1
|
Girisa S, Aswani BS, Manickasamy MK, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opin Ther Targets 2025; 29:193-221. [PMID: 40169227 DOI: 10.1080/14728222.2025.2487465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Liver cancer is a leading cause of cancer-associated mortality and is often linked to preexisting liver conditions. Emerging research demonstrates FXR dysregulation, particularly its reduced expression, in the pathogenesis of liver diseases, including inflammation, fibrosis, cholestatic disorders, metabolic dysregulation, and liver cancer. Therefore, this review explores the role of FXR and its agonists in mitigating these conditions. AREAS COVERED This article summarizes FXR's involvement in liver disorders, primarily emphasizing on hepatic neoplasms, and examines the potential of FXR agonists in restoring FXR activity in liver diseases, thereby preventing their progression to liver cancer. The information presented is drawn from existing preclinical and clinical studies specific to each liver disorder, sourced from PubMed. EXPERT OPINION It is well established that FXR expression is downregulated in liver disorders, contributing to disease progression. Notably, FXR agonists have demonstrated therapeutic potential in ameliorating liver diseases, including hepatocellular carcinoma. We believe that activating or restoring FXR expression with agonists offers significant promise for the treatment of liver cancer and other liver conditions. Therefore, FXR modulation by agonists, particularly in combination with other therapeutic agents, could lead to more targeted treatments, improving efficacy while reducing side effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| |
Collapse
|
2
|
Liu M, Song XZ, Yang L, Fang YH, Lan L, Cui JS, Lu XC, Zhu HY, Quan LH, Han HM. 1,25-dihydroxyvitamin D3 improves non-alcoholic steatohepatitis phenotype in a diet-induced rat model. Front Endocrinol (Lausanne) 2025; 16:1528768. [PMID: 40190400 PMCID: PMC11968344 DOI: 10.3389/fendo.2025.1528768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 04/09/2025] Open
Abstract
We studied the potential protective effects of 1,25-dihydroxyvitamin D3 (1,25 VD3) supplementation on liver damage induced by a choline-deficient (CD) diet in rats, where impaired liver function leads to decreased 25-hydroxyvitamin D3 levels, the precursor for the active 1,25 VD3. The CD diet reduced serum 25 VD3 levels and increased liver enzymes, indicative of liver damage. Conversely, 1,25 VD3 supplementation alleviated liver damage, reducing liver enzymes and improving histopathological features characteristic of non-alcoholic steatohepatitis (NASH). Oxidative stress and inflammation were mitigated by 1,25 VD3, as evidenced by decreased malondialdehyde and nuclear factor kappa B (NF-κB) expression, and increased total antioxidant capacity (TAOC). 1,25 VD3 also enhanced fatty acid metabolism by increasing peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase-1 (CPT-1) expression, promoting lipid transport and oxidation. Additionally, 1,25 VD3 supplementation modulated inflammation by increasing PPARγ expression, reducing NF-κB expression, and decreasing pro-inflammatory cytokines (TNF-α, IL-1β). Anti-inflammatory cytokines (IL-10, IL-4) were increased, and macrophage polarization was shifted towards an anti-inflammatory M2 phenotype. Moreover, 1,25 VD3 upregulated CYP2J3, a cytochrome P450 epoxygenase that converts arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids (EETs) and decreased soluble epoxide hydrolase activity, likely contributing to increased EET levels. Correlation studies revealed positive associations between 1,25 VD3 supplementation, CYP2J3 expression, EETs, as well as negative correlations with NF-κB and TNF-α. PPARα expression positively correlated with TAOC and CPT-1, while PPARγ expression negatively correlated with inflammatory markers. These findings demonstrate the therapeutic potential of 1,25 VD3 in alleviating NASH through regulation of fatty acid metabolism, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Mei Liu
- Department of Gastroenterology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xiang-Zhun Song
- Department of Gastroenterology, Jilin Provincial People’s Hospital, Changchun, Jilin, China
| | - Liu Yang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, China
| | - Yu-Hui Fang
- Department of Dermatology, Fuyang People’s Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Liu Lan
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jing-Shu Cui
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xiao-Chen Lu
- Department of Gastroenterology, Jimo District People’s Hospital, Qingdao, Shandong, China
| | - Hai-Yang Zhu
- Department of Gastroenterology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Lin-Hu Quan
- Department of College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Mei Han
- Department of Gastroenterology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
3
|
Zhang S, You M, Shen Y, Zhao X, He X, Liu J, Ma N. Improving fatty liver hemorrhagic syndrome in laying hens through gut microbiota and oxylipin metabolism by Bacteroides fragilis: A potential involvement of arachidonic acid. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:182-199. [PMID: 39967692 PMCID: PMC11834063 DOI: 10.1016/j.aninu.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 02/20/2025]
Abstract
Bacteroides fragilis (B. fragilis), a crucial commensal bacterium within the gut, has shown connections with hepatic lipid metabolism and inflammation regulation. Nonetheless, the role of B. fragilis in the progression of fatty liver hemorrhagic syndrome (FLHS) remains unknown. This study aims to explore the ameliorative effects of B. fragilis on FLHS in laying hens, as well as its underlying mechanisms. This is the first study to employ a chicken FLHS model, combining microbiomics and oxylipin metabolomics to investigate the mechanism of action of intestinal symbiotic bacteria. Exp. 1: 40 laying hens at 25 weeks old were randomly divided into five treatment groups (eight replicates per group and one hen per replicate), including the control group (basal diet), the high-energy and low-protein (HELP) group, and the HELP group with three different levels (108, 109, and 1010 CFU) of B. fragilis. Exp. 2: 18 chickens at 25 weeks old were randomly divided into three treatment groups (six replicates per group and one hen per replicate) including the control group (basal diet), the model group (HELP diet), and the arachidonic acid (AA) group (HELP diet with 0.3% AA). The experiment period of Exp. 1 and Exp. 2 were 8 weeks. B. fragilis significantly improved body weight of seventh week (P = 0.006), liver lipid degeneration, blood lipid levels (triglycerides, cholesterol, and low-density lipoprotein cholesterol; P < 0.05), and liver function (alanine aminotransferase and aminotransferase; P < 0.05) in laying hens. B. fragilis downregulated the expression of lipid synthesis-related genes fatty acid synthase, acetyl-CoA carboxylase, and liver X receptor α, and inflammation-related genes tumor necrosis factor α, interleukin (IL)-1β, IL-6, and IL-8 in the liver of FLHS-affected hens (P < 0.05), while upregulating the expression of lipid oxidation-related genes carnitine palmitoyl transferase-1, peroxisome proliferator activated receptor (PPAR) α, and PPARγ (P < 0.05). The in-depth analysis indicated alterations in oxylipin pathways triggered by B. fragilis, as evidenced by changes in the expression of pivotal genes arachidonate 15-lipoxygenase, arachidonate 5-lipoxygenase (P < 0.05), subsequently causing modifications in relevant metabolites. This included a decrease in pro-inflammatory substances such as 15-oxoETE (P = 0.004), accompanied by an increase in AA (P = 0.008). B. fragilis regulated the homeostasis of intestinal flora by increasing the abundance of Bacteroides and decreasing the abundance of Succinatimonas and Faecalicoccus (P < 0.05). The integrated analysis revealed a robust positive correlation between Bacteroides abundance and AA levels (P = 0.007). This relationship was corroborated through in vitro experiments. Subsequently, the beneficial effect of AA in mitigating FLHS was confirmed in laying hens with FLHS, further supported by reverse transcription-polymerase chain reaction analysis demonstrating gene expression patterns akin to B. fragilis intervention. This study demonstrated that B. fragilis exerts an anti-FLHS effect through modulation of oxylipin metabolism and gut microbiota stability, with a pivotal role played by AA.
