1
|
Zhu X, Dong Q, Cai X, Yin J, Liu Y, Gao X, Jiang Q, Liu G, Zhang X. The immune defense response and immune-related genes expression in Odontobutis potamophila infected by Aeromonas salmonicida. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101397. [PMID: 39667088 DOI: 10.1016/j.cbd.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Aeromonas salmonicida belongs to the Aeromonas family, which could widely infect economic fish, causing diseases and huge economic losses. Recently, A. salmonicida was also detected in diseased Odontobutis potamophila. Transcriptomic model of A. salmonicida-infected O. potamophila was analyzed to reveal immune response. A total of 113,282 unigenes were obtained and annotated in six databases. After 12 h of infection with A. salmonicides, a total of 614 differentially expressed genes (DEGs) (355 up-regulated genes and 259 down-regulated genes) were identified in the head kidney tissues. Following 24 h of infection, a total of 1689 DEGs were detected in the head kidney tissues, including 313 up-regulated genes and 1376 down-regulated genes. GO and KEGG pathway analyses were conducted to provide functional insights and a clearer understanding of the signal transduction pathways associated with the DEGs. Further analysis of the complement and coagulation cascades pathway and PPAR signaling pathway exhibited that the expression of immune genes was widely activated at the beginning of A. salmonicides infection. Additionally, six DEGs were randomly selected and validated using quantitative real-time PCR, showing expression patterns consistent with the high-throughput sequencing data. These results offer important insights that enhance the understanding of immune response in O. potamophila against A. salmonicida infection.
Collapse
Affiliation(s)
- Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jia Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guoxing Liu
- Research Center of Characteristic Fish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Mao J, Yan Y, Wu Q, Wang M, Dai J, Niu K, Zheng L, Jiang C, Jiang F, Zhang W, Tao K, Dai J. Gold Nanoparticles Carrying Mannose-Binding Lectin and Inflammatory Cytokine Antibodies Improve Sepsis Survival by Modulating Immunity and Reducing Pathogens. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20658-20670. [PMID: 40152885 DOI: 10.1021/acsami.4c21055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, and early management of both the infection and the excessive inflammatory response is key to its treatment. In this study, we designed a nanoformulation, termed AuNPs-Mixed, to control bacterial infection and modulate the excessive inflammatory response. AuNPs-Mixed was prepared by equimolarly combining four nanoparticle formulations, each consisting of gold nanoparticles (AuNPs) conjugated separately with mannose-binding lectin (MBL) and three different antibodies targeting pro-inflammatory cytokines: interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α). MBL facilitates the targeted recognition of pathogenic bacteria, while the cytokine-specific antibodies aim to reduce the levels of inflammatory cytokines. The formulation was administered to septic mice for 72 h. The results showed that, compared to the groups treated with AuNPs alone, AuNPs carrying MBL (AuNPs-MBL), and the blank control group, mice receiving the AuNPs-Mixed treatment exhibited significantly lower bacterial loads in the blood, liver, spleen, and kidneys (p < 0.05), reduced levels of inflammatory cytokines, less organ damage, and markedly higher survival rates (p < 0.05). Fluorescence confocal microscopy confirmed that the AuNPs-MBL preparation could bind to Escherichia coli, the primary infectious agent in the sepsis model, facilitating subsequent phagocytosis by macrophages. In the acute toxicity study, no significant differences were observed in body weight, complete blood cell counts, or histopathological analysis of major organs in mice over 7 days (p > 0.05). In conclusion, this study demonstrates that the AuNPs-Mixed formulation effectively reduces bacterial loads in blood and organs, lowers inflammatory cytokine levels, mitigates organ damage, and significantly improves survival rates while showing no evident acute toxicity in mice.
Collapse
Affiliation(s)
- Jian Mao
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Yujie Yan
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of Northwest University, Xi'an 710127, China
| | - Qimei Wu
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Miao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jimin Dai
- Department of Hepatobiliary Surgery, The First Medical Center, PLA General Hospital, Beijing 100853, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Zheng
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Cheng Jiang
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Fan Jiang
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
| | - Wenjuan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyao Dai
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
| |
Collapse
|
3
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025:10.1038/s41582-025-01073-y. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Tong H, Zhao Y, Cui Y, Yao J, Zhang T. Multi-omic studies on the pathogenesis of Sepsis. J Transl Med 2025; 23:361. [PMID: 40128726 PMCID: PMC11934817 DOI: 10.1186/s12967-025-06366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/08/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening inflammatory condition, and its underlying genetic mechanisms are not yet fully elucidated. We applied methods such as Mendelian randomization (MR), genetic correlation analysis, and colocalization analysis to integrate multi-omics data and explore the relationship between genetically associated genes and sepsis, as well as sepsis-related mortality, with the goal of identifying key genetic factors and their potential mechanistic pathways. METHODS To identify therapeutic targets for sepsis and sepsis-related mortality, we conducted an MR analysis on 11,643 sepsis cases and 1,896 cases of 28-day sepsis mortality from the UK Biobank cohort. The exposure data consisted of 15,944 potential druggable genes (expression quantitative trait loci, eQTL) and 4,907 plasma proteins (protein quantitative trait loci, pQTL). We then performed sensitivity analysis, SMR analysis, reverse MR analysis, genetic correlation analysis, colocalization analysis, enrichment analysis, and protein-protein interaction network analysis on the overlapping genes. Validation was conducted using 17,133 sepsis cases from FinnGen R12. Drug prediction and molecular docking were subsequently used to further assess the therapeutic potential of the identified drug targets, while PheWAS was used to evaluate potential side effects. Finally, mediation analysis was conducted to identify the mediating role of related metabolites. RESULTS The MR analysis results identified a significant causal relationship between 24 genes and sepsis. The robustness of these causal associations was further strengthened by SMR analysis, sensitivity analysis, and reverse MR analysis. Genetic correlation analysis revealed that only two of these genes were genetically correlated with sepsis. Colocalization analysis showed that only one gene was closely associated with sepsis, while validation using the FinnGen dataset identified three genes. In the MR analysis of 28-day sepsis mortality, seven genes were found to have significant associations, with reverse MR analysis excluding one gene. The remaining genes passed sensitivity analysis, with no significant genes identified in genetic correlation and colocalization analyses. Molecular docking demonstrated excellent binding affinity between drugs and proteins with available structural data. PheWAS at the gene level did not reveal any potential side effects of the related drugs. CONCLUSIONS The identified drug targets, associated pathways, and metabolites have enhanced our understanding of the complex relationships between genes and sepsis. These genes and metabolites can serve as effective targets for sepsis treatment, paving new pathways in this field and laying a foundation for future research.
Collapse
Affiliation(s)
- Hongjie Tong
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhang Zhao
- Department of Neurology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ying Cui
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiali Yao
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
5
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
6
|
Corradetti G, Karamat A, Srinivas S, Lindenberg S, Velaga SB, Corvi F, Attiku Y, Nittala MG, Desai D, Zhu L, Abulon D, Sadda SR. Progression to complete retinal pigment epithelium and outer retinal atrophy (cRORA): post hoc analysis of the GATHER1 trial. Graefes Arch Clin Exp Ophthalmol 2025; 263:669-677. [PMID: 39538001 PMCID: PMC11953152 DOI: 10.1007/s00417-024-06676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Determine rates of progression of incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) to complete retinal pigment epithelium and outer retinal atrophy (cRORA) and rates of progression of drusen to iRORA/cRORA in eyes with geographic atrophy (GA) treated with avacincaptad pegol (ACP). METHODS Post hoc analysis of the GATHER1 prospective, randomized, double-masked Phase II/III study that evaluated ACP 2 mg vs. sham. Optical coherence tomography (OCT) data from GATHER1 were transferred to the Doheny Image Reading and Research Lab for masked analysis by readers experienced with Classification of Atrophy Meeting (CAM) grading features. Regions of OCT volume scans more than 500 µm from the border of GA lesions were evaluated at baseline and at months 6, 12, and 18. Participants with iRORA and/or drusen (≥ 40 µm height on OCT) at baseline were included in the analysis. RESULTS The proportion of eyes progressing from iRORA to cRORA in the ACP 2 mg group was 5.0%, 15.0%, and 20.0% at months 6, 12, and 18 respectively, as compared with 11.8%, 30.2%, and 41.8% of eyes in the sham group. The proportion of ACP 2 mg-treated eyes progressing from drusen to iRORA or cRORA was 3.8%, 7.6%, and 7.6% at months 6, 12, and 18 compared with 15.9%, 18.1%, and 27.2% of sham-treated eyes. CONCLUSIONS Rates of progression from iRORA to cRORA and drusen to iRORA/cRORA were reduced in eyes treated with ACP 2 mg vs. sham, with increasing separation between groups over time, suggesting early intervention may slow disease progression. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02686658. Date of registration: February 16, 2016. KEY MESSAGES What is known Geographic atrophy is an advanced form of age-related macular degeneration (AMD) that leads to irreversible vision loss, presenting a significant public health unmet need. The Classification of Atrophy Meeting (CAM) group recommended a new nomenclature for advanced AMD lesions, based on the affected anatomical layers on optical coherence tomography. Accordingly, the terms incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) and complete retinal pigment epithelium and outer retinal atrophy (cRORA) were introduced (Guymer et al., Ophthalmology 127:394-409, 2020; Sadda et al., Ophthalmology 125:537-548, 2018). What is new GATHER1 post hoc analysis shows that treatment with avacincaptad pegol (ACP) 2 mg decreases the proportion of eyes that progress from iRORA to cRORA, and from drusen to iRORA or cRORA, compared with sham, over 6, 12, and 18 months. These findings suggest a potential role for ACP in delaying the progression of existing pre-atrophic AMD lesions.
