1
|
Xue Z, Zhang W, Ren A, Karchner SI, Franks DG, Zong Y, Ma Y, Wang J, Xu Y, Li J, Ding N, Liu C, Hahn ME, Zhao B. Enhancing ecological risk assessment of dioxins in aquatic environments: AHR diversity and species sensitivity differences in tiger puffer (Takifugu rubripes). JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138719. [PMID: 40424807 DOI: 10.1016/j.jhazmat.2025.138719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/05/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
Dioxins and dioxin-like compounds (DLCs) exert toxicity through the aryl hydrocarbon receptor (AHR), but species variations in AHR lead to differing sensitivities. Investigating the variation in AHR homolog diversity, expression levels, predominant forms, and AHR sensitivity across species-particularly in fish sensitive to dioxins-is essential for enhancing ecological risk assessment. This study focuses on the tiger puffer (Takifugu rubripes), identifying five AHRs and two ARNTs, with truAHR2a showing the highest expression and the truAHR1 subfamily displaying lower levels. All truAHRs are functional and can be activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with truARNT1 cooperating more efficiently with truAHRs than truARNT2. We determined EC50 values for truAHR1a (0.30 ± 0.10 nM), truAHR1b (0.32 ± 0.20 nM), truAHR2a (0.98 ± 0.63 nM), truAHR2b (2.62 ± 2.48 nM), and truAHR2c (0.43 ± 0.22 nM), with truAHR1a showing the highest sensitivity. The truAHR1 subfamily displayed greater sensitivity than the truAHR2 subfamily, contrasting with medaka and zebrafish, where AHR2 is similar to or more sensitive than AHR1. Comparisons highlighted species- and subform-specific sensitivities in AHRs, differing by one to two orders of magnitude. Ligand-binding assays showed that all truAHRs bound [3H]TCDD specifically. Molecular docking indicated that although TCDD binds AHRs with similar affinities and conserved residues, other subform-specific factors likely contribute to their differential sensitivities. This study provides valuable data on AHR diversity and ligand-sensitivity, contributing to ecological toxicity assessment of dioxin-like compounds.
Collapse
Affiliation(s)
- Zhenhong Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Anran Ren
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, United States
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, United States
| | - Yanjiao Zong
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yongchao Ma
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiayi Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yiqin Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jiaming Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ning Ding
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, United States
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2025; 25:178-194. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Fujikawa M, Ueda M, Maruyama K. Role of Kynurenine and Its Derivatives in the Neuroimmune System. Int J Mol Sci 2024; 25:7144. [PMID: 39000249 PMCID: PMC11241229 DOI: 10.3390/ijms25137144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.
Collapse
Affiliation(s)
- Makoto Fujikawa
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Masashi Ueda
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
4
|
Jonić N, Koprivica I, Chatzigiannis CM, Tsiailanis AD, Kyrkou SG, Tzakos EP, Pavić A, Dimitrijević M, Jovanović A, Jovanović MB, Marinho S, Castro-Almeida I, Otašević V, Moura-Alves P, Tzakos AG, Stojanović I. Development of FluoAHRL: A Novel Synthetic Fluorescent Compound That Activates AHR and Potentiates Anti-Inflammatory T Regulatory Cells. Molecules 2024; 29:2988. [PMID: 38998940 PMCID: PMC11243367 DOI: 10.3390/molecules29132988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Christos M. Chatzigiannis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Antonis D. Tsiailanis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Stavroula G. Kyrkou
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | | | - Aleksandar Pavić
- Laboratory for Microbial Molecular Genetics and Ecology, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Andjelina Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
| | - Milan B. Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sérgio Marinho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Castro-Almeida
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vesna Otašević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Pedro Moura-Alves
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Andreas G. Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| |
Collapse
|
5
|
Helmbrecht N, Lackner M, Maricic T, Pääbo S. The modern human aryl hydrocarbon receptor is more active when ancestralized by genome editing. Proc Natl Acad Sci U S A 2024; 121:e2402159121. [PMID: 38739836 PMCID: PMC11145187 DOI: 10.1073/pnas.2402159121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that has many functions in mammals. Its best known function is that it binds aromatic hydrocarbons and induces the expression of cytochrome P450 genes, which encode enzymes that metabolize aromatic hydrocarbons and other substrates. All present-day humans carry an amino acid substitution at position 381 in the AHR that occurred after the divergence of modern humans from Neandertals and Denisovans. Previous studies that have expressed the ancestral and modern versions of AHR from expression vectors have yielded conflicting results with regard to their activities. Here, we use genome editing to modify the endogenous AHR gene so that it encodes to the ancestral, Neandertal-like AHR protein in human cells. In the absence of exogenous ligands, the expression of AHR target genes is higher in cells expressing the ancestral AHR than in cells expressing the modern AHR, and similar to the expression in chimpanzee cells. Furthermore, the modern human AHR needs higher doses of three ligands than the ancestral AHR to induce the expression of target genes. Thus, the ability of AHR to induce the expression of many of its target genes is reduced in modern humans.
Collapse
Affiliation(s)
- Nelly Helmbrecht
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, LeipzigD-04103, Germany
| | - Martin Lackner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, LeipzigD-04103, Germany
| | - Tomislav Maricic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, LeipzigD-04103, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, LeipzigD-04103, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa904-0495, Japan
| |
Collapse
|
6
|
Eaton DL, Simon TW, Kaminski NE, Perdew GH, Nebert DW. The 2022 revised WHO TEFs for dioxins and dioxin-like chemicals: The importance of considering the use of species-specific information to determine relative effective potency for human-based risk assessment. Regul Toxicol Pharmacol 2024; 149:105599. [PMID: 38490576 DOI: 10.1016/j.yrtph.2024.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Affiliation(s)
- David L Eaton
- Dept. Environmental Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | | | - Norbert E Kaminski
- Food and Consumer Product Ingredient Safety Endowed Chair, Department of Pharmacology and Toxicology, Institute for Integrative Toxicology, Director, Center for Reseaerch on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Gary H Perdew
- H. Thomas and Dorothy Willits Hallowell Chair in Agricultural Sciences, The Pennsylvania State University, State College, PA, USA
| | - Daniel W Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Department of Pediatrics & Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
7
|
Morgan EW, Dong F, Annalora AJ, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus CB, Walk ST, Patterson AD, Perdew GH. Contribution of Circulating Host and Microbial Tryptophan Metabolites Toward Ah Receptor Activation. Int J Tryptophan Res 2023; 16:11786469231182510. [PMID: 37441265 PMCID: PMC10334013 DOI: 10.1177/11786469231182510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Trenton Wolfe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Reece Erickson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Krishne Gowda
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Shantu G Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| |
Collapse
|
8
|
Dong F, Murray IA, Annalora A, Coslo D, Desai D, Gowda K, Yang J, Wang D, Koo I, Hao F, Amin SG, Patterson AD, Marcus C, Perdew GH. Complex chemical signals dictate Ah receptor activation through the gut-lung axis. FASEB J 2023; 37:e23010. [PMID: 37272852 PMCID: PMC10264151 DOI: 10.1096/fj.202300703r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Denise Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Elson DJ, Kolluri SK. Tumor-Suppressive Functions of the Aryl Hydrocarbon Receptor (AhR) and AhR as a Therapeutic Target in Cancer. BIOLOGY 2023; 12:526. [PMID: 37106727 PMCID: PMC10135996 DOI: 10.3390/biology12040526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Dong F, Murray IA, Annalora A, Coslo D, Desai D, Gowda K, Yang J, Wang D, Koo I, Hao F, Amin SG, Patterson AD, Marcus C, Perdew GH. Complex chemical signals dictate Ah receptor activation through the gut-lung axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529529. [PMID: 36865156 PMCID: PMC9980078 DOI: 10.1101/2023.02.22.529529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in the rapid clearance within the intestinal tract, limiting AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA) as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). Dietary exposure to UroA in a broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in liver. Thus, CYP1A1 dietary competitive substrates can lead to intestinal "escape", likely through the lymphatic system, increasing AHR activation in key barrier tissues.
