-proximal interactions are typically inferred. We describe a cell-based assay to overcome this challenge, based on GPCR-interacting biosensors that are disconnected from endogenous transduction mechanisms. Focusing on opioid receptors, we directly demonstrate differences between biosensor recruitment produced by chemically distinct opioid ligands in living cells. We then show that selective recruitment applies to GRK2, a biologically relevant GPCR regulator, through discrete interactions of GRK2 with receptors or with G protein beta-gamma subunits which are differentially promoted by agonists. About a third of all drugs work by targeting a group of proteins known as G-protein coupled receptors, or GPCRs for short. These receptors are found on the surface of cells and transmit messages across the cell’s outer barrier. When a signaling molecule, like a hormone, is released in the body, it binds to a GPCR and changes the receptor’s shape. The change in structure affects how the GPCR interacts and binds to other proteins on the inside of the cell, triggering a series of reactions that alter the cell’s activity. Scientists have previously seen that a GPCR can trigger different responses depending on which signaling molecule is binding on the surface of the cell. However, the mechanism for this is unknown. One hypothesis is that different signaling molecules change the GPCR’s preference for binding to different proteins on the inside of the cell. The challenge has been to observe this happening without interfering with the process. Stoeber et al. have now tested this idea by attaching fluorescent tags to proteins that bind to activated GPCRs directly and without binding other signaling proteins. This meant these proteins could be tracked under a microscope as they made their way to bind to the GPCRs. Stoeber et al. focused on one particular GPCR, known as the opioid receptor, and tested the binding of two different opioid signaling molecules, etorphine and Dynorphin A. The experiments revealed that the different opioids did affect which of the engineered proteins would preferentially bind to the opioid receptor. This was followed by a similar experiment, where the engineered proteins were replaced with another protein called GRK2, which binds to the opioid receptor under normal conditions in the cell. This showed that GRK2 binds much more strongly to the opioid receptor when Dynorphin A is added compared to adding etorphine. These findings show that GPCRs can not only communicate that a signaling molecule is binding but can respond differently to convey what molecule it is more specifically. This could be important in developing drugs, particularly to specifically trigger the desired response and reduce side effects. Stoeber et al. suggest that an important next step for research is to understand how the GPCRs preferentially bind to different proteins.
Collapse
Affiliation(s)
- Miriam Stoeber
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Damien Jullié
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Joy Li
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, United States.,St Louis College of Pharmacy, St. Louis, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, United States.,St Louis College of Pharmacy, St. Louis, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, United States
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Anesthesia, University of California, San Francisco, San Francisco, United States
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
47
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
48
|
Shukla AK, Dwivedi-Agnihotri H. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Adv Cancer Res 2020; 145:139-156. [PMID: 32089163 DOI: 10.1016/bs.acr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-Arrestins (βarrs) are multifunctional intracellular proteins with an ability to directly interact with a large number of cellular partners including the G protein-coupled receptors (GPCRs). βarrs contribute to multiple aspects of GPCR signaling, trafficking and downregulation. Considering the central involvement of GPCR signaling in the onset and progression of diverse types of cancers, βarrs have also emerged as key players in the context of investigating cancer phenotypes, and as potential therapeutic targets. In this chapter, we first provide a brief account of structure and function of βarrs and then highlight recent discoveries unfolding novel functional attributes of βarrs in breast cancer. We also underscore the recent paradigms of modulating βarr functions in cellular context and potential therapeutic opportunities going forward.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| | | |
Collapse
|
49
|
Terrón-Díaz ME, Wright SJ, Agosto MA, Lichtarge O, Wensel TG. Residues and residue pairs of evolutionary importance differentially direct signaling bias of D2 dopamine receptors. J Biol Chem 2019; 294:19279-19291. [PMID: 31676688 PMCID: PMC6916503 DOI: 10.1074/jbc.ra119.008068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/16/2019] [Indexed: 01/11/2023] Open