Collapse
Affiliation(s)
- Giulia Corradetti
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Ayesha Karamat
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Sowmya Srinivas
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Sophiana Lindenberg
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Swetha B Velaga
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Federico Corvi
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Yamini Attiku
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Muneeswar Gupta Nittala
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA
| | - Dhaval Desai
- Formerly Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Liansheng Zhu
- Formerly Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | | | - SriniVas R Sadda
- Doheny Image Reading and Research Lab, Doheny Eye Institute, 150 N. Orange Grove Blvd, Pasadena, CA, 91103, USA.
- Department of Ophthalmology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
McCaleb ML, Hughes SG, Grossman TR, Frazer-Abel A, Jung B, Yin L, Henry SP, Monia BP, Schneider E, Geary R, Brice GT. Inhibiting the alternative pathway of complement by reducing systemic complement factor B: Randomized, double-blind, placebo-controlled phase 1 studies with Sefaxersen. Immunobiology 2025; 230:152876. [PMID: 39893955 DOI: 10.1016/j.imbio.2025.152876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/21/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
An over-active alternative complement pathway has been implicated in the pathophysiology of multiple diseases, including IgA nephropathy and geographic atrophy secondary to age related macular degeneration. In first-in-human double-blind, placebo-controlled phase 1 studies, the safety and pharmacodynamic effects of sefaxersen (RO7434656), a GalNAc-conjugated 2'-MOE antisense oligonucleotide targeting the complement factor B mRNA, was investigated. Healthy volunteers received either single or repeated (for 6 weeks) subcutaneous administrations of investigational drug or placebo. Safety and plasma complement protein levels were assessed throughout the studies and during 90-day follow-up periods. All subjects (54) completed the studies and no safety signals or clinically meaningful changes in blood chemistry, urinalysis, hematology, ECG, vital signs or ocular endpoints were observed. Mean levels of systemic complement factor B (FB) were reduced up to 38 % after single administration and 69 % after repeated administration. Lowering of FB protein was paralleled by similar reductions of plasma Bb levels. There was a strong correlation between reduction of plasma levels of FB and alternative complement pathway activity (AH50), but no meaningful changes in classical complement pathway activity (CH50). The long duration of lowering of FB levels following the last dose supports monthly dosing in future clinical trials. These clinical results support the ongoing Phase 2 development for geographic atrophy secondary to age-related macular degeneration and Ph 2/3 development for IgA nephropathy.
Collapse
Affiliation(s)
- Michael L McCaleb
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Steven G Hughes
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Tamar R Grossman
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Ashley Frazer-Abel
- Exsera Biolabs, University of Colorado Denver, 1775 Aurora Ct., Aurora, CO 80045, USA
| | - Bill Jung
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Lixuan Yin
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Scott P Henry
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Brett P Monia
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Eugene Schneider
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Richard Geary
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Gary T Brice
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA.
| |
Collapse
|
8
|
Khan MA, Bajwa A, Hussain ST. Pneumonia: Recent Updates on Diagnosis and Treatment. Microorganisms 2025; 13:522. [PMID: 40142415 PMCID: PMC11945699 DOI: 10.3390/microorganisms13030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Pneumonia remains a leading cause of mortality internationally, making it an intense area of study for new tools for diagnosis and treatment. In this review, we evaluate the potential of recently emerging syndromic panels in promoting rapid diagnosis and improved antibiotic stewardship. We will also examine emerging treatments, including new antibiotics in a world of worsening antimicrobial resistance, in addition to new methods of delivery and non-antibiotic paths of treatment.
Collapse
Affiliation(s)
- Maaz Ahsan Khan
- Department of Internal Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Awais Bajwa
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Syed Talal Hussain
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Narasipura SD, Zayas JP, Ash MK, Reyes AF, Shull T, Gambut S, Szczerkowski JLA, McKee C, Schneider JR, Lorenzo-Redondo R, Al-Harthi L, Mamede JI. Inflammatory responses revealed through HIV infection of microglia-containing cerebral organoids. J Neuroinflammation 2025; 22:36. [PMID: 39930449 PMCID: PMC11808982 DOI: 10.1186/s12974-025-03353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Cerebral organoids (COs) are valuable tools for studying the intricate interplay between glial cells and neurons in brain development and disease, including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and inducing pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly with the neuronal progenitors. Compared with conventional COs, CO-iMs were more efficient at generating CD45+/CD11b+/Iba-1+ microglia and presented a physiologically relevant proportion of microglia (~ 7%). CO-iMs presented substantially increased expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs are susceptible to HIV infection, resulting in a significant increase in several pro-inflammatory cytokines/chemokines, which are abrogated by the addition of antiretrovirals. Thus, CO-iM is a robust model for deciphering neuropathogenesis, neuroinflammation, and viral infections of brain cells in a 3D culture system.
Collapse
Affiliation(s)
- Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Janet P Zayas
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Michelle K Ash
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Anjelica F Reyes
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie Gambut
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - James L A Szczerkowski
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Charia McKee
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - João I Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Yang R, Fu D, Liao A. The role of complement in tumor immune tolerance and drug resistance: a double-edged sword. Front Immunol 2025; 16:1529184. [PMID: 39958348 PMCID: PMC11825488 DOI: 10.3389/fimmu.2025.1529184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
The domain of cancer treatment has persistently been confronted with significant challenges, including those associated with recurrence and drug resistance. The complement system, which serves as the foundation of the innate immune system, exhibits intricate and nuanced dual characteristics in the evolution of tumors. On the one hand, the complement system has the capacity to directly inhibit cancer cell proliferation via specific pathways, thereby exerting a beneficial anti-tumor effect. Conversely, the complement system can also facilitate the establishment of an immune escape barrier for cancer cells through non-complement-mediated mechanisms, thereby protecting them from eradication. Concurrently, the complement system can also be implicated in the emergence of drug resistance through a multitude of complex mechanisms, directly or indirectly reducing the efficacy of therapeutic interventions and facilitating the progression of cancer. This paper analyses the role of the complement system in tumors and reviews recent research advances in the mechanisms of tumor immune tolerance and drug resistance.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Blood Transfusion, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Fu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Practice, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Stocker BW, LaCroix IS, Erickson C, Gallagher LT, Ramser BJ, Thielen O, Hallas W, Mitra S, Moore EE, Hansen K, D'Alessandro A, Silliman CC, Cohen MJ. Trauma patients with type O blood exhibit unique multiomics signature with decreased lectin pathway of complement levels. J Trauma Acute Care Surg 2024; 97:753-763. [PMID: 38745347 PMCID: PMC11502284 DOI: 10.1097/ta.0000000000004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND Patients with type O blood may have an increased risk of hemorrhagic complications because of lower baseline levels of von Willebrand factor and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond von Willebrand factor and factor VIII alone. METHODS Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multiomics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multiomics data were compared between patients with type O blood versus all other patients. RESULTS There were 288 patients with multiomics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend toward decreased mortality secondary to traumatic brain injury compared with other causes (traumatic brain injury, 44.4% vs. 87.5%; p = 0.055). Type O patients had decreased levels of mannose-binding lectin and mannose-binding lectin-associated serine proteases 1 and 2, which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION Blood type O patients have a unique multiomics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase, possibly leading to a survival advantage, especially in traumatic brain injury. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
Affiliation(s)
- Benjamin W Stocker
- From the Department of Surgery (B.W.S., L.T.G., B.J.R., O.T., W.H., S.M., E.E.M., C.C.S., M.J.C.), and Department of Biochemistry and Molecular Genetics (I.S.L., C.E., K.H., A.D.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora; Department of Surgery (E.E.M.), Ernest E Moore Shock Trauma Center, Denver Health Medical Center; Vitalant Research Institute (C.C.S.), Denver; and Department of Pediatrics (C.C.S.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xue Q, Lai H, Zhang H, Li G, Pi F, Wu Q, Liu S, Yang F, Chen T. Selenium Attenuates Radiation Colitis by Regulating cGAS-STING Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403918. [PMID: 39348242 PMCID: PMC11600249 DOI: 10.1002/advs.202403918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/12/2024] [Indexed: 10/02/2024]
Abstract
Radiation colitis is one of the most common complications in patients undergoing pelvic radiotherapy and there is no effective treatment in the clinic. Therefore, searching for effective agents for the treatment of radiation colitis is urgently needed. Herein, it is found that the essential element selenium (Se) is protective against radiation colitis through inhibiting X-ray-induced apoptosis, cell cycle arrest, and inflammation with the involvement of balancing the generation of reactive oxygen species after the irradiation. Mechanistically, Se, especially for selenium nanoparticles (SeNPs), induced selenoprotein expression and then functioned to effectively restrain DNA damage response, which reduced X-ray-induced intestinal injury. Additionally, SeNPs treatment also restrained the cyclic GMP-AMP synthas (cGAS)- stimulator of interferon genes (STING)-TBK1-IRF3 signaling pathway cascade, thereby blocking the transcription of inflammatory cytokine gene, IL-6 and TNF-α, and thus alleviating inflammation. Moreover, inducing selenoprotein expression, such as GPX4, with SeNPs in vivo can regulate intestinal microenvironment immunity and gut microbiota to attenuate radiation-induced colitis by inhibiting oxidative stress and maintaining microenvironment immunity homeostasis. Together, these results unravel a previously unidentified modulation role that SeNPs restrained radiation colitis with the involvement of inducing selenoprotein expression but suppressing cGAS-STING-TBK1-IRF3 cascade.