Collapse
|
11
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
12
|
Morgan EW, Dong F, Annalora A, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus C, Walk ST, Patterson AD, Perdew GH. Contribution of circulating host and microbial tryptophan metabolites towards Ah receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525691. [PMID: 36747842 PMCID: PMC9900944 DOI: 10.1101/2023.01.26.525691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
|
13
|
Liu R, Zacharewski TR, Conolly RB, Zhang Q. A Physiologically Based Pharmacokinetic (PBPK) Modeling Framework for Mixtures of Dioxin-like Compounds. TOXICS 2022; 10:toxics10110700. [PMID: 36422908 PMCID: PMC9698634 DOI: 10.3390/toxics10110700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 06/08/2023]
Abstract
Humans are exposed to persistent organic pollutants, such as dioxin-like compounds (DLCs), as mixtures. Understanding and predicting the toxicokinetics and thus internal burden of major constituents of a DLC mixture is important for assessing their contributions to health risks. PBPK models, including dioxin models, traditionally focus on one or a small number of compounds; developing new or extending existing models for mixtures often requires tedious, error-prone coding work. This lack of efficiency to scale up for multi-compound exposures is a major technical barrier toward large-scale mixture PBPK simulations. Congeners in the DLC family, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), share similar albeit quantitatively different toxicokinetic and toxicodynamic properties. Taking advantage of these similarities, here we reported the development of a human PBPK modeling framework for DLC mixtures that can flexibly accommodate an arbitrary number of congeners. Adapted from existing TCDD models, our mixture model contains the blood and three diffusion-limited compartments-liver, fat, and rest of the body. Depending on the number of congeners in a mixture, varying-length vectors of ordinary differential equations (ODEs) are automatically generated to track the tissue concentrations of the congeners. Shared ODEs are used to account for common variables, including the aryl hydrocarbon receptor (AHR) and CYP1A2, to which the congeners compete for binding. Binary and multi-congener mixture simulations showed that the AHR-mediated cross-induction of CYP1A2 accelerates the sequestration and metabolism of DLC congeners, resulting in consistently lower tissue burdens than in single exposure, except for the liver. Using dietary intake data to simulate lifetime exposures to DLC mixtures, the model demonstrated that the relative contributions of individual congeners to blood or tissue toxic equivalency (TEQ) values are markedly different than those to intake TEQ. In summary, we developed a mixture PBPK modeling framework for DLCs that may be utilized upon further improvement as a quantitative tool to estimate tissue dosimetry and health risks of DLC mixtures.
Collapse
Affiliation(s)
- Rongrui Liu
- Lower Merion High School, Ardmore, PA 19003, USA
| | - Tim R. Zacharewski
- Department of Biochemistry and Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Gruszczyk J, Grandvuillemin L, Lai-Kee-Him J, Paloni M, Savva CG, Germain P, Grimaldi M, Boulahtouf A, Kwong HS, Bous J, Ancelin A, Bechara C, Barducci A, Balaguer P, Bourguet W. Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. Nat Commun 2022; 13:7010. [PMID: 36385050 PMCID: PMC9668932 DOI: 10.1038/s41467-022-34773-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Å structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design.
Collapse
Affiliation(s)
- Jakub Gruszczyk
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France.
| | - Loïc Grandvuillemin
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Josephine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Matteo Paloni
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Christos G Savva
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Leicester, UK
| | - Pierre Germain
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Marina Grimaldi
- IRCM (Institut de Recherche en Cancérologie de Montpellier), Inserm U1194, Univ Montpellier, ICM, Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM (Institut de Recherche en Cancérologie de Montpellier), Inserm U1194, Univ Montpellier, ICM, Montpellier, France
| | - Hok-Sau Kwong
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Aurélie Ancelin
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Cherine Bechara
- IGF, University of Montpellier, CNRS, Inserm, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Alessandro Barducci
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Patrick Balaguer
- IRCM (Institut de Recherche en Cancérologie de Montpellier), Inserm U1194, Univ Montpellier, ICM, Montpellier, France
| | - William Bourguet
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
15
|
TrpNet: Understanding Tryptophan Metabolism across Gut Microbiome. Metabolites 2021; 12:metabo12010010. [PMID: 35050132 PMCID: PMC8777792 DOI: 10.3390/metabo12010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Crosstalk between the gut microbiome and the host plays an important role in animal development and health. Small compounds are key mediators in this host–gut microbiome dialogue. For instance, tryptophan metabolites, generated by biotransformation of tryptophan through complex host–microbiome co-metabolism can trigger immune, metabolic, and neuronal effects at local and distant sites. However, the origin of tryptophan metabolites and the underlying tryptophan metabolic pathway(s) are not well characterized in the current literature. A large number of the microbial contributors of tryptophan metabolism remain unknown, and there is a growing interest in predicting tryptophan metabolites for a given microbiome. Here, we introduce TrpNet, a comprehensive database and analytics platform dedicated to tryptophan metabolism within the context of host (human and mouse) and gut microbiome interactions. TrpNet contains data on tryptophan metabolism involving 130 reactions, 108 metabolites and 91 enzymes across 1246 human gut bacterial species and 88 mouse gut bacterial species. Users can browse, search, and highlight the tryptophan metabolic pathway, as well as predict tryptophan metabolites on the basis of a given taxonomy profile using a Bayesian logistic regression model. We validated our approach using two gut microbiome metabolomics studies and demonstrated that TrpNet was able to better predict alterations in in indole derivatives compared to other established methods.