Collapse
Affiliation(s)
- Shaobo Zhang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Manhua You
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Youming Shen
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xin He
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Juxiang Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
4
|
Liao Y, Wu S, Zhou G, Mei S, Ou B, Wen M, Yang Y, Wen G. Probiotic Bacillus cereus regulates metabolic disorders and activates the cholic acid-FXR axis to alleviate DSS-induced colitis. J Proteomics 2025; 312:105360. [PMID: 39631667 DOI: 10.1016/j.jprot.2024.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Inflammatory bowel disease is characterized by severe imbalance of intestinal flora and metabolic disorders. Recent studies have demonstrated that probiotics can effectively alleviate inflammatory bowel disease by restoring the intestinal flora structure and modulating the immune response. However, the role of probiotics in regulating intestinal metabolism disorders is still unclear. This study explores the role of probiotic B. cereus in alleviating DSS-induced colitis. The findings indicated probiotic B. cereus treatment mitigated tissue damage and apoptosis during inflammation. Metabolome and transcriptome analysis revealed B. cereus activated the cholic acid-FXR axis by increasing cholic acid levels, which promoted the gene expression level of NF-κB inhibitor α, reduced the IL-1β, IL-6, IL-18 and TNF-α concentrations. Furthermore, it effectively mitigated the DSS-induced disruption of bile acid metabolism, arginine metabolism, and linoleic acid metabolism. This study explores the effect and mechanisms of probiotic B. cereus on alleviating DSS-induced colitis. It aims to provide a theoretical basis for microbial therapy in inflammatory bowel disease. SIGNIFICANCE: This study used metabolome and transcriptome to reveal the roles and mechanisms, which probiotic Bacillus cereus modulates metabolic disorders and alleviate DSS-induced colitis. We identified the cholic acid-FXR axis as an important target for alleviating DSS-induced colitis. These findings provide new insights into microbial treatment strategies for IBD.
Collapse
Affiliation(s)
- Yixiao Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Shihui Wu
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Guixian Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Bingmin Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing 526000, China
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China; Engineering Research Center of Animal Biological Products, Guiyang 550025, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China; Engineering Research Center of Animal Biological Products, Guiyang 550025, China.
| | - Guilan Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Fang Y, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep 2024; 9:3116-3133. [PMID: 39534198 PMCID: PMC11551060 DOI: 10.1016/j.ekir.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a prevalent microvascular complication that occurs often in individuals with diabetes. It significantly raises the mortality rate of affected patients. Therefore, there is an urgent need to identify therapeutic targets for controlling and preventing the occurrence and development of DN. Bile acids (BAs) are now recognized as intricate metabolic integrators and signaling molecules. The activation of BAs has great promise as a therapeutic approach for preventing DN, renal damage caused by obesity, and nephrosclerosis. The nuclear receptors (NRs), farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR); and the G protein-coupled BA receptor, Takeda G-protein-coupled receptor 5 (TGR5) have important functions in controlling lipid, glucose, and energy metabolism, inflammation, as well as drug metabolism and detoxification. Over the past 10 years, there has been advancement in comprehending the biology and processes of BA receptors in the kidney, as well as in the creation of targeted BA receptor agonists. In this review, we discuss the role of BA receptors, FXR, PXR, VDR, and TGR5 in DN and their role in renal physiology, as well as the development and application of agonists that activate BA receptors for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Yang L, Chen H, Kaziem AE, Miao X, Huang S, Cheng D, Xu H, Zhang Z. Effects of Exposure to Different Types of Metal-Organic Framework Nanoparticles on the Gut Microbiota and Liver Metabolism of Adult Zebrafish. ACS NANO 2024; 18:25425-25445. [PMID: 39215720 DOI: 10.1021/acsnano.4c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Metal-organic framework nanoparticles (MOF NPs) have received much attention for their potential use in nanopesticides. However, little is known about the potential health and environmental risks associated with these materials. In this study, the toxicological responses of zebrafish exposed to five MOF NPs for short and long periods of time were evaluated. The acute toxicity results showed that the toxicity of the five MOF NPs to zebrafish embryos and adult zebrafish was in the order of Cu-MOF > ZIF-90 > ZIF-8 > Fe-MOF > Zr-MOF. Histopathological analysis revealed that ZIF-8, ZIF-90, and Cu-MOF NPs caused liver swelling and vacuolization in zebrafish. The cellular ultrastructure showed that ZIF-8, ZIF-90, and Cu-MOF NPs severely damaged the mitochondrial structure in intestinal epithelial cells and liver cells. The 16S rDNA sequencing data showed that all five MOF NPs significantly altered the dominant microorganisms in the zebrafish intestine. The microbial markers of intestinal inflammation, Proteobacteria (Aeromonas, Plesiomonas, and Legionella), were significantly increased in the Fe-MOF, ZIF-8, Zr-MOF, and Cu-MOF treatment groups. Metabolomics results indicated that the levels of inflammatory promoting factors (Leukotriene E4, 20-hydroxyeicosatetraenoic acid) in arachidonic acid metabolism were decreased, and the levels of inflammatory suppressing factors (8,9-epoxyeicosatrienoic acid) were increased. Metabolites related to oxidative stress, such as glutamine, pyridoxamine, and l-glutamic acid in vitamin B6 metabolism and other signaling pathways, were significantly reduced. Overall, these results suggest that the different MOF NPs had widely varying toxicity to zebrafish, and further attention should be paid to the toxicity of MOF NPs in the real environment.
Collapse
Affiliation(s)
- Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Huiya Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Amir E Kaziem
- Department of Environmental Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - HanHong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Wu D, van de Graaf SFJ. Maladaptive regeneration and metabolic dysfunction associated steatotic liver disease: Common mechanisms and potential therapeutic targets. Biochem Pharmacol 2024; 227:116437. [PMID: 39025410 DOI: 10.1016/j.bcp.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/β-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.
Collapse
Affiliation(s)
- Dandan Wu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands.
| |
Collapse
|
8
|
Lv Z, Song J, Xiang Y, Chen Z, Lu Z, Zhou Q, Wang K, Dahong HT, Zheng J, Zhang C, Gao S, Qin C, Chang J. Structural characterization and therapeutic effect of Alhagi honey oligosaccharide on liver fibrosis in mice. Fitoterapia 2024; 175:105974. [PMID: 38663563 DOI: 10.1016/j.fitote.2024.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 → 3)-β-D-Fruf-(2 → 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.
Collapse
Affiliation(s)
- Zhiyuan Lv
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jianzhong Song
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yang Xiang
- The First Affiliated Hospital of Xinjiang Medical University, China
| | - Zhanghao Chen
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Zinan Lu
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Quanqian Zhou
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Kaizhen Wang
- College of Engineering, China Pharmaceutical University, China
| | - Hailiqian Taoer Dahong
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jiarui Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Chunyu Zhang
- College of Life Science and Technology, China Pharmaceutical University, China
| | - Shuang Gao
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Junmin Chang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
9
|
Li YY, Madduri SS, Rezeli ET, Santos C, Freeman III H, Peng J, McRitchie SL, Pathmasiri W, Hursting SD, Sumner SJ, Stewart DA. Macronutrient-differential dietary pattern impacts on body weight, hepatic inflammation, and metabolism. Front Nutr 2024; 11:1356038. [PMID: 38868554 PMCID: PMC11168494 DOI: 10.3389/fnut.2024.1356038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber. Methods Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated. Results Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways. Conclusion Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.
Collapse
Affiliation(s)
- Yuan-yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep S. Madduri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charlene Santos
- Animal Studies Core Lab, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Herman Freeman III
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan L. McRitchie
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wimal Pathmasiri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan J. Sumner
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Delisha A. Stewart
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Shen Y, Liu J, Yao B, Zhang Y, Huang S, Liang C, Huang J, Tang Y, Wang X. Non-alcoholic fatty liver disease changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats. Toxicol Lett 2024; 396:36-47. [PMID: 38663832 DOI: 10.1016/j.toxlet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRβ, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.
Collapse
Affiliation(s)
- Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
11
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
12
|
Khan MAH, Nolan B, Stavniichuk A, Merk D, Imig JD. Dual soluble epoxide hydrolase inhibitor - farnesoid X receptor agonist interventional treatment attenuates renal inflammation and fibrosis. Front Immunol 2024; 14:1269261. [PMID: 38235144 PMCID: PMC10791967 DOI: 10.3389/fimmu.2023.1269261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Renal fibrosis associated with inflammation is a critical pathophysiological event in chronic kidney disease (CKD). We have developed DM509 which acts concurrently as a farnesoid X receptor agonist and a soluble epoxide hydrolase inhibitor and investigated DM509 efficacy as an interventional treatment using the unilateral ureteral obstruction (UUO) mouse model. Methods Male mice went through either UUO or sham surgery. Interventional DM509 treatment (10mg/kg/d) was started three days after UUO induction and continued for 7 days. Plasma and kidney tissue were collected at the end of the experimental protocol. Results UUO mice demonstrated marked renal fibrosis with higher kidney hydroxyproline content and collagen positive area. Interventional DM509 treatment reduced hydroxyproline content by 41% and collagen positive area by 65%. Renal inflammation was evident in UUO mice with elevated MCP-1, CD45-positive immune cell positive infiltration, and profibrotic inflammatory gene expression. DM509 treatment reduced renal inflammation in UUO mice. Renal fibrosis in UUO was associated with epithelial-to-mesenchymal transition (EMT) and DM509 treatment reduced EMT. UUO mice also had tubular epithelial barrier injury with increased renal KIM-1, NGAL expression. DM509 reduced tubular injury markers by 25-50% and maintained tubular epithelial integrity in UUO mice. Vascular inflammation was evident in UUO mice with 9 to 20-fold higher ICAM and VCAM gene expression which was reduced by 40-50% with DM509 treatment. Peritubular vascular density was reduced by 35% in UUO mice and DM509 prevented vascular loss. Discussion Interventional treatment with DM509 reduced renal fibrosis and inflammation in UUO mice demonstrating that DM509 is a promising drug that combats renal epithelial and vascular pathological events associated with progression of CKD.