Collapse
Affiliation(s)
- Qian Xue
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Haoqiang Lai
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Haimei Zhang
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Guizhen Li
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Fen Pi
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Qifeng Wu
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Siwei Liu
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Fang Yang
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| | - Tianfeng Chen
- Department of Radiation Oncology of Puning People's HospitalDepartment of Chemistry of Jinan UniversityState Key Laboratory of Bioactive Molecules and Druggalibility AssessmentMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangdongChina
| |
Collapse
|
13
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 PMCID: PMC11623386 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
14
|
Jiang H, Guo Y, Wang Q, Wang Y, Peng D, Fang Y, Yan L, Ruan Z, Zhang S, Zhao Y, Zhang W, Shang W, Feng Z. The dysfunction of complement and coagulation in diseases: the implications for the therapeutic interventions. MedComm (Beijing) 2024; 5:e785. [PMID: 39445002 PMCID: PMC11496570 DOI: 10.1002/mco2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
The complement system, comprising over 30 proteins, is integral to the immune system, and the coagulation system is critical for vascular homeostasis. The activation of the complement and coagulation systems involves an organized proteolytic cascade, and the overactivation of these systems is a central pathogenic mechanism in several diseases. This review describes the role of complement and coagulation system activation in critical illness, particularly sepsis. The complexities of sepsis reveal significant knowledge gaps that can be compared to a profound abyss, highlighting the urgent need for further investigation and exploration. It is well recognized that the inflammatory network, coagulation, and complement systems are integral mechanisms through which multiple factors contribute to increased susceptibility to infection and may result in a disordered immune response during septic events in patients. Given the overlapping pathogenic mechanisms in sepsis, immunomodulatory therapies currently under development may be particularly beneficial for patients with sepsis who have concurrent infections. Herein, we present recent findings regarding the molecular relationships between the coagulation and complement pathways in the advancement of sepsis, and propose potential intervention targets related to the crosstalk between coagulation and complement, aiming to provide more valuable treatment of sepsis.
Collapse
Affiliation(s)
- Honghong Jiang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Yiming Guo
- Department of Biological Science, The Dietrich School of Arts and SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qihang Wang
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yiran Wang
- Department of Obstetrics and GynecologyThe sixth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Dingchuan Peng
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yigong Fang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Lei Yan
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Zhuolin Ruan
- Department of Obstetrics and Gynecology,Chinese PLA General HospitalBeijingChina
| | - Sheng Zhang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Yong Zhao
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wendan Zhang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Wei Shang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhichun Feng
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| |
Collapse
|
15
|
Panse JP, Höchsmann B, Schubert J. Paroxysmal Nocturnal Hemoglobinuria, Pathophysiology, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:310-320. [PMID: 39371251 PMCID: PMC11452172 DOI: 10.1159/000540474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/19/2024] [Indexed: 10/08/2024] Open
Abstract
Background Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by intravascular hemolysis (IVH) due to diminished or absent inhibition of the complement system because of deficient expression of cell-anchored complement regulating surface proteins. IVH leads to heterogeneous symptoms such as anemia, abdominal pain, dyspnea, fatigue and increased rates of thrombophilia. Inhibitors of the terminal Complement cascade can reverse IVH leading to a significant reduction of disease burden such as thrombembolic events and also mortality. Summary Therapeutic inhibitors of the terminal complement cascade such as eculizumab or ravulizumab significantly improve overall survival through IVH-inhibition. However, not all patients experience complete disease control with normalization of hemoglobin levels and absolute reticulocyte counts (ARC) under terminal complement inhibition as a significant part of patients develop extravascular hemolysis (EVH). EVH can be clinically relevant causing persistent anemia and fatigue. New proximal complement inhibitors (CI) mainly targeting complement component C3 or factors of the amplification pathway such as pegcetacoplan, danicopan, and iptacopan became available and are meanwhile approved for marketing. Additional complement-inhibiting strategies are under clinical development. A switch from terminal to proximal CI in patients with significant EVH can achieve hemoglobin and ARC normalization and significant improvement in quality of life (QoL). Additional approvals of proximal CI agents for the treatment of hemolytic PNH in the first line are available for pegcetacoplan and iptacopan. So far, no evidence-based algorithm is available for decision-making in first-line treatment of which type of drug should be used for individual patients. Key Messages Terminal CIs in hemolytic PNH patients can block IVH and have led to a dramatically improved survival. Proximal CIs ameliorate anemia and improve QoL in patients with relevant EVH. However, more (real-world) data are needed to demonstrate long-term improvement in all patients with hemolytic PNH, especially those under first-line treatment with proximal CI.
Collapse
Affiliation(s)
- Jens Peter Panse
- Department of Hematology, Oncology, University RWTH Medical School, Aachen, Germany
| | - Britta Höchsmann
- Institute for Clinical Transfusion Medicine and Immunogenetics, University Clinic, Ulm, Germany
| | - Jörg Schubert
- Department of Hematology, Oncology, Elblandklinikum, Riesa, University Hospital, Dresden, Germany
| |
Collapse
|
16
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
17
|
Rosberg R, Smolag KI, Sjölund J, Johansson E, Bergelin C, Wahldén J, Pantazopoulou V, Ceberg C, Pietras K, Blom AM, Pietras A. Hypoxia-induced complement component 3 promotes aggressive tumor growth in the glioblastoma microenvironment. JCI Insight 2024; 9:e179854. [PMID: 39172519 PMCID: PMC11466187 DOI: 10.1172/jci.insight.179854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma with a high rate of relapse despite intensive treatment. Tumor recurrence is tightly linked to radio-resistance, which in turn is associated with hypoxia. Here, we discovered a strong link between hypoxia and local complement signaling using publicly available bulk, single-cell, and spatially resolved transcriptomic data from patients with GBM. Complement component 3 (C3) and the receptor C3AR1 were both associated with aggressive disease and shorter survival in human glioma. In a genetically engineered mouse model of GBM, we found C3 specifically in hypoxic tumor areas. In vitro, we found an oxygen level-dependent increase in C3 and C3AR1 expression in response to hypoxia in several GBM and stromal cell types. C3a induced M2 polarization of cultured microglia and macrophages in a C3aR-dependent fashion. Targeting C3aR using the antagonist SB290157 prolonged survival of glioma-bearing mice both alone and in combination with radiotherapy while reducing the number of M2-polarized macrophages. Our findings establish a strong link between hypoxia and complement pathways in GBM and support a role of hypoxia-induced C3a/C3aR signaling as a contributor to glioma aggressiveness by regulating macrophage polarization.