Collapse
|
16
|
Harriman R, Lewis JS. Bioderived materials that disarm the gut mucosal immune system: Potential lessons from commensal microbiota. Acta Biomater 2021; 133:187-207. [PMID: 34098091 DOI: 10.1016/j.actbio.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Over the course of evolution, mammals and gut commensal microbes have adapted to coexist with each other. This homeostatic coexistence is dependent on an intricate balance between tolerogenic and inflammatory responses directed towards beneficial, commensal microbes and pathogenic intruders, respectively. Immune tolerance towards the gut microflora is largely sustained by immunomodulatory molecules produced by the commensals, which protect the bacteria from immune advances and maintain the gut's unique tolerogenic microenvironment, as well as systemic homeostasis. The identification and characterization of commensal-derived, tolerogenic molecules could lead to their utilization in biomaterials-inspired delivery schemes involving nano/microparticles or hydrogels, and potentially lead to the next generation of commensal-derived therapeutics. Moreover, gut-on-chip technologies could augment the discovery and characterization of influential commensals by providing realistic in vitro models conducive to finicky microbes. In this review, we provide an overview of the gut immune system, describe its intricate relationships with the microflora and identify major genera involved in maintaining tolerogenic responses and peripheral homeostasis. More relevant to biomaterials, we discuss commensal-derived molecules that are known to interface with immune cells and discuss potential strategies for their incorporation into biomaterial-based strategies aimed at culling inflammatory diseases. We hope this review will bridge the current findings in gut immunology, microbiology and biomaterials and spark further investigation into this emerging field. STATEMENT OF SIGNIFICANCE: Despite its tremendous potential to culminate into revolutionary therapeutics, the synergy between immunology, microbiology, and biomaterials has only been explored at a superficial level. Strategic incorporation of biomaterial-based technologies may be necessary to fully characterize and capitalize on the rapidly growing repertoire of immunomodulatory molecules derived from commensal microbes. Bioengineers may be able to combine state-of-the-art delivery platforms with immunomodulatory cues from commensals to provide a more holistic approach to combating inflammatory disease. This interdisciplinary approach could potentiate a neoteric field of research - "commensal-inspired" therapeutics with the promise of revolutionizing the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Rian Harriman
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA
| | - Jamal S Lewis
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Dagenais-Lussier X, Loucif H, Beji C, Telittchenko R, Routy JP, van Grevenynghe J. Latest developments in tryptophan metabolism: Understanding its role in B cell immunity. Cytokine Growth Factor Rev 2021; 59:111-117. [DOI: 10.1016/j.cytogfr.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
|
18
|
Xiong L, Dean JW, Fu Z, Oliff KN, Bostick JW, Ye J, Chen ZE, Mühlbauer M, Zhou L. Ahr-Foxp3-RORγt axis controls gut homing of CD4 + T cells by regulating GPR15. Sci Immunol 2021; 5:5/48/eaaz7277. [PMID: 32532834 DOI: 10.1126/sciimmunol.aaz7277] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
The orphan chemoattractant receptor GPR15 is important for homing T lymphocytes to the large intestine, thereby maintaining intestinal immune homeostasis. However, the molecular mechanisms underlying the regulation of GPR15 expression remain elusive. Here, we show a central role of the aryl hydrocarbon receptor (Ahr) in promoting GPR15 expression in both mice and human, thus gut homing of T lymphocytes. Mechanistically, Ahr directly binds to open chromatin regions of the Gpr15 locus to enhance its expression. Ahr transcriptional activity in directing GPR15 expression was modulated by two transcription factors, Foxp3 and RORγt, both of which are expressed preferentially by gut regulatory T cells (Tregs) in vivo. Specifically, Foxp3 interacted with Ahr and enhanced Ahr DNA binding at the Gpr15 locus, thereby promoting GPR15 expression. In contrast, RORγt plays an inhibitory role, at least in part, by competing with Ahr binding to the Gpr15 locus. Our findings thus demonstrate a key role for Ahr in regulating Treg intestinal homing under the steady state and during inflammation and the importance of Ahr-RORγt-Foxp3 axis in regulating gut homing receptor GPR15 expression by lymphocytes.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - John W Bostick
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jian Ye
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zongming E Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcus Mühlbauer
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
19
|
Murray IA, Perdew GH. How Ah Receptor Ligand Specificity Became Important in Understanding Its Physiological Function. Int J Mol Sci 2020; 21:ijms21249614. [PMID: 33348604 PMCID: PMC7766308 DOI: 10.3390/ijms21249614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Increasingly, the aryl hydrocarbon receptor (AHR) is being recognized as a sensor for endogenous and pseudo-endogenous metabolites, and in particular microbiota and host generated tryptophan metabolites. One proposed explanation for this is the role of the AHR in innate immune signaling within barrier tissues in response to the presence of microorganisms. A number of cytokine/chemokine genes exhibit a combinatorial increase in transcription upon toll-like receptors and AHR activation, supporting this concept. The AHR also plays a role in the enhanced differentiation of intestinal and dermal epithelium leading to improved barrier function. Importantly, from an evolutionary perspective many of these tryptophan metabolites exhibit greater activation potential for the human AHR when compared to the rodent AHR. These observations underscore the importance of the AHR in barrier tissues and may lead to pharmacologic therapeutic intervention.
Collapse
|
20
|
Kazzaz SA, Giani Tagliabue S, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders. Gen Comp Endocrinol 2020; 299:113592. [PMID: 32858041 PMCID: PMC7771225 DOI: 10.1016/j.ygcen.2020.113592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AHR) plays pleiotropic roles in the development and physiology of vertebrates in conjunction with xenobiotic and endogenous ligands. It is best known for mediating the toxic effects of dioxin-like pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While most vertebrates possess at least one AHR that binds TCDD tightly, amphibian AHRs bind TCDD with very low affinity. Previous analyses of AHRs from Xenopus laevis (a frog; order Anura) and Ambystoma mexicanum (a salamander; order Caudata) identified three amino acid residues in the ligand-binding domain (LBD) that underlie low-affinity binding. In X. laevis AHR1β, these are A354, A370, and N325. Here we extend the analysis of amphibian AHRs to the caecilian Gymnopis multiplicata, representing the remaining extant amphibian order, Gymnophiona. G. multiplicata AHR groups with the monophyletic vertebrate AHR/AHR1 clade. The LBD includes all three signature residues of low TCDD affinity, and a structural homology model suggests that its architecture closely resembles those of other amphibians. In transactivation assays, the EC50 for reporter gene induction by TCDD was 17.17 nM, comparable to X. laevis AhR1β (26.23 nM) and Ambystoma AHR (34.09 nM) and dramatically higher than mouse AhR (0.13 nM), a trend generally reflected in direct measures of TCDD binding. These shared properties distinguish amphibian AHRs from the high-affinity proteins typical of both vertebrate groups that diverged earlier (teleost fish) and those that appeared more recently (other tetrapods). These findings suggest the hypothesis that AHRs with low TCDD affinity represent a characteristic that evolved in a common ancestor of all three extant amphibian groups.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Biology Department, Kenyon College, Gambier, OH 43022, USA
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Diana G Franks
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA
| | - Mark E Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Wade H Powell
- Biology Department, Kenyon College, Gambier, OH 43022, USA.