Collapse
Affiliation(s)
- Md. Abdul Hye Khan
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin Nolan
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna Stavniichuk
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians Universität München, Munich, Germany
| | - John D. Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
13
|
Morissette A, André DM, Agrinier AL, Varin TV, Pilon G, Flamand N, Houde VP, Marette A. The metabolic benefits of substituting sucrose for maple syrup are associated with a shift in carbohydrate digestion and gut microbiota composition in high-fat high-sucrose diet-fed mice. Am J Physiol Endocrinol Metab 2023; 325:E661-E671. [PMID: 37877794 DOI: 10.1152/ajpendo.00065.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Overconsumption of added sugars is now largely recognized as a major culprit in the global situation of obesity and metabolic disorders. Previous animal studies reported that maple syrup (MS) is less deleterious than refined sugars on glucose metabolism and hepatic health, but the mechanisms remain poorly studied. Beyond its content in sucrose, MS is a natural sweetener containing several bioactive compounds, such as polyphenols and inulin, which are potential gut microbiota modifiers. We aimed to investigate the impact of MS on metabolic health and gut microbiota in male C57Bl/6J mice fed a high-fat high-sucrose (HFHS + S) diet or an isocaloric HFHS diet in which a fraction (10% of the total caloric intake) of the sucrose was substituted by MS (HFHS + MS). Insulin and glucose tolerance tests were performed at 5 and 7 wk into the diet, respectively. The fecal microbiota was analyzed by whole-genome shotgun sequencing. Liver lipids and inflammation were determined, and hepatic gene expression was assessed by transcriptomic analysis. Maple syrup was less deleterious on insulin resistance and decreased liver steatosis compared with mice consuming sucrose. This could be explained by the decreased intestinal α-glucosidase activity, which is involved in carbohydrate digestion and absorption. Metagenomic shotgun sequencing analysis revealed that MS intake increased the abundance of Faecalibaculum rodentium, Romboutsia ilealis, and Lactobacillus johnsonii, which all possess gene clusters involved in carbohydrate metabolism, such as sucrose utilization and butyric acid production. Liver transcriptomic analyses revealed that the cytochrome P450 (Cyp450) epoxygenase pathway was differently modulated between HFHS + S- and HFHS + MS-fed mice. These results show that substituting sucrose for MS alleviated dysmetabolism in diet-induced obese mice, which were associated with decreased carbohydrate digestion and shifting gut microbiota.NEW & NOTEWORTHY The natural sweetener maple syrup has sparked much interest as an alternative to refined sugars. This study aimed to investigate whether the metabolic benefits of substituting sucrose with an equivalent dose of maple syrup could be linked to changes in gut microbiota composition and digestion of carbohydrates in obese mice. We demonstrated that maple syrup is less detrimental than sucrose on metabolic health and possesses a prebiotic-like activity through novel gut microbiota and liver mechanisms.
Collapse
Affiliation(s)
- Arianne Morissette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Diana Majolli André
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
| | - Nicolas Flamand
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, Québec, Canada
| | - Vanessa P Houde
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| |
Collapse
|
14
|
Zhou Y, Dai Z, Deng K, Wang Y, Ying J, Chu D, Zhou J, Tang C. Eight Zhes Decoction ameliorates the lipid dysfunction of nonalcoholic fatty liver disease using integrated lipidomics, network pharmacology and pharmacokinetics. J Pharm Anal 2023; 13:1058-1069. [PMID: 37842659 PMCID: PMC10568095 DOI: 10.1016/j.jpha.2023.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 05/21/2023] [Indexed: 10/17/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has developed into the most common chronic liver disease and can lead to liver cancer. Our laboratory previously developed a novel prescription for NAFLD, "Eight Zhes Decoction" (EZD), which has shown good curative effects in clinical practice. However, the pharmacodynamic material basis and mechanism have not yet been revealed. A strategy integrating lipidomics, network pharmacology and pharmacokinetics was used to reveal the active components and mechanisms of EZD against NAFLD. The histopathological results showed that EZD attenuated the degrees of collagen deposition and steatosis in the livers of nonalcoholic steatofibrosis model mice. Furthermore, glycerophospholipid metabolism, arachidonic acid metabolism, glycerolipid metabolism and linoleic acid metabolism with phospholipase A2 group IVA (PLA2G4A) and cytochrome P450 as the core targets and 12,13-cis-epoxyoctadecenoic acid, 12(S)-hydroxyeicosatetraenoic acid, leukotriene B4, prostaglandin E2, phosphatidylcholines (PCs) and triacylglycerols (TGs) as the main lipids were found to be involved in the treatment of NAFLD by EZD. Importantly, naringenin, artemetin, canadine, and bicuculline were identified as the active ingredients of EZD against NAFLD; in particular, naringenin reduces PC consumption by inhibiting the expression of PLA2G4A and thus promotes sufficient synthesis of very-low-density lipoprotein to transport excess TGs in the liver. This research provides valuable data and theoretical support for the application of EZD against NAFLD.
Collapse
Affiliation(s)
- Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Ze Dai
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kaili Deng
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yubin Wang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiamin Ying
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Donghui Chu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jinyue Zhou
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chunlan Tang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
15
|
Shu Y, Huang Y, Dong W, Fan X, Sun Y, Chen G, Zeng X, Ye H. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. Int J Biol Macromol 2023; 246:125662. [PMID: 37399869 DOI: 10.1016/j.ijbiomac.2023.125662] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The polysaccharides from Auricularia auricula (AAPs), containing a large number of O-acetyl groups that are related to the physiological and biological properties, seem to be potential prebiotics like other edible fungus polysaccharides. In the present study, therefore, the alleviating effects of AAPs and deacetylated AAPs (DAAPs, prepared from AAPs by alkaline treatment) on nonalcoholic fatty liver disease (NAFLD) induced by high-fat and high-cholesterol diet combined with carbon tetrachloride were investigated. The results revealed that both AAPs and DAAPs could effectively relieve liver injury, inflammation and fibrosis, and maintain intestinal barrier function. Both AAPs and DAAPs could modulate the disorder of gut microbiota and altered the composition of gut microbiota with enrichment of Odoribacter, Lactobacillus, Dorea and Bifidobacterium. Further, the alteration of gut microbiota, especially enhancement of Lactobacillus and Bifidobacterium, was contributed to the changes of bile acids (BAs) profile with increased deoxycholic acid (DCA). Farnesoid X receptor could be activated by DCA and other unconjugated BAs, which participated the BAs metabolism and alleviated the cholestasis, then protected against hepatitis in NAFLD mice. Interestingly, it was found that the deacetylation of AAPs negatively affected the anti-inflammation, thereby reducing the health benefits of A. auricula-derived polysaccharides.
Collapse
Affiliation(s)
- Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
16
|
Abstract
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation. FXR has served as an attractive target for management of cholestasis and fibrosis; however, global FXR agonism results in adverse effects in liver disease patients, severely affecting quality of life. In this review, we highlight seminal studies and recent updates on the FXR proteome and identify gaps in knowledge that are essential for tissue-specific FXR modulation. In conclusion, one of the greatest unmet needs in the field is understanding the underlying mechanism of intestinal versus hepatic FXR function.
Collapse
Affiliation(s)
- Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey
| |
Collapse
|
17
|
Pan Q, Fan JG, Yilmaz Y. Pathogenetic Pathways in Nonalcoholic Fatty Liver Disease: An Incomplete Jigsaw Puzzle. Clin Liver Dis 2023; 27:317-332. [PMID: 37024210 DOI: 10.1016/j.cld.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD)-a condition of excess fat accumulation in hepatocytes associated with metabolic dysfunction-has surpassed viral hepatitis to become the most prevalent chronic liver disease worldwide. As of now, only modestly effective pharmacological therapies for NAFLD exist. The uncomplete understanding of the pathophysiology underlying the heterogeneous disease spectrum known as NAFLD remains one of the major obstacles to the development of novel therapeutic approaches. This review compiles current knowledge on the principal signaling pathways and pathogenic mechanisms involved in NAFLD, which are analyzed in relation to its main pathological hallmarks (ie, hepatic steatosis, steatohepatitis, and liver fibrosis).