Collapse
Affiliation(s)
- Rebecca Rosberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Karolina I. Smolag
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Christina Bergelin
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Julia Wahldén
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Crister Ceberg
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Pu Q, Dai Y, Hu N, Tao Z, Shi P, Jiang N, Shi L, Fang Z, Wang R, Hu X, Jin K, Li J. Early predictors of Epstein-Barr virus infection in patients with severe fever with thrombocytopenia syndrome. Virol J 2024; 21:179. [PMID: 39107822 PMCID: PMC11304918 DOI: 10.1186/s12985-024-02452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) can be reactivated and proliferated with fatal outcome in immuno-compromised people, but the clinical consequences of EBV infection in patients with severe fever with thrombocytopenia syndrome (SFTS) remain uncertain. In this study, we investigated the infection rate, the influence and the early predictors of EBV infection in SFTS patients. METHODS In this retrospective study, SFTS patients who were treated in the First Affiliated Hospital of Nanjing Medical University from May 2011 to August 2021 were enrolled and divided into infected and non-infected groups. We compared the demographic characteristics, clinical manifestations and signs, laboratory tests and prognosis, and explored the risk factors of EBV infection by receiver operating characteristic (ROC) curve and logistic regression. RESULTS A total of 120 hospitalized SFTS patients with EBV-DNA testing were enrolled in this study. Patients with EBV infection had statistically significant higher mortality rate (32.0% vs. 11.43%, P = 0.005). Compared with the non-infected group, the EBV-infected group had higher levels of C-reactive protein (CRP), creatine-kinase (CK), fasting blood glucose (FBG), blood urea nitrogen (BUN), D-dimer, and CD56+ cell counts, lower levels of immunoglobulin G (IgG), IgM, complement 3 (C3), and C4. The proportion of patients with age ≥ 60 years and ferritin > 1500.0 ng/ml in the EBV-infected group was significantly higher than that in the non-infected group. The results of ROC analysis showed that the cut-off values of CRP, IgG, C3, C4, and CD56+ cell counts to predict EBV infection were 13.2 mg/l, 12.5 g/l, 1.1 g/l, 0.6 g/l, 0.3 g/l, and 94.0 cells/µl. Multivariable logistic analysis showed that age ≥ 60 years old, CRP > 13.2 mg/l, BUN > 5.4 mmol/l, ferritin > 1500.0 ng/ml, IgG < 12.5 g/l, IgM < 1.1 g/l, C4 < 0.3 g/l, and CD56+ cell counts > 94.0 cells/µl were the independent risk factors of EBV infection in SFTS patients. CONCLUSIONS SFTS combined with EBV infection is associated with high morbidity and mortality. It is necessary to strengthen screening for EBV infection and its early predictive markers after admission in SFTS patients.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Dai
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nannan Hu
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ziwei Tao
- Department of Infectious Disease, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ping Shi
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nan Jiang
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Luchen Shi
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zegui Fang
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ran Wang
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuehui Hu
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ke Jin
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Li
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
Nagarajan A, Scoggin K, Adams LG, Threadgill D, Andrews-Polymenis H. Identification of a genetic region linked to tolerance to MRSA infection using Collaborative Cross mice. PLoS Genet 2024; 20:e1011378. [PMID: 39178306 PMCID: PMC11407622 DOI: 10.1371/journal.pgen.1011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/17/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Abstract
Staphylococcus aureus (S. aureus) colonizes humans asymptomatically but can also cause opportunistic infections, ranging from mild skin infections to severe life-threatening conditions. Resistance and tolerance are two ways a host can survive an infection. Resistance is limiting the pathogen burden, while tolerance is limiting the health impact of a given pathogen burden. In previous work, we established that collaborative cross (CC) mouse line CC061 is highly susceptible to Methicillin-resistant S. aureus infection (MRSA, USA300), while CC024 is tolerant. To identify host genes involved in tolerance after S. aureus infection, we crossed CC061 mice and CC024 mice to generate F1 and F2 populations. Survival after MRSA infection in the F1 and F2 generations was 65% and 55% and followed a complex dominant inheritance pattern for the CC024 increased survival phenotype. Colonization in F2 animals was more extreme than in their parents, suggesting successful segregation of genetic factors. We identified a Quantitative Trait Locus (QTL) peak on chromosome 7 for survival and weight change after infection. In this QTL, the WSB/EiJ (WSB) allele was present in CC024 mice and contributed to their MRSA tolerant phenotype. Two genes, C5ar1 and C5ar2, have high-impact variants in this region. C5ar1 and C5ar2 are receptors for the complement factor C5a, an anaphylatoxin that can trigger a massive immune response by binding to these receptors. We hypothesize that C5a may have altered binding to variant receptors in CC024 mice, reducing damage caused by the cytokine storm and resulting in the ability to tolerate a higher pathogen burden and longer survival.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
20
|
Hamers SMWR, Abendstein L, Boyle AL, Jongkees SAK, Sharp TH. Selection and characterization of a peptide-based complement modulator targeting C1 of the innate immune system. RSC Chem Biol 2024; 5:787-799. [PMID: 39092440 PMCID: PMC11289891 DOI: 10.1039/d4cb00081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The human complement pathway plays a pivotal role in immune defence, homeostasis, and autoimmunity regulation, and complement-based therapeutics have emerged as promising interventions, with both antagonistic and agonistic approaches being explored. The classical pathway of complement is initiated when the C1 complex binds to hexameric antibody platforms. Recent structural data revealed that C1 binds to small, homogeneous interfaces at the periphery of the antibody platforms. Here, we have developed a novel strategy for complement activation using macrocyclic peptides designed to mimic the interface between antibodies and the C1 complex. In vitro selection utilizing the RaPID system identified a cyclic peptide (cL3) that binds to the C1 complex via the globular head domains of C1q. Notably, when immobilized on surfaces, cL3 effectively recruits C1 from human serum, activates C1s proteases, and induces lysis of cell-mimetic lipid membranes. This represents the first instance of a peptide capable of activating complement by binding C1 when immobilized. Further characterization and synthesis of deletion mutants revealed a critical cycle size of cL3 essential for C1 binding and efficient complement activation. Importantly, cL3 also demonstrated the ability to inhibit complement-mediated lysis without affecting C1 binding, highlighting its potential as a therapeutic modality to prevent complement-dependent cytotoxicity whilst promoting cellular phagocytosis and cell clearance. In summary, this study introduces the concept of "Peptactins" - peptide-based activators of complement - and underscores the potential of macrocyclic peptides for complement modulation, offering potential advantages over traditional biologicals in terms of size, production, and administration.
Collapse
Affiliation(s)
- Sebastiaan M W R Hamers
- Department of Cell and Chemical Biology, Leiden University Medical Centre 2300 RC Leiden The Netherlands
| | - Leoni Abendstein
- Department of Cell and Chemical Biology, Leiden University Medical Centre 2300 RC Leiden The Netherlands
| | - Aimee L Boyle
- Leiden Institute of Chemistry, Leiden University 2333 CC Leiden The Netherlands
- School of Chemistry, University of Bristol Bristol BS8 1QU UK
| | - Seino A K Jongkees
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam 1081 HV Amsterdam The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre 2300 RC Leiden The Netherlands
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| |
Collapse
|
21
|
Stasiłojć M, Stasiłojć G, Kuźniewska A, Rodriguez de Córdoba S, Okrój M. A Cell-Based Assay to Measure the Activity of the Complement Convertases. Kidney Int Rep 2024; 9:2260-2268. [PMID: 39081762 PMCID: PMC11284395 DOI: 10.1016/j.ekir.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The complement system serves as a crucial defense mechanism against invading pathogens; however, dysregulation of this system can result in harmful consequences. Central to the complement cascade are the classical pathway (CP) or lectin pathway (LP) and the alternative pathway (AP) convertases. Aberrant regulation of the convertases is often implicated in the development of rare complement-related diseases. However, analyzing convertase activity poses a significant challenge due to their labile nature and intricate interactions with serum proteins. Methods In this study, we propose a novel assay for the functional evaluation of these complexes. Our approach leverages a widely available human lymphoma cell line, which when sensitized with antibodies, triggers activation of the CP with a substantial amplification by the AP. The combined action of 2, C5 blockers eculizumab and crovalimab let the cascade proceed up to the level of convertases but not further. In the next step, C5 inhibitors were washed away and guinea pig serum in ethylenediamine tetraacetic acid (EDTA) buffer supported the development of lytic sites on the platform of preexisting convertases. Results The assay detects recombinant gain-of-function (GoF) components of both convertase types within human serum or plasma. Furthermore, we demonstrate the assay's practical utility in analyzing nephrological patients harboring C3 genetic variants and illustrate its capacity to distinguish between patients and asymptomatic relatives carrying the same pathogenic C3 variant. Conclusion We provided a proof-of-concept of a new assay that detects convertase overactivity in individuals carrying variants of both pathogenic character or those of unknown significance in ubiquitous complement proteins such as C3.