| |
Collapse
|
21
|
Nakano N, Sakata N, Katsu Y, Nochise D, Sato E, Takahashi Y, Yamaguchi S, Haga Y, Ikeno S, Motizuki M, Sano K, Yamasaki K, Miyazawa K, Itoh S. Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. J Biol Chem 2020; 295:9033-9051. [PMID: 32409577 PMCID: PMC7335805 DOI: 10.1074/jbc.ra120.013596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 1A1 (CYP1A1) catalyzes the metabolic activation of polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and is transcriptionally regulated by the aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) complex upon exposure to PAHs. Accordingly, inhibition of CYP1A1 expression reduces production of carcinogens from PAHs. Although transcription of the CYP1A1 gene is known to be repressed by transforming growth factor-β (TGF-β), how TGF-β signaling is involved in the suppression of CYP1A1 gene expression has yet to be clarified. In this study, using mammalian cell lines, along with shRNA-mediated gene silencing, CRISPR/Cas9-based genome editing, and reporter gene and quantitative RT-PCR assays, we found that TGF-β signaling dissociates the B[a]P-mediated AhR/ARNT heteromeric complex. Among the examined Smads, Smad family member 3 (Smad3) strongly interacted with both AhR and ARNT via its MH2 domain. Moreover, hypoxia-inducible factor 1α (HIF-1α), which is stabilized upon TGF-β stimulation, also inhibited AhR/ARNT complex formation in the presence of B[a]P. Thus, TGF-β signaling negatively regulated the transcription of the CYP1A1 gene in at least two different ways. Of note, TGF-β abrogated DNA damage in B[a]P-exposed cells. We therefore conclude that TGF-β may protect cells against carcinogenesis because it inhibits CYP1A1-mediated metabolic activation of PAHs as part of its anti-tumorigenic activities.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Nobuo Sakata
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yuki Katsu
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Daiki Nochise
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Erika Sato
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yuta Takahashi
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Saori Yamaguchi
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yoko Haga
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Souichi Ikeno
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Mitsuyoshi Motizuki
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keigo Sano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Kohei Yamasaki
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
22
|
Kim JW, Im I, Kim H, Jeon JS, Kang EH, Jo S, Chun HS, Yoon S, Kim JH, Kim SK, Park HJ. Live-cell screening platform using human-induced pluripotent stem cells expressing fluorescence-tagged cytochrome P450 1A1. FASEB J 2020; 34:9141-9155. [PMID: 32421247 DOI: 10.1096/fj.201903110r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) are invaluable sources for drug screening and toxicity tests because of their differentiation potential and proliferative capacity. Recently, the CRISPR-Cas9-mediated homologous recombination system has enabled reporter knock-ins at desired loci in hiPSCs, and here, we generated a hiPSC reporter line expressing mCherry-tagged cytochrome P450 1A1 (CYP1A1), which can be utilized to screen for the modulators of aryl hydrocarbon receptor (AHR) in live cells. CYP1A1-mCherry hiPSCs exhibited typical characteristics of pluripotent stem cells such as marker expression, differentiation potential, and normal karyotype. After differentiation into hepatocyte-like cells (HLCs), CYP1A1-mCherry fusion protein was expressed and localized at the endoplasmic reticulum, and induced by AHR agonists. We obtained 23 hits modulating CYP1A1 expression from high-content screening with 241 hepatotoxicity chemicals and nuclear receptor ligands, and identified three upregulating chemicals and two downregulating compounds. Responses of hiPSC-HLCs against an AHR agonist were more similar to human primary hepatocytes than of HepG2 hepatocellular carcinoma cells. This platform has the advantages of live-cell screening without sacrificing cells (unlike previously available CYP1A1 reporter cell lines), as well as an indefinite supply of cells, and can be utilized in a wide range of screening related to AHR- and CYP1A1-associated diseases in desired cell types.
Collapse
Affiliation(s)
- Ji-Woo Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ilkyun Im
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hye Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, Republic of Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hang-Suk Chun
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Moura-Alves P, Puyskens A, Stinn A, Klemm M, Guhlich-Bornhof U, Dorhoi A, Furkert J, Kreuchwig A, Protze J, Lozza L, Pei G, Saikali P, Perdomo C, Mollenkopf HJ, Hurwitz R, Kirschhoefer F, Brenner-Weiss G, Weiner J, Oschkinat H, Kolbe M, Krause G, Kaufmann SHE. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science 2020; 366:366/6472/eaaw1629. [PMID: 31857448 DOI: 10.1126/science.aaw1629] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa rapidly adapts to altered conditions by quorum sensing (QS), a communication system that it uses to collectively modify its behavior through the production, release, and detection of signaling molecules. QS molecules can also be sensed by hosts, although the respective receptors and signaling pathways are poorly understood. We describe a pattern of regulation in the host by the aryl hydrocarbon receptor (AhR) that is critically dependent on qualitative and quantitative sensing of P. aeruginosa quorum. QS molecules bind to AhR and distinctly modulate its activity. This is mirrored upon infection with P. aeruginosa collected from diverse growth stages and with QS mutants. We propose that by spying on bacterial quorum, AhR acts as a major sensor of infection dynamics, capable of orchestrating host defense according to the status quo of infection.
Collapse
Affiliation(s)
- Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany. .,Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Andreas Puyskens
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Anne Stinn
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.,Structural Systems Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.,Department of Structural Infection Biology, Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (HZI), 22607 Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148 Hamburg, Germany
| | - Marion Klemm
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Ute Guhlich-Bornhof
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.,Institute of Immunology, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Jens Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Annika Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.,Epiontis GmbH-Precision for Medicine, 12489 Berlin, Germany
| | - Gang Pei
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Philippe Saikali
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Carolina Perdomo
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Hans J Mollenkopf
- Microarray Core Facility, Max Planck Institute for Infection Biology, Department of Immunology, 10117 Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Frank Kirschhoefer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Michael Kolbe
- Structural Systems Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.,Department of Structural Infection Biology, Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (HZI), 22607 Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148 Hamburg, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany. .,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Doan TQ, Berntsen HF, Verhaegen S, Ropstad E, Connolly L, Igout A, Muller M, Scippo ML. A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113098. [PMID: 31479813 DOI: 10.1016/j.envpol.2019.113098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
While humans are exposed to mixtures of persistent organic pollutants (POPs), their risk assessment is usually based on a chemical-by-chemical approach. To assess the health effects associated with mixed exposures, knowledge on mixture toxicity is required. Several POPs are potential ligands of the Aryl hydrocarbon receptor (AhR), which involves in xenobiotic metabolism and controls many biological pathways. This study assesses AhR agonistic and antagonistic activities of 29 POPs individually and in mixtures by using Chemical-Activated LUciferase gene eXpression bioassays with 3 transgenic cell lines (rat hepatoma DR-H4IIE, human hepatoma DR-Hep G2 and human mammary gland carcinoma DR-T47-D). Among the 29 POPs, which were selected based on their abundance in Scandinavian human blood, only 4 exerted AhR agonistic activities, while 16 were AhR antagonists in DR-H4IIE, 5 in DR-Hep G2 and 7 in DR-T47-D when tested individually. The total POP mixture revealed to be AhR antagonistic. It antagonized EC50 TCDD inducing AhR transactivation at a concentration of 125 and 250 and 500 fold blood levels in DR-H4IIE, DR-T47-D and DR-Hep G2, respectively, although each compound was present at these concentrations lower than their LOEC values. Such values could occur in real-life in food contamination incidents or in exposed populations. In DR-H4IIE, the antagonism of the total POP mixture was due to chlorinated compounds and, in particular, to PCB-118 and PCB-138 which caused 90% of the antagonistic activity in the POP mixture. The 16 active AhR antagonists acted additively. Their mixed effect was predicted successfully by concentration addition or generalized concentration addition models, rather than independent action, with only two-fold IC50 underestimation. We also attained good predictions for the full dose-response curve of the antagonistic activity of the total POP mixture.