Collapse
Affiliation(s)
- Qin Pan
- Research Center, Zhoupu Hospital Affiliated to the Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Department of Gastroenterology, Xinhua Hospital Affiliated to the Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to the Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize 53200, Turkey; Liver Research Unit, Institute of Gastroenterology, Marmara University, İstanbul 34840, Turkey.
| |
Collapse
|
18
|
Henry Z, Meadows V, Guo GL. FXR and NASH: an avenue for tissue-specific regulation. Hepatol Commun 2023; 7:e0127. [PMID: 37058105 PMCID: PMC10109454 DOI: 10.1097/hc9.0000000000000127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
NASH is within the spectrum of NAFLD, a liver condition encompassing liver steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of NASH-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. There is no Food and Drug Administration (FDA)-approved pharmacological intervention for NASH. The farnesoid X receptor (FXR) is essential in regulating bile acid homeostasis, and dysregulation of bile acids has been implicated in the pathogenesis of NASH. As a result, modulators of FXR that show desirable effects in mitigating key characteristics of NASH have been developed as promising therapeutic approaches. However, global FXR activation causes adverse effects such as cholesterol homeostasis imbalance and pruritus. The development of targeted FXR modulation is necessary for ideal NASH therapeutics, but information regarding tissue-specific and cell-specific FXR functionality is limited. In this review, we highlight FXR activation in the regulation of bile acid homeostasis and NASH development, examine the current literature on tissue-specific regulation of nuclear receptors, and speculate on how FXR regulation will be beneficial in the treatment of NASH.
Collapse
Affiliation(s)
- Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
| |
Collapse
|
19
|
Wang L, Zhang Z, Luo G, Wang Y, Du K, Gao X. Metabolome combined with gut microbiome revealed the lipid-lowering mechanism of Xuezhiping capsule on hyperlipidemic hamster induced by high fat diet. Front Mol Biosci 2023; 10:1147910. [PMID: 36891237 PMCID: PMC9986548 DOI: 10.3389/fmolb.2023.1147910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Hyperlipidemia is a common metabolic disorder with presence of excess fat or lipids in the blood, may induce liver injury, oxidative stress and inflammatory. Xuezhiping capsule (XZP) is a famous Chinese patent medicine clinically used for anti-hyperlipidemia. However, the regulation mechanism of XZP on hyperlipidemia has not been elucidated so far. Methods: This study aimed to explore the effects of XZP on hypolipidemic, antioxidant and anti-inflammatory effects, and the potential mechanism by a combination of untargeted metabolomics and 16S rRNA sequencing. Results: The results indicated that XZP reduced the level of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), increased the level of high density liptein cholesterol (HDL-C), alleviated excessive accumulation of lipid droplets in liver. Biochemical indexes of liver function including gamma glutamyl transferase (GGT) and glutamic oxaloacetic transaminase (GOT) in liver were remarkably decreased. Meanwhile, XZP increased the level of oxidative stress biochemical indexes including superoxide dismutase (SOD) and glutathione (GSH). In addition, XZP increased the level of peroxisome proliferators-activated receptors α (PPARα), acetyl CoA carboxylase 1 (ACOX1) and cholesterol 7-alpha hydroxylase (CYP7A1) in liver, and improved lipid metabolism in serum, liver and fecal lipid metabolism. XZP increased diversity index and the ratio of Firmicutes and Bacteroidetes, regulated seventeen genera, and illustrated strong correlations with liver lipid metabolism and phenotypic indicators. Discussion: These findings suggest that XZP reduced blood lipid and liver lipid, protected liver function, anti inflammation and anti-oxidation, ameliorate lipid metabolic disorders by modulating alpha linolenic acid and linoleic acid metabolism, bile acid metabolism, arachidonic acid metabolism, and regulated gut microbiota composition of high-fat diet (HFD) hamsters.
Collapse
Affiliation(s)
- Li Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Xu J, Yao X, Li X, Xie S, Chi S, Zhang S, Cao J, Tan B. Farnesoid X receptor regulates PI 3K/AKT/mTOR signaling pathway, lipid metabolism, and immune response in hybrid grouper. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1521-1538. [PMID: 36210393 DOI: 10.1007/s10695-022-01130-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/28/2022] [Indexed: 05/13/2023]
Abstract
Some diseases related to lipid metabolism increase yearly in cultured fish, and the farnesoid X receptor (FXR) is a nuclear protein that plays a key role in inflammatory responses and lipid metabolism. However, the roles of FXR in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) remain poorly understood. The main objective of this study was to explore the roles of hepatic FXR in triggering the immune response and the potential functions of FXR in regulating the lipid metabolism. In the present study, the full-length sequence of fxr from hybrid grouper was cloned and characterized for the first time. Upon the Vibrio parahaemolyticus stimulation, the transcriptional level of fxr was rapidly elevated in the head kidney tissue in the early stage of infection. In vivo and vitro, activation of FXR by obeticholic acid (OA) significantly increased the concentrations and mRNA levels of hepatic inflammatory cytokines. These effects were inversed when FXR was inhibited by guggulsterone (GU). Moreover, the activation of FXR to suppress the PI3K/AKT/mTOR signaling pathway improves hepatic lipid metabolism and reduces hepatic lipid accumulation in vivo and vitro. In addition, the inhibition of FXR activated the PI3K/AKT/mTOR pathway, decreased the lipolysis and increased the lipogenesis, and subsequently increased the lipid accumulation in fish. These results revealed the positive roles of FXR in triggering immune responses and improving lipid metabolism and accumulation in hybrid grouper.
Collapse
Affiliation(s)
- Jia Xu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinzhou Yao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoyue Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Junming Cao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
21
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
22
|
Murray A, Banota T, Guo GL, Smith LC, Meshanni JA, Lee J, Kong B, Abramova EV, Goedken M, Gow AJ, Laskin JD, Laskin DL. Farnesoid X receptor regulates lung macrophage activation and injury following nitrogen mustard exposure. Toxicol Appl Pharmacol 2022; 454:116208. [PMID: 35998709 PMCID: PMC9960619 DOI: 10.1016/j.taap.2022.116208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.