Abstract
The D2 dopamine receptor and the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A) are closely-related G-protein-coupled receptors (GPCRs) from the class A bioamine subfamily. Despite structural similarity, they respond to distinct ligands through distinct downstream pathways, whose dysregulation is linked to depression, bipolar disorder, addiction, and psychosis. They are important drug targets, and it is important to understand how their bias toward G-protein versus β-arrestin signaling pathways is regulated. Previously, evolution-based computational approaches, difference Evolutionary Trace and Evolutionary Trace-Mutual information (ET-Mip), revealed residues and residue pairs that, when switched in the D2 receptor to the corresponding residues from 5-HT2A, altered ligand potency and G-protein activation efficiency. We have tested these residue swaps for their ability to trigger recruitment of β-arrestin2 in response to dopamine or serotonin. The results reveal that the selected residues modulate agonist potency, maximal efficacy, and constitutive activity of β-arrestin2 recruitment. Whereas dopamine potency for most variants was similar to that for WT and lower than for G-protein activation, potency in β-arrestin2 recruitment for N124H3.42 was more than 5-fold higher. T205M5.54 displayed high constitutive activity, enhanced dopamine potency, and enhanced efficacy in β-arrestin2 recruitment relative to WT, and L379F6.41 was virtually inactive. These striking differences from WT activity were largely reversed by a compensating mutation (T205M5.54/L379F6.41) at residues previously identified by ET-Mip as functionally coupled. The observation that the signs and relative magnitudes of the effects of mutations in several cases are at odds with their effects on G-protein activation suggests that they also modulate signaling bias.
Collapse
Affiliation(s)
- María E Terrón-Díaz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030
| | - Sara J Wright
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
| | - Melina A Agosto
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Theodore G Wensel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
50
|
Schattauer SS, Bedini A, Summers F, Reilly-Treat A, Andrews MM, Land BB, Chavkin C. Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation. J Biol Chem 2019; 294:16884-16896. [PMID: 31575661 PMCID: PMC6851317 DOI: 10.1074/jbc.ra119.009592] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Indexed: 01/14/2023] Open
Abstract
Activation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) by the Gi/o protein-coupled κ opioid receptor (KOR), μ opioid, and D2 dopamine receptors stimulates peroxiredoxin 6 (PRDX6)-mediated production of reactive oxygen species (ROS). ROS production by KOR-inactivating antagonists norbinaltorphimine (norBNI) and JDTic blocks Gαi protein activation, but the signaling mechanisms and consequences of JNK activation by KOR agonists remain uncharacterized. Binding of arrestins to KOR causes desensitization of G protein signaling and acts as a scaffold to initiate MAPK activation. Here, we found that the KOR agonists U50,488 and dynorphin B stimulated biphasic JNK activation with an early arrestin-independent phase, requiring the small G protein RAC family small GTPase 1 (RAC1) and protein kinase C (PKC), and a later arrestin-scaffolded phase, requiring RAC1 and Ras homolog family member (RHO) kinase. JNK activation by U50,488 and dynorphin B also stimulated PRDX6-dependent ROS production but with an inverted U-shaped dose-response relationship. KOR agonist-induced ROS generation resulted from the early arrestin-independent phase of JNK activation, and this ROS response was suppressed by arrestin-dependent activation of the MAPK p38. The apparent balance between p38 MAPK and JNK/ROS signaling has important physiological implications for understanding of dynorphin activities during the stress response. To visualize these activities, we monitored KOR agonist-mediated activation of ROS in transfected live cells by two fluorescent sensors, CellROX Green and HyPerRed. These findings establish an important aspect of opioid receptor signaling and suggest that ROS induction may be part of the physiological response to KOR activation.
Collapse
Affiliation(s)
- Selena S Schattauer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Irnerio, 48-40126 Bologna, Italy
| | - Floyd Summers
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Aiden Reilly-Treat
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Mackenzie M Andrews
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
- Department of Bioengineering, University of Washington College of Engineering, Seattle, Washington 98195
| | - Benjamin B Land
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Charles Chavkin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|