Collapse
Affiliation(s)
- T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - H F Berntsen
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 8149 Dep, Oslo, N-0033, Norway
| | - S Verhaegen
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway
| | - E Ropstad
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway
| | - L Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT7 1NN, UK
| | - A Igout
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - M Muller
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
25
|
Shi H, Hardesty JE, Jin J, Head KZ, Falkner KC, Cave MC, Prough RA. Concentration dependence of human and mouse aryl hydrocarbon receptor responsiveness to polychlorinated biphenyl exposures: Implications for aroclor mixtures. Xenobiotica 2019; 49:1414-1422. [PMID: 30991879 DOI: 10.1080/00498254.2019.1566582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Aryl hydrocarbon receptor (AhR) ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs), are endocrine disrupting chemicals associated with nonalcoholic fatty liver disease. This study documents the species-specific differences between mouse (high affinity mAhR) and human AhR (hAhR) activation by PCB congeners and Aroclor mixtures. 2. AhR activation by TCDD or PCBs 77, 81, 114, 114, 126, and 169 was measured using luciferase reporter constructs transfected into either Hepa1c1c7 mouse or HepG2 human liver cell lines. The EC50 values were lower in Hepa1c1c7 cells than HepG2 cells for all compounds tested except PCB 81. The results for TCDD and PCB 126 were validated in primary human and mouse hepatocytes by measuring CYP1A1 gene transcript levels. 3. Because humans are exposed to PCB mixtures, several mixtures (Aroclors 1254; 1260; and 1260 + 0.1% PCB126 each at 10 µg/ml) were then tested. Neither Aroclor 1254 nor Aroclor 1260 increased luciferase activity by the transfected AhR reporter construct. The Aroclor 1260 + 0.1% PCB 126 mixture induced mAhR-mediated transactivation, but not hAhR activation in cell lines. 4. In summary, significant concentration-dependent differences exist between human and mouse AhR activation by PCBs. Relative effect potencies differed, in some cases, from published toxic equivalency factors.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Josiah E Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville , KY , USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine , Louisville , KY , USA
| | - Kimberly Z Head
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville , KY , USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, University of Louisville School of Medicine , Louisville , KY , USA
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, University of Louisville School of Medicine , Louisville , KY , USA
| | - Russell Allen Prough
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine , Louisville , KY , USA
| |
Collapse
|
26
|
Hubbard TD, Liu Q, Murray IA, Dong F, Miller C, Smith PB, Gowda K, Lin JM, Amin S, Patterson AD, Perdew GH. Microbiota Metabolism Promotes Synthesis of the Human Ah Receptor Agonist 2,8-Dihydroxyquinoline. J Proteome Res 2019; 18:1715-1724. [PMID: 30777439 DOI: 10.1021/acs.jproteome.8b00946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a major regulator of immune function within the gastrointestinal tract. Resident microbiota are capable of influencing AHR-dependent signaling pathways via production of an array of bioactive molecules that act as AHR agonists, such as indole or indole-3-aldehyde. Bacteria produce a number of quinoline derivatives, of which some function as quorum-sensing molecules. Thus, we screened relevant hydroxyquinoline derivatives for AHR activity using AHR responsive reporter cell lines. 2,8-Dihydroxyquinoline (2,8-DHQ) was identified as a species-specific AHR agonist that exhibits full AHR agonist activity in human cell lines, but only induces modest AHR activity in mouse cells. Additional dihydroxylated quinolines tested failed to activate the human AHR. Nanomolar concentrations of 2,8-DHQ significantly induced CYP1A1 expression and, upon cotreatment with cytokines, synergistically induced IL6 expression. Ligand binding competition studies subsequently confirmed 2,8-DHQ to be a human AHR ligand. Several dihydroxyquinolines were detected in human fecal samples, with concentrations of 2,8-DHQ ranging between 0 and 3.4 pmol/mg feces. Additionally, in mice the microbiota was necessary for the presence of DHQ in cecal contents. These results suggest that microbiota-derived 2,8-DHQ would contribute to AHR activation in the human gut, and thus participate in the protective and homeostatic effects observed with gastrointestinal AHR activation.
Collapse
Affiliation(s)
| | | | | | | | - Charles Miller
- Department of Global Environmental Health Sciences , Tulane University School of Public Health and Tropical Medicine , New Orleans , Louisiana 70112 , United States
| | | | - Krishne Gowda
- Department of Pharmacology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States
| | - Jyh Ming Lin
- Department of Biochemistry and Molecular Biology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States
| | - Shantu Amin
- Department of Pharmacology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States
| | | | | |
Collapse
|
27
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
28
|
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018; 9:3294. [PMID: 30120222 PMCID: PMC6098093 DOI: 10.1038/s41467-018-05470-4] [Citation(s) in RCA: 1282] [Impact Index Per Article: 183.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence implicates metabolites produced by gut microbes as crucial mediators of diet-induced host-microbial cross-talk. Here, we review emerging data suggesting that microbial tryptophan catabolites resulting from proteolysis are influencing host health. These metabolites are suggested to activate the immune system through binding to the aryl hydrocarbon receptor (AHR), enhance the intestinal epithelial barrier, stimulate gastrointestinal motility, as well as secretion of gut hormones, exert anti-inflammatory, anti-oxidative or toxic effects in systemic circulation, and putatively modulate gut microbial composition. Tryptophan catabolites thus affect various physiological processes and may contribute to intestinal and systemic homeostasis in health and disease.
Collapse
Affiliation(s)
- Henrik M Roager
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-1958, Frederiksberg, Denmark.
- National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
29
|
Defois C, Ratel J, Garrait G, Denis S, Le Goff O, Talvas J, Mosoni P, Engel E, Peyret P. Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems. Sci Rep 2018; 8:11006. [PMID: 30030472 PMCID: PMC6054606 DOI: 10.1038/s41598-018-29376-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Growing evidence indicates that the human gut microbiota interacts with xenobiotics, including persistent organic pollutants and foodborne chemicals. The toxicological relevance of the gut microbiota-pollutant interplay is of great concern since chemicals may disrupt gut microbiota functions, with a potential impairment of host homeostasis. Herein we report within batch fermentation systems the impact of food contaminants (polycyclic aromatic hydrocarbons, polychlorobiphenyls, brominated flame retardants, dioxins, pesticides and heterocyclic amines) on the human gut microbiota by metatranscriptome and volatolome i.e. “volatile organic compounds” analyses. Inflammatory host cell response caused by microbial metabolites following the pollutants-gut microbiota interaction, was evaluated on intestinal epithelial TC7 cells. Changes in the volatolome pattern analyzed via solid-phase microextraction coupled to gas chromatography-mass spectrometry mainly resulted in an imbalance in sulfur, phenolic and ester compounds. An increase in microbial gene expression related to lipid metabolism processes as well as the plasma membrane, periplasmic space, protein kinase activity and receptor activity was observed following dioxin, brominated flame retardant and heterocyclic amine exposure. Conversely, all food contaminants tested induced a decreased in microbial transcript levels related to ribosome, translation and nucleic acid binding. Finally, we demonstrated that gut microbiota metabolites resulting from pollutant disturbances may promote the establishment of a pro-inflammatory state in the gut, as stated with the release of cytokine IL-8 by intestinal epithelial cells.