Collapse
Affiliation(s)
- Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Tanvi Banota
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Lonardo A, Mantovani A, Targher G, Baffy G. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease: Epidemiology, Pathogenesis, and Clinical and Research Implications. Int J Mol Sci 2022; 23:13320. [PMID: 36362108 PMCID: PMC9654863 DOI: 10.3390/ijms232113320] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide, affecting up to ~30% of adult populations. NAFLD defines a spectrum of progressive liver conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma, which often occur in close and bidirectional associations with metabolic disorders. Chronic kidney disease (CKD) is characterized by anatomic and/or functional renal damage, ultimately resulting in a reduced glomerular filtration rate. The physiological axis linking the liver and kidneys often passes unnoticed until clinically significant portal hypertension, as a major complication of cirrhosis, becomes apparent in the form of ascites, refractory ascites, or hepatorenal syndrome. However, the extensive evidence accumulated since 2008 indicates that noncirrhotic NAFLD is associated with a higher risk of incident CKD, independent of obesity, type 2 diabetes, and other common renal risk factors. In addition, subclinical portal hypertension has been demonstrated to occur in noncirrhotic NAFLD, with a potential adverse impact on renal vasoregulation. However, the mechanisms underlying this association remain unexplored to a substantial extent. With this background, in this review we discuss the current evidence showing a strong association between NAFLD and the risk of CKD, and the putative biological mechanisms underpinning this association. We also discuss in depth the potential pathogenic role of the hepatorenal reflex, which may be triggered by subclinical portal hypertension and is a poorly investigated but promising research topic. Finally, we address emerging pharmacotherapies for NAFLD that may also beneficially affect the risk of developing CKD in individuals with NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02130, USA
| |
Collapse
|
24
|
Tang K, Kong D, Peng Y, Guo J, Zhong Y, Yu H, Mai Z, Chen Y, Chen Y, Cui T, Duan S, Li T, Liu N, Zhang D, Ding Y, Huang J. Ginsenoside Rc attenuates DSS-induced ulcerative colitis, intestinal inflammatory, and barrier function by activating the farnesoid X receptor. Front Pharmacol 2022; 13:1000444. [PMID: 36386150 PMCID: PMC9649634 DOI: 10.3389/fphar.2022.1000444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 08/03/2023] Open
Abstract
Objectives: Farnesoid X receptor (FXR) activation is involved in ameliorating inflammatory bowel disease (IBD), such as ulcerative colitis (UC), and inflammatory regulation may be involved in its mechanism. Ginsenoside Rc (Rc) is a major component of Panax ginseng, and it plays an excellent role in the anti-inflammatory processes. Our aim is to explore the alleviative effect of Rc on dextran sulfate sodium (DSS)-induced inflammation and deficiencies in barrier function based on FXR signaling. Materials and Methods: In vitro, we treated human intestinal epithelial cell lines (LS174T) with LPS to explore the anti-inflammatory effect of Rc supplementation. In vivo, a DSS-induced IBD mice model was established, and the changes in inflammatory and barrier function in colons after Rc treatment were measured using the disease activity index (DAI), hematoxylin and eosin (H&E) staining, immunofluorescence, ELISA, and qPCR. Molecular docking analysis, luciferase reporter gene assay, and qPCR were then used to analyze the binding targets of Rc. DSS-induced FXR-knockout (FXR-/-) mice were used for further validation. Results: Rc significantly recovered the abnormal levels of inflammation indexes (TNF-α, IL-6, IL-1β, and NF-KB) induced by LPS in LS174T. DSS-induced C57BL/6 mice exhibited a significantly decreased body weight and elevated DAI, as well as a decrease in colon weight and length. Increased inflammatory markers (TNF-α, IL-6, IL-1β, ICAM1, NF-KB, F4/80, and CD11b displayed an increased expression) and damaged barrier function (Claudin-1, occludin, and ZO-1 displayed a decreased expression) were observed in DSS-induced C57BL/6 mice. Nevertheless, supplementation with Rc mitigated the increased inflammatory and damaged barrier function associated with DSS. Further evaluation revealed an activation of FXR signaling in Rc-treated LS174T, with FXR, BSEP, and SHP found to be upregulated. Furthermore, molecular docking indicated that there is a clear interaction between Rc and FXR, while Rc activated transcriptional expression of FXR in luciferase reporter gene assay. However, these reversal abilities of Rc were not observed in DSS-induced FXR-/- mice. Conclusion: Our findings suggest that Rc may ameliorate inflammation and barrier function in the intestine, which in turn leads to the attenuation of DSS-induced UC, in which Rc may potentially activate FXR signaling to protect the intestines from DSS-induced injury.
Collapse
Affiliation(s)
- Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danli Kong
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhenhua Mai
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanling Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Naihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
27
|
Zhang K, Yuan Y, Dawa Z, Liu F, Yao Y, Wang M, Zhu C, Lin C. Integrating metabolomics and network pharmacology to reveal the mechanisms of Delphinium brunonianum extract against nonalcoholic steatohepatitis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115268. [PMID: 35398502 DOI: 10.1016/j.jep.2022.115268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba Delphinii Brunoniani, a Tibetan Material Medica, derived from the aerial parts of Delphinium brunonianum Royle, possesses efficacy of cooling blood to remove apthogentic heat, and dispelling wind to arrest itching, and has been used for the treatment for liver disease according to Tibetan Medicine Theories in Shel Gong Shel Phreng. However, the mechanisms of action remain unclear. AIM OF THE STUDY This work aimed to investigate the efficacy mechanism of Delphinium brunonianum extract (DBE) on nonalcoholic steatohepatitis (NASH), a kind of liver disease by integrating serum metabolomics and network pharmacology analysis. MATERIALS AND METHODS In this study, NASH model mice were established by a high-fat diet. The indexes of lipid accumulation, insulin resistance, and inflammatory reaction were used to evaluate the efficacy of DBE. A combination of UHPLC-QTOF-MS based metabolomics and network pharmacology was established to illustrate the serum biomarkers of NASH mice and to demonstrate the anti-NASH mechanisms of DBE. Serum metabolomics demonstrated potential metabolites and the corresponding metabolic pathways in the efficacy of DBE. Network pharmacology screened the targets of DBE against NASH. Finally, the mechanisms of DBE against NASH were verified by in-vivo pharmacology. RESULTS Metabolomics revealed that DBE significantly regulated the abnormal levels of twenty-two metabolites, which involved the biosynthesis of unsaturated fatty acids and steroid hormone, linoleic acid metabolism, arachidonic acid metabolism, and alpha-Linolenic acid metabolism pathways. Network pharmacology showed that DBE exhibited anti-NASH effects through regulating the targets of PTGS2, PLA2, ALOX5, ALOX15, FASN, and CYP450. Finally, united pharmacological verification result, we found that the mechanisms of DBE against NASH may be related to the regulation of the unsaturated fatty acids biosynthesis and the arachidonic acid metabolism pathway. CONCLUSIONS Integrating serum metabolomic and network analysis, we found that DBE might inhibit the pathological process of NASH by regulating the relative targets and the metabolic pathways, which may be a potential mechanism for the anti-NASH efficacy of DBE. This integrated strategy also provided a rational way for revealing the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in Traditional Chinese Medicine (TCM).
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yue Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zeren Dawa
- University of Tibetan Medicine, Lasa, 850000, PR China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
28
|
Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022; 44:547-564. [PMID: 35415765 PMCID: PMC9256560 DOI: 10.1007/s00281-022-00935-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid-related signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
Collapse
Affiliation(s)
- Anna Bertolini
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, The Netherlands
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
29
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
30
|
Lee YY, Yuk HJ, Saba E, Kim SD, Kim DS, Kopalli SR, Oh JW, Rhee MH. Duchesnea indica Extract Ameliorates LPS-Induced Septic Shock in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5783867. [PMID: 35607518 PMCID: PMC9124116 DOI: 10.1155/2022/5783867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Duchesnea indica has been reported for its anti-inflammatory properties. However, its efficacy in sepsis has yet to be reported. In this study, we studied the ability of Duchesnea indica extract (DIE) to rescue mice from septic shock and sepsis. Methods In vitro studies included the measurement of secreted nitric oxide, cell viability, gene and protein expression via real-time polymerase chain reaction and western blot, and confocal microscopy in RAW 264.7 cells. In vivo studies include a model of septic shock and sepsis in BALB/c mice induced by a lethal and sub-lethal dose of lipopolysaccharide (LPS). Results DIE suppressed the expression of proinflammatory cytokines induced by LPS and prevented the translocation of NFκB into the nucleus of RAW 264.7 cells. It also prevented reactive oxygen species damage induced by LPS in murine bone marrow-derived macrophages. Models of sepsis and septic shock were established in BALB/c mice and DIE-rescued mice from septic shock. DIE also reversed the increase in tumor necrosis factor-α and nitrite levels in the serum of mice induced with sepsis. DIE also prevented the translocation of NFκB from the cytosol into the nucleus in murine lungs. Histopathological damage induced by sepsis was reversed in the testis, liver, and lungs of mice. Conclusion In conclusion, DIE is a suitable candidate for development as a therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Yuan Yee Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Sung Dae Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-Gu, Seoul 05006, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
31
|
Hepatic SIRT6 Modulates Transcriptional Activities of FXR to Alleviate Acetaminophen-induced Hepatotoxicity. Cell Mol Gastroenterol Hepatol 2022; 14:271-293. [PMID: 35526796 PMCID: PMC9218579 DOI: 10.1016/j.jcmgh.2022.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Excessive acetaminophen (APAP) intake causes oxidative stress and inflammation, leading to fatal hepatotoxicity; however, the mechanism remains unclear. This study aims to explore the protective effects and detailed mechanisms of sirtuin 6 (SIRT6) in the defense against APAP-induced hepatotoxicity. METHODS Hepatocyte-specific SIRT6 knockout mice, farnesoid X receptor (FXR) knockout mice, and mice with genetic or pharmacological activation of SIRT6 were subjected to APAP to evaluate the critical role of SIRT6 in the pathogenesis of acute liver injury. RNA sequences were used to investigate molecular mechanisms underlying this process. RESULTS Hepatic SIRT6 expression was substantially reduced in the patients and mice with acute liver injury. The deletion of SIRT6 in mice and mice primary hepatocytes led to high N-acetyl-p-benzo-quinoneimine and low glutathione levels in the liver, thereby enhancing APAP overdose-induced liver injury, manifested as increased hepatic centrilobular necrosis, oxidative stress, and inflammation. Conversely, overexpression or pharmacological activation of SIRT6 enhanced glutathione and decreased N-acetyl-p-benzo-quinoneimine, thus alleviating APAP-induced hepatotoxicity via normalization of liver damage, inflammatory infiltration, and oxidative stress. Our molecular analysis revealed that FXR is regulated by SIRT6, which is associated with the pathological progression of ALI. Mechanistically, SIRT6 deacetylates FXR and elevates FXR transcriptional activity. FXR ablation in mice and mice primary hepatocytes prominently blunted SIRT6 overexpression and activation-mediated ameliorative effects. Conversely, pharmacological activation of FXR mitigated APAP-induced hepatotoxicity in SIRT6 knockout mice. CONCLUSIONS Our current study suggests that SIRT6 plays a crucial role in APAP-induced hepatotoxicity, and pharmacological activation of SIRT6 may represent a novel therapeutic strategy for APAP overdose-induced liver injury.