Collapse
Affiliation(s)
- Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
22
|
Narasipura SD, Zayas JP, Ash MK, Reyes A, Shull T, Gambut S, Schneider JR, Lorenzo-Redondo R, Al-Harthi L, Mamede JI. HIV-1 infection promotes neuroinflammation and neuron pathogenesis in novel microglia-containing cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598579. [PMID: 38915632 PMCID: PMC11195220 DOI: 10.1101/2024.06.13.598579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cerebral organoids (COs) are a valuable tool to study the intricate interplay between glial cells and neurons in brain development and disease, including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and induced pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly to the neuronal progenitors. CO- iMs exhibited higher efficiency in generation of CD45 + /CD11b + /Iba-1 + microglia cells compared to conventional COs with physiologically relevant proportion of microglia (∼7%). CO-iMs exhibited substantially higher expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs showed susceptibility to HIV infection resulting in a significant increase in several pro-inflammatory cytokines/chemokines and compromised neuronal function, which were abrogated by addition of antiretrovirals. Thus, CO-iM is a robust model to decipher neuropathogenesis, neurological disorders, and viral infections of brain cells in a 3D culture system.
Collapse
|
23
|
Zhang J, Meng Y, Yang M, Hao W, Liu J, Wu L, Yu X, Zhang Y, Lin B, Xie C, Ge L, Zhijie Zhang, Tong W, Chang Q, Liu Y, Zhang Y, Qin X. A prospective cohort-based artificial intelligence evaluation system for the protective efficacy and immune response of SARS-CoV-2 inactivated vaccines. Int Immunopharmacol 2024; 134:112141. [PMID: 38733819 DOI: 10.1016/j.intimp.2024.112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Novel coronaviruses constitute a significant health threat, prompting the adoption of vaccination as the primary preventive measure. However, current evaluations of immune response and vaccine efficacy are deemed inadequate. OBJECTIVES The study sought to explore the evolving dynamics of immune response at various vaccination time points and during breakthrough infections. It aimed to elucidate the synergistic effects of epidemiological factors, humoral immunity, and cellular immunity. Additionally, regression curves were used to determine the correlation between the protective efficacy of the vaccine and the stimulated immune response. METHODS Employing LASSO for high-dimensional data analysis, the study utilised four machine learning algorithms-logistical regression, random forest, LGBM classifier, and AdaBoost classifier-to comprehensively assess the immune response following booster vaccination. RESULTS Neutralising antibody levels exhibited a rapid surge post-booster, escalating to 102.38 AU/mL at one week and peaking at 298.02 AU/mL at two weeks. Influential factors such as sex, age, disease history, and smoking status significantly impacted post-booster antibody levels. The study further constructed regression curves for neutralising antibodies, non-switched memory B cells, CD4+T cells, and CD8+T cells using LASSO combined with the random forest algorithm. CONCLUSION The establishment of an artificial intelligence evaluation system emerges as pivotal for predicting breakthrough infection prognosis after the COVID-19 booster vaccination. This research underscores the intricate interplay between various components of immunity and external factors, elucidating key insights to enhance vaccine effectiveness. 3D modelling discerned distinctive interactions between humoral and cellular immunity within prognostic groups (Class 0-2). This underscores the critical role of the synergistic effect of humoral immunity, cellular immunity, and epidemiological factors in determining the protective efficacy of COVID-19 vaccines post-booster administration.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuan Meng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaojun Yu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lili Ge
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
24
|
Gu D, Xia Y, Ding Z, Qian J, Gu X, Bai H, Jiang M, Yao D. Inflammation in the Peripheral Nervous System after Injury. Biomedicines 2024; 12:1256. [PMID: 38927464 PMCID: PMC11201765 DOI: 10.3390/biomedicines12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve injury is a common condition that occurs as a result of trauma, iatrogenic injury, or long-lasting stimulation. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) has a strong capacity for self-repair and regeneration. Peripheral nerve injury results in the degeneration of distal axons and myelin sheaths. Macrophages and Schwann cells (SCs) can phagocytose damaged cells. Wallerian degeneration (WD) makes the whole axon structure degenerate, creating a favorable regenerative environment for new axons. After nerve injury, macrophages, neutrophils and other cells are mobilized and recruited to the injury site to phagocytose necrotic cells and myelin debris. Pro-inflammatory and anti-inflammatory factors involved in the inflammatory response provide a favorable microenvironment for peripheral nerve regeneration and regulate the effects of inflammation on the body through relevant signaling pathways. Previously, inflammation was thought to be detrimental to the body, but further research has shown that appropriate inflammation promotes nerve regeneration, axon regeneration, and myelin formation. On the contrary, excessive inflammation can cause nerve tissue damage and pathological changes, and even lead to neurological diseases. Therefore, after nerve injury, various cells in the body interact with cytokines and chemokines to promote peripheral nerve repair and regeneration by inhibiting the negative effects of inflammation and harnessing the positive effects of inflammation in specific ways and at specific times. Understanding the interaction between neuroinflammation and nerve regeneration provides several therapeutic ideas to improve the inflammatory microenvironment and promote nerve regeneration.
Collapse
Affiliation(s)
- Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Yiming Xia
- Medical School, Nantong University, Nantong 226001, China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Xi Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| |
Collapse
|
25
|
Huang L, Tan X, Xuan W, Luo Q, Xie L, Xi Y, Li R, Li L, Li F, Zhao M, Jiang Y, Wu X. Ficolin-A/2 Aggravates Severe Lung Injury through Neutrophil Extracellular Traps Mediated by Gasdermin D-Induced Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:989-1006. [PMID: 38442803 DOI: 10.1016/j.ajpath.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.
Collapse
Affiliation(s)
- Li Huang
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Luo
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Xie
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunzhu Xi
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Rong Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Feifan Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongliang Jiang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Xu Wu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
26
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
27
|
Song SS, Druschel LN, Conard JH, Wang JJ, Kasthuri NM, Ricky Chan E, Capadona JR. Depletion of complement factor 3 delays the neuroinflammatory response to intracortical microelectrodes. Brain Behav Immun 2024; 118:221-235. [PMID: 38458498 DOI: 10.1016/j.bbi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
28
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Tian S, Liu W, Liu B, Ye F, Xu Z, Wan Q, Li Y, Zhang X. Mechanistic study of C 5F 10O-induced lung toxicity in rats: An eco-friendly insulating gas alternative to SF 6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170271. [PMID: 38262248 DOI: 10.1016/j.scitotenv.2024.170271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The global warming and other environmental problems caused by SF6 emissions can be reduced due to the widespread use of eco-friendly insulating gas, perfluoropentanone (C5F10O). However, there is an exposure risk to populations in areas near C5F10O equipment, so it is important to clarify its biosafety and pathogenesis before large-scale application. In this paper, histopathology, transcriptomics, 4D-DIA proteomics, and LC-MS metabolomics of rats exposed to 2000 ppm and 6000 ppm C5F10O are analyzed to reveal the mechanisms of toxicity and health risks. Histopathological shows that inflammatory cell infiltration, epithelial cell hyperplasia, and alveolar atrophy accompanied by alveolar wall thickening are present in both low-dose and high-dose groups. Analysis of transcriptomic and 4D-DIA proteomic show that Cell cycle and DNA replication can be activated by both 2000 ppm and 6000 ppm C5F10O to induce cell proliferation. In addition, it also leads to the activation of pathways such as Antigen processing and presentation, Cell adhesion molecules and Complement and coagulation cascades, T cell receptor signal path, Th1 and T cell receptor signal path, Th1 and Th2 cell differentiation, complement and coagulation cascades. Finally, LC-MS metabolomics analysis confirms that the metabolic pathways associated with glycerophospholipids, arachidonic acid, and linoleic acid are disrupted and become more severe with increasing doses. The mechanism of lung toxicity caused by C5F10O is systematically expounded based on the multi-omics analysis and provided biosafety references for further promotion and application of C5F10O.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Weihao Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Benli Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Fanchao Ye
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Zhenjie Xu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qianqian Wan
- Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China; School of Electrical Engineering and Automation, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Xie HG, Jiang LP, Tai T, Ji JZ, Mi QY. The Complement System and C4b-Binding Protein: A Focus on the Promise of C4BPα as a Biomarker to Predict Clopidogrel Resistance. Mol Diagn Ther 2024; 28:189-199. [PMID: 38261250 DOI: 10.1007/s40291-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
The complement system plays a dual role in the body, either as a first-line defense barrier when balanced between activation and inhibition or as a potential driver of complement-associated injury or diseases when unbalanced or over-activated. C4b-binding protein (C4BP) was the first circulating complement regulatory protein identified and it functions as an important complement inhibitor. C4BP can suppress the over-activation of complement components and prevent the complement system from attacking the host cells through the binding of complement cleavage products C4b and C3b, working in concert as a cofactor for factor I in the degradation of C4b and C3b, and consequently preventing or reducing the assembly of C3 convertase and C5 convertase, respectively. C4BP, particularly C4BP α-chain (C4BPα), exerts its unique inhibitory effects on complement activation and opsonization, systemic inflammation, and platelet activation and aggregation. It has long been acknowledged that crosstalk or interplay exists between the complement system and platelets. Our unpublished preliminary data suggest that circulating C4BPα exerts its antiplatelet effects through inhibition of both complement activity levels and complement-induced platelet reactivity. Plasma C4BPα levels appear to be significantly higher in patients sensitive to, rather than resistant to, clopidogrel, and we suggest that a plasma C4BPα measurement could be used to predict clopidogrel resistance in the clinical settings.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
31
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
32
|
Xiao MT, Ellsworth CR, Qin X. Emerging role of complement in COVID-19 and other respiratory virus diseases. Cell Mol Life Sci 2024; 81:94. [PMID: 38368584 PMCID: PMC10874912 DOI: 10.1007/s00018-024-05157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus. We review recent mechanistic studies and animal models that can be used for further investigation. Novel knockout studies are proposed to better understand the nuances of the activation of the complement system in respiratory viral diseases.