Collapse
|
30
|
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11:1024-1038. [PMID: 29626198 DOI: 10.1038/s41385-018-0019-2] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 02/04/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Lamas
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Harry Sokol
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France. .,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France.
| |
Collapse
|
31
|
Belton K, Tian Y, Zhang L, Anitha M, Smith PB, Perdew GH, Patterson AD. Metabolomics Reveals Aryl Hydrocarbon Receptor Activation Induces Liver and Mammary Gland Metabolic Dysfunction in Lactating Mice. J Proteome Res 2018; 17:1375-1382. [PMID: 29521512 PMCID: PMC5898790 DOI: 10.1021/acs.jproteome.7b00709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 01/28/2023]
Abstract
The liver and the mammary gland have complementary metabolic roles during lactation. Substrates synthesized by the liver are released into the circulation and are taken up by the mammary gland for milk production. The aryl hydrocarbon receptor (AHR) has been identified as a lactation regulator in mice, and its activation has been associated with myriad morphological, molecular, and functional defects such as stunted gland development, decreased milk production, and changes in gene expression. In this study, we identified adverse metabolic changes in the lactation network (mammary, liver, and serum) associated with AHR activation using 1H nuclear magnetic resonance (NMR)-based metabolomics. Pregnant mice expressing Ahr d (low affinity) or Ahr b (high affinity) were fed diets containing beta naphthoflavone (BNF), a potent AHR agonist. Mammary, serum, and liver metabolomics analysis identified significant changes in lipid and TCA cycle intermediates in the Ahr b mice. We observed decreased amino acid and glucose levels in the mammary gland extracts of Ahr b mice fed BNF. The serum of BNF fed Ahr b mice had significant changes in LDL/VLDL (increased) and HDL, PC, and GPC (decreased). Quantitative PCR analysis revealed ∼50% reduction in the expression of key lactogenesis mammary genes including whey acid protein, α-lactalbumin, and β-casein. We also observed morphologic and developmental disruptions in the mammary gland that are consistent with previous reports. Our observations support that AHR activity contributes to metabolism regulation in the lactation network.
Collapse
Affiliation(s)
- Kerry
R. Belton
- Department
of Veterinary and Biomedical Sciences, Center
for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuan Tian
- Department
of Veterinary and Biomedical Sciences, Center
for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- CAS Key Laboratory of Magnetic Resonance in Biological
Systems, State Key Laboratory of Magnetic Resonance and Atomic and
Molecular Physics, National Centre for Magnetic Resonance in Wuhan,
Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Limin Zhang
- Department
of Veterinary and Biomedical Sciences, Center
for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- CAS Key Laboratory of Magnetic Resonance in Biological
Systems, State Key Laboratory of Magnetic Resonance and Atomic and
Molecular Physics, National Centre for Magnetic Resonance in Wuhan,
Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Mallappa Anitha
- Department
of Veterinary and Biomedical Sciences, Center
for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip B. Smith
- Metabolomics
Facility, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gary H. Perdew
- Department
of Veterinary and Biomedical Sciences, Center
for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrew D. Patterson
- Department
of Veterinary and Biomedical Sciences, Center
for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Tarnow P, Bross S, Wollenberg L, Nakajima Y, Ohmiya Y, Tralau T, Luch A. A Novel Dual-Color Luciferase Reporter Assay for Simultaneous Detection of Estrogen and Aryl Hydrocarbon Receptor Activation. Chem Res Toxicol 2017; 30:1436-1447. [DOI: 10.1021/acs.chemrestox.7b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Patrick Tarnow
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Steffi Bross
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lisa Wollenberg
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Yoshihiro Nakajima
- Health
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yoshihiro Ohmiya
- DAILAB,
Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
33
|
Formosa R, Vassallo J. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland. Discov Oncol 2017. [PMID: 28634910 DOI: 10.1007/s12672-017-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta. .,Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
34
|
Murray IA, Perdew GH. Ligand activation of the Ah receptor contributes to gastrointestinal homeostasis. CURRENT OPINION IN TOXICOLOGY 2017; 2:15-23. [PMID: 28944314 DOI: 10.1016/j.cotox.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Ah receptor (AHR) is capable of binding a structurally diverse group of compounds that can be found in the diet, produced by bacteria in the gut and through endogenous metabolism. The gastrointestinal tract is a rich source of AHR ligands, which have been shown to protect the gut upon challenge with either pathogenic bacteria or toxic chemicals. The human AHR can be activated by a broader range of ligands compared to the mouse AHR, suggesting that studies in mice may underestimate the impact of AHR ligands in the human gut. The protective effect of AHR activation appears to be due to modulating the immune system within the gut. While several mechanisms have been established, due to the increasingly pleotropic nature of the AHR, other mechanisms of action likely exist that remain to be identified. The major contributors to AHR function in the gut and the most appropriate level of receptor activation that maintains intestinal homeostasis warrants further investigation.
Collapse
Affiliation(s)
- Iain A Murray
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802
| |
Collapse
|
35
|
Kovalova N, Nault R, Crawford R, Zacharewski TR, Kaminski NE. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells. Toxicol Appl Pharmacol 2016; 316:95-106. [PMID: 27913140 DOI: 10.1016/j.taap.2016.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized that TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes.
Collapse
Affiliation(s)
- Natalia Kovalova
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824, USA.
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Robert Crawford
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824, USA.
| | - Timothy R Zacharewski
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824, USA.
| |
Collapse
|
36
|
Hubbard TD, Murray IA, Bisson WH, Sullivan AP, Sebastian A, Perry GH, Jablonski NG, Perdew GH. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution. Mol Biol Evol 2016; 33:2648-58. [PMID: 27486223 DOI: 10.1093/molbev/msw143] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking.
Collapse
Affiliation(s)
- Troy D Hubbard
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Oregon State University
| | | | | | - George H Perry
- Department of Biology, Pennsylvania State University Department of Anthropology, Pennsylvania State University
| | | | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University
| |
Collapse
|
37
|
Gutierrez MA, Davis SS, Rosko A, Nguyen SM, Mitchell KP, Mateen S, Neves J, Garcia TY, Mooney S, Perdew GH, Hubbard TD, Lamba DA, Ramanathan A. A novel AhR ligand, 2AI, protects the retina from environmental stress. Sci Rep 2016; 6:29025. [PMID: 27364765 PMCID: PMC4929558 DOI: 10.1038/srep29025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice.