Collapse
|
32
|
Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022; 43:1103-1119. [PMID: 35217817 PMCID: PMC9061718 DOI: 10.1038/s41401-022-00880-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a series of liver metabolic disorders manifested by lipid accumulation within hepatocytes, has become the primary cause of chronic liver diseases worldwide. About 20%-30% of NAFLD patients advance to nonalcoholic steatohepatitis (NASH), along with cell death, inflammation response and fibrogenesis. The pathogenesis of NASH is complex and its development is strongly related to multiple metabolic disorders (e.g. obesity, type 2 diabetes and cardiovascular diseases). The clinical outcomes include liver failure and hepatocellular cancer. There is no FDA-approved NASH drug so far, and thus effective therapeutics are urgently needed. Bile acids are synthesized in hepatocytes, transported into the intestine, metabolized by gut bacteria and recirculated back to the liver by the enterohepatic system. They exert pleiotropic roles in the absorption of fats and regulation of metabolism. Studies on the relevance of bile acid disturbance with NASH render it as an etiological factor in NASH pathogenesis. Recent findings on the functional identification of bile acid receptors have led to a further understanding of the pathophysiology of NASH such as metabolic dysregulation and inflammation, and bile acid receptors are recognized as attractive targets for NASH treatment. In this review, we summarize the current knowledge on the role of bile acids and the receptors in the development of NAFLD and NASH, especially the functions of farnesoid X receptor (FXR) in different tissues including liver and intestine. The progress in the development of bile acid and its receptors-based drugs for the treatment of NASH including bile acid analogs and non-bile acid modulators on bile acid metabolism is also discussed.
Collapse
Affiliation(s)
- Ting-Ying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-di Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Fei Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
34
|
Yang L, Bi L, Jin L, Wang Y, Li Y, Li Z, He W, Cui H, Miao J, Wang L. Geniposide Ameliorates Liver Fibrosis Through Reducing Oxidative Stress and Inflammatory Respose, Inhibiting Apoptosis and Modulating Overall Metabolism. Front Pharmacol 2021; 12:772635. [PMID: 34899328 PMCID: PMC8651620 DOI: 10.3389/fphar.2021.772635] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition caused by various factors and may progress toward liver cirrhosis, and even hepatocellular carcinoma. Many studies have found that the disfunction in metabolism could contribute to the development of liver fibrosis. Geniposide, derived from Gardenia jasminoides J. Ellis, has been demonstrated with therapeutic effects on liver fibrosis. However, the exact molecular mechanisms of such liver-protection remain largely unknown. The aim of this study was to explored the effect of geniposide on metabolic regulations in liver fibrosis. We used carbon tetrachloride (CCl4) to construct a mouse model of liver fibrosis and subsequently administered geniposide treatment. Therapeutic effects of geniposide on liver fibrosis were accessed through measuring the levels of hepatic enzymes in serum and the pathological changes in liver. We also investigated the effects of geniposide on inflammatory response, oxidative stress and apoptosis in liver. Furthermore, serum untargeted metabolomics were used to explore the metabolic regulatory mechanisms behind geniposide on liver fibrosis. Our results demonstrated that geniposide could reduce the levels of hepatic enzymes in serum and ameliorate the pathological changes in liver fibrosis mice. Geniposide enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased methane dicarboxylic aldehyde (MDA) levels in liver. Geniposide treatment also decreased the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-a) in liver tissue homogenate. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining demonstrated that geniposide could reduce the apoptosis of hepatocytes. Geniposide increased the protein expression of B-cell lymphoma-2 (Bcl-2) and downregulated the protein expression of Bcl-2 Associated X (Bax), cleaved-Caspase 3, and cleaved-Caspase 9. Serum untargeted metabolomics analysis demonstrated that geniposide treatment improved the metabolic disorders including glycerophospholipid metabolism, arginine and proline metabolism, and arachidonic acid (AA) metabolism. In conclusion, our study demonstrated the protective effects of geniposide on liver fibrosis. We found that geniposide could treat liver fibrosis by inhibiting oxidative stress, reducing inflammatory response and apoptosis in the liver, and modulating glycerophospholipid, and arginine, proline, and AA metabolism processes.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Second People’s Hospital, Tianjin, China
| | - Liping Bi
- Tianjin Second People’s Hospital, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zixuan Li
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Wenju He
- Tianjin First Central Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Miao
- Tianjin Second People’s Hospital, Tianjin, China
| | - Li Wang
- Tianjin Second People’s Hospital, Tianjin, China
| |
Collapse
|
35
|
Goon DE, Ab-Rahim S, Mohd Sakri AH, Mazlan M, Tan JK, Abdul Aziz M, Mohd Noor N, Ibrahim E, Sheikh Abdul Kadir SH. Untargeted serum metabolites profiling in high-fat diet mice supplemented with enhanced palm tocotrienol-rich fraction using UHPLC-MS. Sci Rep 2021; 11:21001. [PMID: 34697380 PMCID: PMC8546078 DOI: 10.1038/s41598-021-00454-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023] Open
Abstract
Excessive high fat dietary intake promotes risk of developing non-alcoholic fatty liver disease (NAFLD) and predisposed with oxidative stress. Palm based tocotrienol-rich fraction (TRF) has been reported able to ameliorate oxidative stress but exhibited poor bioavailability. Thus, we investigated whether an enhanced formulation of TRF in combination with palm kernel oil (medium-chain triglycerides) (ETRF) could ameliorate the effect of high-fat diet (HFD) on leptin-deficient male mice. All the animals were divided into HFD only (HFD group), HFD supplemented with ETRF (ETRF group) and HFD supplemented with TRF (TRF group) and HFD supplemented with PKO (PKO group). After 6 weeks, sera were collected for untargeted metabolite profiling using UHPLC-Orbitrap MS. Univariate analysis unveiled alternation in metabolites for bile acids, amino acids, fatty acids, sphingolipids, and alkaloids. Bile acids, lysine, arachidonic acid, and sphingolipids were downregulated while xanthine and hypoxanthine were upregulated in TRF and ETRF group. The regulation of these metabolites suggests that ETRF may promote better fatty acid oxidation, reduce oxidative stress and pro-inflammatory metabolites and acts as anti-inflammatory in fatty liver compared to TRF. Metabolites regulated by ETRF also provide insight of its role in fatty liver. However, further investigation is warranted to identify the mechanisms involved.
Collapse
Affiliation(s)
- Danial Efendy Goon
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab-Rahim
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia.
| | - Amir Hakimi Mohd Sakri
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Musalmah Mazlan
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mardiana Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Norizal Mohd Noor
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
36
|
Ye S, Si C, Deng J, Chen X, Kong L, Zhou X, Wang W. Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1516855. [PMID: 34712726 PMCID: PMC8548099 DOI: 10.1155/2021/1516855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. The severity is classified as mild (MAP), moderately severe (MSAP), or severe (SAP). In patients with SAP, organ dysfunction can occur in the early stage of the disease course, accompanied by secondary infection, with a mortality rate of 36%-50%. In the late stage SAP, infection-related complications caused by pancreatic necrotic tissue and peripancreatic effusion are the main causes of death in patients. Dysbacteriosis of intestinal microflora, barrier dysfunction of intestinal mucosa, and translocation of enteric bacteria are considered to be the main causes of infection of pancreatic necrotic tissue and peripancreatic effusion. During the past few years, increasing attention has been paid to the metabolic activities of intestinal microflora in SAP, which plays an important role in the metabolic activities of the human body. This review is aimed at bringing together the most recent findings and advances regarding the gut microbial community and associated gut microbial community metabolites and illustrating the role of these metabolites in disease progression in severe acute pancreatitis. We hope that this review will provide new ideas and schemes for the treatment of SAP in the clinical settings.