Collapse
Affiliation(s)
- Mark T Xiao
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Calder R Ellsworth
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
33
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Wang P, Shen Y, Manaenko A, Liu F, Yang W, Xiao Z, Li P, Ran Y, Dang R, He Y, Wu Q, Xie P, Li Q. TMT-based quantitative proteomics reveals the protective mechanism of tenuigenin after experimental intracerebral hemorrhage in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117213. [PMID: 37739103 DOI: 10.1016/j.jep.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenuigenin (TNG) is an extract obtained from Polygalae Radix. It possesses anti-inflammatory, antioxidant, and neuroprotective properties. However, the potential mechanism of TNG in intracerebral hemorrhage (ICH) has not been well studied. AIM OF THE STUDY In the present study, we aimed to identify the prospective mechanism of TNG in treating ICH. MATERIALS AND METHODS A total of 120 mice were divided into five groups: Sham group, ICH + vehicle group, ICH + TNG(8 mg/kg), ICH + TNG(16 mg/kg), and ICH + TNG(32 mg/kg). The modified Garcia test and beam walking test were carried out at 24 h and 72 h after ICH. Brain water content, haematoma volume and hemoglobin content examinations were performed at 72 h after ICH. TMT-based quantitative proteomics combined with bioinformatics analysis methods was used to distinguish differentially expressed proteins (DEPs) to explore potential pharmacological mechanisms. Western blotting was performed to validate representative proteins. RESULTS Our results showed that the optimal dose of TNG was 16 mg/kg, which could markedly improve neurological functions, and reduce cerebral oedema, haematoma volume and hemoglobin levels 72 h after ICH. A total of 404 DEPs (353 up-and 51 downregulated) were identified in the ICH + vehicle vs. sham group, while 342 DEPs (306 up-and 36 downregulated) and 76 DEPs (28 up-and 48 downregulated) were quantified in the TNG vs. sham group and TNG vs. ICH + vehicle group, respectively. In addition, a total of 26 DEPs were selected according to strict criteria. Complement and coagulation cascades were the most significantly enriched pathways, and two proteins (MBL-C and Car1) were further validated as hub molecules. CONCLUSIONS Our results suggested that the therapeutic effects of TNG on ICH were closely associated with the complement system, and that MBL-C and Car1 might be potential targets of TNG for the treatment of ICH.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - YiQing Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - FangYu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - WenSong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - ZhongSong Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - PeiZheng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - YuXin Ran
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - RuoZhi Dang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - QingYuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
West EE, Woodruff T, Fremeaux-Bacchi V, Kemper C. Complement in human disease: approved and up-and-coming therapeutics. Lancet 2024; 403:392-405. [PMID: 37979593 PMCID: PMC10872502 DOI: 10.1016/s0140-6736(23)01524-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 11/20/2023]
Abstract
The complement system is recognised as a protector against blood-borne pathogens and a controller of immune system and tissue homoeostasis. However, dysregulated complement activity is associated with unwanted or non-resolving immune responses and inflammation, which induce or exacerbate the pathogenesis of a broad range of inflammatory and autoimmune diseases. Although the merit of targeting complement clinically has long been acknowledged, the overall complement drug approval rate has been modest. However, the success of the humanised anti-C5 antibody eculizumab in effectively treating paroxysmal nocturnal haemoglobinuria and atypical haemolytic syndrome has revitalised efforts to target complement therapeutically. Increased understanding of complement biology has led to the identification of novel targets for drug development that, in combination with advances in drug discovery and development technologies, has resulted in a surge of interest in bringing new complement therapeutics into clinical use. The rising number of approved drugs still almost exclusively target rare diseases, but the substantial pipeline of up-and-coming treatment options will possibly provide opportunities to also expand the clinical targeting of complement to common diseases.
Collapse
Affiliation(s)
- Erin E West
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trent Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Veronique Fremeaux-Bacchi
- Inserm UMRS1138, Centre de Recherche des Cordeliers, Inflammation, Complement, and Cancer Team, Paris, France; Department of Immunology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Detsika MG, Palamaris K, Dimopoulou I, Kotanidou A, Orfanos SE. The complement cascade in lung injury and disease. Respir Res 2024; 25:20. [PMID: 38178176 PMCID: PMC10768165 DOI: 10.1186/s12931-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The complement system is an important arm of immune defense bringing innate and adaptive immunity. Although originally regarded as a major complementary defense mechanism against pathogens, continuously emerging evidence has uncovered a central role of this complex system in several diseases including lung pathologies. MAIN BODY Complement factors such as anaphylatoxins C3a and C5a, their receptors C3aR, C5aR and C5aR2 as well as complement inhibitory proteins CD55, CD46 and CD59 have been implicated in pathologies such as the acute respiratory distress syndrome, pneumonia, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, and lung cancer. However, the exact mechanisms by which complement factors induce these diseases remain unclear. Several complement-targeting monoclonal antibodies are reported to treat lung diseases. CONCLUSIONS The complement system contributes to the progression of the acute and chronic lung diseases. Better understanding of the underlying mechanisms will provide groundwork to develop new strategy to target complement factors for treatment of lung diseases.
Collapse
Affiliation(s)
- M G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| | - K Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - A Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - S E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| |
Collapse
|
37
|
Hong Z, Zhou LS, Zhao ZZ, Yuan GQ, Wang XJ, Lu Y, Chen DF. Structural Characterization and Anticomplement Activity of an Acidic Heteropolysaccharide from Lysimachia christinae Hance. PLANTA MEDICA 2023; 89:1457-1467. [PMID: 37541436 DOI: 10.1055/a-2148-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
A novel acidic heteropolysaccharide (LCP-90-1) was isolated and purified from a traditional "heat-clearing" Chinese medicine, Lysimachia christinae Hance. LCP-90-1 (Mw, 20.65 kDa) was composed of Man, Rha, GlcA, Glc, Gal, and Ara, with relative molar ratios of 1.00: 3.00: 11.62: 1.31: 1.64: 5.24. The backbone consisted of 1,4-α-D-GlcpA, 1,4-α-D-Glcp, 1,4-β-L-Rhap, and 1,3,5-α-L-Araf, with three branches of β-D-Galp-(1 → 4)-β-L-Rhap-(1→, α-L-Araf-(1→ and α-D-Manp-(1→ attached to the C-5 position of 1,3,5-α-L-Araf. LCP-90-1 exhibited potent anticomplement activity (CH50: 135.01 ± 0.68 µg/mL) in vitro, which was significantly enhanced with increased glucuronic acid (GlcA) content in its degradation production (LCP-90-1-A, CH50: 28.26 ± 0.39 µg/mL). However, both LCP-90-1 and LCP90-1-A were inactivated after reduction or complete acid hydrolysis. These observations indicated the important role of GlcA in LCP-90-1 and associated derivatives with respect to anticomplement activity. Similarly, compared with LCP-90-1, the antioxidant activity of LCP-90-1-A was also enhanced. Thus, polysaccharides with a high content of GlcA might be important and effective substances of L. christinae.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Li-Shuang Zhou
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhi-Zhi Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Guo-Qi Yuan
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao-Jiang Wang
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
39
|
Haroon HB, Dhillon E, Farhangrazi ZS, Trohopoulos PN, Simberg D, Moghimi SM. Activation of the complement system by nanoparticles and strategies for complement inhibition. Eur J Pharm Biopharm 2023; 193:227-240. [PMID: 37949325 DOI: 10.1016/j.ejpb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The complement system is a multicomponent and multifunctional arm of the innate immune system. Complement contributes to non-specific host defence and maintains homeostasis through multifaceted processes and pathways, including crosstalk with the adaptive immune system, the contact (coagulation) and the kinin systems, and alarmin high-mobility group box 1. Complement is also present intracellularly, orchestrating a wide range of housekeeping and physiological processes in both immune and nonimmune cells, thus showing its more sophisticated roles beyond innate immunity, but its roles are still controversial. Particulate drug carriers and nanopharmaceuticals typically present architectures and surface patterns that trigger complement system in different ways, resulting in both beneficial and adverse responses depending on the extent of complement activation and regulation as well as pathophysiological circumstances. Here we consider the role of complement system and complement regulations in host defence and evaluate the mechanisms by which nanoparticles trigger and modulate complement responses. Effective strategies for the prevention of nanoparticle-mediated complement activation are introduced and discussed.