Collapse
Affiliation(s)
- Mark A Gutierrez
- University of Denver, Colorado 2199 S University Blvd, Denver, CO 80208, USA
| | - Sonnet S Davis
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Andrew Rosko
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Steven M Nguyen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Kylie P Mitchell
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Samiha Mateen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Joana Neves
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Shaun Mooney
- University of Washington Box 358047 Seattle, WA 98195, USA
| | - Gary H Perdew
- The Pennsylvania State University, Center for Molecular Toxicology and Carcinogenesis, 309 Life Sciences Building, University Park, PA 16802, USA
| | - Troy D Hubbard
- The Pennsylvania State University, Center for Molecular Toxicology and Carcinogenesis, 309 Life Sciences Building, University Park, PA 16802, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Arvind Ramanathan
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| |
Collapse
|
38
|
Hrubik J, Glisic B, Tubic A, Ivancev-Tumbas I, Kovacevic R, Samardzija D, Andric N, Kaisarevic S. Toxicological and chemical investigation of untreated municipal wastewater: Fraction- and species-specific toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:153-162. [PMID: 26829069 DOI: 10.1016/j.ecoenv.2016.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution.
Collapse
Affiliation(s)
- Jelena Hrubik
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Branka Glisic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Aleksandra Tubic
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia
| | - Ivana Ivancev-Tumbas
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia
| | - Radmila Kovacevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Dragana Samardzija
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Sonja Kaisarevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia.
| |
Collapse
|
39
|
Zhou L. AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol 2016; 37:17-31. [PMID: 26700314 PMCID: PMC4707131 DOI: 10.1016/j.it.2015.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with AHR's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for AHR in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate AHR transcription and function. I propose a conceptual framework in which AHR function is determined by three factors: the amount of AHR in any given cell, the abundance and potency of AHR ligands within certain tissues, and the tissue microenvironment wherein AHR(+) cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of AHR function.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
40
|
Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos 2015; 43:1522-35. [PMID: 26041783 PMCID: PMC4576673 DOI: 10.1124/dmd.115.064246] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor recognized for its role in xenobiotic metabolism. The physiologic function of AHR has expanded to include roles in immune regulation, organogenesis, mucosal barrier function, and the cell cycle. These functions are likely dependent upon ligand-mediated activation of the receptor. High-affinity ligands of AHR have been classically defined as xenobiotics, such as polychlorinated biphenyls and dioxins. Identification of endogenous AHR ligands is key to understanding the physiologic functions of this enigmatic receptor. Metabolic pathways targeting the amino acid tryptophan and indole can lead to a myriad of metabolites, some of which are AHR ligands. Many of these ligands exhibit species selective preferential binding to AHR. The discovery of specific tryptophan metabolites as AHR ligands may provide insight concerning where AHR is activated in an organism, such as at the site of inflammation and within the intestinal tract.
Collapse
Affiliation(s)
- Troy D Hubbard
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology (T.D.H.), and Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences (T.D.H., I.A.M., G.H.P)., Pennsylvania State University, University Park, Pennsylvania
| | - Iain A Murray
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology (T.D.H.), and Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences (T.D.H., I.A.M., G.H.P)., Pennsylvania State University, University Park, Pennsylvania
| | - Gary H Perdew
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology (T.D.H.), and Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences (T.D.H., I.A.M., G.H.P)., Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
41
|
Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci Rep 2015; 5:12689. [PMID: 26235394 PMCID: PMC4522678 DOI: 10.1038/srep12689] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023] Open
Abstract
Ligand activation of the aryl hydrocarbon (AHR) has profound effects upon the immunological status of the gastrointestinal tract, establishing and maintaining signaling networks, which facilitate host-microbe homeostasis at the mucosal interface. However, the identity of the ligand(s) responsible for such AHR-mediated activation within the gut remains to be firmly established. Here, we combine in vitro ligand binding, quantitative gene expression, protein-DNA interaction and ligand structure activity analyses together with in silico modeling of the AHR ligand binding domain to identify indole, a microbial tryptophan metabolite, as a human-AHR selective agonist. Human AHR, acting as a host indole receptor may exhibit a unique bimolecular (2:1) binding stoichiometry not observed with typical AHR ligands. Such bimolecular indole-mediated activation of the human AHR within the gastrointestinal tract may provide a foundation for inter-kingdom signaling between the enteric microflora and the immune system to promote commensalism within the gut.
Collapse
|
42
|
Shoots J, Fraccalvieri D, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6993-7001. [PMID: 25941739 PMCID: PMC4454367 DOI: 10.1021/acs.est.5b01299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.
Collapse
Affiliation(s)
- Jenny Shoots
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| | - Domenico Fraccalvieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616 USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Wade H. Powell
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| |
Collapse
|
43
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as ‘dioxin’. AHR influences the major stages of tumorigenesis — initiation, promotion, progression and metastasis — and physiologically relevant AHR ligands are often formed during disease states or during heightened innate and adaptive immune responses. Interestingly, ligand specificity and affinity vary between rodents and humans. Studies of aggressive tumours and tumour cell lines show increased levels of AHR and constitutive localization of this receptor in the nucleus. This suggests that the AHR is chronically activated in tumours, thus facilitating tumour progression. This Review discusses the role of AHR in tumorigenesis and the potential for therapeutic modulation of its activity in tumours.
Collapse
|
44
|
Kennedy GD, Nukaya M, Moran SM, Glover E, Weinberg S, Balbo S, Hecht SS, Pitot HC, Drinkwater NR, Bradfield CA. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors. Toxicol Sci 2014; 140:135-43. [PMID: 24718703 DOI: 10.1093/toxsci/kfu065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn ("dioxin"). To this end, we first employed congenic mice homozygous for either the Ahr(b1) or Ahr(d) alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by "interleukin-1 (IL-1)-like" inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the "IL-1-like" cytokines.
Collapse
Affiliation(s)
- Gregory D Kennedy
- Department of Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Manabu Nukaya
- Department of Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Susan M Moran
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Edward Glover
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Samuel Weinberg
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Henry C Pitot
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Norman R Drinkwater
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Christopher A Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
45
|
Farmahin R, Jones SP, Crump D, Hahn ME, Giesy JP, Zwiernik MJ, Bursian SJ, Kennedy SW. Species-specific relative AHR1 binding affinities of 2,3,4,7,8-pentachlorodibenzofuran explain avian species differences in its relative potency. Comp Biochem Physiol C Toxicol Pharmacol 2014; 161:21-5. [PMID: 24434118 DOI: 10.1016/j.cbpc.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Results of recent studies showed that 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are equipotent in domestic chicken (Gallus gallus domesticus) while PeCDF is more potent than TCDD in ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica). To elucidate the mechanism(s) underlying these differences in relative potency of PeCDF among avian species, we tested the hypothesis that this is due to species-specific differential binding affinity of PeCDF to the aryl hydrocarbon receptor 1 (AHR1). Here, we modified a cell-based binding assay that allowed us to measure the binding affinity of dioxin-like compounds (DLCs) to avian AHR1 expressed in COS-7 (fibroblast-like cells). The results of the binding assay show that PeCDF and TCDD bind with equal affinity to chicken AHR1, but PeCDF binds with greater affinity than TCDD to pheasant (3-fold) and Japanese quail (5-fold) AHR1. The current report introduces a COS-7 whole-cell binding assay and provides a mechanistic explanation for differential relative potencies of PeCDF among species of birds.