Collapse
Affiliation(s)
- Shijie Ye
- Wenzhou Medical University, Wenzhou, China
| | - Chenli Si
- Wenzhou Medical University, Wenzhou, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
37
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
38
|
Königshofer P, Brusilovskaya K, Petrenko O, Hofer BS, Schwabl P, Trauner M, Reiberger T. Nuclear Receptors in Liver Fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166235. [PMID: 34339839 DOI: 10.1016/j.bbadis.2021.166235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that regulate gene expression of a variety of key molecular signals involved in liver fibrosis. The primary cellular driver of liver fibrogenesis are activated hepatic stellate cells. Different NRs regulate the hepatic expression of pro-inflammatory and pro-fibrogenic cytokines that promote the transformation of hepatic stellate cells into fibrogenic myofibroblasts. Importantly, nuclear receptors regulate gene expression circuits that promote hepatic fibrogenesis and/or allow liver fibrosis regression. In this review, we highlight the direct and indirect influence of nuclear receptors on liver fibrosis, with a focus on hepatic stellate cells, and discuss potential therapeutic effects of nuclear receptor modulation in regard to anti-fibrotic and anti-inflammatory effects. Further research on nuclear receptors-related signaling may lead to the clinical development of effective anti-fibrotic therapies for patients with liver disease.
Collapse
Affiliation(s)
- Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
39
|
Zhang P, Wang W, Mao M, Gao R, Shi W, Li D, Calderone R, Sui B, Tian X, Meng X. Similarities and Differences: A Comparative Review of the Molecular Mechanisms and Effectors of NAFLD and AFLD. Front Physiol 2021; 12:710285. [PMID: 34393826 PMCID: PMC8362097 DOI: 10.3389/fphys.2021.710285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) are the most prevalent metabolic liver diseases globally. Due to the complex pathogenic mechanisms of NAFLD and AFLD, no specific drugs were approved at present. Lipid accumulation, oxidative stress, insulin resistance, inflammation, and dietary habits are all closely related to the pathogenesis of NAFLD and AFLD. However, the mechanism that promotes disease progression has not been fully elucidated. Meanwhile, the gut microbiota and their metabolites also play an important role in the pathogenesis and development of NAFLD and AFLD. This article comparatively reviewed the shared and specific signaling pathways, clinical trials, and potential intervention effectors of NAFLD and AFLD, revealing their similarities and differences. By comparing the shared and specific molecular regulatory mechanisms, this paper provides mutual reference strategies for preventing and treating NAFLD, AFLD, and related metabolic diseases. Furthermore, it provides enlightenment for discovering novel therapies of safe and effective drugs targeting the metabolic liver disease.
Collapse
Affiliation(s)
- Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Weiya Wang
- School of Sports and Health, Shandong Sport University, Jinan, China.,Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Min Mao
- Department of Allied Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Wenting Shi
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
40
|
Sun W, Liu P, Yang B, Wang M, Wang T, Sun W, Wang X, Zheng W, Song X, Li J. A network pharmacology approach: Inhibition of the NF-κB signaling pathway contributes to the NASH preventative effect of an Oroxylum indicum seed extract in oleic acid-stimulated HepG2 cells and high-fat diet-fed rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153498. [PMID: 33640247 DOI: 10.1016/j.phymed.2021.153498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/05/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The incidence of nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), has significantly increased in recent years and has become an important public health issue. However, no U.S. Food and Drug Administration (FDA)-approved first-line drug is currently available for the treatment of NAFLD and NASH; therefore, research on new drugs is currently a hot topic. Oroxylum indicum (Linn.) Kurz is extensively distributed in South China and South Asia and has many biological activities. However, its effects on NAFLD or even NASH and the corresponding mechanisms are still not clear. PURPOSE To investigate the effect and mechanism of O. indicum seed extract (OISE) on preventing anti-inflammatory action in the progression from simple nonalcoholic fatty liver (NAFL) to NASH. METHODS A network pharmacology method to construct ingredient-target networks and the protein-protein interaction (PPI) network of OISE in NASH were constructed for topological analyses and hub-target screening. Enrichment analyses were performed to identify the critical biological processes and signaling pathways. Simultaneously, in vitro and in vivo experiments investigated the effect and mechanism of OISE, baicalein, and chrysin on inflammation by biochemical indicator detection, luciferase reporters, pathological staining, and immunoblotting in oleic acid-stimulated HepG2 cells or in high-fat diet-fed rats. RESULTS The network pharmacology showed that OISE prevented the development and progression of NAFL into NASH through various pathways and targets and that the nuclear factor NF-κB (NF-κB) pathway regulated by baicalein and chrysin played an important role in the treatment of NASH. In in vitro experiments, we further showed that OISE and its ingredients, namely, baicalein and chrysin, all improved the inflammatory status in oleic acid-stimulated HepG2 cells, inhibited the nuclear transcriptional activities of NF-κB, increased the IκB level, and decreased the phosphorylation level of NF-κB. Furthermore, in a high-fat diet-induced NASH model in rats, we also showed that OISE prevented the development and progression of NASH by inhibiting the nuclear transcriptional activity of NF-κB. CONCLUSION OISE suppressed inflammatory responses and prevented the development and progression of NAFL into NASH through inhibition of the nuclear transcriptional activity of NF-κB. OISE may be used to treat NAFLD through many functions, including an increase in insulin sensitivity, a decrease in lipid accumulation in the liver, suppression of inflammation, and clearance of free radicals.
Collapse
Affiliation(s)
- Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Panpan Liu
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Bendong Yang
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434000, China
| | - Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xudong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang 317700, China
| | - Xinhua Song
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434000, China.
| |
Collapse
|
41
|
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184:2537-2564. [PMID: 33989548 DOI: 10.1016/j.cell.2021.04.015] [Citation(s) in RCA: 1136] [Impact Index Per Article: 284.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Abstract
Clinical disorders that impair bile flow result in retention of bile acids and cholestatic liver injury, characterized by parenchymal cell death, bile duct proliferation, liver inflammation and fibrosis. However, the pathogenic role of bile acids in the development of cholestatic liver injury remains incompletely understood. In this review, we summarize the current understanding of this process focusing on the experimental and clinical evidence for direct effects of bile acids on each major cellular component of the liver: hepatocytes, cholangiocytes, stellate cells and immune cells. During cholestasis bile acids accumulated in the liver, causing oxidative stress and mitochondrial injury in hepatocytes. The stressed hepatocytes respond by releasing inflammatory cytokines through activation of specific signaling pathways and transcription factors. The recruited neutrophils and other immune cells then cause parenchymal cell death. In addition, bile acids also stimulate the proliferation of cholangiocytes and stellate cells that are responsible for bile duct proliferation and liver fibrosis. This review explores the evidence for bile acid involvement in these phenomena. The role of bile acid receptors, TGR5, FXR and the sphingosine-1-phosphate receptor 2 and the inflammasome are also examined. We hope that better understanding of these pathologic effects will facilitate new strategies for treating cholestatic liver injury.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
43
|
Ren S, Wei Y, Niu M, Li R, Wang R, Wei S, Wen J, Wang D, Yang T, Chen X, Wu S, Tong Y, Jing M, Li H, Wang M, Zhao Y. Mechanism of rutaecarpine on ethanol-induced acute gastric ulcer using integrated metabolomics and network pharmacology. Biomed Pharmacother 2021; 138:111490. [PMID: 33773465 DOI: 10.1016/j.biopha.2021.111490] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
This study was aimed to explore the mechanism of rutaecarpine (RUT) on ethanol-induced gastric ulcer (GU) in mice by integrated approaches. At first, the efficacy was determined through the macroscopic and microscopic state of stomach tissue and the expression levels of GU-related factors. Then, the serum metabolomics method based on UPLC-Q-TOF/MS was used to explore the specific metabolites and metabolic pathways. Finally, the upstream key protein targets of these specific metabolites were analyzed by network pharmacology and verified by PCR to explore the potential mechanism. RUT alleviated the histological and pathological damage of gastric tissue caused by ethanol, and could remarkably ameliorate the level of GU-related factors. Subsequently, a total of 7 potential metabolites involved in 9 metabolic pathways were identified by metabolomics analysis. Then, a 'component-targets-metabolites' interaction network was constructed, and therefore 4 key target proteins (PLA2G1B, PDE5A, MIF and SRC) that may regulate the specific metabolites were obtained. This case was further verified by the results of PCR. ALL the above results strongly demonstrated that RUT exerted a gastroprotective effect against GU. And it is the first time to combine metabolomics combined with network pharmacology to elucidate the mechanism of RUT on GU, which may be related to the regulation of energy metabolism, oxidative stress, and inflammation, and these pathways may be regulated through the upstream protein PLA2G1B, PDE5A, MIF and SRC.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruilin Wang
- Integrative Medical Center, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tao Yang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuling Tong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Manyi Jing
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Haotian Li
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Min Wang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
44
|
Cariello M, Piccinin E, Moschetta A. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cell Mol Gastroenterol Hepatol 2021; 11:1519-1539. [PMID: 33545430 PMCID: PMC8042405 DOI: 10.1016/j.jcmgh.2021.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease comprises a wide spectrum of liver injuries from simple steatosis to steatohepatitis and cirrhosis. Nonalcoholic steatohepatitis (NASH) is defined when liver steatosis is associated with inflammation, hepatocyte damage, and fibrosis. A genetic predisposition and environmental insults (ie, dietary habits, obesity) are putatively responsible for NASH progression. Here, we present the impact of the lipid-sensing nuclear receptors in the pathogenesis and treatment of NASH. In detail, we discuss the pros and cons of the putative transcriptional action of the fatty acid sensors (peroxisome proliferator-activated receptors), the bile acid sensor (farnesoid X receptor), and the oxysterol sensor (liver X receptors) in the pathogenesis and bona fide treatment of NASH.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Elena Piccinin
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy; National Institute for Biostructures and Biosystems (INBB), Rome, Italy; Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy.