Collapse
Affiliation(s)
- Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elisha Dhillon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
40
|
Cyranka L, Mariegaard I, Skjødt MO, Bayarri-Olmos R, Mollnes TE, Garred P, Rosbjerg A. Functional Analysis of a Novel Complement C5a Receptor 1-Blocking Monoclonal Antibody. J Innate Immun 2023; 15:836-849. [PMID: 37952515 PMCID: PMC10691831 DOI: 10.1159/000535084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
INTRODUCTION The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Leon Cyranka
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Mariegaard
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mikkel-Ole Skjødt
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Peter Garred
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
41
|
Nishioka T, Katayama KI, Kumegawa S, Isono K, Baba T, Tsujimoto H, Yamada G, Inoue N, Asamura S. Increased infiltration of CD4 + T cell in the complement deficient lymphedema model. BMC Immunol 2023; 24:42. [PMID: 37940849 PMCID: PMC10633916 DOI: 10.1186/s12865-023-00580-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Lymphedema is an intractable disease that can be caused by injury to lymphatic vessels, such as by surgical treatments for cancer. It can lead to impaired joint mobility in the extremities and reduced quality of life. Chronic inflammation due to infiltration of various immune cells in an area of lymphedema is thought to lead to local fibrosis, but the molecular pathogenesis of lymphedema remains unclear. Development of effective therapies requires elucidation of the immunological mechanisms involved in the progression of lymphedema. The complement system is part of the innate immune system which has a central role in the elimination of invading microbes and acts as a scavenger of altered host cells, such as apoptotic and necrotic cells and cellular debris. Complement-targeted therapies have recently been clinically applied to various diseases caused by complement overactivation. In this context, we aimed to determine whether complement activation is involved in the development of lymphedema. RESULTS Our mouse tail lymphedema models showed increased expression of C3, and that the classical or lectin pathway was locally activated. Complement activation was suggested to be involved in the progression of lymphedema. In comparison of the C3 knockout (KO) mouse lymphedema model and wild-type mice, there was no difference in the degree of edema at three weeks postoperatively, but the C3 KO mice had a significant increase of TUNEL+ necrotic cells and CD4+ T cells. Infiltration of macrophages and granulocytes was not significantly elevated in C3 KO or C5 KO mice compared with in wild-type mice. Impaired opsonization and decreased migration of macrophages and granulocytes due to C3 deficiency should therefore induce the accumulation of dead cells and may lead to increased infiltration of CD4+ T cells. CONCLUSIONS Vigilance for exacerbation of lymphedema is necessary when surgical treatments have the potential to injure lymphatic vessels in patients undergoing complement-targeted therapies or with complement deficiency. Future studies should aim to elucidate the molecular mechanism of CD4+ T cell infiltration by accumulated dead cells.
Collapse
Affiliation(s)
- Toshihiko Nishioka
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Kei-Ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Shinji Kumegawa
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takashi Baba
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroshi Tsujimoto
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Gen Yamada
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Shinichi Asamura
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
42
|
Cao X, Tang X, Feng C, Lin J, Zhang H, Liu Q, Zheng Q, Zhuang H, Liu X, Li H, Khan NU, Shen L. A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology. Neurosci Bull 2023; 39:1623-1637. [PMID: 37031449 PMCID: PMC10603015 DOI: 10.1007/s12264-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/02/2023] [Indexed: 04/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, 550002, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, China.
| |
Collapse
|
43
|
Wang Y, Liu W, Xu Y, He X, Yuan Q, Luo P, Fan W, Zhu J, Zhang X, Cheng X, Jiang Y, Xu HE, Zhuang Y. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nat Chem Biol 2023; 19:1351-1360. [PMID: 37169960 DOI: 10.1038/s41589-023-01339-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
The complement receptors C3aR and C5aR1, whose signaling is selectively activated by anaphylatoxins C3a and C5a, are important regulators of both innate and adaptive immune responses. Dysregulations of C3aR and C5aR1 signaling lead to multiple inflammatory disorders, including sepsis, asthma and acute respiratory distress syndrome. The mechanism underlying endogenous anaphylatoxin recognition and activation of C3aR and C5aR1 remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-bound C5aR1 as well as an apo-C3aR structure. These structures, combined with mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins to the complement receptors that is different from chemokine receptors, unique pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a common mechanism of receptor activation. These results provide crucial insights into the molecular understanding of C3aR and C5aR1 signaling and structural templates for rational drug design for treating inflammation disorders.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyi Liu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ping Luo
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjia Fan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingpeng Zhu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
44
|
Gao M, Li J, Zhang R, Li N, Li W, Zhang S, Wang P, Wang H, Fang Z, Yu Z, Hu G, Leng J, Yang X. Serum mannan-binding lectin-associated serine proteases in early pregnancy for gestational diabetes in Chinese pregnant women. Front Endocrinol (Lausanne) 2023; 14:1230244. [PMID: 37941903 PMCID: PMC10628726 DOI: 10.3389/fendo.2023.1230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Aims This study aimed to explore associations of mannan-binding lectin-associated serine protease (MASP) levels in early pregnancy with gestational diabetes mellitus (GDM). We also examined interactions of MASPs and deoxycholic acid (DCA)/glycoursodeoxycholic acid (GUDCA) for the GDM risk and whether the interactive effects if any on the GDM risk were mediated via lysophosphatidylcholine (LPC) 18:0. Materials and methods A 1:1 case-control study (n = 414) nested in a prospective cohort of pregnant women was conducted in Tianjin, China. Binary conditional logistic regressions were performed to examine associations of MASPs with the GDM risk. Additive interaction measures were used to examine interactions between MASPs and DCA/GUDCA for the GDM risk. Mediation analyses and Sobel tests were used to examine mediation effects of LPC18:0 between the copresence of MASPs and DCA/GUDCA on the GDM risk. Results High MASP-2 was independently associated with GDM [odds ratio (OR): 2.62, 95% confidence interval (CI): 1.44-4.77], while the effect of high MASP-1 on GDM was attributable to high MASP-2 (P for Sobel test: 0.003). Low DCA markedly increased the OR of high MASP-2 alone from 2.53 (1.10-5.85) up to 10.6 (4.22-26.4), with a significant additive interaction. In addition, high LPC18:0 played a significant mediating role in the links from low DCA to GDM and from the copresence of high MASP-2 and low DCA to GDM (P for Sobel test <0.001) but not in the link from high MASP-2 to GDM. Conclusions High MASP-1 and MASP-2 in early pregnancy were associated with GDM in Chinese pregnant women. MASP-2 amplifies the risk of low DCA for GDM, which is mediated via LPC18:0.