Collapse
Affiliation(s)
- Reza Farmahin
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Stephanie P Jones
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Doug Crump
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Mark E Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Biology & Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Matthew J Zwiernik
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Sean W Kennedy
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada.
| |
Collapse
|
46
|
Wilson SR, Joshi AD, Elferink CJ. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther 2013; 345:419-29. [PMID: 23512538 PMCID: PMC3657114 DOI: 10.1124/jpet.113.203786] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/18/2013] [Indexed: 01/17/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-mediated basic helix-loop-helix transcription factor of the Per/Arnt/Sim family that regulates adaptive and toxic responses to a variety of chemical pollutants, including polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons, most notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand activation leads to AhR nuclear translocation and binding to a xenobiotic response element (XRE) in association with the Arnt to regulate gene expression. Several recent genome-wide transcriptional studies identified numerous AhR target genes that lack the canonical XRE recognition site in the promoter regions. Characterization of one such target gene, the plasminogen activator inhibitor 1, identified a novel nonconsensus XRE (NC-XRE) that confers TCDD responsiveness independently of the Arnt protein. Studies reported here show that the NC-XRE is a recognition site for the AhR and a new binding partner, the Kruppel-like factor (KLF) family member KLF6. In vivo chromatin immunoprecipitations and in vitro DNA binding studies demonstrate that the AhR and KLF6 proteins form an obligatory heterodimer necessary for NC-XRE binding. Mutational analyses show that the protein-protein interactions involve the AhR C terminus and KLF6 N terminus, respectively. Moreover, NC-XRE binding depends on the 5' basic region in KLF6 rather than the previously characterized zinc finger DNA binding domain. Collectively, the results unmask a novel AhR signaling mechanism distinct from the canonical XRE-driven process that will enrich our future understanding of AhR biology.
Collapse
Affiliation(s)
- Shelly R Wilson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | | | | |
Collapse
|
47
|
Indoxyl 3-sulfate stimulates Th17 differentiation enhancing phosphorylation of c-Src and STAT3 to worsen experimental autoimmune encephalomyelitis. Toxicol Lett 2013; 220:109-17. [PMID: 23639249 DOI: 10.1016/j.toxlet.2013.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/01/2023]
Abstract
Although AhR activation regulates CD4T cell differentiation, how it works has yet to be elucidated. In the present study, using in vitro Th17 differentiation model, we examined effects of AhR activation by indoxyl 3-sulfate (I3S), a uremic toxin, on Th17 differentiation and investigated underlying mechanisms. I3S increased expression of RORγt, the master transcription factor for Th17 differentiation, and stimulated Th17 differentiation, in a comparative manner as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a prototypical AhR ligand. Activation of STAT3, which is phosphorylated by the IL-6 signaling pathways and thus is necessary for Th17 differentiation, was strongly stimulated by I3S and TCDD. Phosphorylation of c-Src, which was shown to be activated by AhR ligands, was also increased by I3S and TCDD, and blocking of c-Src activity by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine (PP2) inhibited phosphorylation of both c-Src and STAT3, raising a possibility that stimulatory activities of I3S and TCDD on Th17 differentiation could be exerted via increased phosphorylation of c-Src, which in turn stimulates STAT3 activation. Finally, we found that I3S worsened experimental autoimmune encephalomyelitis (EAE), which is primarily mediated by Th17 cells, enhancing the frequency of IL-17-producing cells in draining lymph nodes.
Collapse
|
48
|
Odio C, Holzman SA, Denison MS, Fraccalvieri D, Bonati L, Franks DG, Hahn ME, Powell WH. Specific ligand binding domain residues confer low dioxin responsiveness to AHR1β of Xenopus laevis. Biochemistry 2013; 52:1746-54. [PMID: 23394719 DOI: 10.1021/bi301722k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a Per-ARNT-Sim (PAS) family protein that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vertebrates. Frogs are remarkably insensitive to TCDD, and AHRs from Xenopus laevis bind TCDD with low affinity. We sought to identify structural features of X. laevis AHR1β associated with low TCDD sensitivity. Substitution of the entire ligand binding domain (LBD) with the corresponding sequence from mouse AHR(b-1) dramatically increased TCDD responsiveness in transactivation assays. To identify the amino acid residues responsible, we constructed a comparative model of the AHR1β LBD using homologous domains of PAS proteins HIF2α and ARNT. The model revealed an internal cavity with dimensions similar to those of the putative binding cavity of mouse AHR(b-1), suggesting the importance of side chain interactions over cavity size. Of residues with side chains clearly pointing into the cavity, only two differed from the mouse sequence. When A354, located within a conserved β-strand, was changed to serine, the corresponding mouse residue, the EC50 for TCDD decreased more than 15-fold. When N325 was changed to serine, the EC50 decreased 3-fold. When the mutations were combined, the EC50 decreased from 18.6 to 0.8 nM, the value nearly matching the TCDD sensitivity of mouse AHR. Velocity sedimentation analysis confirmed that mutant frog AHRs exhibited correspondingly increased levels of TCDD binding. We also assayed mutant AHRs for responsiveness to a candidate endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ). Mutations that increased sensitivity to TCDD also increased sensitivity to FICZ. This comparative study represents a novel approach to discerning fundamental information about the structure of AHR and its interactions with biologically important agonists.
Collapse
Affiliation(s)
- Camila Odio
- Biology Department, Kenyon College , Gambier, Ohio 43022, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis GmbH, Neurather Ring 1, Koeln, Germany.
| | | |
Collapse
|
50
|
Farmahin R, Manning GE, Crump D, Wu D, Mundy LJ, Jones SP, Hahn ME, Karchner SI, Giesy JP, Bursian SJ, Zwiernik MJ, Fredricks TB, Kennedy SW. Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds. Toxicol Sci 2012; 131:139-52. [PMID: 22923492 DOI: 10.1093/toxsci/kfs259] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sensitivity of avian species to the toxic effects of dioxin-like compounds (DLCs) varies up to 1000-fold among species, and this variability has been associated with interspecies differences in aryl hydrocarbon receptor 1 ligand-binding domain (AHR1 LBD) sequence. We previously showed that LD(50) values, based on in ovo exposures to DLCs, were significantly correlated with in vitro EC(50) values obtained with a luciferase reporter gene (LRG) assay that measures AHR1-mediated induction of cytochrome P4501A in COS-7 cells transfected with avian AHR1 constructs. Those findings suggest that the AHR1 LBD sequence and the LRG assay can be used to predict avian species sensitivity to DLCs. In the present study, the AHR1 LBD sequences of 86 avian species were studied, and differences at amino acid sites 256, 257, 297, 324, 337, and 380 were identified. Site-directed mutagenesis, the LRG assay, and homology modeling highlighted the importance of each amino acid site in AHR1 sensitivity to 2,3,7,8-tetrachlorodibenzo-p-dioxin and other DLCs. The results of the study revealed that (1) only amino acids at sites 324 and 380 affect the sensitivity of AHR1 expression constructs of the 86 avian species to DLCs and (2) in vitro luciferase activity of AHR1 constructs containing only the LBD of the species of interest is significantly correlated (r (2) = 0.93, p < 0.0001) with in ovo toxicity data for those species. These results indicate promise for the use of AHR1 LBD amino acid sequences independently, or combined with the LRG assay, to predict avian species sensitivity to DLCs.
Collapse
Affiliation(s)
- Reza Farmahin
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|