| |
Collapse
|
45
|
Sun J, Chen L, Shan Y, Wang C, Li H, Chen J. Metabolomics study on the therapeutic mechanism of Schisandra chinensis polysaccharides on concanavalin A-induced immunological liver injury in mice. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_255_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Kalveram L, Schunck WH, Rothe M, Rudolph B, Loddenkemper C, Holzhütter HG, Henning S, Bufler P, Schulz M, Meierhofer D, Zhang IW, Weylandt KH, Wiegand S, Hudert CA. Regulation of the cytochrome P450 epoxyeicosanoid pathway is associated with distinct histologic features in pediatric non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102229. [PMID: 33388475 DOI: 10.1016/j.plefa.2020.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | - Birgit Rudolph
- Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | - Stephan Henning
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Marten Schulz
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany
| | - Ingrid W Zhang
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Karsten H Weylandt
- Department of Gastroenterology, Diabetes, Oncology and Rheumatology, Ruppiner Kliniken, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
47
|
Xie Y, Zhou Y, Liu S, Zhang XL. PE_PGRS: Vital proteins in promoting mycobacterial survival and modulating host immunity and metabolism. Cell Microbiol 2020; 23:e13290. [PMID: 33217152 DOI: 10.1111/cmi.13290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is the leading infectious cause of mortality worldwide. One of the key reasons for M. tb pathogenesis is the capability of M. tb to evade immune elimination and survive in macrophage, eventually causing chronic infection. However the pathogenicity mechanism of M. tb is not unclear yet, and thus diagnosis and therapy for TB remains a challenge. The genome of M. tb, encodes a unique protein family known as the PGRS family, with largely unexplored functions. Recently, an increasing number of reports have shown that the PE_PGRS proteins play critical roles in bacterial pathogenesis and immune evasion. The PE_PGRS protein family, characterized by a special N-terminal PE (Pro (P)-Glu (E) motif) domain and a C-terminal PGRS (Polymorphic GC-rich Repetitive Sequences) domain, is restricted mainly to pathogenic mycobacteria. Here we summarize current literature on the PE_PGRS as vital proteins in promoting bacterial survival and modulating host immunity, cell death and metabolism. We also highlight the potential of PE_PGRS as novel targets of anti-mycobacterial interventions for TB control.
Collapse
Affiliation(s)
- Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| | - Yidan Zhou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
48
|
Zhao C, Yu N, Li W, Cai H, Liu M, Hu Y, Liu Y, Tang M. Slow-Release H 2S Donor Anethole Dithiolethione Protects Liver From Lipotoxicity by Improving Fatty Acid Metabolism. Front Pharmacol 2020; 11:549377. [PMID: 33071780 PMCID: PMC7538629 DOI: 10.3389/fphar.2020.549377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
"Lipotoxicity" induced by free fatty acids (FAs) plays a central role in the pathogenesis of many metabolic diseases, with few treatment options available today. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, has been reported to have a variety of pharmacological properties, but its effect on FAs metabolism remains unclear. The purpose of this study was to investigate the effect and mechanisms of anethole dithiolethione (ADT, a sustained-release H2S donor) on hepatic FAs metabolism. ADT was administered daily for 4 weeks in male Syrian golden hamsters fed a high fat diet (HFD), and FAs profiles of liver tissues were analyzed using GC-MS. The results showed that in HFD-fed hamsters, ADT treatment significantly reduced the accumulation of toxic saturated and monounsaturated fatty acids (C16:0, C18:0, C16:1, and C18:1n9), while increased the content of n-6 and n-3 series polyunsaturated fatty acids (C20:3n6, C20:4n6, and C22:6n3). Mechanistically, ADT obviously inhibited the overexpression of acetyl-CoA carboxylase1 (ACC1), fatty acid synthase (FAS), and stearoyl-CoA desaturase1 (SCD1), and up-regulated the levels of fatty acid transport proteins (FATPs), liver fatty acid binding protein (L-FABP), carnitine palmitoyltransferase 1α (CPT1α), fatty acid desaturase (FADS)1 and FADS2. Notably, ADT administration significantly promoted Mitofusin1-mediated mitochondrial fusion and fatty acid β-oxidation. These findings suggest that ADT plays a beneficial role by regulating the synthesis, desaturation, β-oxidation, uptake, binding/isolation, and transport of FAs. In conclusion, ADT is effective in improving FAs metabolic disorders and liver injuries caused by HFD, which renders ADT a candidate drug for lipotoxicity-induced diseases.
Collapse
Affiliation(s)
- Chengcheng Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Nannan Yu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mouze Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yanjie Hu
- Department of Stomatology, Suiyang County People's Hospital, Zunyi, China
| | - Yiping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
50
|
Liu M, Zhang G, Song M, Wang J, Shen C, Chen Z, Huang X, Gao Y, Zhu C, Lin C, Mi S, Liu C. Activation of Farnesoid X Receptor by Schaftoside Ameliorates Acetaminophen-Induced Hepatotoxicity by Modulating Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 33:87-116. [PMID: 32037847 DOI: 10.1089/ars.2019.7791] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Acetaminophen (APAP) overdose leads to acute liver injury by inducing hepatic mitochondrial oxidative stress and inflammation. However, the molecular mechanisms involved are still unclear. Farnesoid X receptor (FXR) serves as a therapeutic target for the treatment of liver disorders, whose activation has been proved to protect APAP-induced hepatotoxicity. In this study, we examined whether FXR activation by schaftoside (SS), a naturally occurring flavonoid from Desmodium styracifolium, could protect mice against APAP-induced hepatotoxicity via regulation of oxidative stress and inflammation. Results: We first found that SS exhibited potent protective effects against APAP-induced hepatotoxicity in mice. The study reveals that SS is a potential agonist of FXR, which protects mice from hepatotoxicity mostly via regulation of oxidative stress and inflammation. Mechanistically, the hepatoprotective SS is associated with the induction of the genes of phase II detoxifying enzymes (e.g., UGT1A1, GSTα1), phase III drug efflux transporters (e.g., bile salt export pump, organic solvent transporter protein β), and glutathione metabolism-related enzymes (e.g., glutamate-cysteine ligase modifier subunit [Gclm], glutamate-cysteine ligase catalytic subunit [Gclc]). More importantly, SS-mediated FXR activation could fine-tune the pro- and anti-inflammatory eicosanoids generation via altering eicosanoids metabolic pathway, thereby resulting in decrease of hepatic inflammation. In contrast, FXR deficiency can abrogate the above effects. Innovation and Conclusion: Our results provided the direct evidence that FXR activation by SS could attenuate APAP-induced hepatotoxicity via inhibition of nuclear factor kappa-B signaling and fine-tuning the generation of proinflammatory mediators' eicosanoids. Our findings indicate that strategies to activate FXR signaling in hepatocytes may provide a promising therapeutic approach to alleviate liver injury induced by APAP overdose.
Collapse
Affiliation(s)
- Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suiqing Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|