Collapse
Affiliation(s)
- Ming Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| | - Rui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ninghua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Shuang Zhang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Peng Wang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| |
Collapse
|
45
|
Khanani AM, Patel SS, Staurenghi G, Tadayoni R, Danzig CJ, Eichenbaum DA, Hsu J, Wykoff CC, Heier JS, Lally DR, Monés J, Nielsen JS, Sheth VS, Kaiser PK, Clark J, Zhu L, Patel H, Tang J, Desai D, Jaffe GJ. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. Lancet 2023; 402:1449-1458. [PMID: 37696275 DOI: 10.1016/s0140-6736(23)01583-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Geographic atrophy is an advanced form of dry age-related macular degeneration that can lead to irreversible vision loss and high burden of disease. We aimed to assess efficacy and safety of avacincaptad pegol 2 mg in reducing geographic atrophy lesion growth. METHODS GATHER2 is a randomised, double-masked, sham-controlled, 24-month, phase 3 trial across 205 retina clinics, research hospitals, and academic institutions globally. To be eligible, patients had to be aged 50 years or older with non-centrepoint-involving geographic atrophy and best corrected visual acuity between 20/25 and 20/320 in the study eye. Eligible patients were randomly assigned (1:1) to monthly avacincaptad pegol 2 mg administered as a 100 μL intravitreal injection or sham for the first 12 months. Randomisation was performed using an interactive response technology system with stratification by factors known to be of prognostic importance in age-related macular degeneration. Patients, investigators, study centre staff, sponsor personnel, and data analysts were masked to treatment allocation. The primary endpoint was geographic atrophy lesion size measured by fundus autofluorescence at baseline, month 6, and month 12. Efficacy and safety analyses were done in the modified intention-to-treat and safety populations, respectively. This trial is registered with ClinicalTrials.gov, NCT04435366. FINDINGS Between June 22, 2020, and July 23, 2021, 1422 patients were screened for eligibility, of whom 448 were enrolled and randomly assigned to avacincaptad pegol 2 mg (n=225) or sham (n=223). One patient in the sham group did not receive study treatment and was excluded from analyses. There were 154 (68%) female patients and 71 (32%) male patients in the avacincaptad pegol 2 mg group, and 156 (70%) female patients and 66 (30%) male patients in the sham group. From baseline to month 12, the mean rate of square-root-transformed geographic atrophy area growth was 0·336 mm/year (SE 0·032) with avacincaptad pegol 2 mg and 0·392 mm/year (0·033) with sham, a difference in growth of 0·056 mm/year (95% CI 0·016-0·096; p=0·0064), representing a 14% difference between the avacincaptad pegol 2 mg group and the sham group. Ocular treatment-emergent adverse events in the study eye occurred in 110 (49%) patients in the avacincaptad pegol 2 mg group and 83 (37%) in the sham group. There were no endophthalmitis, intraocular inflammation, or ischaemic optic neuropathy events over 12 months. To month 12, macular neovascularisation in the study eye occurred in 15 (7%) patients in the avacincaptad pegol 2 mg group and nine (4%) in the sham group, with exudative macular neovascularisation occurring in 11 (5%) in the avacincaptad pegol 2 mg group and seven (3%) in the sham group. INTERPRETATION Monthly avacincaptad pegol 2 mg was well tolerated and showed significantly slower geographic atrophy growth over 12 months than sham treatment, suggesting that avacincaptad pegol might slow disease progression and potentially change the trajectory of disease for patients with geographic atrophy. FUNDING Iveric Bio, An Astellas Company.
Collapse
Affiliation(s)
- Arshad M Khanani
- Sierra Eye Associates, Reno, NV, USA; University of Nevada, Reno School of Medicine, Reno, NV, USA.
| | | | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ramin Tadayoni
- Université Paris Cité, Ophthalmology Department, AP-HP, Lariboisière, Saint Louis and Fondation Adolphe de Rothschild Hospitals, Paris, France
| | - Carl J Danzig
- Rand Eye Institute, Deerfield Beach, FL, USA; Florida Atlantic University, Charles E Schmidt School of Medicine, Boca Raton, FL, USA
| | - David A Eichenbaum
- Retina Vitreous Associates of Florida, Saint Petersburg, FL, USA; Morsani College of Medicine at the University of South Florida, Tampa, FL, USA
| | - Jason Hsu
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, TX, USA; Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | | | - David R Lally
- New England Retina Consultants, Springfield, MA, USA
| | - Jordi Monés
- Institut de la Màcula, Centro Médico Teknon, Barcelona, Spain
| | | | | | - Peter K Kaiser
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Julie Clark
- Iveric Bio, An Astellas Company, Parsippany, NJ, USA
| | - Liansheng Zhu
- Iveric Bio, An Astellas Company, Parsippany, NJ, USA
| | - Hersh Patel
- Iveric Bio, An Astellas Company, Parsippany, NJ, USA
| | - Justin Tang
- Iveric Bio, An Astellas Company, Parsippany, NJ, USA
| | - Dhaval Desai
- Iveric Bio, An Astellas Company, Parsippany, NJ, USA
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, NC, USA
| |
Collapse
|
46
|
Li Y, Tao C, An N, Liu H, Liu Z, Zhang H, Sun Y, Xing Y, Gao Y. Revisiting the role of the complement system in intracerebral hemorrhage and therapeutic prospects. Int Immunopharmacol 2023; 123:110744. [PMID: 37552908 DOI: 10.1016/j.intimp.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongrui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
47
|
Lipsa D, Magrì D, Della Camera G, La Spina R, Cella C, Garmendia-Aguirre I, Mehn D, Ruiz-Moreno A, Fumagalli F, Calzolai L, Gioria S. Differences in Physico-Chemical Properties and Immunological Response in Nanosimilar Complex Drugs: The Case of Liposomal Doxorubicin. Int J Mol Sci 2023; 24:13612. [PMID: 37686418 PMCID: PMC10487543 DOI: 10.3390/ijms241713612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Irantzu Garmendia-Aguirre
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| |
Collapse
|
48
|
Struijf EM, De la O Becerra KI, Ruyken M, de Haas CJC, van Oosterom F, Siere DY, van Keulen JE, Heesterbeek DAC, Dolk E, Heukers R, Bardoel BW, Gros P, Rooijakkers SHM. Inhibition of cleavage of human complement component C5 and the R885H C5 variant by two distinct high affinity anti-C5 nanobodies. J Biol Chem 2023; 299:104956. [PMID: 37356719 PMCID: PMC10374974 DOI: 10.1016/j.jbc.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.
Collapse
Affiliation(s)
- Eva M Struijf
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karla I De la O Becerra
- Structural Biochemistry Group, Faculty of Science, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Maartje Ruyken
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fleur van Oosterom
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danique Y Siere
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joanne E van Keulen
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Bart W Bardoel
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Structural Biochemistry Group, Faculty of Science, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Wu X, Xuan W, Yang X, Liu W, Zhang H, Jiang G, Cao B, Jiang Y. Ficolin A knockout alleviates sepsis-induced severe lung injury in mice by restoring gut Akkermansia to inhibit S100A4/STAT3 pathway. Int Immunopharmacol 2023; 121:110548. [PMID: 37356123 DOI: 10.1016/j.intimp.2023.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease with high morbidity and mortality. Our previous results demonstrated that Ficolin A (FcnA) protected against lipopolysaccharide (LPS)-induced mild ALI via activating complement, however the mechanism of severe lung damage caused by sepsis remains unclear. This study aimed to investigate whether FcnA modulated gut microbiota to affect the progression of sepsis-induced severe ALI. Fcna-/- and Fcnb-/- C57BL/6 mice were applied to establish the ALI model by injection of LPS intraperitoneally. Mice were treated with antibiotics, fecal microbiota transplantation (FMT), and intratracheal administration of recombinant protein S100A4. Changes in body weight of mice were recorded, and lung injury were assessed. Then lung tissue wet/dry weight was calculated. We found knockout of FcnA, but not FcnB, alleviated sepsis-induced severe ALI evidenced by increased body weight change, decreased wet/dry weight of lung tissue, reduced inflammatory infiltration, decreased lung damage score, decreased Muc-2, TNF-α, IL-1β, IL-6, and Cr levels, and increased sIgA levels. Furthermore, knockout of FcnA restored gut microbiota homeostasis in mice. Correlation analysis showed that Akkermansia was significantly negatively associated with TNF-α, IL-1β, and IL-6 levels in serum and bronchoalveolar lavage fluid (BALF). Moreover, knockout of FcnA regulated gut microbiota to protect ALI through S100A4. Finally, we found knockout of FcnA alleviated ALI by inhibiting S100A4 via gut Akkermansia in mice, which may provide further insights and new targets into treating sepsis-induced severe lung injury.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Weixia Xuan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Wei Liu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
| |
Collapse
|
50
|
Boeckel H, Karsten CM, Göpel W, Herting E, Rupp J, Härtel C, Hartz A. Increased Expression of Anaphylatoxin C5a-Receptor-1 in Neutrophils and Natural Killer Cells of Preterm Infants. Int J Mol Sci 2023; 24:10321. [PMID: 37373467 DOI: 10.3390/ijms241210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Hannah Boeckel
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
| | - Christian M Karsten
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- Institute for Systemic Inflammation Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
| | - Egbert Herting
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Jan Rupp
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Christoph Härtel
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Interdisciplinary Center of Clinical Research, University of Würzburg, 97080 Würzburg, Germany
- Department of Pediatrics, University of Würzburg, 97080 Würzburg, Germany
| | - Annika Hartz
- Department of Pediatrics, University of Lübeck, 23538 Lübeck, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- Institute for Systemic Inflammation Medicine, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| |
Collapse
|